CN110289131A - 电缆 - Google Patents

电缆 Download PDF

Info

Publication number
CN110289131A
CN110289131A CN201910202020.XA CN201910202020A CN110289131A CN 110289131 A CN110289131 A CN 110289131A CN 201910202020 A CN201910202020 A CN 201910202020A CN 110289131 A CN110289131 A CN 110289131A
Authority
CN
China
Prior art keywords
conductor
insulator
cable
diameter
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910202020.XA
Other languages
English (en)
Other versions
CN110289131B (zh
Inventor
M.山布哈格
C.W.摩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
Tyco Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/925,265 external-priority patent/US10283238B1/en
Application filed by Tyco Electronics Corp filed Critical Tyco Electronics Corp
Publication of CN110289131A publication Critical patent/CN110289131A/zh
Application granted granted Critical
Publication of CN110289131B publication Critical patent/CN110289131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/002Pair constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1895Particular features or applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1016Screens specially adapted for reducing interference from external sources composed of a longitudinal lapped tape-conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1826Co-axial cables with at least one longitudinal lapped tape-conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1891Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor comprising auxiliary conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0861Flat or ribbon cables comprising one or more screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines
    • H01B11/203Cables having a multiplicity of coaxial lines forming a flat arrangement

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)

Abstract

一种电缆(100)包括导体组件(102),具有第一导体(110)、第二导体(112)、围绕第一导体的第一绝缘体(114)和围绕第二导体的第二绝缘体(116)。第一绝缘体在第一导体和外表面(222)之间具有第一厚度(224)。第二绝缘体在第二导体和外表面(322)之间具有第二厚度(324)。第一厚度大于第二厚度。电缆屏蔽件(120)缠绕在导体组件周围,沿着第一段(240)接合第一绝缘体的外表面(222),且沿着第二段(340)接合第二绝缘体的外表面(322)。电缆屏蔽件具有内边缘(130)和覆盖内边缘的翼片(134)。电缆屏蔽件在内边缘处形成空隙(140),其更加靠近第一导体而不是第二导体。

Description

电缆
技术领域
本文的主题总体上涉及在信号导体周围提供屏蔽的电缆。
背景技术
屏蔽电缆用于高速数据传输应用,其中涉及电磁干扰(EMI)和/或射频干扰(RFI)。通过屏蔽电缆路由的电信号可以比通过非屏蔽电缆路由的电信号向外部环境辐射更少的EMI/RFI。此外,通过屏蔽电缆传输的电信号可以比通过非屏蔽电缆的信号被更好地保护免受环境EMI/RFI的干扰。
屏蔽电缆通常设置有电缆屏蔽件,该电缆屏蔽件由缠绕在导体组件周围的带形成。信号导体通常成对布置,以传递差分信号。信号导体被绝缘体围绕,电缆屏蔽件缠绕在绝缘体周围。然而,在电缆屏蔽件自身重叠的地方,产生充满空气的空隙,其具有与绝缘体材料不同的介电常数,并使电缆屏蔽件远离信号导体位移。空隙通过改变差分对内的一个导体附近的材料的介电常数(相较于另一个导体)而影响电缆中的导体的电性能,从而导致电气偏斜。
仍然需要一种改善信号性能的电缆。
发明内容
根据本发明,提供一种电缆,其包括导体组件,该导体组件具有第一导体、第二导体、围绕第一导体的第一绝缘体和围绕第二导体的第二绝缘体。第一导体和第二导体承载差分信号。第一绝缘体具有外表面,以及第一导体与第一绝缘体的外表面之间的第一厚度。第二绝缘体具有外表面,以及第二导体与第二绝缘体的外表面之间的第二厚度。第一厚度大于第二厚度。电缆屏蔽件缠绕在导体组件周围,且沿着第一段接合第一绝缘体的外表面,且沿着第二段接合第二绝缘体的外表面。电缆屏蔽件具有内边缘和覆盖内边缘的翼片。电缆屏蔽件在内边缘处形成空隙,其更加靠近第一导体而不是第二导体。
另外,根据本发明,提供一种电缆,其包括导体组件,该导体组件具有第一导体、第二导体、围绕第一导体和第二导体的绝缘体结构。绝缘体结构具有外表面。第一导体和第二导体承载差分信号。电缆屏蔽件缠绕在导体组件周围,并接合绝缘体结构的外表面。电缆屏蔽件具有内边缘和覆盖内边缘的翼片。电缆屏蔽件在内边缘处形成空隙,其更加靠近第一导体而不是第二导体。第一导体具有第一直径,且第二导体具有第二直径。第一直径小于第二直径。
附图说明
图1是根据实施例形成的电缆的一部分的透视图。
图2是根据示例性实施例的导体组件的截面图。
图3是根据另一示例性实施例的导体组件的截面图。
具体实施方式
图1是根据实施例形成的电缆100的一部分的透视图。电缆100可以用于两个电气装置(例如电气开关、路由器和/或主机总线适配器)之间的高速数据传输。例如,电缆100可以配置为以至少10千兆位/秒(Gbps)的速度传输数据信号,这是许多信令标准所需要的,例如增强的小型可插拔(SFP+)标准。例如,电缆100可用于在高速连接器之间提供高速传输数据信号的信号路径。
电缆100包括导体组件102。导体组件102保持在电缆100的外护套104内。外护套104沿着导体组件102的长度围绕导体组件102。在图1中,为了清楚起见,导管组件102被示出为从外护套104凸出,以便示出导体组件102的各种部件,否则这些部件将被外护套104阻挡。然而,应该认识到,外护套104可以在电缆100的远端106处从导体组件102剥离,例如,以允许导体组件102端接至电连接器、印刷电路板等。在替代实施例中,电缆100不包括外护套104。
导体组件102包括布置成对108的内导体,其配置为传递数据信号。在示例性实施例中,导体的对108限定了传送差分信号的差分对。导体组件102包括第一导体110和第二导体112。在各种实施例中,导体组件102是双轴差分对导体组件。在示例性实施例中,导体组件102包括围绕导体110、112的绝缘体结构115。在各种实施例中,绝缘体结构115是围绕两个导体110、112的单件一体绝缘体(图3)。在其他各种实施例中,如在图1的所示的实施例中,导体组件102包括分别围绕第一导体110和第二导体112的第一绝缘体114和第二绝缘体116。第一绝缘体114和第二绝缘体116是分开且分立的绝缘体,它们在电缆100的电缆芯内夹在一起。因此,第一绝缘体112和第二绝缘体114限定了多件式绝缘体结构115。导体组件102包括围绕导体组件102的电缆屏蔽件120,并为导体110、112提供电屏蔽。
导体110、112沿着电缆100的长度纵向延伸。导体110、112由导电材料形成,例如金属材料,例如铜、铝、银等。每个导体110、112可以是实心导体,或替代地可以由缠绕在一起的多股线的组合构成。导体110、112沿着电缆100的长度大致彼此平行地延伸。
第一绝缘体114和第二绝缘体116围绕并接合对应的第一导体110和第二导体112的外周边。如本文所使用的,当两个部件之间存在直接的物理接触时,两个部件“接合”或处于“接合”。绝缘体114、116由电介质材料形成,例如一种或多种塑料材料,比如聚乙烯、聚丙烯、聚四氟乙烯等。绝缘体114、116可以通过模制工艺直接形成到内导体110、112,例如挤出、包覆模制、注射模制等。绝缘体114、116在导体110、112和电缆屏蔽件120之间延伸。绝缘体114、116将导体110、112彼此分开或间隔开,并将导体110、112与电缆屏蔽件120分开或间隔开。绝缘体114、116保持导体110、112沿电缆100的长度的分离和定位。可以修改或选择导体110、112的尺寸和/或形状、绝缘体114、116的尺寸和/或形状,以及导体110、112和绝缘体114、116的相对位置,以便获得电缆100的特定阻抗。在示例性实施例中,导体110、112和/或绝缘体114、116可以是不对称的,以补偿由电缆屏蔽件120在导体110、112中的任一个或两个上引起的偏斜不平衡。例如,在示例性实施例中,第一导体110的直径小于第二导体112以增加第一导体110中的电感,其补偿了通过将纵向电缆屏蔽件120缠绕在电缆芯周围而形成的第一导体附近的空隙引起的第一导体110中的电容的减小。在其他各种实施例中,第一绝缘体114的直径小于第二绝缘体116以增加第一导体110中的电感,其补偿了通过将纵向电缆屏蔽件120缠绕在电缆芯周围而形成的第一导体110附近的空隙引起的第一导体110中的电容的减小。
电缆屏蔽件120接合并围绕绝缘体114、116的外周边。在示例性实施例中,电缆屏蔽件120缠绕在绝缘体114、116周围。例如,在示例性实施例中,电缆屏蔽件120形成为纵向缠绕物,也称为香烟缠绕物,其中缠绕物的接缝沿着电缆100纵向延伸。接缝以及由接缝产生的空隙沿着电缆100的长度处于相同的位置。电缆屏蔽件120至少部分地由导电材料形成。在示例性实施例中,电缆屏蔽件120是配置成缠绕在电缆芯周围的带。例如,电缆屏蔽件120可包括具有导电层和绝缘层(例如背衬层)的多层带。导电层和背衬层可以通过粘合剂固定在一起。可以沿着电缆屏蔽件120的内部设置粘合剂层,以将电缆屏蔽件120固定到绝缘体结构115和/或其自身。导电层可以是导电箔或其他类型的导电层。绝缘层可以是聚对苯二甲酸乙二醇酯(PET)膜或类似类型的膜。导电层为第一导体110和第二导体112提供阻抗参考层和电屏蔽以免受EMI/RFI干扰的外部源的影响,和/或阻止其他导体组件102或电缆100之间的串扰。在示例性实施例中,电缆100包括围绕电缆屏蔽件120的缠绕物(未示出)或另一层,其将电缆屏蔽件120保持在绝缘体114、116上。例如,电缆100可包括螺旋形缠绕物。缠绕物可以是热收缩缠绕物。缠绕物位于外护套104内。
外护套104围绕并接合电缆屏蔽件120的外周边。在所示的实施例中,外护套104沿着电缆屏蔽件120的基本整个周边与电缆屏蔽件120接合。外护套104由至少一种电介质材料形成,例如一种或多种塑料(例如,乙烯基、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)等)。外护套104是不导电的,并且用于使电缆屏蔽件120与电缆100外部的物体绝缘。外护套104还保护电缆屏蔽件120和电缆100的其他内部部件免受机械力、污染物和环境因素(例如波动的温度和湿度)。可选地,外护套104可以围绕电缆屏蔽件120挤出或以其他方式模制。替代地,外护套104可缠绕在电缆屏蔽件120周围或者在电缆屏蔽件120周围热收缩。
图2是根据示例性实施例的导体组件102的截面图。电缆屏蔽件120缠绕在电缆芯中的第一绝缘体114和第二绝缘体116周围。电缆屏蔽件120包括导电层122和绝缘层124。在所示实施例中,绝缘层124设置在电缆屏蔽件120的内部126上,且导电层122设置在电缆屏蔽件120的外部128上;然而,在替代实施例中,导电层122可以设置在电缆屏蔽件的内部上。
电缆屏蔽件120包括内边缘130和外边缘132。当电缆屏蔽件120缠绕在电缆芯周围时,电缆屏蔽件120的翼片134在电缆100的接缝侧与电缆屏蔽件120的内边缘130和段136重叠。电缆屏蔽件120的重叠部分沿电缆100的接缝侧形成接缝。翼片134的内部126可以在接缝处固定到段136的外部128,例如使用粘合剂。电缆屏蔽件120的部分的内部126可以直接固定到第一绝缘体114和第二绝缘体116,例如使用粘合剂。另外,或代替粘合剂,电缆屏蔽件120可通过另外的螺旋缠绕物(例如热收缩缠绕物)在电缆芯周围保持在位。当电缆屏蔽件120自身缠绕以形成翼片134时,在电缆100的接缝侧产生空隙140。在各种实施例中,空隙140是限定在电缆屏蔽件120的升高段142的内部126与绝缘体之一(例如第一绝缘体114)之间的空气凹部。空隙140在下文中可称为气隙140。然而,在其他各种实施例中,空隙140可以填充有另一种材料,例如粘合剂或其他电介质材料。升高段142从第一绝缘体114升高或抬起,以允许翼片134越过内边缘130。升高段142使电缆屏蔽件120远离第一导体110移动,这影响第一导体110的电感和电容。空隙140中的空气(或其他电介质材料)的体积通过改变第一导体110和电缆屏蔽件120的导电层122之间的电介质材料的有效介电常数来影响最近的导体(例如第一导体110)的电特性。空隙140中的空气和/或使升高段142远离第一导体110移动减小了到第一导体110的接地的电容,这加速了第一导体110中的信号,导致与第二导体112相比的电缆100的偏斜不平衡。虽然可能希望减小空隙140的体积,但是当由于翼片134与段136重叠而组装电缆100时,空隙140的存在是不可避免的。
与第二导体112相比,通过改变第一导体110周围的电介质材料的有效介电常数,空隙140中的空气导致第一导体110的偏斜不平衡。例如,由第一导体110传输的信号可以比由第二导体112传输的信号更快地传输,导致差分对中的偏斜。导体中的信号延迟是导体的电感和电容的函数。延迟是电感乘电容的平方根。导体中的信号的速度是延迟的倒数,因此也是电感和电容的函数。由于空隙140对有效介电常数的改变,第一导体110的电容被空隙140降低。第一导体110的电容降低,因为沿着空隙140的电缆屏蔽件120(例如,翼片134)沿着空隙140更远离第一导体110位移。
在各种实施例中,由于空隙140引起的第一导体110的电容的减小通过第一导体110中的电感的成比例增加来补偿,以保持类似于第二导体112中的信号的延迟并因此缓解偏斜不平衡。在示例性实施例中,通过减小与第二导体112相比的第一导体110的直径来增加第一导体110的电感。在其他各种实施例中,由于空隙140引起的第一导体110的电容的减小通过第一导体110中的电感的成比例增加来补偿,以保持类似于第二导体112中的信号的延迟并因此缓解偏斜不平衡。在示例性实施例中,通过增加与第二绝缘体116相比的第一绝缘体114的直径来增加第一导体110的电感。第一导体110的电感可以通过增加第一导体110相较于第二导体112之间的屏蔽距离来增加,例如,通过使电缆屏蔽件从第一导体110进一步移动,通过增加第一绝缘体114的厚度。
在图2中,导体组件102设置有绝缘体结构115的第一绝缘体114和第二绝缘体116,它们是分别与第一导体110和第二导体112接合并完全围绕第一导体110和第二导体112的单独的绝缘体。第一绝缘体114可以与第一导体110一起模制、挤出或以其他方式形成,并且第二绝缘体116可以与第一绝缘体114和第一导体110分开地,与第二导体112一起模制、挤出或以其他方式形成。第一绝缘体114和第二绝缘体116沿着位于导体110、112之间的接缝150彼此接合。在示例中,图2中所示的导体组件102可以通过最初将第一绝缘体114和第二绝缘体116独立地施加到相应的第一导体110和第二导体112以形成两个绝缘线而形成。然后,两个绝缘线的绝缘体114、116在接缝150处被按压成彼此接触,并且可选地彼此接合,并且随后由电缆屏蔽件120共同围绕。在各种实施例中,绝缘体114、116的外周边是相同的。例如,第一绝缘体114和第二绝缘体116具有相等的直径。然而,在替代实施例中,绝缘体114、116可以是不对称的,例如具有不同的直径。由于两个圆形或椭圆形绝缘体114、116的组合,绝缘体114、116的外周边可具有大致的双纽线或数字8的形状。
在示例性实施例中,第一导体110具有第一导体外表面202,其具有第一直径200的圆形截面。第一导体110具有面向第二导体112的内端210和与内端210相对的外端212。第一导体110具有第一侧214(例如,顶侧)和与第一侧214相对的第二侧216(例如,底侧)。第一侧214和第二侧216与内端210和外端212等距。
在示例性实施例中,第一绝缘体114具有围绕第一导体110的圆形截面。第一绝缘体114具有至第一绝缘体外表面222的第一半径220以及第一直径223。第一绝缘体114在第一绝缘体内表面226处的第一导体110与第一绝缘体外表面222之间具有第一厚度224。第一厚度224限定第一导体110和电缆屏蔽件120之间的第一距离或屏蔽距离228。第一绝缘体内表面226接合第一导体外表面202。第一绝缘体外表面222在接缝150处接合第二绝缘体116。第一绝缘体114具有面向第二绝缘体116的内端230和与内端230相对的外端232。第一绝缘体114具有第一侧234(例如,顶侧)和与第一侧234相对的第二侧236(例如,底侧)。第一侧234和第二侧236与内端230和外端232等距。
电缆屏蔽件120沿着第一段240接合第一绝缘体外表面222。例如,第一段240可以在通过外端232的同时从大约第一侧234延伸到大约第二侧236。第一段240可以包含第一绝缘体外表面222的大约一半的外周。电缆屏蔽件120和第一导体110之间的屏蔽距离228由内表面226和外表面222之间的第一绝缘体114的厚度224限定。屏蔽距离228影响由第一导体110传输的信号的电特性。例如,屏蔽距离228影响第一导体110的电感和电容,其影响信号的延迟或偏斜、信号的插入损耗、信号的回波损耗等。在示例性实施例中,可以控制或选择屏蔽距离228,例如通过选择第一导体110的直径200和选择第一绝缘体114的直径223。
在所示的实施例中,空隙140沿第一段240定位,例如在第二侧236和外端232之间的部分处。因此,沿着第一段240限定升高段142。电缆屏蔽件120在升高段142的两侧接合第一绝缘体外表面222。翼片134缠绕在第一绝缘体114的一部分周围,例如从升高段142到外边缘132。可选地,外边缘132可以沿着第一段240定位,例如与第一侧234大致对齐。翼片134在内边缘130处提供电屏蔽。
空隙140影响由第一导体110传输的信号的电特性。例如,空隙140通过在屏蔽空间中引入空气来减小第一导体的电容,空气具有比第一绝缘体114的电介质材料更低的介电常数。电容的减小影响延迟,并因此影响由第一导体110传输的信号的速度,这对于由第一导体110传输的信号相对于由第二导体112传输的信号具有偏斜效应。例如,与不存在空隙140的假设情况相比,在第一导体110中使信号传播得更快可能会影响偏斜。因此,空隙140导致导体组件102中的偏斜问题。
可以修改第一导体110和/或第一绝缘体114(例如,与第二导体112和/或第二绝缘体116相比)以平衡或校正偏斜不平衡,例如改善偏斜不平衡。可以修改第一绝缘体110和/或第一绝缘体114以允许导体组件102中的零偏斜或接近零偏斜。在各种实施例中,外表面202相对于电缆屏蔽件120的定位与第二导体112和电缆屏蔽件120之间的距离不同(例如,定位得更远)。改变直径200、223中的一个或两个改变了厚度224,其对应于第一导体110和电缆屏蔽件120之间的屏蔽距离228,其影响偏斜并且可以用于平衡与第二导体112相比的偏斜。在各种实施例中,第一导体110的直径200减小(例如,与第二导体112相比)以减慢第一导体110中的信号传输,从而平衡偏斜。在各种实施例中,第一绝缘体114的直径223增加(例如,与第二绝缘体116相比)以减慢第一导体110中的信号传输,从而平衡偏斜。在各种实施例中,直径200、223都可以与第二导体112和第二绝缘体116的对应直径不同。在其他实施例中,仅直径200、223中的一个与第二导体112和第二绝缘体116的对应直径不同。与第二导体112和/或第二绝缘体116的对应直径相比,改变直径200、223中的一个或两个在导体组件102中产生不对称性。
在示例性实施例中,与第二导体112相比,修改第一导体110以平衡或校正偏斜不平衡,例如以改善偏斜不平衡。修改第一导体110以允许导体组件102中的零偏斜或接近零偏斜。在各种实施例中,与第二导体112相比,第一导体110的直径200减小,以在第一导体110中产生电感的成比例增加,以补偿电容的减小并保持类似于第二导体112的延迟并消除偏斜。与第二导体112相比,第一导体110的直径200的减小用于平衡每单位长度的延迟。选择第一直径200,以平衡沿着电缆的长度的空隙140对第一导体110的相较于第二导体112的偏斜效应。即使第一侧和第二侧具有不同的电容(由于空隙140仅存在于第一侧而不存在于第二侧),第一侧和第二侧具有不同的电感(由于第一导体110和第二导体112的直径不同),这导致第一导体110和第二导体112中的信号的平衡速度,以沿着电缆100的长度具有零或接近零的偏斜不平衡。虽然参考第一导体110的直径的减小来描述影响,但是可以通过增加第二导体112的直径来实现类似的结果。
在示例性实施例中,与第二绝缘体116相比,修改第一绝缘体114以平衡或校正偏斜不平衡,例如以改善偏斜不平衡。修改第一绝缘体114以允许导体组件102中的零偏斜或接近零偏斜。在各种实施例中,与第二绝缘体116相比,第一绝缘体114的直径223增加,以在第一导体110中产生电感的成比例增加,以补偿由于空隙140引起的电容的减小并保持类似于第二导体112的延迟并消除偏斜。与第二导体112相比,第一绝缘体114的直径223的增加用于平衡每单位长度的延迟。选择第一直径223,以平衡沿着电缆的长度的空隙140对第一导体110的相较于第二导体112的偏斜效应。即使气隙仅影响电缆100的第一侧,电感的增加可以成比例以补偿由于气隙140引起的电容的减少。平衡导致第一导体110和第二导体112中的信号的平衡速度,以沿着电缆100的长度具有零或接近零的偏斜不平衡。虽然参考第一绝缘体114的厚度224的增加来描述影响,但是可以通过减少第二绝缘体116的直径/厚度来实现类似的结果。
在示例性实施例中,第二导体112具有第二导体外表面302,其具有第二直径300的圆形截面。在各种实施例中,第一导体110和第二导体112是相同的规格导体110、112,使得第二直径300等于第一直径200。在其他各种实施例中,第二直径300可以大于第一导体110的第一直径200。第二导体112具有面向第一导体110的内端210的内端310和与内端310相对的外端312。第二导体112具有第一侧314(例如,顶侧)和与第一侧314相对的第二侧316(例如,底侧)。第一侧314和第二侧316与内端310和外端312等距。
在示例性实施例中,第二绝缘体116具有围绕第二导体112的圆形截面。第二绝缘体116具有至第二绝缘体外表面322的第二半径320以及第二直径323。在示例性实施例中,第二半径320小于第一半径220;然而,在替代实施例中,第二半径320可以等于或大于第一半径220。第二绝缘体116在第二绝缘体内表面326和第二绝缘体外表面322之间具有第二厚度324。厚度324限定第二导体112和电缆屏蔽件120之间的第二距离或屏蔽距离328。第二绝缘体内表面326接合第二导体外表面302。第二绝缘体外表面322在接缝150处接合第一绝缘体114。第二绝缘体116具有面向第一绝缘体114的内端330和与内端330相对的外端332。第二绝缘体116具有第一侧334(例如,顶侧)和与第一侧334相对的第二侧336(例如,底侧)。第一侧334和第二侧336与内端330和外端332等距。
电缆屏蔽件120沿着第二段340接合第二绝缘体外表面322。例如,第二段340可以在通过外端332的同时从大约第一侧334延伸到大约第二侧336。第二段340可以包含第二绝缘体外表面322的大约一半的外周。在示例性实施例中,第一绝缘体114和第二绝缘体116是双纽线,并且因此在电缆屏蔽件120的内部126内的电缆芯内限定第一凹部350和第二凹部352。在示例性实施例中,第一凹部350和第二凹部352大致是对称的,因此对于第一导体110或第二导体112的偏斜不平衡没有明显的影响。导体110、112分别沿第一段240和第二段340更紧密地联接到电缆屏蔽件120。电缆屏蔽件120的超出第一绝缘体外表面222和第二绝缘体外表面322跨越凹部350、352的部分不影响偏斜,而是导体110、112和电缆屏蔽件120之间的沿着第一段240和第二段340的相互作用控制偏斜性能。
电缆屏蔽件120和第二导体112之间的屏蔽距离328由内表面326和外表面322之间的第二绝缘体116的厚度324限定。屏蔽距离328影响由第二导体112传输的信号的电特性。例如,屏蔽距离328影响第二导体112的电感和电容,其影响信号的延迟或偏斜、信号的插入损耗、信号的回波损耗等。在示例性实施例中,可以控制或选择屏蔽距离328,例如通过选择第二导体112的直径300和选择第二绝缘体116的直径323。
在所示的实施例中,第二段340不包括类似空隙140的任何空隙。因此,第二导体112不会受到来自空隙140的与第一导体110相同的延迟变化。当比较第一导体110和第二导体112时,与第二导体112相比,通过减少第一导体110的电容,空隙140在第一导体110和第二导体112之间产生偏斜不平衡,与第二导体112相比,这影响通过第一导体110的信号传输的速率或速度。然而,可以修改第一导体110和/或第一绝缘体114以补偿空隙140。
在示例性实施例中,第一导体110可以具有比第二导体112的直径300更小的直径200,与第二导体112相比,这增加第一导体110的电感,与第二导体112相比,这影响通过第一导体110的信号传输的速率或速度。在示例性实施例中,对于第一导体110,电容的减小通过电感的成比例增加来补偿,从而保持相似或相同的延迟(电感乘以电容的平方根),导致零或接近零的偏斜。不对称设计的导体110、112(例如,较小直径的第一导体110和较大直径的第二导体112)补偿空隙140。在示例性实施例中,基于空隙140的尺寸和沿着电缆100的长度沿第一导体110(相较于第二导体112)引入的空气的体积来选择第一直径200。例如,空隙140的形状和尺寸?控制引入屏蔽区域的空气量,从而控制电容的减少量。内边缘130处的电缆屏蔽件120的厚度影响空隙140的尺寸和形状,例如通过影响空隙140的高度和宽度。在所示的实施例中,空隙140通常为三角形,在内边缘130处具有最大高度,并且朝向升高段142的升离点的零高度渐缩。与第二导体112相比,空隙140的体积使第一导体110的电容减小,并且,与第二导体112相比,第一直径200和第二直径300之间的直径差异使第一导体110中的电感的增加。电感的增加与电容的减少成比例,以平衡偏斜效应。在示例性实施例中,电感的增加等于电容的减小,导致偏斜平衡。在示例性实施例中,空隙140产生第一偏斜不平衡,并且与第二导体112的直径300相比,减小第一导体110的直径200产生与第一偏斜不平衡相对的第二偏斜不平衡,从而产生零偏斜或近零偏斜的情况。
在其他各种实施例中,与第二绝缘体116相比,第一绝缘体114可以具有更大的直径223和/或更大的厚度224,与第二导体112相比,这增加了第一导体110的电感,与第二导体112相比,这影响通过第一导体110的信号传输的速率或速度。在示例性实施例中,对于第一导体110,电容的减小通过由于较大的第一绝缘体114引起的电感的成比例增加来补偿,从而保持相似或相同的延迟(电感乘以电容的平方根),导致零或接近零的偏斜。不对称设计的绝缘体114、116(例如,相比第二绝缘体116,较大直径/厚度的第一绝缘体114)补偿空隙140。在示例性实施例中,基于空隙140的尺寸和沿着电缆100的长度沿第一导体110(相较于第二导体112)引入的空气的体积来选择第一直径223。例如,空隙140的形状和尺寸?控制引入屏蔽区域的空气量,从而控制电容的减少量。内边缘130处的电缆屏蔽件120的厚度影响空隙140的尺寸和形状,例如通过影响空隙140的高度和宽度。在所示的实施例中,空隙140通常为三角形,在内边缘130处具有最大高度,并且朝向升高段142的升离点的零高度渐缩。与第二导体112相比,空隙140的体积使第一导体110的电容减小,并且,与第二导体112相比,第一直径223和第二直径323之间的直径差异使第一导体110中的电感的增加。直径差异可以等于围绕第一导体110的电介质材料的更大厚度224(与厚度324相比),这会影响电感。较大直径223可以等于屏蔽距离228的增加(与屏蔽距离328相比),这会影响电感。由于较大的绝缘体114引起的电感的增加与由于气隙140引起的电容的减小成比例,与第二导体112相比,其导致延迟的净零或接近净零变化,以平衡偏斜效应。在示例性实施例中,电感的增加等于电容的减小,导致偏斜平衡。在示例性实施例中,空隙140产生第一偏斜不平衡,并且与第二绝缘体116的直径323相比,增加第一绝缘体114的直径223产生与第一偏斜不平衡相对的第二偏斜不平衡,从而产生零偏斜或近零偏斜的情况。
图3是根据另一示例性实施例的导体组件102的截面图。在图3所示的替代实施例中,绝缘体结构115是一个整体构件,其围绕第一导体110和第二导体112并在第一导体110和第二导体112之间延伸。例如,导体组件102可以通过将绝缘体结构115的材料模制、挤出或以其他方式同时施加到第一导体110和第二导体112而形成。导体组件102形成双轴绝缘线,随后将电缆屏蔽件120施加在双轴绝缘线周围。在图3中,绝缘体结构115的外周边可以具有大致椭圆形或卵形的形状。然而,绝缘体结构115的一侧可以比另一侧稍微更大(例如,更宽、更厚等)以补偿气隙140。应认识到,绝缘体结构115在其他实施例中不需要具有椭圆形状。
除了在空隙140处,电缆屏蔽件120通常顺应于绝缘体结构115。在实施例中,电缆屏蔽件120的截面形状在几何上类似于绝缘体结构115的外周边的截面形状。术语“几何上类似”用于表示具有相同形状的两个对象,尽管尺寸不同,使得一个对象相对于另一个对象缩放。如图3所示,电缆屏蔽件120的外周边沿截面具有大致椭圆形或卵形的形状,其类似于绝缘体结构115的外周边。
绝缘体结构115具有外表面400。电缆屏蔽件120施加到外表面400。绝缘体结构的更靠近第一导体110的材料使第一导体110与第二导体112和电缆屏蔽件120绝缘,从而限定第一绝缘体114。绝缘体结构的更靠近第二导体112的材料使第二导体112与第一导体110和电缆屏蔽件120绝缘,从而限定第二绝缘体116。在示例性实施例中,由于与另一侧相比(例如,第二绝缘体116),一侧的尺寸过大(例如,第一绝缘体114),绝缘体结构115的形状可以关于第一导体110和第二导体112之间的平分轴402不对称。
绝缘体结构的第一绝缘体114和第二绝缘体116限定在居中在第一导体110和第二导体112之间的平分轴402的相对侧上。第一导体110和电缆屏蔽件120之间的屏蔽距离228沿着导体组件102的杯形或圆形侧限定,例如通过外端232从第一侧234到第二侧236。第二导体112和电缆屏蔽件120之间的屏蔽距离328沿着导体组件102的杯形或圆形侧限定,例如通过外端332从第一侧334到第二侧336。
在示例性实施例中,第一屏蔽距离228和第二屏蔽距离328被选择为不同的,以平衡沿着电缆100的长度的气隙140对第一导体110的相较于第二导体112的偏斜效应。例如,第一屏蔽距离228大于第二屏蔽距离328,以与第二导体112相比,减慢第一导体110中的信号的速度。在示例性实施例中,基于气隙140的尺寸和沿着电缆110的长度沿第一导体110(相较于第二导体112)引入的空气的体积来选择第一屏蔽距离228。在示例性实施例中,气隙140产生第一偏斜不平衡,并且将第一导体110定位为更加远离电缆屏蔽件120(或第二导体更靠近电缆屏蔽件120)产生与第一偏斜不平衡相对的第二偏斜不平衡,从而产生零偏斜或近零偏斜的情况。第一导体110可以通过具有不同尺寸的导体110、112(例如,使第一导体110更小)和/或通过具有不同尺寸的绝缘体114、116(例如,使第一绝缘体114更大)而远离电缆屏蔽件120定位。
在各种实施例中,第一导体110具有第一直径200并且第二导体112具有第二直径300。在各种实施例中,第一直径200小于第二直径300,以补偿气隙140并平衡沿着电缆的长度的空隙140对第一导体110的相较于第二导体112的偏斜效应。与第二导体112相比,第一导体110的直径200减小,以在第一导体110中产生电感的成比例增加,以补偿电容的减小并保持类似于第二导体112的延迟并消除偏斜。与第二导体112相比,第一导体110的直径200的减小用于平衡偏斜。即使第一侧和第二侧具有不同的电容(由于空隙140仅存在于第一侧而不存在于第二侧),第一侧和第二侧具有不同的电感(由于第一导体110和第二导体112的直径不同),这导致第一导体110和第二导体112中的信号的平衡速度,以沿着电缆100的长度具有零或接近零的偏斜不平衡。
在各种实施例中,第一绝缘体114小于第二绝缘体116,以补偿气隙140并平衡沿着电缆的长度的空隙140对第一导体110的相较于第二导体112的偏斜效应。例如,与第二绝缘体116相比,第一绝缘体114可具有更大的厚度。与第二绝缘体116相比,第一绝缘体114的厚度增加,以在第一导体110中产生电感的成比例增加,以补偿由于气隙140引起的电容的减小并保持类似于第二导体112的延迟并消除偏斜。与第二导体112相比,第一绝缘体114的厚度的增加可以对应于第一导体110和电缆屏蔽件120之间的屏蔽距离的增加。与第二导体112相比,增加的厚度/增加的屏蔽距离用于平衡偏斜,以在第一导体110和第二导体112中具有信号的平衡速度,以沿着电缆100的长度具有零或接近零的偏斜不平衡。

Claims (15)

1.一种电缆(100),包括:
导体组件(102),具有第一导体(110)、第二导体(112),围绕所述第一导体(110)的第一绝缘体(114)和围绕所述第二导体(112)的第二绝缘体(116),所述第一导体(110)和所述第二导体(112)承载差分信号,所述第一绝缘体(114)具有外表面(222),所述第一绝缘体(114)在所述第一导体(110)与所述第一绝缘体(114)的外表面(222)之间具有第一厚度(224),所述第二绝缘体(116)具有外表面(322),所述第二绝缘体(116)在所述第二导体(112)与所述第二绝缘体(116)的外表面(322)之间具有第二厚度(324),所述第一厚度(224)大于所述第二厚度(324);以及
电缆屏蔽件(120),其缠绕在所述导体组件(102)周围,并且沿着第一段(240)接合所述第一绝缘体(114)的外表面(222),并且沿着第二段(340)接合所述第二绝缘体(116)的外表面(322),所述电缆屏蔽件(120)具有内边缘(130)和覆盖所述内边缘(130)的翼片(134),所述电缆屏蔽件(120)在所述内边缘(130)处形成空隙(140),所述空隙(140)更加靠近所述第一导体(110)而不是所述第二导体(112)。
2.如权利要求1所述的电缆(100),其中所述第一导体(110)位于距所述电缆屏蔽件(120)的第一屏蔽距离(228)处,所述第一屏蔽距离对应于所述第一厚度(224),并且所述第二导体(112)位于距所述电缆屏蔽件(120)的第二屏蔽距离(328)处,所述第二屏蔽距离对应于所述第二厚度(324),所述第一屏蔽距离(228)大于所述第二屏蔽距离(328)。
3.如权利要求1所述的电缆(100),其中所述第一厚度(224)和所述第二厚度(324)之间的差异被选择,以平衡沿着所述电缆(100)的长度的、所述空隙(140)对所述第一导体(110)的相较于所述第二导体(112)的偏斜效应。
4.如权利要求1所述的电缆(100),其中所述空隙(140)具有的体积产生所述第一导体(110)相较于所述第二导体(112)的电容的减小,所述第一厚度(224)和所述第二厚度(324)之间的厚度差异产生所述第一导体(110)相较于所述第二导体(112)的电感的增加,其中所述电感的增加与所述电容的减小成比例以平衡偏斜效应。
5.如权利要求1所述的电缆(100),其中所述第一绝缘体(114)在所述第一绝缘体(114)的外表面(222)具有第一直径(200),并且所述第二绝缘体(116)在所述第二绝缘体(116)的外表面(322)具有第二直径(300),所述第一直径(200)大于所述第二直径(300)。
6.如权利要求1所述的电缆(100),其中所述第一导体(110)和所述第二导体(112)具有相等的直径(200,300)。
7.如权利要求1所述的电缆(100),其中所述第一导体(110)和所述第二导体(112)分别具有不同的第一直径和第二直径(200,300)。
8.如权利要求1所述的电缆(100),其中所述第一绝缘体和所述第二绝缘体(114,116)是不对称的。
9.一种电缆(100),包括:
导体组件(102),其具有第一导体(110)、第二导体(112)、以及围绕所述第一导体和所述第二导体的绝缘体结构(115),所述绝缘体结构具有外表面(202,302),所述第一导体和所述第二导体承载差分信号;以及
电缆屏蔽件(120),其缠绕在所述导体组件周围并接合所述绝缘体结构的外表面,所述电缆屏蔽件具有内边缘(130)和覆盖所述内边缘的翼片(134),所述电缆屏蔽件在所述内边缘处形成空隙(140),所述空隙更加靠近所述第一导体而不是所述第二导体;
其中所述第一导体具有第一直径(200),并且所述第二导体具有第二直径(300),所述第一直径小于所述第二直径。
10.如权利要求9所述的电缆(100),其中所述第一直径(200)被选择,以平衡沿着所述电缆的长度的、所述空隙(140)对所述第一导体(110)的相较于所述第二导体(112)的偏斜效应。
11.如权利要求9所述的电缆(100),其中所述空隙(140)具有的体积产生所述第一导体(110)相较于所述第二导体(112)的电容的减小,所述第一直径(200)和所述第二直径(300)之间的直径差异产生所述第一导体相较于所述第二导体的电感的增加,其中所述电感的增加与所述电容的减小成比例以平衡偏斜效应。
12.如权利要求11所述的电缆(100),其中所述电感的增加等于所述电容的减小,从而导致偏斜平衡,并且其中,所述绝缘体结构(115)是围绕所述第一导体(110)和所述第二导体(112)的单件的一体结构。
13.如权利要求9所述的电缆(100),其中所述绝缘体结构(115)包括围绕所述第一导体(110)的第一绝缘体(114)和围绕所述第二导体(112)的第二绝缘体(116),所述第一绝缘体和所述第二绝缘体彼此分离且分立,并且在所述电缆中在接缝(150)处彼此邻接。
14.如权利要求9所述的电缆(100),其中所述第一导体(110)和所述第二导体(112)相对于所述电缆屏蔽件(120)不对称。
15.如权利要求9所述的电缆(100),其中所述空隙(140)产生第一偏斜不平衡,并且选择小于所述第二直径(300)的第一直径(200)产生与所述第一偏斜不平衡相对的第二偏斜不平衡。
CN201910202020.XA 2018-03-19 2019-03-18 电缆 Active CN110289131B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/925,265 2018-03-19
US15/925,265 US10283238B1 (en) 2018-03-19 2018-03-19 Electrical cable
US15/969,264 2018-05-02
US15/969,264 US10283240B1 (en) 2018-03-19 2018-05-02 Electrical cable

Publications (2)

Publication Number Publication Date
CN110289131A true CN110289131A (zh) 2019-09-27
CN110289131B CN110289131B (zh) 2022-09-27

Family

ID=65817764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910202020.XA Active CN110289131B (zh) 2018-03-19 2019-03-18 电缆

Country Status (3)

Country Link
US (1) US10283240B1 (zh)
EP (1) EP3544027B1 (zh)
CN (1) CN110289131B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10643766B1 (en) * 2018-10-22 2020-05-05 Dell Products L.P. Drain-aligned cable and method for forming same
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030150633A1 (en) * 2002-02-08 2003-08-14 Yoshihiro Hirakawa Data transmission cable
CN102201276A (zh) * 2010-03-23 2011-09-28 日立电线株式会社 差分信号电缆、电缆组件以及多对差分信号电缆
US20140034352A1 (en) * 2012-07-31 2014-02-06 Hitachi Cable, Ltd. Differential signal transmission cable, multiwire differential signal transmission cable, and differential signal transmission cable producing method and apparatus
CN104252915A (zh) * 2013-06-28 2014-12-31 日立金属株式会社 差分信号传送用电缆
US20150162113A1 (en) * 2013-12-06 2015-06-11 Hitachi Metals, Ltd. Differential signal cable and production method therefor
CN105047269A (zh) * 2010-09-23 2015-11-11 3M创新有限公司 屏蔽电缆
CN106257599A (zh) * 2015-06-16 2016-12-28 日立金属株式会社 高速传输用电缆及其制造方法

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439111A (en) * 1966-01-05 1969-04-15 Belden Mfg Co Shielded cable for high frequency use
US3340353A (en) 1966-01-28 1967-09-05 Dow Chemical Co Double-shielded electric cable
US4221926A (en) 1978-09-25 1980-09-09 Western Electric Company, Incorporated Method of manufacturing waterproof shielded cable
US4596897A (en) 1984-03-12 1986-06-24 Neptco Incorporated Electrical shielding tape with interrupted adhesive layer and shielded cable constructed therewith
US4644092A (en) 1985-07-18 1987-02-17 Amp Incorporated Shielded flexible cable
US5142100A (en) 1991-05-01 1992-08-25 Supercomputer Systems Limited Partnership Transmission line with fluid-permeable jacket
US5329064A (en) 1992-10-02 1994-07-12 Belden Wire & Cable Company Superior shield cable
US5349133A (en) 1992-10-19 1994-09-20 Electronic Development, Inc. Magnetic and electric field shield
US5619016A (en) * 1995-01-31 1997-04-08 Alcatel Na Cable Systems, Inc. Communication cable for use in a plenum
WO1996041351A1 (en) 1995-06-07 1996-12-19 Tensolite Company Low skew transmission line with a thermoplastic insulator
US6403887B1 (en) * 1997-12-16 2002-06-11 Tensolite Company High speed data transmission cable and method of forming same
US6010788A (en) 1997-12-16 2000-01-04 Tensolite Company High speed data transmission cable and method of forming same
JP3616720B2 (ja) 1998-07-21 2005-02-02 平河ヒューテック株式会社 信号伝送用シールド電線
JP3669562B2 (ja) 1999-09-22 2005-07-06 東京特殊電線株式会社 端末加工性に優れた差動信号伝送ケーブル
US6504379B1 (en) 2000-11-16 2003-01-07 Fluke Networks, Inc. Cable assembly
US7790981B2 (en) 2004-09-10 2010-09-07 Amphenol Corporation Shielded parallel cable
US20060254801A1 (en) 2005-05-27 2006-11-16 Stevens Randall D Shielded electrical transmission cables and methods for forming the same
US7314998B2 (en) 2006-02-10 2008-01-01 Alan John Amato Coaxial cable jumper device
US7827678B2 (en) 2008-06-12 2010-11-09 General Cable Technologies Corp. Longitudinal shield tape wrap applicator with edge folder to enclose drain wire
CN201327733Y (zh) 2008-12-19 2009-10-14 常熟泓淋电线电缆有限公司 高速平行对称数据电缆
CN201359878Y (zh) 2009-01-13 2009-12-09 昆山信昌电线电缆有限公司 对称平行网络电缆
JP5508614B2 (ja) 2009-03-13 2014-06-04 株式会社潤工社 高速差動ケーブル
US7999185B2 (en) * 2009-05-19 2011-08-16 International Business Machines Corporation Transmission cable with spirally wrapped shielding
JP5012854B2 (ja) 2009-06-08 2012-08-29 住友電気工業株式会社 平衡ケーブル
JP5141660B2 (ja) 2009-10-14 2013-02-13 日立電線株式会社 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びに差動信号用ケーブルの製造方法
JP2011096574A (ja) * 2009-10-30 2011-05-12 Hitachi Cable Ltd 差動信号伝送用ケーブル
US10141086B2 (en) 2009-12-01 2018-11-27 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Cable for high speed data communications
US8552291B2 (en) * 2010-05-25 2013-10-08 International Business Machines Corporation Cable for high speed data communications
US8981216B2 (en) * 2010-06-23 2015-03-17 Tyco Electronics Corporation Cable assembly for communicating signals over multiple conductors
JP2012009321A (ja) 2010-06-25 2012-01-12 Hitachi Cable Ltd 差動信号伝送用ケーブル及びその製造方法
US9136043B2 (en) 2010-10-05 2015-09-15 General Cable Technologies Corporation Cable with barrier layer
US9159472B2 (en) 2010-12-08 2015-10-13 Pandult Corp. Twinax cable design for improved electrical performance
JP5346913B2 (ja) * 2010-12-21 2013-11-20 日立電線株式会社 差動信号用ケーブル
JP5699872B2 (ja) 2011-01-24 2015-04-15 日立金属株式会社 差動信号伝送用ケーブル
US9136044B2 (en) * 2011-03-09 2015-09-15 Telefonaktiebolaget L M Ericsson (Publ) Shielded pair cable and a method for producing such a cable
CN102231303B (zh) 2011-04-19 2012-11-07 江苏通鼎光电科技有限公司 一种屏蔽数字通信电缆
JP5582090B2 (ja) 2011-05-11 2014-09-03 日立金属株式会社 多芯差動信号伝送用ケーブル
JP2012243550A (ja) 2011-05-19 2012-12-10 Yazaki Corp 高圧電線、及び高圧電線の製造方法
JP6089288B2 (ja) 2011-05-19 2017-03-08 矢崎総業株式会社 シールド電線
CN103198888B (zh) * 2012-01-05 2016-04-20 日立金属株式会社 差动信号传输用电缆
JP5741457B2 (ja) 2012-01-17 2015-07-01 日立金属株式会社 平行型発泡同軸ケーブル
JP2013214499A (ja) 2012-03-07 2013-10-17 Hitachi Cable Ltd 差動伝送ケーブル及びその製造方法
JP5742789B2 (ja) 2012-06-12 2015-07-01 日立金属株式会社 差動信号伝送用ケーブル
JP5704127B2 (ja) * 2012-06-19 2015-04-22 日立金属株式会社 多対差動信号伝送用ケーブル
JP5861593B2 (ja) * 2012-08-17 2016-02-16 日立金属株式会社 差動信号伝送用ケーブル及び多芯ケーブル
JP5817679B2 (ja) 2012-08-20 2015-11-18 日立金属株式会社 差動信号伝送用ケーブル及び多芯差動信号伝送用ケーブル
JP5811976B2 (ja) 2012-09-14 2015-11-11 日立金属株式会社 発泡同軸ケーブル及び多芯ケーブル
JP5454648B2 (ja) 2012-09-28 2014-03-26 日立金属株式会社 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びに差動信号用ケーブルの製造方法
US9142333B2 (en) * 2012-10-03 2015-09-22 Hitachi Metals, Ltd. Differential signal transmission cable and method of making same
JP5900275B2 (ja) 2012-10-09 2016-04-06 日立金属株式会社 多対差動信号伝送用ケーブル
JP5838945B2 (ja) 2012-10-12 2016-01-06 日立金属株式会社 差動信号伝送用ケーブル及び多芯差動信号伝送用ケーブル
JP6167530B2 (ja) 2013-01-23 2017-07-26 日立金属株式会社 測定装置、及び差動信号伝送用ケーブルの製造方法
JP2014154490A (ja) 2013-02-13 2014-08-25 Hitachi Metals Ltd 差動信号伝送用ケーブル
JP5895869B2 (ja) 2013-02-15 2016-03-30 日立金属株式会社 絶縁ケーブル及びその製造方法
US11336058B2 (en) 2013-03-14 2022-05-17 Aptiv Technologies Limited Shielded cable assembly
JP5920278B2 (ja) 2013-04-15 2016-05-18 日立金属株式会社 差動信号伝送用ケーブル及び多対差動信号伝送用ケーブル
JP5958426B2 (ja) * 2013-06-26 2016-08-02 日立金属株式会社 多対差動信号伝送用ケーブル
JP5999062B2 (ja) 2013-10-04 2016-09-28 日立金属株式会社 差動信号伝送用ケーブル
JP6060888B2 (ja) 2013-12-13 2017-01-18 日立金属株式会社 差動信号伝送用ケーブルの製造装置及び製造方法
JP5669033B2 (ja) 2013-12-27 2015-02-12 日立金属株式会社 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びにダイレクトアタッチケーブル
JP6102775B2 (ja) 2014-02-04 2017-03-29 日立金属株式会社 差動信号伝送用ケーブル及びその製造方法
CN203931605U (zh) 2014-04-08 2014-11-05 王娜娜 一种包含多个缆芯的电力电缆结构
JP2015204195A (ja) 2014-04-14 2015-11-16 日立金属株式会社 差動信号ケーブル及びその製造方法、多対差動信号ケーブル
JP6360912B2 (ja) 2014-04-25 2018-07-18 レオニ カーベル ゲーエムベーハー データケーブル
JP6245082B2 (ja) 2014-06-05 2017-12-13 日立金属株式会社 多対ケーブル
JP2016027550A (ja) 2014-06-24 2016-02-18 日立金属株式会社 多対ケーブル
JP2016015255A (ja) 2014-07-02 2016-01-28 日立金属株式会社 差動信号伝送用ケーブル及びその製造方法並びに多芯差動信号伝送用ケーブル
JP2016027547A (ja) 2014-07-02 2016-02-18 日立金属株式会社 差動信号伝送用ケーブル及び多芯差動信号伝送用ケーブル
JP2016072007A (ja) 2014-09-29 2016-05-09 日立金属株式会社 多対差動信号用ケーブル
JP2016072196A (ja) 2014-10-02 2016-05-09 住友電気工業株式会社 2芯平行電線
JP2016081824A (ja) 2014-10-21 2016-05-16 日立金属株式会社 差動信号用ケーブル及び多芯差動信号伝送用ケーブル
JP2016103398A (ja) 2014-11-28 2016-06-02 住友電気工業株式会社 シールドケーブル
JP6503719B2 (ja) 2014-12-10 2019-04-24 日立金属株式会社 シールドケーブル及び多対ケーブル
JP2016201273A (ja) * 2015-04-10 2016-12-01 日立金属株式会社 差動信号伝送ケーブル及び多芯差動信号伝送ケーブル
JP6459766B2 (ja) 2015-05-12 2019-01-30 日立金属株式会社 差動信号伝送用ケーブルの製造方法及び製造装置
US9672958B2 (en) 2015-05-19 2017-06-06 Te Connectivity Corporation Electrical cable with shielded conductors
CN105741965A (zh) 2016-04-29 2016-07-06 浙江兆龙线缆有限公司 一种微小型的平行高速传输电缆
JP6859649B2 (ja) 2016-10-05 2021-04-14 住友電気工業株式会社 二芯平行ケーブル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030150633A1 (en) * 2002-02-08 2003-08-14 Yoshihiro Hirakawa Data transmission cable
CN102201276A (zh) * 2010-03-23 2011-09-28 日立电线株式会社 差分信号电缆、电缆组件以及多对差分信号电缆
CN105047269A (zh) * 2010-09-23 2015-11-11 3M创新有限公司 屏蔽电缆
US20140034352A1 (en) * 2012-07-31 2014-02-06 Hitachi Cable, Ltd. Differential signal transmission cable, multiwire differential signal transmission cable, and differential signal transmission cable producing method and apparatus
CN104252915A (zh) * 2013-06-28 2014-12-31 日立金属株式会社 差分信号传送用电缆
US20150003540A1 (en) * 2013-06-28 2015-01-01 Hitachi Metals, Ltd. Differential signal transmission cable and cable with connector
US20150162113A1 (en) * 2013-12-06 2015-06-11 Hitachi Metals, Ltd. Differential signal cable and production method therefor
CN106257599A (zh) * 2015-06-16 2016-12-28 日立金属株式会社 高速传输用电缆及其制造方法

Also Published As

Publication number Publication date
CN110289131B (zh) 2022-09-27
EP3544027A1 (en) 2019-09-25
US10283240B1 (en) 2019-05-07
EP3544027B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
US9672958B2 (en) Electrical cable with shielded conductors
US9837189B2 (en) Nested shielded ribbon cables
US9349508B2 (en) Multi-pair differential signal transmission cable
US20040035603A1 (en) Multi-pair data cable with configurable core filling and pair separation
CN107077926A (zh) 包括螺旋缠绕的屏蔽带的通信电缆
US20070087632A1 (en) High speed transmission shield cable and method of making the same
JP2015505634A (ja) データケーブル
WO2014074269A1 (en) Ribbed high density electrical cable
TWI636465B (zh) 用於高速數據傳輸的數據電纜
CN108885925A (zh) 用于传输电信号的线缆
US9961813B2 (en) Shielded cable
CN110289131A (zh) 电缆
US20170301431A1 (en) Cable having two individually insulated signal cores
WO2014152302A1 (en) Extended curl s-shield
CN108028105B (zh) 可装配的数据传输电缆
CN110289135B (zh) 电缆
US20210065934A1 (en) Electrical cable
CN111048243B (zh) 电缆
US10283238B1 (en) Electrical cable
KR20150021181A (ko) 비연속차폐테이프를 포함하는 통신케이블 및 비연속차폐테이프
CN111048240B (zh) 电缆
CN112447324B (zh) 电气电缆
WO2014035927A1 (en) S-shield twisted pair cable design for multi-ghz performance
JP6707885B2 (ja) 低電圧差動信号伝送用ケーブル
CN109804440A (zh) 具有浮动屏蔽的双绞线线缆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant