CN110551318B - 一种石墨烯基热湿交换复合膜的制备方法 - Google Patents

一种石墨烯基热湿交换复合膜的制备方法 Download PDF

Info

Publication number
CN110551318B
CN110551318B CN201910739223.2A CN201910739223A CN110551318B CN 110551318 B CN110551318 B CN 110551318B CN 201910739223 A CN201910739223 A CN 201910739223A CN 110551318 B CN110551318 B CN 110551318B
Authority
CN
China
Prior art keywords
graphene
composite membrane
moisture exchange
adopting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910739223.2A
Other languages
English (en)
Other versions
CN110551318A (zh
Inventor
张燕萍
段亚强
赵志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Li Sheng Graphene Technology Co ltd
Original Assignee
Shanghai Levsong Nano Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Levsong Nano Technology Co ltd filed Critical Shanghai Levsong Nano Technology Co ltd
Priority to CN201910739223.2A priority Critical patent/CN110551318B/zh
Publication of CN110551318A publication Critical patent/CN110551318A/zh
Application granted granted Critical
Publication of CN110551318B publication Critical patent/CN110551318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯基热湿交换复合膜的制备方法,该材料通过石墨烯与金属有机骨架材料复合并原位沉积于聚偏氟乙烯微孔膜制备而成。先采用冷凝回流法对天然鳞片石墨或膨胀石墨进行表面改性处理,再采用超临界流体法制得石墨烯量子点。配制含有金属有机骨架分子浆液,并包埋和吸附石墨烯量子点进行可控生长,并原位沉积于聚偏氟乙烯微孔膜上后进行微波干燥,制备得到可应用于热湿交换芯体材料的石墨烯基复合膜。采用该方法制备的复合膜,具有优异的传热、传湿、透气性能,力学性能和化学稳定性俱佳,可作为热湿交换膜广泛应用于膜式全热交换系统芯体材料,推动全热交换器作为一种有效的改善室内空气品质和降低空调能耗的节能环保设备积极发展。

Description

一种石墨烯基热湿交换复合膜的制备方法
技术领域
本发明涉及一种石墨烯基热湿交换复合膜的制备方法,属于纳米复合材料制备及应用技术领域。
背景技术
随着我国国民经济的迅速发展和城市化进程的加快,建筑面积正迅速增加,加上人民生活水平的提高,与之配套的空调能耗也迅速增加。2009年,建筑能耗占社会总能耗的30%左右。据测算,到2020年这个比例将上升到35%左右。据估计,各电网高峰负荷中给有1/3都属于空调制冷负荷。因此,降低空调能耗对缓解能源短缺起着关键作用。
膜式全热交换器不仅能回收室内空气的显热和潜热,起到降低空调系统新风负荷的作用,又能引进新风起到改善室内空气品质的的作用,具有很好的应用前景。而在我国,膜式全热交换器一直未能得到推广和普及,其原因主要包括:国产热湿交换材料性能不佳,换热效率低,价格不菲;而进口材料价格高昂,产品体积庞大,受到建筑条件限制等。
因此,深入研究开发膜式全热交换器核心部件材料——热湿交换膜,并广泛推广,对于我国的节能减耗和环保事业有着重要意义。
发明内容
区别于现有技术中将纸质材料作为传统的热湿交换膜,本发明提供了一种石墨烯基热湿交换复合膜的制备方法,采用石墨烯基热湿交换复合膜,显著提高了传热及透湿效率,同时解决纸质膜抗菌差问题,并提高了膜整体力学、耐老化、阻燃等综合性能。
采用本发明的制备方法,石墨烯基热湿交换复合膜具有更好的传热、透湿透气和阻燃性能。主要是因为该复合膜基于有机框架的几何结构和无机金属离子相互配位结合形成的多孔结构,因而具有极高的孔隙率、较大的比表面积且不饱和金属键丰富,可在气体分离和传质应用扮演重要的角色。当石墨烯量子点与金属有机骨架材料复合后,形成由配位聚合物以及包埋和吸附的石墨烯量子点组成的杂化球;还有一些石墨烯量子点未耗尽,散落分布于整个体系。由于石墨烯量子点是零维的石墨烯片,复合膜不仅可以协同石墨烯的高导热、优异的力学性能及化学稳定性,大幅提升膜的传热性能、力学性能、热稳定性及阻燃性能,并达到抗菌效果;还可以利用成核机理对晶体杂化球进行生长调控,从而达到复合膜孔径尺寸可调的目的,因此膜的水蒸气通量和气体分离效率都得以提升。
该工艺的采用新型纳米材料及结构,其组成、制备方法和孔隙率等参数可控性强,为调制其热湿交换性能性能提供了灵活的解决方案。该工艺过程简单,可工业化制备,利用所制备的石墨烯基热湿交换复合膜可广泛应用于膜式全热交换器等暖通节能领域。
本发明的技术方案是:一种石墨烯基热湿交换复合膜的制备方法,具体步骤如下:
步骤一、采用冷凝回流法将天然鳞片石墨乙醇浆料或可膨胀石墨乙醇浆料进行表面活性剂改性处理;
步骤二、将步骤一配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得石墨烯量子点浆液;
步骤三、将聚偏氟乙烯微孔膜浸润于步骤二得到的石墨烯量子点浆液中;
步骤四、采用模板合成法,将金属有机骨架前驱体合成溶液引入步骤三浆液中,经过24小时后,石墨烯量子点和属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上;
步骤五、采用微波干燥法,将含有石墨烯量子点和金属有机骨架复合材料的聚偏氟乙烯微孔膜进行干燥后,得到热湿交换复合膜。
进一步的,步骤一中采用的冷凝回流法,具体包括:将天然鳞片石墨或可膨胀石墨加入乙醇中高速分散均匀,在60-80℃下冷凝回流7-9小时;其中,天然鳞片石墨或可膨胀石墨在总浆料中的固含量为1~7%。
进一步的,步骤一中所采用的表面活性剂为十二烷基硫酸钠或聚乙烯吡咯烷酮或聚乙二醇对异辛基苯基醚中的一种。
进一步的,步骤二采用的超临界二氧化碳流体法,设定温度为35-45℃,压强为20-30MPa,时间为20-26小时;所制备得到的石墨烯量子点粒径为10~75nm。
进一步的,步骤三所述的聚偏氟乙烯微孔膜孔径为50~200μm。
进一步的,步骤四所述的金属有机骨架为ZIF-8或ZIF-90中的一种;其中,ZIF-8对应的前驱体合成溶液中,溶剂为甲醇,硝酸锌和2-甲基咪唑的浓度均为0.01~0.03mol/L;ZIF-90对应的前驱体合成溶液中,溶剂为叔丁醇,硝酸锌和咪唑-2-甲醛的浓度均为0.04~0.10mol/L。
进一步的,步骤五所述的微波干燥法,微波干燥功率为80-120W,干燥时间为10-20分钟。
本发明的有益效果是:通过石墨烯量子点/金属有机骨架与聚偏氟乙烯微孔膜进行复合,与普通商业纸质膜相比,可得到具有气体透过率和渗透选择性强,兼具抗污染效果的热湿交换膜。通过石墨烯量子点与金属有机骨架材料核壳结构的生长和构成控制,对于膜表面分离层结构、机械强度、孔隙率、表面亲/疏水性等能进行有效地调节,因此,使得石墨烯基热湿交换复合膜具有良好的传热、透湿、透气性和阻燃性得以实现。采用本发明方法制备的复合膜可作为热湿交换膜广泛应用于膜式全热交换系统芯体材料,推动全热交换器作为一种有效的改善室内空气品质和降低空调能耗的节能环保设备积极发展。
具体实施方式
以下结合实施例对本发明进行详细说明,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
实施例1
采用冷凝回流法将天然鳞片石墨加入乙醇中高速分散均匀,在70℃下冷凝回流8小时;其中天然鳞片石墨在总浆料的中的固含量为7%,所采用的表面活性剂为十二烷基硫酸钠。将所配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得粒径为75nm石墨烯量子点。将孔径为100μm聚偏氟乙烯微孔膜浸润于所得到的石墨烯量子点乙醇浆液中。再采用模板合成法,将金属有机骨架ZIF-8前驱体合成溶液,即0.01mol/L硝酸锌和0.03mol/L 2-甲基咪唑的甲醇溶液引入上述浆液中,经过24小时后,石墨烯量子点/金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上。最后通过微波干燥得到石墨烯基热湿交换复合膜。
实施例2
采用冷凝回流法将天然鳞片石墨加入乙醇中高速分散均匀,在70℃下冷凝回流8小时;其中天然鳞片石墨在总浆料的中的固含量为3%,所采用的表面活性剂为聚乙烯吡咯烷酮。将所配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得粒径为50nm石墨烯量子点。将孔径为50μm聚偏氟乙烯微孔膜浸润于所得到的石墨烯量子点乙醇浆液中。再采用模板合成法,将金属有机骨架ZIF-8前驱体合成溶液,即0.02mol/L硝酸锌和0.03mol/L 2-甲基咪唑的甲醇溶液引入上述浆液中,经过24小时后,石墨烯量子点/金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上。最后通过微波干燥得到石墨烯基热湿交换复合膜。
实施例3
采用冷凝回流法将可膨胀石墨加入乙醇中高速分散均匀,在70℃下冷凝回流8小时;其中可膨胀石墨在总浆料的中的固含量为2%,所采用的表面活性剂为聚乙二醇对异辛基苯基醚。将所配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得粒径为10nm石墨烯量子点。将孔径为100μm聚偏氟乙烯微孔膜浸润于所得到的石墨烯量子点乙醇浆液中。再采用模板合成法,将金属有机骨架ZIF-90前驱体合成溶液,即0.04mol/L硝酸锌和0.10mol/L咪唑-2-甲醛的叔丁醇溶液引入上述浆液中,经过24小时后,石墨烯量子点/金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上。最后通过微波干燥得到石墨烯基热湿交换复合膜。
实施例4
采用冷凝回流法将可膨胀石墨加入乙醇中高速分散均匀,在70℃下冷凝回流8小时;其中可膨胀石墨在总浆料的中的固含量为1%,所采用的表面活性剂为聚乙烯吡咯烷酮。将所配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得粒径为25nm石墨烯量子点。将孔径为100μm聚偏氟乙烯微孔膜浸润于所得到的石墨烯量子点乙醇浆液中。再采用模板合成法,将金属有机骨架ZIF-90前驱体合成溶液,即0.06mol/L硝酸锌和0.10mol/L咪唑-2-甲醛的叔丁醇溶液引入上述浆液中,经过24小时后,石墨烯量子点/金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上。最后通过微波干燥得到石墨烯基热湿交换复合膜。
实施例5
采用冷凝回流法将可膨胀石墨加入乙醇中高速分散均匀,在70℃下冷凝回流8小时;其中可膨胀石墨在总浆料的中的固含量为3%,所采用的表面活性剂为十二烷基硫酸钠。将所配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得粒径为40nm石墨烯量子点。将孔径为200μm聚偏氟乙烯微孔膜浸润于所得到的石墨烯量子点乙醇浆液中。再采用模板合成法,将ZIF-8前驱体合成溶液,即0.01mol/L硝酸锌和0.03mol/L2-甲基咪唑的甲醇溶液引入上述浆液中,经过24小时后,石墨烯量子点/金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上。最后通过微波干燥得到石墨烯基热湿交换复合膜。
上述实施例工艺简单,产物均匀及稳定性高,可工业化制备石墨烯基热湿交换复合膜,应用于膜式全热交换器的热交换芯体进行热湿交换,从而明显节省空调系统能耗。该复合膜通过金属有机骨架的高孔隙率和高比表面积来提高气体分离的效率,并协同石墨烯量子点优异的导热、力学、光催化等性能,大幅提升整个体系的导热率、力学、阻燃以及抑菌性能,传热性能、力学性能、热稳定性及阻燃性能。
Figure GDA0003235897220000051
经研究表明,通过石墨烯量子点粒径以及与金属有机骨架分子合成生长的控制,将聚偏氟乙烯微孔膜功能化,达到有效控制复合材料的透湿、导热、阻气等性能的目的。能够实现如实施例3中所制备的石墨烯基热湿交换复合膜作为膜式全热交换系统芯体材料,具备较好的机械强度且制备工艺简单,可广泛应用于工业热回收、建筑暖通系统等领域,对于推动节能减排、绿色环保经济和社会发展有着重要意义。

Claims (7)

1.一种石墨烯基热湿交换复合膜的制备方法,其特征在于:具体步骤如下:
步骤一、采用冷凝回流法将天然鳞片石墨乙醇浆料或可膨胀石墨乙醇浆料进行表面活性剂改性处理;
步骤二、将步骤一配制的浆料先后采用超声、超临界二氧化碳流体法处理,然后经过离心工艺提取上清液制得石墨烯量子点浆液;
步骤三、将聚偏氟乙烯微孔膜浸润于步骤二得到的石墨烯量子点浆液中;
步骤四、采用模板合成法,将金属有机骨架前驱体合成溶液引入步骤三浆液中,经过24小时后,石墨烯量子点和金属有机骨架原位沉积复合于聚偏氟乙烯微孔膜上;
步骤五、采用微波干燥法,将含有石墨烯量子点和金属有机骨架复合材料的聚偏氟乙烯微孔膜进行干燥后,得到热湿交换复合膜。
2.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤一中采用的冷凝回流法,具体包括:将天然鳞片石墨或可膨胀石墨加入乙醇中高速分散均匀,在60-80℃下冷凝回流7-9小时;其中,天然鳞片石墨或可膨胀石墨在总浆料中的固含量为1~7%。
3.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤一中所采用的表面活性剂为十二烷基硫酸钠或聚乙烯吡咯烷酮或聚乙二醇对异辛基苯基醚中的一种。
4.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤二采用的超临界二氧化碳流体法,设定温度为35-45℃,压强为20-30MPa,时间为20-26小时;所制备得到的石墨烯量子点粒径为10~75nm。
5.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤三所述的聚偏氟乙烯微孔膜孔径为50~200μm。
6.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤四所述的金属有机骨架为ZIF-8或ZIF-90中的一种;其中,ZIF-8对应的前驱体合成溶液中,溶剂为甲醇,硝酸锌和2-甲基咪唑的浓度均为0.01~0.03mol/L;ZIF-90对应的前驱体合成溶液中,溶剂为叔丁醇,硝酸锌和咪唑-2-甲醛的浓度均为0.04~0.10mol/L。
7.根据权利要求1所述的一种石墨烯基热湿交换复合膜的制备方法,其特征在于:步骤五所述的微波干燥法,微波干燥功率为80-120W,干燥时间为10-20分钟。
CN201910739223.2A 2019-08-12 2019-08-12 一种石墨烯基热湿交换复合膜的制备方法 Active CN110551318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910739223.2A CN110551318B (zh) 2019-08-12 2019-08-12 一种石墨烯基热湿交换复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910739223.2A CN110551318B (zh) 2019-08-12 2019-08-12 一种石墨烯基热湿交换复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN110551318A CN110551318A (zh) 2019-12-10
CN110551318B true CN110551318B (zh) 2021-12-03

Family

ID=68737354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910739223.2A Active CN110551318B (zh) 2019-08-12 2019-08-12 一种石墨烯基热湿交换复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN110551318B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892715B (zh) * 2020-08-13 2021-04-16 广东泰金智能包装有限公司 一种金属有机框架材料及其制备方法和应用
CN112915814B (zh) * 2021-02-06 2022-09-16 江西师范大学 一种用于气体分离的新型膜材料及制备方法
CN112999883B (zh) * 2021-03-11 2022-05-17 浙江工业大学 一种通过原位生长ZIFs纳米颗粒制备全热交换膜的方法及所制备的膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694605A (zh) * 2017-11-01 2018-02-16 中国科学院福建物质结构研究所 碳量子点@卟啉基金属有机骨架催化剂及制备方法和应用
CN109173730A (zh) * 2018-09-14 2019-01-11 北京工业大学 一种冷冻干燥技术原位制备MOFs@f-GO杂化膜的方法
CN109647231A (zh) * 2018-12-27 2019-04-19 浙江工业大学 一种氧化石墨烯/mof复合膜及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694605A (zh) * 2017-11-01 2018-02-16 中国科学院福建物质结构研究所 碳量子点@卟啉基金属有机骨架催化剂及制备方法和应用
CN109173730A (zh) * 2018-09-14 2019-01-11 北京工业大学 一种冷冻干燥技术原位制备MOFs@f-GO杂化膜的方法
CN109647231A (zh) * 2018-12-27 2019-04-19 浙江工业大学 一种氧化石墨烯/mof复合膜及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity";Binling Chen et al.;《RSC Advances》;20150325;第5卷;第30464-30471页 *
"Porous carbon derived from metal–organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries";Hui Yu et al.;《RSC Advances》;20190326;第9卷;第9577-9583页 *

Also Published As

Publication number Publication date
CN110551318A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
CN110551318B (zh) 一种石墨烯基热湿交换复合膜的制备方法
CN102382364B (zh) 一种纤维素改进透湿阻隔复合薄膜及其制备方法
CN107335345B (zh) 一种自支撑高透湿绝热气凝胶薄膜及其制备方法
CN114247309B (zh) 一种抗菌防病毒空气净化材料制备方法
CN108149048B (zh) 微纳米双级多孔铜及其制备方法
CN108047806B (zh) 一种石墨烯/Ag-炭微球气凝胶涂料及其制备方法和应用
CN111394067B (zh) 一种金属氟化物高温相变储能微胶囊及其制备方法与应用
CN109289814B (zh) 一种用于吸附废水中抗生素的磁性碳气凝胶及其制备方法
TWI592475B (zh) 吸附材料與其形成方法與吸附式熱泵
CN107855101B (zh) 利用沸石和玻璃制备强化氮磷吸附的水处理悬浮式填料及制备方法
CN102061026A (zh) 一种透热透湿的复合薄膜及其制备方法
CN111600000A (zh) 一种碳纳米管石墨烯/硅碳复合材料、其制备方法及应用
CN107240508A (zh) 一种石墨烯/铁氧体纳米复合电极材料的制备方法
CN103303901A (zh) 一种在石墨烯表面生长碳纳米管的方法
CN113457464A (zh) 一种基于共插层精确调控层间距的MXene膜制备方法
CN105540566B (zh) 一种有序介孔碳材料的制备方法
CN104992850B (zh) 一种Fe3O4/MnO2/RGO材料及其制备方法与应用
CN111115690B (zh) 一种可穿戴MnO2纳米线杂化膜及其制备方法
CN112619436A (zh) 一种基于多孔核壳填充剂的混合基质膜的制备方法
CN109399722A (zh) 一种多孔棒状二氧化钼/碳复合材料的制备方法
CN102351168B (zh) 一种偏氯乙烯聚合物基中孔-微孔复合多孔炭的制备方法
CN105602531A (zh) 一种改性膨胀石墨复合蓄热材料及其制备方法
CN103406098B (zh) 一种可磁分离竹炭材料的制备方法
CN115155470A (zh) 一种有序碳-聚硅氧烷复合气凝胶及其制备方法、应用
CN108311166A (zh) 一种二维过渡金属磷化物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231116

Address after: No. 511, Shanlian Road, Baoshan District, Shanghai 200444

Patentee after: Shanghai Li Sheng graphene Technology Co.,Ltd.

Address before: 200444 block B, 1st floor, building 2, 511 Shanlian Road, Baoshan District, Shanghai

Patentee before: SHANGHAI LEVSONG NANO TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right