CN112156794A - 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用 - Google Patents

一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用 Download PDF

Info

Publication number
CN112156794A
CN112156794A CN202010924036.4A CN202010924036A CN112156794A CN 112156794 A CN112156794 A CN 112156794A CN 202010924036 A CN202010924036 A CN 202010924036A CN 112156794 A CN112156794 A CN 112156794A
Authority
CN
China
Prior art keywords
carbon nanotube
transition metal
walled carbon
metal sulfide
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010924036.4A
Other languages
English (en)
Inventor
张丽
王灿
杨立帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang University
Original Assignee
Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang University filed Critical Xinjiang University
Priority to CN202010924036.4A priority Critical patent/CN112156794A/zh
Publication of CN112156794A publication Critical patent/CN112156794A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用。此材料制备方法包括:(1)通过微乳液法制得金属甲酸框架化合物;(2)在金属甲酸框架化合物的溶液中引入羧基化多壁碳纳米管和硫代乙酰胺,通过溶剂热法、再经过煅烧制得多壁碳纳米管@过渡金属硫化物的复合材料;(3)在多壁碳纳米管@过渡金属硫化物的溶液中引入钼源和硫源,通过水热法、再经过煅烧获得多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构。MCNTs@CoSx@MoS2优异的电化学性能主要归功于其新颖的结构优势,MCNTs、CoSx和MoS2之间的协同效应以及MCNTs的稳定性。本发明方法操作简单,可推广到一系列具有结构多功能优势的复合材料设计与合成中。

Description

一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构 的制备方法及其应用
技术领域
本发明属于纳米复合材料研究领域,特别是通过两步溶剂热法制备了一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构,并作为电解水析氢析氧催化剂的应用。
背景技术
全球人口的迅速膨胀,经济的快速发展和人类需求的不断扩大,导致能源的需求量也在不断增加。作为世界能源主体的化石能源(煤、石油、天然气)的日渐枯竭和日益严重的生态环境问题严重限制了能源的开发利用。因此开发绿色,高效的可再生能源已经迫在眉睫。近年来,越来越多的科学家将目光聚集在氢能上,作为可再生能源之一的氢能被称为是二十一世纪最洁净的能源。电解水制氢具有产氢纯度高、操作简单、维护方便等优点。然而,水的实际分解电压总高于其理论值,这是由于析氢及析氧反应中存在过电位,因此开发能显著降低过电位的高效催化剂是很有必要的。
以MoS2为代表的过渡金属硫化物由于其在能源领域的巨大应用潜力,引起了国内外科学家的研究热潮。研究表明MoS2具有较小的吉布斯吸附能和化学稳定性,加之其催化活性高、成本低、资源丰富,被认为是一种很有前途的替代铂的HER催化剂。但MoS2本身也存在一定的局限性(催化活性位点数量较少、导电性较差等),这会限制它在催化领域中的应用。因此,我们需要对其改性,具体措施如下:一方面,可制备二硫化钼与其他物质的复合材料,增加本征催化活性位点,从而提高析氢性能。近年来,金属甲酸框架MFF具有较大的比表面积、均一可调的多孔结构,故得到了国内外的广泛应用。其中由MFF衍生的硫化钴具有更多的催化活性位点,进而展现出极好的电催化性能、较好的导电性,且其原材料丰富,价格便宜。因此,我们将MoS2与MFF衍生的过渡金属硫化物进行复合,从而提升MoS2的催化性能;另一方面,MoS2作为一种典型的半导体,提高其导电性的一种有效途径就是与导电性材料复合。到目前为止,科学家们已经通过多种方法实现了MoS2与多种导电材料相结合,如石墨烯、碳纳米管、碳纸等等。其中,多壁碳纳米管的管壁随着层数的增加,结构缺陷和化学反应性增强,具有较高的可修饰性。因此,我们购买商业的多壁碳纳米管并利用其特殊的表面缺陷结构进一步功能化处理,将其与MoS2复合以获得催化活性更优的复合催化剂。
综上所述,我们生产制备出一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构来实现对二硫化钼的改性。
发明内容
本发明所要解决的技术问题是,为克服MoS2本身的局限性,提供一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其在电解水析氢析氧催化剂中的应用。本发明方法制得的复合材料本征催化活性位点丰富,导电性强以及稳定性好,该复合材料在催化析氢析氧方面展现出了便于大规模应用的优势。
为实现上述技术目的,本发明提供了一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法,其方法包括:
(1)在室温下,以硝酸钴为金属盐,甲酸为配体、二甲胺为模板以及AEO3为乳化剂,通过微乳液法制得金属甲酸框架化合物(Co-MFF);
(2)将购买的多壁碳纳米管用混酸进行水浴处理,得到羧基化多壁碳纳米管;
(3)在金属甲酸框架化合物(Co-MFF)的溶液中引入多壁碳纳米管和硫代乙酰胺,将其进行超声处理使之均匀分散,再通过溶剂热法得到产物,经过煅烧制得多壁碳纳米管@过渡金属硫化物的复合材料;
(4)在多壁碳纳米管@过渡金属硫化物的溶液中引入钼源和硫源,通过水热法得到产物,经过煅烧获得多壁碳纳米管@过渡金属硫化物@二硫化钼异质结构。
优选地,在步骤(1)中,硝酸钴、二甲胺和甲酸的摩尔比为1 : 4 : 6。
优选地,在步骤(1)中,所用的二甲胺的质量分数为33wt %。
优选地,在步骤(1)中,所用的甲酸为无水甲酸。
优选地,在步骤(1)中所述的微乳液法是将溶液在室温下搅拌4小时,陈化12小时后,倒去上清液,保留沉淀物,再用甲醇对其洗涤数次,离心和干燥。
优选地,在步骤(2)中,于80℃的水浴下,将管径为20-50nm的多壁碳纳米管置于混酸(硝酸的体积:硫酸的体积=3:1)中连续搅拌3小时。
优选地,在步骤(3)中,溶剂热反应温度是120℃,反应时间是6小时。
优选地,在步骤(3)中,所述的煅烧方法为将干燥后的产物在N2气氛下350℃煅烧2小时(每分钟升温1℃),即得到多壁碳纳米管@过渡金属硫化物复合材料。其与步骤(4)中的煅烧方法一致。
优选地,在步骤(4)中,所述的钼源为二水合钼酸钠,硫源为硫脲。
优选地,在步骤(4)中,水热反应温度是200℃,反应时间是14小时。
本发明的有益效果在于:
1.我们采用了一种简单的方法,通过两步溶剂热法合成了一种新奇的MCNTs@CoSx@MoS2三维异质结构。
2.作为一种双功能催化剂,该催化剂同时具有OER和HER性能。与CoSx、MCNTs@CoSx、MCNTs@MoS2、CoSx@MoS2、MoS2相比,MCNTs@CoSx@MoS2具有更好的电催化活性。
3.由于其几何结构的优化以及MCNTs、CoSx和MoS2之间的协同效应,使MCNTs@CoSx@MoS2具有丰富的电化学活性位点,提高的导电性和稳定性,以及快速的质量传递和离子运输。
4.我们的研究为合成一系列具有异质结构和可控成分的复合材料提供了新的思路。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明一种实施例的流程示意图;
图2为MCNTs@Co9S8的扫描电镜图(a,b),X-衍射谱图(XRD)(c);MCNTs@CoSx@MoS2的扫描电镜图(d,e),X-衍射谱图(XRD)(f);
图3为在0.5 M H2SO4中,CoSx, CoSx@MoS2, MCNTs@CoSx@MoS2, MCNTs@Co9S8,MCNTs@MoS2, MoS2, MCNTs 和 Pt/C的极化曲线图(a),Tafel斜率图(b),电化学双电层电容(e);在1 M KOH中,CoSx, CoSx@MoS2, MCNTs@CoSx@MoS2, MCNTs@Co9S8, MCNTs@MoS2, MoS2,MCNTs和 Pt/C的极化曲线图(c),Tafel斜率图(d),电化学双电层电容(f)
具体实施方案
下面结合附图,通过实例进一步说明本发明的目的,技术方案和优点。
根据本发明的实施例,如图1所示为制备多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的流程,具体步骤包含:
(1)在80℃的水浴中,将0.3g多壁碳纳米管浸入在50ml包含硝酸和硫酸的混合溶液中(体积比为3:1),搅拌3小时,所得产物用蒸馏水洗涤,离心收集,并干燥。
(2)在室温下,将4mmol二甲胺、6mmol无水甲酸和5ml AEO3溶解在25ml正辛烷中;再将1mmol硝酸钴、5ml甲醇和5ml AEO3溶解于另一25ml正辛烷中,然后将粉色澄清液一次性倒入无色透明溶液中,磁力搅拌4小时,室温陈化12小时,所得产物用甲醇洗涤、离心,并干燥。得到Co-MFF前驱体。
(3)将30mg Co-MFF完全分散于30ml无水乙醇中,向其中加入30mg硫代乙酰胺和5mg碳纳米管,磁力搅拌10分钟后将该分散液转移至45ml反应釜中,于120℃下反应6小时,所得产物经离心洗涤,并干燥。将干燥后的产物在N2气氛下350℃煅烧2小时,即得到多壁碳纳米管@过渡金属硫化物(MCNTs@Co9S8)。
(4)将15mg MCNTs@CoSx,32mg二水合钼酸钠和64mg硫脲完全分散于16ml去离子水中,然后将该分散液转移至40ml反应釜中,于200℃下反应14小时,后续步骤同(3)。即得到多壁碳纳米管@过渡金属硫化物@二硫化钼三维复合材料(MCNTs@CoSx@MoS2)。
该实施例的MCNTs@Co9S8样品,其扫描电镜照片如图2a,b所示,由图2a,b可以看出,Co9S8颗粒均匀地生长在MCNTs的表面,其管径为65-105nm,此外,Co9S8颗粒的尺寸为20-30nm。
该实施例的MCNTs@Co9S8样品,其X射线衍射图如图2c所示,由图2c可以看出,碳(JCPDS No.46-0945)的强特征衍射峰位于26度处,对应于碳的(002)晶面;此外,其它衍射峰与Co9S8 (JCPDS No. 65-6801)的相关特征峰高度一致。因此,这证明我们成功制备出了MCNTs@Co9S8复合材料。
该实施例的MCNTs@CoSx@MoS2样品,其扫描电镜照片如图2d,e所示,由图2d,e可以看出MoS2纳米片均匀垂直的生长在MCNTs@Co9S8的表面,其管径为135nm左右,并且MoS2纳米片的厚度大约为15nm。
该实施例的MCNTs@CoSx@MoS2样品,其X射线衍射图如图2f所示,由图2f可以看出,金属硫化物的物相从Co9S8 (JCPDS No. 65-6801)转变为 CoS2 (JCPDS No. 14-1471)和Co3S4 (JCPDS No. 47-1738)。
本实施例得到的复合材料MCNTs@CoSx@MoS2的电催化性能如图2所示。由图2可以看出,MCNTs@CoSx@MoS2是一种同时具有HER和OER的双功能电催化剂。在0.5 M H2SO4中,当电流密度为10mA/cm2时,其过电位为206mV,塔菲尔斜率为69mV/dec。在1 M KOH中,当电流密度为10mA/cm2时,其过电位为296mV,塔菲尔斜率为92mV/dec。因此,本发明制备的复合材料具有优异的电催化性能。
对比例1:
(1)在室温下,将4mmol二甲胺、6mmol无水甲酸和5ml AEO3溶解在25ml正辛烷中;再将1mmol硝酸钴、5ml甲醇和5ml AEO3溶解于另一25ml正辛烷中,然后将粉色澄清液一次性倒入无色透明溶液中,磁力搅拌4小时,室温陈化12小时,所得产物用甲醇洗涤、离心,并干燥。得到Co-MFF前驱体。
(2)将30mg Co-MFF完全分散于30ml无水乙醇中,向其中加入30mg硫代乙酰胺,磁力搅拌10分钟后将该分散液转移至45ml反应釜中,于120℃下反应6小时,所得产物经离心洗涤,并干燥。将干燥后的产物在N2气氛下350℃煅烧2小时,即得到过渡金属硫化物(CoSx)。
对比例2:
将15mg MCNTs,32mg二水合钼酸钠和64mg硫脲完全分散于16ml去离子水中,然后将该分散液转移至40ml反应釜中,于200℃下反应14小时,所得产物经离心洗涤,并干燥。将干燥后的产物在N2气氛下350℃煅烧2小时,即得到多壁碳纳米管@二硫化钼复合材料(MCNTs@MoS2)。
对比例3:
将对比例1所得到的15mgCoSx与32mg二水合钼酸钠以及64mg硫脲完全分散于16ml去离子水中,然后将该分散液转移至40ml反应釜中,于200℃下反应14小时,所得产物经离心洗涤,并干燥。将干燥后的产物在N2气氛下350℃煅烧2小时,即得到过渡金属硫化物@二硫化钼复合材料(CoSx@MoS2)。
对比例4:
将32mg二水合钼酸钠和64mg硫脲完全分散于16ml去离子水中,然后将该分散液转移至40ml反应釜中,于200℃下反应14小时,所得产物经离心洗涤,并干燥。将干燥后的产物在N2气氛下350℃煅烧2小时,即得到二硫化钼(MoS2)。
在本发明中,由于几何结构的优化以及MCNTs、CoSx和MoS2之间的协同效应,使MCNTs@CoSx@MoS2具有丰富的电化学活性位点,电导率高,稳定性好,传质和离子传输快速。本发明为合成一系列具有异质结构和可控成分的复合材料提供了新的思路。以上所述是本发明优选的实例而已,但不应该认为是对本发明的限制,因此,对于本领域的一般技术人员来说,在依据本发明原理的情况下,做出的改进和修饰,仍属于本发明包括的范围。

Claims (11)

1.一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维复合材料,其特征在于,它是一种管径具有纳米级尺寸的异质结构。
2.一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维复合材料的制备方法,其特征包括以下步骤:
(1)在室温下,以硝酸钴为金属盐,甲酸为配体、二甲胺为模板以及AEO3为乳化剂,通过室温共沉淀法制得金属甲酸框架化合物(Co-MFF);
(2)在80℃下,将购买的多壁碳纳米管用混酸进行水浴处理,得到羧基化多壁碳纳米管;
(3)在金属甲酸框架化合物(Co-MFF)的溶液中引入多壁碳纳米管和硫代乙酰胺,将其进行超声处理使之均匀分散,再通过溶剂热法得到产物,经过煅烧制得多壁碳纳米管@过渡金属硫化物的复合材料;
(4)在多壁碳纳米管@过渡金属硫化物的溶液中引入钼源和硫源,通过水热法得到产物,经过煅烧获得多壁碳纳米管@过渡金属硫化物@二硫化钼异质结构。
3.根据权利要求2所述的方法,其特征在于:在步骤(1)中,金属盐、二甲胺和甲酸的摩尔比为1 : 4 : 6。
4.根据权利要求2所述的方法,其特征在于:在步骤(1)中,所用的二甲胺的质量分数为33 wt %。
5.根据权利要求2所述的方法,其特征在于:在步骤(1)中,所用的甲酸为无水甲酸。
6.根据权利要求2所述的方法,其特征在于:在步骤(1)中所述的室温沉淀法是将溶液室温搅拌4小时,在室温下陈化12小时后,倒去上清液,保留沉淀物。
7.根据权利要求2所述的方法,其特征在于:在步骤(2)中,在80℃的水浴下,将管径为20-50nm的多壁碳纳米管置于混酸(硝酸的体积:硫酸的体积=3:1)中搅拌3小时。
8.根据权利要求2所述的方法,其特征在于:在步骤(3)中,溶剂热反应温度是120℃,反应时间是6小时。
9.根据权利要求2所述的方法,其特征在于:在步骤(3)中,所述的煅烧方法为将干燥后的产物在N2气氛下350℃煅烧2小时(每分钟升温1℃),即得到多壁碳纳米管@过渡金属硫化物复合材料,其与步骤(4)中的煅烧方法一致。
10.根据权利要求2所述的方法,其特征在于:在步骤(4)中,所述的钼源为二水合钼酸钠,硫源为硫脲。
11.根据权利要求2所述的方法,其特征在于:在步骤(4)中,水热反应温度是200℃,反应时间是14小时。
CN202010924036.4A 2020-09-04 2020-09-04 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用 Pending CN112156794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010924036.4A CN112156794A (zh) 2020-09-04 2020-09-04 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010924036.4A CN112156794A (zh) 2020-09-04 2020-09-04 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN112156794A true CN112156794A (zh) 2021-01-01

Family

ID=73858459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010924036.4A Pending CN112156794A (zh) 2020-09-04 2020-09-04 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112156794A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668008A (zh) * 2021-08-25 2021-11-19 常州大学 一种二硫化钼/钴碳纳米管电催化剂及其制备方法和应用
CN113755887A (zh) * 2021-09-30 2021-12-07 广州发展新能源股份有限公司 一种Ni2S3-Co9S8复合材料析氢催化剂和制备方法及应用
CN115094476A (zh) * 2022-07-11 2022-09-23 南京师范大学 一种Co9S8/Co3S4/Cu2S杂化纳米材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904620A (zh) * 2017-10-23 2018-04-13 温州大学 一种三维石墨烯/碳纳米管基二硫化钼/硫化钴复合材料电催化剂及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904620A (zh) * 2017-10-23 2018-04-13 温州大学 一种三维石墨烯/碳纳米管基二硫化钼/硫化钴复合材料电催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAN WANG ET AL: ""Construction of unique ternary composite MCNTs@CoSx@MoS2 with three-dimensional lamellar heterostructure as high-performance bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 417, 10 March 2021 (2021-03-10) *
YAN-RU LIU ET AL: ""Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction"", 《APPLIED SURFACE SCIENCE》, vol. 384, 4 May 2016 (2016-05-04), XP029622395, DOI: 10.1016/j.apsusc.2016.05.007 *
杨立帆: ""MOFs衍生硫化物/二硫化钼复合材料的制备及其电催化性能研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 12, 15 December 2019 (2019-12-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668008A (zh) * 2021-08-25 2021-11-19 常州大学 一种二硫化钼/钴碳纳米管电催化剂及其制备方法和应用
CN113755887A (zh) * 2021-09-30 2021-12-07 广州发展新能源股份有限公司 一种Ni2S3-Co9S8复合材料析氢催化剂和制备方法及应用
CN115094476A (zh) * 2022-07-11 2022-09-23 南京师范大学 一种Co9S8/Co3S4/Cu2S杂化纳米材料及其制备方法和应用
CN115094476B (zh) * 2022-07-11 2023-09-22 南京师范大学 一种Co9S8/Co3S4/Cu2S杂化纳米材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Sun et al. Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions
He et al. Interlaced rosette-like MoS2/Ni3S2/NiFe-LDH grown on nickel foam: a bifunctional electrocatalyst for hydrogen production by urea-assisted electrolysis
Cheng et al. Recent progress of Sn‐based derivative catalysts for electrochemical reduction of CO2
Buller et al. Nanostructure in energy conversion
Zhang et al. Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media
CN112156794A (zh) 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用
Yu et al. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction
Ji et al. MoS2/CoS2 heterostructures embedded in N-doped carbon nanosheets towards enhanced hydrogen evolution reaction
Du et al. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production
CN113604838A (zh) 一种镍钴双金属硒化物异质结构电催化剂的制备方法及其应用
Du et al. (Ni, Co) Se@ Ni (OH) 2 heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction
Guo et al. NiMOF-derived MoSe2@ NiSe2 heterostructure with hollow core-shell for efficient hydrogen evolution reaction
Pan et al. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction
Li et al. NiSe@ Ni12P5 hierarchical nanorod arrays coupled on nickel-copper foam for highly efficient urea oxidation
Li et al. Synergistic dual-regulating the electronic structure of NiMo selenides composite for highly efficient hydrogen evolution reaction
Liu et al. Phosphorus-doped nickel selenides nanosheet arrays as highly efficient electrocatalysts for alkaline hydrogen evolution
CN110013855B (zh) 高效氧化钴镍/氢氧化镍复合物电催化剂及其制备方法和应用
Rahamathulla et al. Advanced heterostructures as bifunctional electrocatalysts for overall water splitting-a review
CN108823602B (zh) 一种硫化钌颗粒复合材料、其制备方法及用途
Han et al. Design yolk-shelled FeCo layered double hydroxide via a “one-stone-two-birds” strategy for oxygen evolution reaction
Jiang et al. NiSe-modified CoMoO4 nanosheets as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions
Fu et al. Phosphorus/sulfur co-doped heterogeneous NiCoPxSy nanoarrays boosting overall water splitting
Lin et al. Interface engineered Ni3Se2/Ni3S2/NF heterostructure as a highly efficient electrocatalyst for robust oxygen evolution reaction
CN114774983B (zh) 一种超小Ru纳米团簇负载于MoO3-x纳米带的双功能复合材料及其制备方法与应用
Cao et al. Graphdiyne/copper sulfide heterostructure for active conversion of CO 2 to formic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination