CN110491682B - MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用 - Google Patents

MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用 Download PDF

Info

Publication number
CN110491682B
CN110491682B CN201910834592.XA CN201910834592A CN110491682B CN 110491682 B CN110491682 B CN 110491682B CN 201910834592 A CN201910834592 A CN 201910834592A CN 110491682 B CN110491682 B CN 110491682B
Authority
CN
China
Prior art keywords
mof
mdh
metal hydroxide
precursor
double metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910834592.XA
Other languages
English (en)
Other versions
CN110491682A (zh
Inventor
杨武
李琪
郭昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201910834592.XA priority Critical patent/CN110491682B/zh
Publication of CN110491682A publication Critical patent/CN110491682A/zh
Application granted granted Critical
Publication of CN110491682B publication Critical patent/CN110491682B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种MOF衍生的双金属氢氧化物Ni/Co‑MDH的合成方法,先以DHTP、Co(Ac)2·4H2O、CTAB为原料,通过水热反应制得Co‑MOF;再将Co‑MOF、Ni(Ac)2·4H2O和CTAB分散在去离子水中,在搅拌下加入DHTP,继续通过水热反应得到前驱体Ni‑MOF@Co‑MOF;然后将Ni‑MOF@Co‑MOF充分分散于KOH溶液中,在115~125℃水热反应1.5~2h,洗涤,干燥,得到Ni/Co‑MDH纳米片。Ni/Co‑MDH材料表现出较大的比表面积和良好的热稳定性,相较于前驱体展现出较优异的电化学性能,作为超级电容器电极材料具有很好的应用前景。

Description

MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用
技术领域
本发明涉及一种双金属氢氧化物材料的制备,尤其涉及一种MOF衍生的双金属氢氧化物Ni/Co-MDH纳米片的制备方法,可作为超级电容器电极材料的应用。
背景技术
金属有机框架材料(metal organic frameworks,MOFs)是由有机桥连配体通过配位键的方式将无机金属离子簇中心连接起来形成无限延伸的网络状结构的晶体材料,是近年来发展迅速的一种新型多孔材料,由于其有序的孔道结构和较大的比表面积广泛应用于气体分离,吸附,催化,荧光,传感,载药,储能等领域。MOFs材料是由金属节点和有机配体支撑构成的二维或三维晶体结构,作为电极材料,MOFs材料独特的孔道结构为电解液的渗透和离子传输提供了通道,金属离子或离子簇中心为法拉第氧化还原反应提供了有效的活性位点,表现出赝电容行为,具有较高的比电容,因而可作为一种良好的储能材料。
发明内容
本发明的目的是提供一种MOF衍生的双金属氢氧化物Ni/Co-MDH纳米片的合成方法;
本发明的另一目的是对上述合成的双金属氢氧化物Ni/Co-MDH纳米片的电化学性能进行研究。
一、Ni/Co-MDH纳米片的合成
本发明MOF衍生的双金属氢氧化物Ni/Co-MDH材料的合成方法,包括以下步骤:
(1)Co-MOF的制备:以2,5-二羟基对苯二甲酸(DHTP)和Co(Ac)2·4H2O,十六烷基三甲基溴化胺(CTAB)为原料,以THF和水混合溶液为溶剂,在110~120℃回流2~3h,洗涤,干燥,得到Co-MOF。
2,5-二羟基对苯二甲酸(DHTP)和Co(Ac)2·4H2O的摩尔比为1:1~1:2;2,5-二羟基对苯二甲酸(DHTP)和十六烷基三甲基溴化胺的摩尔比为1:3~1:4。
THF和水的混合溶液中,THF和水的体积比为1:1~1:1.5。
(2)前驱体Ni-MOF @ Co-MOF的制备:将 Co-MOF,Ni(Ac)2·4H2O和十六烷基三甲基溴化胺(CTAB)分散在去离子水中,在搅拌下加入DHTP(2,5-二羟基对苯二甲酸)的THF溶液,搅拌0.5~1h,然后在70~80℃下回流8~9小时,洗涤,干燥,得到前驱体Ni-MOF @ Co-MOF;
Co-MOF与Ni(Ac)2·4H2O的质量比为1:1~1:2;Co-MOF与十六烷基三甲基溴化胺(CTAB)质量比为1:2~1:3;Co-MOF与2,5-二羟基对苯二甲酸的质量比为1:1~1:2。
(3)双金属氢氧化物材料(Ni/Co-MDH)的制备:将前驱体Ni-MOF @ Co-MOF充分分散于2~2.5M的KOH水溶液中搅拌2~3h后转移至反应釜中,在115~125℃水热反应1.5~2h,洗涤,干燥,得到Ni/Co-MDH纳米片。
上述各步骤中,所述干燥均是在60~70℃的真空烘箱干燥10~12小时。
二、Ni/Co-MDH的表征
1、FT-IR分析
图1为本发明合成的Ni/Co-MDH材料的FT-IR图。3440cm-1处的峰是未参与配位的-COOH中-OH伸缩振动峰,1630cm-1的吸收峰是C=O键的伸缩振动峰,3646cm-1的吸收峰是Ni/Co-MDH材料中的-OH伸缩振动峰,说明材料成功合成。
2、扫描电镜分析
图2、图3分别为前驱体Ni-MOF @ Co-MOF材料和Ni/Co-MDH材料的扫描电镜图。扫描电子显微镜照片表明,前驱体Ni-MOF @ Co-MOF呈纳米棒状,Ni/Co-MDH呈现出纳米片堆叠的疏松多孔状纳米花形态。表明通过碱处理剥离方法,将纳米棒状前驱体剥离为纳米片。
3、热重分析
图3为本发明合成的Ni/Co-MDH材料的热分析图。热分析图表明,本发明合成的Ni/Co-MDH材料热稳定性非常好,从25℃~800℃的测试条件下,最终重量保持率在52%。200℃~380℃的失重归结为材料中小分子聚合物的分解,380℃左右的失重归结为结构的坍塌。
4、X射线粉末衍射分析
图4为本发明合成的Ni/Co-MDH材料的X射线粉末衍射图。X射线粉末衍射图表明,Ni/Co-MDH材料具有较好的结晶度。
5、循环伏安测试分析
图5为本发明合成的Ni/Co-MDH材料的循环伏安图。电位窗口为0 ~0.7 V,扫速由5mV s-1增加到80 mV s-1。从图5可以清楚观察到CV曲线呈现出氧化还原峰,表明Ni/Co-MDH电极的主要行为是赝电容控制的。氧化还原峰归因于M(OH)2-MOOH(M对应于Ni或Co)之间的可逆反应。随着扫描速率的增加,氧化峰和还原峰逐渐向更正和更负方向移动,这主要归因于活性材料的电化学极化。
6、恒电流充放电测试分析
图6为本发明合成的Ni/Co-MDH材料恒电流充放电曲线图。从图6中可以发现,充放电曲线的平台显示出明显的法拉第反应,与循环伏安曲线结果一直。
7、交流阻抗测试分析
图7为本发明合成的Ni/Co-MDH材料的交流阻抗图。图7显示,在高频区,较小的半圆说明Ni/Co-MDH材料自身内阻较小;在中低频区的Warburg阻抗受制于电极-电解液界面处的离子扩散,较小的Warburg说明材料具有较短的离子扩散路径。
综上所述,本发明以2,5-二羟基对苯二甲酸,四水合乙酸钴,四水合乙酸镍和十六烷基三甲基溴化胺为原料,以THF和水为溶剂,采用水热法先制得纳米棒状前驱体Ni-MOF @Co-MOF材料,再通过碱处理剥离前驱体,制得由纳米片堆叠的疏松多孔状纳米花形态的MOF衍生的双金属氢氧化物材料Ni/Co-MDH材料。电化学性能测试表明,Ni/Co-MDH材料表现出较大的比表面积和良好的热稳定性,相较于前驱体展现出较优异的电化学性能,作为超级电容器电极材料具有很好的应用前景。
附图说明
图1为本发明合成的Ni/Co-MDH材料的红外光谱图。
图2为本发明合成的前驱体Ni-MOF @ Co-MOF材料的扫描电镜图。
图3为本发明合成的Ni/Co-MDH材料的扫描电镜图。
图4为本发明合成的Ni/Co-MDH材料的热分析图。
图5为本发明合成的Ni/Co-MDH材料的X射线粉末衍射图。
图6为本发明合成的Ni/Co-MDH材料煅烧后的循环伏安图。
图7为本发明合成的Ni/Co-MDH材料煅烧后的恒电流充放电的放电曲线图。
图8为本发明合成的Ni/Co-MDH材料煅烧后的交流阻抗图。
具体实施方式
下面通过具体实施例对本发明Ni/Co-MDH材料的合成和性能作进一步说明。
取DHTP(0.793g)和Co(Ac)2·4H2O(0.996g),溶解在100 mL THF和水(1:1/v:v)的混合溶液,并将1gCTAB加入上述混合溶液中,在120℃回流3小时,自然冷却至室温后,用去离子水和乙醇离心洗涤,并在60~70℃的真空烘箱干燥,得到Co-MOF;
取0.02g Co-MOF,0.498g Ni(Ac)2·4H2O和0.5gCTAB分散在40mL去离子水中;再向其中加入40mL含有DHTP(0.396g)的THF溶液,室温下搅拌30分钟,然后在80℃下回流8小时;用去离子水和乙醇离心洗涤,并在60~70℃的真空烘箱干燥中干燥12小时,得到0.2g前驱体Ni-MOF @ Co-MOF。
将前驱体Ni-MOF @ Co-MOF分散于30mL2M的KOH水溶液中搅拌2h后转移至反应釜中,120℃水热反应2h,用去离子水和乙醇离心洗涤,并在60~70℃的真空烘箱干燥中干燥12小时,得到Ni/Co-MDH材料。
电化学性能:上述制备的Ni/Co-MDH材料在1 A g-1,2 A g-1,5 A g-1,8A g-1,10 Ag-1,15 A g-1,20 A g-1,30 A g-1的电流密度下比电容值分别为1816 F g-1,1693 F g-1,1530 F g-1,1474 F g-1,1447 F g-1,1395 F g-1,1350 F g-1,1265 F g-1

Claims (4)

1.MOF衍生的双金属氢氧化物Ni/Co-MDH的合成方法,包括以下步骤:
(1)Co-MOF的制备:以2,5-二羟基对苯二甲酸和Co(Ac)2·4H2O,十六烷基三甲基溴化胺为原料,以THF和水混合溶液为溶剂,在110~120℃回流2~3h,洗涤,干燥,得到Co-MOF;2,5-二羟基对苯二甲酸和Co(Ac)2·4H2O的摩尔比为1:1~1:2,2,5-二羟基对苯二甲酸和十六烷基三甲基溴化胺的摩尔比为1:3~1:4;
(2)前驱体Ni-MOF @ Co-MOF的制备:将 Co-MOF、Ni(Ac)2·4H2O和十六烷基三甲基溴化胺分散在去离子水中,在搅拌下加入2,5-二羟基对苯二甲酸的THF溶液,搅拌0.5~1h,然后在70~80℃下回流8~9小时,洗涤,干燥,得到前驱体Ni-MOF @ Co-MOF;Co-MOF与Ni(Ac)2·4H2O的质量比为1:1~1:2;Co-MOF与十六烷基三甲基溴化胺质量比为1:2~1:3;Co-MOF与2,5-二羟基对苯二甲酸的质量比为1:1~1:2;
(3)双金属氢氧化物纳米片Ni/Co-MDH的制备:将前驱体Ni-MOF @ Co-MOF充分分散于2~2.5M的KOH水溶液中,搅拌2~3h后转移至反应釜中,在115~125℃水热反应1.5~2h,洗涤,干燥,得到Ni/Co-MDH纳米片。
2.如权利要求1所述MOF衍生的双金属氢氧化物Ni/Co-MDH的合成方法,其特征在于:步骤(1)中THF和水的混合溶液中,THF和水的体积比为1:1~1:1.5。
3.如权利要求1所述MOF衍生的双金属氢氧化物Ni/Co-MDH的合成方法,其特征在于:各步骤中,所述干燥均是在60~70℃的真空烘箱干燥10~12小时。
4.如权利要求1所述方法合成的MOF衍生的双金属氢氧化物Ni/Co-MDH作为超级电容器电极材料的应用。
CN201910834592.XA 2019-09-05 2019-09-05 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用 Expired - Fee Related CN110491682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910834592.XA CN110491682B (zh) 2019-09-05 2019-09-05 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910834592.XA CN110491682B (zh) 2019-09-05 2019-09-05 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用

Publications (2)

Publication Number Publication Date
CN110491682A CN110491682A (zh) 2019-11-22
CN110491682B true CN110491682B (zh) 2021-07-23

Family

ID=68556487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910834592.XA Expired - Fee Related CN110491682B (zh) 2019-09-05 2019-09-05 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用

Country Status (1)

Country Link
CN (1) CN110491682B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921721B (zh) * 2019-12-03 2022-05-27 西北师范大学 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用
CN111755691B (zh) * 2020-06-30 2021-11-09 中国石油大学(华东) 一种用于钠硫二次电池的双金属硫化物的制备方法
CN112058266A (zh) * 2020-08-26 2020-12-11 浙江工业大学 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用
CN114516663A (zh) * 2020-11-20 2022-05-20 中国科学院大连化学物理研究所 一种Ni/Co双金属氧化物纳米材料及其制备方法
CN112391649A (zh) * 2020-11-23 2021-02-23 西北师范大学 一种NiFe-LDH复合材料的制备及应用
CN113184926B (zh) * 2021-04-30 2023-04-28 佛山经纬纳科环境科技有限公司 利用电镀污泥制备Ni-Cu LDH材料的方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290287A1 (en) * 1999-06-11 2009-11-26 Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
CN107601580A (zh) * 2017-09-22 2018-01-19 合肥工业大学 一种利用金属有机骨架作为前驱体制备镍钴氧化物的方法及其用途
CN108585063A (zh) * 2018-04-13 2018-09-28 济南大学 一种MOFs衍生的空心氢氧化物的简易制备方法
CN108766774A (zh) * 2018-05-25 2018-11-06 宁波大学 具有中空纳米笼结构的Ni-Co-Mn层状双氢氧化物的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290287A1 (en) * 1999-06-11 2009-11-26 Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
CN107601580A (zh) * 2017-09-22 2018-01-19 合肥工业大学 一种利用金属有机骨架作为前驱体制备镍钴氧化物的方法及其用途
CN108585063A (zh) * 2018-04-13 2018-09-28 济南大学 一种MOFs衍生的空心氢氧化物的简易制备方法
CN108766774A (zh) * 2018-05-25 2018-11-06 宁波大学 具有中空纳米笼结构的Ni-Co-Mn层状双氢氧化物的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Functionalized Bimetallic Hydroxides Derived from Metal−Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability;Chong Qu等;《ACS Energy Letters》;20170501;第2017年卷(第2期);第1264页左栏倒数第1-2段、摘要,图1 *

Also Published As

Publication number Publication date
CN110491682A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110491682B (zh) MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用
CN106972155B (zh) 一种基于MOFs的双金属氧化物及制备方法和应用
CN110921721B (zh) 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用
CN112670093A (zh) 一种多孔Co3O4@Ni-MOF核壳结构纳米片阵列材料及其制备方法和应用
CN103979618A (zh) 一种超级电容器用钴酸镍纳米材料的合成方法
CN108807001B (zh) 多级结构的球形钴酸镍-二氧化铈复合电极材料及其制备方法
CN113299484B (zh) CCO/CoNiMn-LDH复合材料的制备方法及其应用于超级电容器
CN110970226A (zh) 一种复合电极材料及制备方法、超级电容器
CN111029167B (zh) 一种利用针状焦基炭材料制备超级电容器电极材料的方法
KR102012106B1 (ko) 금속산화물 및 유기리간드를 포함하는 금속-유기 복합체, 이를 이용한 슈퍼커패시터용 전극, 및 이의 제조방법
CN109021248B (zh) 一种s掺杂的金属有机框架材料的合成方法
CN108962617B (zh) 一种自组装四氧化三钴分级微球的制备方法及其应用
CN104299793A (zh) 一种氧化镍/多壁碳纳米管电极材料的制备方法
Zhao et al. Fabrication of 3D micro-flower structure of ternary Ni-Co-Cu hydroxide based on Co-MOF for advanced asymmetric supercapacitors
CN112194132B (zh) 一种基于毛竹水热炭化的铁修饰炭微球/炭纳米片复合多孔炭的制备方法及其应用
CN112927953A (zh) 一种纳米花状Co3O4修饰N,P掺杂多孔碳超级电容器和制备方法
CN110415993B (zh) 一种Mn-Co-S/Co-MOF纳米材料的制备方法及其应用
CN109650456B (zh) 一种形貌可控的MnO2纳米材料的制备方法及应用
CN112216528A (zh) 一种利用水热法制备高电压水系超级电容器电极片的方法
CN111547719A (zh) 一种3d多孔碳材料及其制备方法与应用
CN108242342B (zh) 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法
CN116525314A (zh) 一种由金属配合物制备超级电容器复合氧化物材料的方法及其应用
CN111627720B (zh) 一种Ni掺杂复合电极材料及其制备方法
CN110040789B (zh) 一种铁酸镍微球超级电容器电极材料的制备方法
CN110415991B (zh) 一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210723