CN112058266A - 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用 - Google Patents

一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112058266A
CN112058266A CN202010873644.7A CN202010873644A CN112058266A CN 112058266 A CN112058266 A CN 112058266A CN 202010873644 A CN202010873644 A CN 202010873644A CN 112058266 A CN112058266 A CN 112058266A
Authority
CN
China
Prior art keywords
nanorod
electrocatalyst
double hydroxide
preparation
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010873644.7A
Other languages
English (en)
Inventor
曹澥宏
俞林海
刘文贤
殷琪宸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010873644.7A priority Critical patent/CN112058266A/zh
Publication of CN112058266A publication Critical patent/CN112058266A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及电催化技术领域,尤其涉及一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用,包括以下步骤:(1)配制含有两种金属阳离子和MoO4 2‑的混合溶液,加入2‑甲基咪唑,经水热反应,离心、洗涤、干燥后,得前驱体;(2)将前驱体进行煅烧、碱洗后,即得双氢氧化物纳米棒,即为双氢氧化物分级结构纳米棒电催化剂。本发明的制备方法操作简单,条件易于控制,创造性地将二维片状氢氧化物组装成棒状结构,避免了其在催化过程中的堆叠与团聚,从而使其具有更好的性能与稳定性,在碱性条件下具有较高氧析出的电催化活性,在碱性条件下测试时,电流密度10m A·cm2时过电位为378 mV,优于商用IrO2催化剂。

Description

一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用
技术领域
本发明涉及电催化技术领域,尤其涉及一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用。
背景技术
氢能是一种可再生清洁能源,目前的制氢方法主要包括氯碱工业副产氢、电解水制氢、化工原料制氢(甲醇裂解、乙醇裂解、液氨裂解等)、石化资源制氢(石油裂解、水煤气法等)和新型制氢方法(生物质、光化学等),其中电解水制氢被认为是最高效、环保的方法之一。
近年来,随着电催化水分解的发展,越来越多的非贵金属催化剂被证明高效稳定。在半反应-析氧反应(OER)中,Co、Ni等过渡金属具有很高的理论活性,在实际应用中,Co基、Ni基的材料尤其是氢氧化物(Co(OH)2、Ni(OH)2等)也具有极高的OER催化活性。Co(OH)2、Ni(OH)2为二维层状材料,在实际应用中容易出现团聚现象,从而导致失活;且单一组分的金属氢氧化物难以满足OER发展的需求。
因此,开发一种多组分、防团聚的复合电催化剂材料具有重要意义。
发明内容
本发明为了克服传统电催化剂制备困难、性能较差、易团聚、导电性差的问题,提供了一种尺寸均一,结构稳定,组分分布均匀的双氢氧化物分级结构纳米棒电催化剂的制备方法。
本发明还提供了一种采用上述制备方法制得的双氢氧化物分级结构纳米棒电催化剂在电催化领域中的应用。
为了实现上述目的,本发明采用以下技术方案:
一种双氢氧化物分级结构纳米棒电催化剂的制备方法,包括以下步骤:
(1)配制含有两种金属阳离子和MoO4 2-的混合溶液,加入2-甲基咪唑,经水热反应,离心、洗涤、干燥后,得前驱体;该步骤中,2-甲基咪唑作为有机配体,MoO4 2-作为提供与配体结合生成MOF的钼源。
(2)将步骤(1)得到的前驱体进行煅烧、碱洗后,即得双氢氧化物纳米棒,即为双氢氧化物分级结构纳米棒电催化剂;该步骤中,Mo元素经过煅烧与碱洗被去除,其机理为前驱体MOF经过煅烧形成钼酸盐,钼酸盐再经过碱液浸泡,使得钼酸根离子被氢氧根取代,得到棒状结构的电催化剂。
作为优选,步骤(1)中,所述混合溶液中两种金属阳离子选自Co2+、Ni2+和Fe2+中的任意两种组合。上述金属阳离子具有高催化活性的特性,作为电催化剂使用时,能够有效催化析氧反应。
作为优选,步骤(1)中,所述混合溶液中两种金属阳离子与MoO4 2-的摩尔比为1:1:(5~7)。
作为优选,步骤(1)中,所述混合溶液中每种金属阳离子的浓度为0.05~0.5 mol/L。浓度过低会导致刻蚀不完全,过高会导致形貌坍塌。
作为优选,步骤(1)中,步骤(1)中,所述2-甲基咪唑与MoO4 2-的摩尔比为(3~4):1,更优选为4:1。2-甲基咪唑的加入量过低,会导致MOF前驱体生长不完全,过高,会导致反应物不正常配位。
作为优选,步骤(1)中,水热反应温度为100~150℃,时间为4~36h。水热温度过低会导致反应不完全,过高,会导致产物坍塌。
作为优选,步骤(2)中,煅烧温度为200~400℃,保温时间为1~4h。煅烧温度过低会导致转化不完全,过高,会导致煅烧物形貌坍塌。
作为优选,步骤(2)中,煅烧过程中升温速率为10~15℃/min。
作为优选,步骤(2)中,碱洗采用0.5~3 mol/L的KOH溶液或NaOH溶液。碱洗必须选用强碱,碱洗的机理为用氢氧根离子取代钼酸根离子。
作为优选,步骤(2)中,碱洗过程中温度控制在50~80℃,碱洗时间控制在4~8h。碱洗温度过低会导致反应不完全,过高,会导致反应物坍塌。
一种如上述任一所述的制备方法制得的双氢氧化物分级结构纳米棒电催化剂在电催化领域中的应用。
因此,本发明具有如下有益效果:
(1)本发明的制备方法操作简单,条件易于控制,创造性地将二维片状氢氧化物组装成棒状结构,避免了其在催化过程中的堆叠与团聚,从而使其具有更好的性能与稳定性;
(2)本发明所制备的电催化剂在碱性条件下具有较高氧析出的电催化活性,在碱性条件下测试时,电流密度10m A·cm2时过电位为378 mV,优于商用IrO2催化剂。
附图说明
图1是实施例1制备的Co(OH)2/Ni(OH)2双氢氧化物纳米棒的场发射电镜图。
图2是实施例1制备的Co(OH)2/Ni(OH)2双氢氧化物纳米棒的XRD谱图。
图3是实施例1制备的Co(OH)2/Ni(OH)2双氢氧化物纳米棒和商用IrO2催化剂的OER性能测试图。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1
(1)取一干净烧杯,加入50ml去离子水,称取0.43g Na2MoO4·2H2O、0.15g Co(NO3)2·6H2O和0.15g Ni(NO3)2·6H2O倒入去离子水中,称取0.475g 2-甲基咪唑倒入金属盐混合溶液中,超声溶解;倒入100ml反应釜中,放置烘箱中加热至120℃,反应8h,反应停止后自然降至室温;将反应后溶液离心,再将沉淀用去离子水离心洗涤3~5次后,于60℃下真空干燥12h,得前驱体;
(2)将步骤(1)得到的前驱体在空气下以10℃/min的速度升温至300℃并保持2h,降至室温,取50mg样品放入50ml KOH溶液中,放入60℃油浴锅中,反应6h,用去离子水离心洗涤3次,于60℃下真空干燥12h,即可制得Co(OH)2/Ni(OH)2双氢氧化物纳米棒。
对实施例1制得的Co(OH)2/Ni(OH)2双氢氧化物纳米棒进行以下表征:
(1)形貌分析:
SEM分析:
SEM测试在HITACHI S-4700扫描电子显微镜上进行,所用样品制备方法如下:取Co(OH)2/Ni(OH)2双氢氧化物纳米棒粉末置于贴有导电胶的支持台表面,随后将其放入SEM腔室中进行测试。
实施例1中所获得的Co(OH)2/Ni(OH)2双氢氧化物纳米棒的SEM图如图1所示,由图中可以看到,Co(OH)2/Ni(OH)2纳米棒尺寸均一,且是由二维的氢氧化物纳米片组装而成。
(2)广角XRD分析:
XRD测试在X'Pert Pro型X射线衍射仪上进行,待测样品制备如下:取实施例1中Co(OH)2/Ni(OH)2粉末置于石英片上方形磨砂凹槽中进行测试。
图2给出了实施例1中在镍泡沫上制备的Co(OH)2/Ni(OH)2的广角XRD谱图,图2中显示所得Co(OH)2/Ni(OH)2具有良好的结晶性,通过比对PDF卡片看出其分别对应Co(OH)2和Ni(OH)2,说明成功合成Co(OH)2/Ni(OH)2材料。
(3)OER性能测试:
由图3可以看出,在1 M KOH中进行OER性能测试,在电流密度达到10 mA/cm2时,Co(OH)2/Ni(OH)2的电位仅为1.608 V,远优于商用IrO2的电位,展现出优异的OER性能。
实施例2
(1)取一干净烧杯,加入50ml去离子水,称取0.43g Na2MoO4·2H2O、0.15g Co(NO3)2·6H2O和0.08g FeCl3倒入去离子水中,称取0.475g 2-甲基咪唑倒入金属盐混合溶液中,超声溶解;倒入100ml反应釜中,放置烘箱中加热至150℃,反应4h,反应停止后自然降至室温;将反应后溶液离心,再将沉淀用去离子水离心洗涤3~5次后,于60℃下真空干燥12h,得前驱体;
(2)将步骤(1)得到的前驱体在空气下以10℃/min的速度升温至300℃并保持2h,降至室温,取50mg样品放入50ml KOH溶液中,放入60℃油浴锅中,反应6h,用去离子水离心洗涤5次,于60℃下真空干燥12h,即可制得Co(OH)2/Fe(OH)2双氢氧化物纳米棒。
实施例3
(1)取一干净烧杯,加入50ml去离子水,称取0.43g Na2MoO4·2H2O、0.15g Ni(NO3)2·6H2O和0.08g FeCl3倒入去离子水中,称取0.475g 2-甲基咪唑倒入金属盐混合溶液中,超声溶解;倒入100ml反应釜中,放置烘箱中加热至100℃,反应36h,反应停止后自然降至室温;将反应后溶液离心,再将沉淀用去离子水离心洗涤3~5次后,于60℃下真空干燥12h,得前驱体;
(2)将步骤(1)得到的前驱体在空气下以10℃/min的速度升温至300℃并保持2h,降至室温,取50mg样品放入50ml KOH溶液中,放入60℃油浴锅中,反应6h,用去离子水离心洗涤4次,于60℃下真空干燥12h,即可制得Ni(OH)2/Fe(OH)2双氢氧化物纳米棒。
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,包括以下步骤:
(1)配制含有两种金属阳离子和MoO4 2-的混合溶液,加入2-甲基咪唑,经水热反应,离心、洗涤、干燥后,得前驱体;
(2)将步骤(1)得到的前驱体进行煅烧、碱洗后,即得双氢氧化物纳米棒,即为双氢氧化物分级结构纳米棒电催化剂。
2.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(1)中,所述混合溶液中两种金属阳离子选自Co2+、Ni2+和Fe2+中的任意两种组合。
3.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(1)中,所述混合溶液中两种金属阳离子与MoO4 2-的摩尔比为1:1:(5~7)。
4.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(1)中,所述混合溶液中每种金属阳离子的浓度为0.05~0.5 mol/L;所述2-甲基咪唑与MoO4 2-的摩尔比为(3~4):1。
5.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(1)中,水热反应温度为100~150℃,时间为4~36h。
6.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(2)中,煅烧温度为200~400℃,保温时间为1~4h。
7.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(2)中,煅烧过程中升温速率为10~15℃/min。
8.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(2)中,碱洗采用0.5~3 mol/L的KOH溶液或NaOH溶液。
9.根据权利要求1所述的一种双氢氧化物分级结构纳米棒电催化剂的制备方法,其特征在于,步骤(2)中,碱洗过程中温度控制在50~80℃,碱洗时间控制在4~8h。
10.一种如权利要求1-9任一所述的制备方法制得的双氢氧化物分级结构纳米棒电催化剂在电催化领域中的应用。
CN202010873644.7A 2020-08-26 2020-08-26 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用 Pending CN112058266A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010873644.7A CN112058266A (zh) 2020-08-26 2020-08-26 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010873644.7A CN112058266A (zh) 2020-08-26 2020-08-26 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN112058266A true CN112058266A (zh) 2020-12-11

Family

ID=73659479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010873644.7A Pending CN112058266A (zh) 2020-08-26 2020-08-26 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112058266A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897635A (zh) * 2021-09-08 2022-01-07 杭州电子科技大学 一种MOFs衍生的镍钴双氢氧化物阵列电催化析氧材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133193A (zh) * 2018-08-13 2019-01-04 浙江工业大学 一种利用mof衍生双金属氧化物模板制备金属氢氧化物多级结构的方法
US20190229344A1 (en) * 2018-04-04 2019-07-25 Zolfaghar Rezvani Oxidation of water using layered double hydroxide catalysts
CN110491682A (zh) * 2019-09-05 2019-11-22 西北师范大学 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用
WO2020034007A1 (en) * 2018-08-16 2020-02-20 Newsouth Innovations Pty Limited Trimetallic layered double hydroxide composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190229344A1 (en) * 2018-04-04 2019-07-25 Zolfaghar Rezvani Oxidation of water using layered double hydroxide catalysts
CN109133193A (zh) * 2018-08-13 2019-01-04 浙江工业大学 一种利用mof衍生双金属氧化物模板制备金属氢氧化物多级结构的方法
WO2020034007A1 (en) * 2018-08-16 2020-02-20 Newsouth Innovations Pty Limited Trimetallic layered double hydroxide composition
CN110491682A (zh) * 2019-09-05 2019-11-22 西北师范大学 MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN S等: "A novel strategy to synthesize NiCo layered double hydroxide nanotube from metal organic framework composite for high-performance supercapacitor", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
HAO CHEN等: "Hierarchical Micro-Nano Sheet Arrays of Nickel–Cobalt Double Hydroxides for High-Rate Ni–Zn Batteries", 《ADVANCED SCIENCE》 *
ZHAO Y等: "Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3", 《ADVANCED ENERGY MATERIALS》 *
李光明等, 上海:上海交通大学出版社 *
董涛等: "镍钴基氧(氢氧)化物多维层级结构的构筑及其性质研究", 《中国博士学位论文全文数据库 (工程科技Ⅰ辑)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897635A (zh) * 2021-09-08 2022-01-07 杭州电子科技大学 一种MOFs衍生的镍钴双氢氧化物阵列电催化析氧材料及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution
Du et al. A self-templating method for metal–organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction
CN110055557B (zh) 一种三维镍掺杂铁基析氧催化剂及其制备方法和应用
Xu et al. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis
Zhang et al. Mn dopant induced high-valence Ni 3+ sites and oxygen vacancies for enhanced water oxidation
CN110681402B (zh) 一种碳纸负载的Fe-NiCoP异质结构及其制备方法和应用
CN113026047B (zh) 一种电化学催化转化二氧化碳合成甲醇的方法
CN112080759B (zh) 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN112058283B (zh) 一种硒化镍/硒化钼复合纳米电催化剂的制备方法及应用
CN111111707A (zh) 一种硒掺杂镍铁尖晶石/羟基氧化镍复合电催化剂材料及其制备方法与应用
CN113621987B (zh) 一种钴钼合金与钴钼混合氧化物电催化剂及其制备方法与应用
CN111203263A (zh) 一种铁镍电催化剂的制备方法及其大电流密度下的氧气析出应用
CN110013855B (zh) 高效氧化钴镍/氢氧化镍复合物电催化剂及其制备方法和应用
CN112156794A (zh) 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用
CN110560094B (zh) 一种3d多孔钴锡钼三金属催化剂的制备方法
Hu et al. The importance of the iron valence state in NiCoFe nanosheet array catalysts for the oxygen evolution reaction
CN109174143B (zh) 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN112058266A (zh) 一种双氢氧化物分级结构纳米棒电催化剂的制备方法及应用
CN113457689A (zh) 一种三维结构铁掺杂钴钼氧化物复合材料及其制备方法和应用
CN111974398B (zh) 热致全重构的纳米线阵列及其制备方法和应用
CN113265666A (zh) 一维Fe掺杂α-Ni(OH)2纳米带催化剂及其制备方法和应用
Alam et al. Metal Organic Frameworks for Sustainable Hydrogen Production: Reaction Mechanisms, Performance and Future Aspects in Electrochemical Water Splitting
CN109097788B (zh) 一种双碳耦合过渡金属镍基量子点电催化剂及其制备方法
PENG et al. Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction
Shahid et al. Cobalt–iron layered double hydroxide nanosheet-wrapped nitrogen-doped graphite felt as an oxygen-evolving electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201211