CN110254416B - 用于混合动力电动车再生模式期间能量管理的系统和方法 - Google Patents

用于混合动力电动车再生模式期间能量管理的系统和方法 Download PDF

Info

Publication number
CN110254416B
CN110254416B CN201910195625.0A CN201910195625A CN110254416B CN 110254416 B CN110254416 B CN 110254416B CN 201910195625 A CN201910195625 A CN 201910195625A CN 110254416 B CN110254416 B CN 110254416B
Authority
CN
China
Prior art keywords
energy
vehicle
loss
calculating
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910195625.0A
Other languages
English (en)
Other versions
CN110254416A (zh
Inventor
杰费里·K·伦德
斯蒂芬·T·韦斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allison Transmission Inc
Original Assignee
Allison Transmission Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allison Transmission Inc filed Critical Allison Transmission Inc
Priority to CN201910195625.0A priority Critical patent/CN110254416B/zh
Publication of CN110254416A publication Critical patent/CN110254416A/zh
Application granted granted Critical
Publication of CN110254416B publication Critical patent/CN110254416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1095Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/16Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/54Engine overload, high loads on engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • B60Y2300/64Drag run or drag torque compensation, e.g. motor to drive engine with drag torque or engine speed is brought to start speed before injection and firing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Abstract

公开了一种用于在再生模式期间最优地回收能量水平的系统和方法。推导和公开了例如对于任何给定的减速事件,用于确定能量存储系统可接收的该最优的再生能量水平的等式。这些等式考虑了各种损耗,例如电动机/发电机在发电模式中的效率、风阻力、转动阻力、变速箱损耗、发动机损耗,以及能量存储系统中的损耗。还公开了用于控制混合驱动系统实现最优的能量回收率的程序的至少一个实施方案。

Description

用于混合动力电动车再生模式期间能量管理的系统和方法
相关申请的交叉引用
本申请要求享有2013年3月14日提交的美国临时申请61/782103的优先权,该申请的全部内容通过引用并入本文中。
背景技术
混合动力车辆通常在车辆减速期间收集能量,这为降低燃料消耗提供了方便且容易的有效方式。因此,对于混合动力车辆而言,确定怎样在减速期间将车辆动能最佳地转换成电能是有用的。控制电动机/发电机捕获过多的能量会造成能量存储系统中额外的高的热量损耗。控制电动机/发电机捕获过少的能量会增加损失在寄生的车辆能量损耗中的总能量。在任何一种情况下,均产生了不必要的浪费,其可通过确定针对给定的减速事件的最优能量传递的比较接近的近似值来避免。然而,确定针对给定的减速事件的最优转移能量是困难的,因为其依赖于相互关联的变量的复杂网络,并且不仔细考虑对其他变量的影响而调整一个变量会造成可否定整个再生能量回收的益处的意外后果。
发明内容
公开了用于在混合动力电动车的再生模式期间,例如在车辆减速期间管理能量(power)的系统和方法。采用了等式和程序,这考虑了由车辆能量损耗的多个方面(例如风阻力、转动阻力、变速箱转动和摩擦损耗)以及发动机中的压缩和摩擦力产生的预期的动能变化造成的一组细致入微的寄生的车辆能量损耗。也考虑了能量存储系统中的阻力和再生电压,以及电动机/发电机在发电模式下操作的估计效率。
这些因素在变速箱/混合动力车辆控制模块中进行处理,变速箱/混合动力车辆控制模块执行所公开的等式的至少一个实施例以确定混合动力系统(hybrid system)在减速事件开始时、例如当使用者抬起加速器踏板且没有踩下制动器时可期望回收的预计的最大电能。所公开的变速箱/混合动力控制模块(transmission/hybrid control module)进而会向电动机/发电机或“电机”发动信号以回收预计的最大电能水平,该预计的最大电能水平可以小于其在任何给定时刻可以回收的最大电能水平。
通过详细描述和随之提供的附图,本发明其他的形式、目的、特征、方面、好处、优点和实施方案将变清楚。
附图说明
图1显示了混合动力系统的一个实施例的示意图。
图2显示了图1中的混合动力系统中的电气通信系统的总图。
图3显示了在车辆减速期间用于图1中的混合动力系统产生最优的能量回收率的一系列操作的一个实施方案。
具体实施方式
出于更好地理解本发明原理的目的,现在将参照在附图中说明的实施方案,并且使用详细的语言来对其进行描述。然而需要理解的是,本发明的范围并不因此而受到限制。如同与本发明相关的领域的技术人员所通常想到的那样,可以构思出对在此描述的实施方案的任何修改和进一步的改进,以及对此处所描述的本发明原理的进一步应用。这里非常详细地显示了本发明的一个实施方案,然而对于本领域的技术人员来说很明显,为了简要起见,一些与本发明无关的特征也许不会显示出来。
在下面描述中的标记数字用于帮助读者快速识别出首次显示了各种部件的附图。特别是,首次出现了元件的附图典型地由相应的标记数字的最左侧的数字来表示。例如,由“100”系列标记数字标出的元件将首次出现在图1中,由“200”系列标记数字标出的元件将首次出现在图2中,以此类推。对于说明书、摘要和权利要求书来说,应当注意地是,单数形式“一”、“该”等也包括复数,除非另有明确说明。作为说明,关于“一个装置”或“该装置”包括一个或多个这种装置或其等效物。
图1显示了根据一个实施方案的混合系统100的示意图。图1中说明的混合动力系统100适合用于商用卡车以及其他类型的车辆或运输系统,但是可以设想混合动力系统100的多个方面可结合到其他环境中。如图所示,混合动力系统100包括发动机102、混合动力模块(hybrid module)104、自动变速箱106和用于将能量从变速箱106传递到车轮110的传动系108。混合模块104中结合了通常称之为电机112的电动机/发电机或电机器,和使发动机102与电机112和变速箱106操作性连接和断开的离合器114。
混合动力系统100结合了多个用于控制多种部件的操作的控制系统。例如,发动机102具有发动机控制模块146,其用于控制发动机102的多种操作特征,例如燃料喷射等。变速箱/混合动力控制模块(TCM/HCM或“控制器”)148取代了传统的变速箱控制模块,并且设计为控制变速箱106以及混合模块104两者的操作。变速箱/混合控制模块148和发动机控制模块146连同逆变器132和能量存储系统134一起沿着如图1描述的通信线路通信。
在总体功能方面,变速箱/混合动力控制模块148接收来自能量存储系统134和其中的多个能量存储模块136的功率限值、电容、有效电流、电压、温度、荷电状态、状态和风扇速度信息。在所描述的实施例中,能量存储系统134包括连接在一起、例如并联式连接在一起的三个能量存储模块136,以向逆变器132提供高压能量。变速箱/混合动力控制模块148又发出用于连接多个能量存储模块136的指令,以向逆变器132提供电压或由逆变器提供电压。变速箱/混合动力控制模块148从逆变器132接收多个输入,例如发动机/发电机的有效扭矩、扭矩限值、逆变器的电压电流和实际的扭矩速度。变速箱/混合动力控制模块148也会从逆变器132接收高电压总线功率和消耗信息。变速箱/混合动力控制模块148也监测输入电压和电流以及输出电压和电流。变速箱/混合动力控制模块148也与发动机控制模块146通信和接收来自其的信息,并且作为响应而通过发动机控制模块146控制发动机102的扭矩和速度。
在一个典型的实施方案中,变速箱/混合动力控制模块148和发动机控制模块146分别包括具有处理器、存储器和输入/输出连接器的计算机。此外,逆变器132、能量存储系统134、DC-DC转换系统140以及其他的车辆子系统也可包含具有类似的处理器、存储器和输入/输出连接器的计算机。
图2显示了可用于混合动力系统100中的通信系统200的一个实施例的图。虽然显示了一个实施例,但是应当理解地是,在其他实施方案中通信系统200可构造为与所显示的不同。通信系统200构造为最小地影响车辆的控制系统和电系统。为了便于对现有的车辆设计进行改装,通信系统200包括混合数据线路202,混合动力系统100的大多数各种部件通过所述混合数据线路进行通信。特别是,混合数据线路202方便了在变速箱/混合动力控制模块148和逆变器132、能量存储系统134之间的通信。在能量存储系统134中,能量存储模块数据线路204方便了在多种能量存储模块136之间的通信。混合动力系统100的多个部件及其功能在2012年6月20日递交的美国专利申请NO.13/527,953以及2011年9月9日递交的公开号为WO2012/034031 A2的国际申请NO.PCT/US/2011/051018中进行了更加详细的讨论,它们的内容通过引用并入本文中。
在另一方面,混合动力系统100还构造成在车辆减速期间控制电机112的操作,以通过计算使电池中存储的能量最大化的再生能量水平来使总回收能量最大化。作为进行这些计算的起点,应当注意的是,在小的固定速度变化(即固定动能变化)期间,混合动力系统100中导致减速的各种能量损耗可被视为能量恒定,并且该能量变化可通过下面所示的等式1来表达:
其中ΔE是指在时间变化Δt期间的能量总的变化,P发动机代表一个或更多个的发动机损耗,P变速箱代表一个或更多个的变速箱损耗,P代表由于作用在车轮上的风的阻力造成的能量损耗,P转动代表转动阻力,P附件指的是附件损耗,PESS指的是电流再生事件期间在能量存储系统134中回收的能量,以及“效率”代表的是电机112针对将机械能转换成电能的总体效率。该算法寻求确定PESS,使得对于任意给定的再生制动事件、例如对于只有减速而没有摩擦制动的再生事件而言,可使回收的能量最大化。
等式1中显示的一些车辆损耗是由车辆动能的总预计变化造成的。在很多混合动力车辆系统中,这些损耗在任何给定的时间也可为已知,或至少可用精确的近似值表示。因此,由于它们是动能预计变化的结果,出于求解最优的能量传递方案的目的,可将这些车辆能量损耗归集在一起,尽管随后可再次将其单独考虑。例如,在一个实施方案中,P发动机、P变速箱、P、P转动以及P附件可通过混合动力系统100使用多个器件,例如传感器、由各种部件的制造商填写的系统查找表,或由混合动力系统100自己在操作期间所填写的查找表来确定,如下文更加详细地描述。将这些车辆能量损耗组合在一起可形成等式2:
其中ΔE是指在时间变量Δt期间的能量总变化,P损失代表P发动机、P变速箱、P、P转动以及P附件的总和,PESS仍为在能量存储系统134中回收的能量,并且“效率”代表电机112的效率。
正如前面所提到的那样,PESS代表在再生事件期间供应到能量存储系统134的总电能电能。然而,传递到能量存储系统134的一部分能量会在传递中损失掉,典型地以热量的形式损失掉。例如,能量存储系统134的一个实施方案包含一个或更多个的蓄电池组电池。通过蓄电池组电池的相对低的电阻的高压和电流会在蓄电池组电池中产生一些热量,如果电流过大的话,或许会产生过多的热量。可用于能量存储系统134的其他能量存储技术可由于热或其他原因会在传递过程中产生更高或更低的损耗。
因此,供应到能量存储系统134的总电能电能可被分成如等式3a所示的电荷产生分量和损耗分量:
PESS=P电荷+P热量
等式3a
其中PESS是指在再生事件期间供应到能量存储系统134总电能,P热量是指预计的电能电能损耗,以及P电荷指的是传递到能量系统134中并为后续使用而存储的总电荷产生分量。P热量可被视为I2R损耗,因此产生了等式3b:
其中P热量是预计电能损耗,RESS是能量存储系统的电阻,PESS是在再生事件期间供应到能量存储系统134的总电能,以及V再生是从在再生事件期间以发电机的形式运行的电机112供应到能量存储系统134的电压。
如上面所述的那样,当考虑了在小的固定速度变化(即,固定动能变化)期间回收的能量时,回收的能量等于能量存储系统134中捕获的能量(P电荷)乘以时间变量Δt(动力是单位时间的能量的单位,因此这里乘以时间会得出能量)。因此,用等式2得出Δt,进而解释了在从车辆能量损耗到电池能量增加的变化时的符号变化,等式4中给出了回收的能量:
其中P电荷是在某个时间段Δt期间传递到能量存储系统134中的电荷产生分量,“回收的能量”是能量存储系统134中回收的能量,ΔE是在时间段Δt期间的能量变化,P损耗代表车辆能量损耗,PESS是在再生事件期间供应到能量存储系统134的总电能,以及“效率”代表电机的效率。
用等式2将P充电表示成总电池能量减去热损耗,产生了等式5:
其中等式中的项与前述等式中所描述的相同。
为了得到对于传递到能量存储系统134的功率的最优能量回收效果,在等式5中,将“回收的能量”相对于PESS求偏导并使其等于零,求解得到等式6:
其中等式中的项与前述等式中所描述的相同。等式6表示在再生事件期间、例如减速期间用于确定功率再生进入到能量存储系统134中的能量的最优水平的数学解决方案,该方案考虑了宽范围的因素。
现在来看操作方面,混合动力系统100可执行上面所讨论的等式以实现所公开的优点。在一个实施方案中,变速箱/混合动力控制模块148具有处理器或由能够执行图3所示的300处的动作的电路编程的或以其他形式设计的类似的逻辑电路。处理在301处开始,首先通过确定减速事件是否正在进行(303)。例如,在驾驶员不施加压力到加速器踏板导致零信号输入发送到变速箱/混合动力控制模块148,而且也不施加压力到制动器踏板,导致对于制动踏板而言第二个零输入信号发送到变速箱/混合动力控制模块148时,可作出这种判定。最终结果会是混合动力车辆处于开始减速事件的滑行状态。在所描述的实施方案中,无论是在制动器踏板还是在加速器踏板上的压力都会造成对于制动器或加速器的非零输入信号,并且变速箱/混合动力控制模块148会将其考虑为减速事件未发生(325)的指示,而引起完全跳过300处的逻辑。然而,上面公开的公式和300处显示的逻辑处理还可适用于包括摩擦制动。
然而,如果判定减速事件正在进行(303),在阶段304会开始最优的再生运算。从图3应当可以得到偏离阶段304的多个执行路径或逻辑路径。这是意在作为一个实施例显示多个操作可有益地程序化以在处理器中或在变速箱/混合动力控制模块148中的其他控制电路中同步地或异步地发生。然而,图3仅是示例性的而并非是限定性的,这是因为对于所示例的操作而言,以同步方式或以与所显示的顺序不同的顺序接续地发生以产生等价结果也可能是有益的,该等价结果依赖于特定的实施细节和设计限制。
一方面,最优的再生制动计算包括确定能量是否会由于发动机中的摩擦或压缩力而损失。因此,变速箱/混合动力控制模块148确定发动机102是否在阶段315中通过脱开的离合器114与电机112接合。如果不是,则不处理涉及发动机的计算并且进程处理返回到关于发动机计算的阶段304。然而,如果发动机102与电机112接合,则车辆动能中的可被回收为电能的部分将会在一次或更多次的发动机损耗中损失。在阶段317和318中计算这些损耗,其中考虑了由压缩力和摩擦力导致的发动机损耗。在一个实施方案中,通过使用发动机制造商提供的查找表进行该计算。在操作期间,发动机控制模块146连续地播送发动机摩擦扭矩,并且发动机摩擦扭矩被用于在发动机制造商提供的查找表中查找估计的发动机损耗。
变速箱/混合动力控制模块148在阶段312和阶段314中可使用类似的技术来计算由于变速箱106中的转动惯量造成的变速箱损耗。这里再一次地,由于移动部分在变速箱中转动或其他运动产生的摩擦或惯量而消耗或吸收的能量产生了不会转变为电能的能量消耗。与发动机的制造商类似,变速箱的制造商会提供用于基于当前齿轮、变速箱油温、输出轴的速度和变速箱的各个部件的扭矩以及变速箱的其他具体变量来估计变速箱损耗的查找表。借助于变速箱106,该信息对变速箱/混合动力控制模块148而言是可得到的,并且该信息用于计算包括由转动惯量和摩擦造成的损耗的变速箱损耗。
除了传动系的损耗,该算法还计算由风阻力(309)和转动阻力(311)产生的车辆能量损耗。随着车辆例如从高速而减速,由车辆移动穿过空气时空气的流动特性产生的向前运动的阻力造成了不能转化成在能量存储系统134中回收的能量的速度减小。在一个实施方案中,这些损耗可根据公式P=WV3来计算,其中P是由于风阻造成的能量损耗,W是与车辆的形状和空气动力学以及在空气中移动相对容易性有关的气体动力或风力系数,以及V是车辆的速率。
类似地,由转动阻力产生的损耗会造成系统因为转动阻力而不能回收能量到能量存储系统134中。转动阻力可通过车辆的质量乘以车辆的速度乘以表征给定车辆的相对转动阻力的道路阻力系数来计算。变速箱/混合动力控制模块148可通过多种方式获知车辆质量,所述方式包括从发动机控制模块102、变速箱106收集的信息,以及从变速箱/混合动力控制模块148内的其他处理在数据以控制混合动力车辆时收集到信息。混合动力系统100还可适应性地随时间估计和确定车辆质量,在一些实施方案中车辆质量是相当静态的,例如在车辆的负载作为整体车辆质量的百分比变化很小情况下。在其他的情况中,车辆质量可随时间非常显著地变化,例如携带负载到达和离开工地现场的往返自卸卡车,或进行多次交货的厢式货车。
当系统计算完单个的寄生车辆损耗时,整体的车辆能量损耗可计算出来(319)。在对于上文等式2、4、5和6而显示和讨论了P损耗的实施方案中,这些寄生的车辆损耗只单纯地叠加在一起以形成不会作为电能回收在能量存储系统134中的车辆能量组合损耗。然而,在其他的实施方案中,有益地是,应用权重因子或应用抵消来使该算法有机会适应性地调整赋予整个车辆能量损耗中的每个元素的权重。
除了在阶段309到319中计算的车辆能量整体损耗外,该计算还包括了与损耗相关的其他效率。例如,在阶段306和307计算了与电机112期望的电动机运行效率相关的估计效率,其在等式1、2、4、5和6中显示为“效率”,并在上文以“估计效率”进行讨论。当电机112在再生制动模式下运行时,其在变速箱106、传动系108以及车轮110上施加制动能量以使混合动力车辆减速并且吸收动能并将一部分动能转换为电能。其余未转换的动能会因为摩擦、发热以及电机112中的其他寄生损耗而损失掉。阶段306计算了该估计效率因素,并且将该估计效率因素包括在如上文所述的等式的计算中。考虑估计效率的一种方式是,在再生制动模式下,其为再生电能除以传动系提供的机械制动功率的比值。在这个估计效率的实施方案中,如果全部有效的机械制动功率均转换为电能的话,那么该比值将会是1,其相当于效率为100%。然而,由于电机112中的一些损耗实际上是不可避免的,与任何已知的电动机/发电机一样,该比率会是小于1的某个值。同时,由于是对将来表现的估计,基于一段时间内车辆的先前表现来确定估计效率是有益的。因此,变速箱/混合动力控制模块148会保持先前的车辆信息(例如基于来自先前的再生事件的马达转速和转矩的查找表中的信息)来辅助确定下一个再生事件的估计效率。这些查找表是可以访问的(307)以为当前的再生事件计算电动机的期望运行效率(306)。
除了计算与电机112有关的效率外,变速箱/混合动力控制模块148还获取用于计算最优功率转移的电池电阻和再生电压信息(308),这会避免能量存储系统134发热过高。如果由于在短期内传递大量的功率而发生过多的发热损耗的话,那么利用再生制动回收能量的优点就会无效,这是由于能量存储系统134的多个部件、例如能量存储模块136中的一个或更多个蓄电池组电池的寿命会缩短。类似问题还会以能量存储的其他形式而发生,例如电容等如果过快地充电也会遭受故障。因此,变速箱/混合动力控制模块148例如可从能量存储系统134处获取电池电阻信息并利用考虑了例如车辆质量和速度因素的查找表来计算或估计再生电压。
在完成计算估计功率(306)、获取电池电阻和估计的再生电压(308)以及计算了车辆总寄生能量损耗(319)后,变速箱/混合动力控制模块148已准备好计算针对这个特定的减速事件(303)能量存储系统134能做出的最优功率转移。该计算在阶段321进行,并且可包括上文详细地推导和讨论的等式6。当完成计算预计的最大电能(322)时,变速箱/混合动力控制模块148控制电机(电动机/发电机)112回收预计的最大电能,导致大体上等于所述预计的最大电能的大量能量进入能量存储系统134中。然后退出处理(325)。
值得注意的是,在所示例的实施方案中,阶段321以同步点的方式操作意味着,如所描述的那样,多个计算可同步地进行。然而,为了计算在阶段321中传递到能量存储系统134的预计的最大电能,必须先完成这些计算以得到预计的最大电能的最终计算所需要的值。然而,应当理解的是,图3仅是示意性的,并且同样的结果可通过顺序执行阶段304到阶段321来得到,而不是如图所示的那样并列地进行,因此可以以略有不同的顺序执行多个阶段而得到同样的结果。
尽管已经在附图和前文描述中详细说明和描述了本发明,但是这应被认为是说明性的且相应地是非限制性的,应理解地是,仅显示和描述了优选的实施方案,并且属于由接下来的权利要求所限定的本发明的精神内的改动、等效物和改进均要求得到保护。这里,引用在本说明书中的所有公开、专利和专利申请以引用方式而结合入本发明,就像每个单独的公开、专利或专利申请均特别和单独地通过引用和说明其全部而结合入本发明。

Claims (46)

1.控制混合动力电动车辆中再生制动的方法,包括:
通过车辆控制器计算车辆的预计的车辆能量损耗,其中,所述车辆具有电动机/发电机和能量存储系统,并且其中所述电动机/发电机与所述能量存储系统电连接;
通过所述车辆控制器和预计的车辆能量损耗计算供应到能量存储系统的预计的电能,利用供应到所述能量存储系统的预计的电能来计算所述预计的电能损耗;以及
通过以发电机的形式运行的所述电动机/发电机产生再生制动能量,利用所述预计的车辆能量损耗、所述供应到能量存储系统的预计的电能和所述预计的电能损耗来计算所述预计的再生的制动能量;
其中所述再生制动能量小于或等于待供应到所述能量存储系统的预计的电能;并且其中计算所述预计的车辆能量损耗发生在产生再生制动能量之前。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括检测所述车辆的减速状态。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括在产生再生制动能量之前,使用所述车辆控制器计算预期的电动机运行效率。
4.根据权利要求2或3所述的方法,其特征在于,所述检测所述车辆的减速状态的步骤包括检测从变速箱提供到所述电动机/发电机的扭矩,其中所述电动机/发电机与所述变速箱相连。
5.根据权利要求1所述的方法,其特征在于,所述预计的车辆能量损耗包括由车辆动能的预期变化引起的损耗。
6.根据权利要求1所述的方法,其特征在于,所述待供应到能量存储系统的预计的电能包括由所述预计的电能到所述能量存储系统的预期传递产生的预计的电能损耗。
7.根据权利要求1所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算发动机能量损耗。
8.根据权利要求7所述的方法,其特征在于,计算所述发动机能量损耗的步骤包括计算发动机压缩力损耗。
9.根据权利要求7所述的方法,其特征在于,计算所述发动机能量损耗的步骤包括计算发动机摩擦力损耗。
10.根据权利要求1所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算风阻力损耗,其中所述风阻力损耗由所述车辆控制器使用车辆速率和车辆空气动力系数来计算。
11.根据权利要求1所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算转动阻力损耗,其中所述转动阻力损耗由所述车辆控制器利用车辆质量、车辆速率和车辆转动阻力系数来计算。
12.根据权利要求1中所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算车辆变速箱损耗。
13.根据权利要求12所述的方法,其特征在于,利用变速箱惯量损耗和变速箱摩擦损耗来计算所述车辆变速箱损耗。
14.根据权利要求1所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算附件损耗。
15.根据权利要求3所述的方法,其特征在于,计算所述预期的电动机运行效率的步骤包括访问存储在车辆控制器的存储器中的先前的车辆活动数据,以及基于所述先前的车辆活动数据计算预期的电动机运行效率。
16.根据权利要求3所述的方法,其特征在于,计算所述预期的电动机运行效率的步骤是利用电动机的速度和电动机的扭矩来计算。
17.根据权利要求6所述的方法,其特征在于,所述预计的电能损耗通过下面的等式来计算:
其中P热量是所述预计的电能损耗,RESS是所述能量存储系统的电阻,PESS是供应到所述能量存储系统的总电能,以及VESS是供应到所述能量存储系统的电压。
18.根据权利要求1-3中任意一项所述的方法,其特征在于,所述待供应到所述能量存储系统的预计的电能通过下面的等式来计算:
其中PESS是供应到所述能量存储系统的总电能,“效率”是电动机的预期运行效率,P损耗是由预计的车辆动能变化产生的能量损耗,RESS是所述能量存储系统的电阻,以及V再生是从在发电模式中运行的电动机/发电机供应到所述能量存储系统的电压。
19.根据权利要求1-3中任意一项所述的方法,其特征在于,所述能量存储系统包括一个或更多个蓄电池组电池。
20.根据权利要求2或3所述的方法,其特征在于,检测减速事件的步骤包括检测制动踏板上的零输入信号和加速踏板上的零输入信号。
21.计算再生的制动能量的方法,包括:
通过车辆中的车辆控制器计算预计的车辆能量损耗,所述车辆具有包括能量存储系统的混合动力系统,所述车辆控制器利用车辆当前的减速速率来计算所述预计的车辆能量损耗;
通过所述车辆控制器计算供应到所述能量存储系统的预计的电能,所述车辆控制器利用所述预计的车辆能量损耗来计算所述预计的电能;
通过车辆控制器计算预计的电能损耗,所述车辆控制器利用供应到所述能量存储系统的预计的电能来计算所述预计的电能损耗;以及
通过所述车辆控制器计算预计的再生制动能量,所述车辆控制器利用所述预计的车辆能量损耗、所述供应到能量存储系统的预计的电能和所述预计的电能损耗来计算所述预计的再生的制动能量;
其中计算所述预计的车辆能量损耗发生在运行电动机/发电机产生预计的再生制动能量之前。
22.根据权利要求21所述的方法,其特征在于,所述混合动力系统包括所述电动机/发电机和内燃机。
23.根据权利要求21或22所述的方法,其特征在于,所述能量存储系统包括与所述混合动力系统电连接的至少一个蓄电池组电池。
24.根据权利要求22所述的方法,其特征在于,所述方法还包括在运行电动机/发电机产生预计的再生制动能量之前,通过所述车辆控制器计算预期的电动机运行效率。
25.根据权利要求24所述的方法,其特征在于,计算所述预期的电动机运行效率的步骤包括访问存储在所述车辆控制器的存储器中的一个或更多个的先前的电动机运行效率值,以及通过所述车辆控制器利用所述一个或更多个的先前的电动机运行效率值来计算所述预期的电动机运行效率。
26.根据权利要求24或25所述的方法,其特征在于,计算所述预期的电动机运行效率的步骤是通过所述车辆控制器利用电动机速度和电动机扭矩来计算的。
27.根据权利要求21或22所述的方法,其特征在于,计算所述预计的电能损耗的步骤包括计算所述能量存储系统中一个或更多个部件的温度的预计的变化。
28.根据权利要求27所述的方法,其特征在于,所述预计的电能损耗通过下面的等式来计算:
其中P热量是所述预计的电能损耗,RESS是所述能量存储系统的电阻,PESS是供应到所述能量存储系统的总电能,以及VESS是供应到所述能量存储系统的电压。
29.根据权利要求21或22所述的方法,其特征在于,计算所述预计的车辆能量损耗的步骤包括计算风阻力损耗,其中所述风阻力损耗通过所述车辆控制器利用车辆速度和车辆空气动力系数来计算。
30.根据权利要求21或22所述的方法,其特征在于,计算所述车辆能量损耗的步骤包括计算转动阻力损耗,其中所述转动阻力损耗通过所述车辆控制器利用车辆质量、车辆速度和车辆转动阻力系数来计算。
31.根据权利要求22所述的方法,其特征在于,所述方法还包括检测减速状态。
32.根据权利要求31所述的方法,其特征在于,所述检测减速状态的步骤还包括通过所述车辆控制器来检测从变速箱提供到所述电动机/发电机的扭矩,其中所述电动机/发电机与所述变速箱相连。
33.根据权利要求31或32所述的方法,其特征在于,所述检测减速状态的步骤还包括通过所述车辆控制器来检测制动踏板输入信号和加速器踏板输入信号。
34.根据权利要求22所述的方法,其特征在于,所述计算预计的车辆能量损耗的步骤包括通过所述车辆控制器来计算发动机能量损耗。
35.根据权利要求34所述的方法,其特征在于,所述计算发动机能量损耗的步骤包括通过所述车辆控制器来计算发动机压缩力损耗。
36.根据权利要求34或35所述的方法,其特征在于,所述计算发动机能量损耗的步骤包括通过车辆控制器来计算发动机摩擦力损耗。
37.根据权利要求22、24或25中任意一项所述的方法,其特征在于,所述混合动力系统包括与所述电动机/发电机相连的变速箱,并且其中所述计算预计的车辆能量损耗的步骤包括通过所述车辆控制器来计算车辆变速箱损耗。
38.根据权利要求37所述的方法,其特征在于,通过所述车辆控制器利用变速箱惯量阻力和变速箱摩擦阻力来计算所述车辆变速箱损耗。
39.根据权利要求21、22、24或25中任意一项所述的方法,其特征在于,所述预计的车辆能量损耗包括附件损耗。
40.根据权利要求22、24或25中任意一项所述的方法,其特征在于,能由所述能量存储系统接收的预计的电能通过所述车辆控制器根据下面的等式来计算:
其中PESS是供应到所述能量存储系统的总电能,“效率”是电动机的预期运行效率,P损耗是由所述预计的车辆动能变化产生的能量损耗,RESS是所述能量存储系统的电阻,以及V再生是从以发电模式运行的电动机/发电机供应到所述能量存储系统的电压。
41.根据权利要求22、24或25中任意一项所述的方法,其特征在于,所述方法还包括:
通过以发电模式运行的电动机/发电机来产生再生的制动能量,其中所述再生的制动能量小于或等于所述预计的再生的制动能量。
42.根据权利要求41所述的方法,其特征在于,所述方法还包括:
传输所述再生的制动能量到所述能量存储系统。
43.根据权利要求22、24或25中任意一项所述的方法,其特征在于,所述车辆控制器与所述能量存储系统和所述电动机/发电机电连接。
44.根据权利要求22、24或25中任意一项所述的方法,其特征在于,所述车辆控制器包括电连接在一起的处理器和存储器。
45.根据权利要求22、24或25中任意一项所述的方法,其特征在于,所述车辆控制器包括相互通信的多个处理器和/或多个存储器。
46.用于执行权利要求1-45中任意一项所述的方法的装置。
CN201910195625.0A 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法 Active CN110254416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910195625.0A CN110254416B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361782103P 2013-03-14 2013-03-14
US61/782,103 2013-03-14
CN201910195625.0A CN110254416B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法
CN201480015288.8A CN105102287B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法
PCT/US2014/020513 WO2014158846A1 (en) 2013-03-14 2014-03-05 System and method for power management during regeneration mode in hybrid electric vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480015288.8A Division CN105102287B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法

Publications (2)

Publication Number Publication Date
CN110254416A CN110254416A (zh) 2019-09-20
CN110254416B true CN110254416B (zh) 2023-08-29

Family

ID=51625065

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480015288.8A Active CN105102287B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法
CN201910195625.0A Active CN110254416B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480015288.8A Active CN105102287B (zh) 2013-03-14 2014-03-05 用于混合动力电动车再生模式期间能量管理的系统和方法

Country Status (7)

Country Link
US (2) US9296385B2 (zh)
EP (1) EP2969687A4 (zh)
KR (2) KR102349568B1 (zh)
CN (2) CN105102287B (zh)
AU (2) AU2014241787B2 (zh)
CA (1) CA2898310C (zh)
WO (1) WO2014158846A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886387A3 (en) * 2013-12-23 2015-12-23 Rolls-Royce Corporation Dual redundant motor/generator for an engine
US10379143B2 (en) 2014-07-23 2019-08-13 Cummins, Inc. System and method for improving a battery management and accumulator system
CN106573530B (zh) 2014-08-26 2018-08-03 康明斯有限公司 电动发动机附件控制
KR101594730B1 (ko) * 2015-07-09 2016-02-23 고성석 급발진 방지 장치
DE102016204934A1 (de) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Antriebsvorrichtung und eine Antriebsvorrichtung für ein Hybrid-Kraftfahrzeug
KR102464753B1 (ko) * 2016-12-19 2022-11-07 엘에스일렉트릭(주) 에너지 저장 시스템의 충방전 효율값 갱신 장치
US10665127B2 (en) 2017-11-28 2020-05-26 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for sharing driver coaching data
US10793161B2 (en) * 2017-12-06 2020-10-06 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for selective driver coaching based on driver efficiency
FR3088281B1 (fr) * 2018-11-08 2020-10-16 Continental Automotive France Procede de controle de la chaine de traction d'un vehicule automobile
JP2021075266A (ja) * 2019-11-12 2021-05-20 トヨタ自動車株式会社 走行制御装置、方法およびプログラム
CN112644288B (zh) * 2020-12-25 2022-04-12 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质
CN112606694B (zh) * 2020-12-25 2022-06-28 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质
US11686241B1 (en) * 2022-04-26 2023-06-27 Caterpillar Inc. Efficient machine auxiliary control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444351A (en) * 1993-07-06 1995-08-22 Nissan Motor Co., Ltd. System and method for controlling induction motor applicable to electric motor-driven vehicle
US5998880A (en) * 1997-08-07 1999-12-07 General Electric Company AC locomotive operation without DC current sensor
CN101386260A (zh) * 2007-09-05 2009-03-18 意大利国立新环境技术能源事务局 混合动力汽车在再生减速期间的控制方法
WO2012005655A1 (en) * 2010-07-08 2012-01-12 Scania Cv Ab Energy control system and method for a hybrid vehicle
CN102369127A (zh) * 2009-03-31 2012-03-07 株式会社电装 混合动力车
FR2965759A1 (fr) * 2010-10-12 2012-04-13 Bosch Gmbh Robert Systeme de recuperation d'energie et procede de commande d'un tel systeme pour la recuperation d'energie cinetique d'un vehicule

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410022B2 (ja) * 1998-05-20 2003-05-26 本田技研工業株式会社 ハイブリッド車両の制御装置
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3654048B2 (ja) * 1999-05-20 2005-06-02 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP2004500798A (ja) 2000-03-27 2004-01-08 ハネウェル・インターナショナル・インコーポレーテッド 電気およびハイブリッド車両での最適なバッテリ使用のためのシステムおよび方法
JP3734140B2 (ja) 2000-04-06 2006-01-11 スズキ株式会社 ハイブリッド車両の制御装置
US7407026B2 (en) 2000-10-11 2008-08-05 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change
GB2370130B (en) 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
JP2002125326A (ja) 2000-10-12 2002-04-26 Honda Motor Co Ltd バッテリの充電制御方法
JP3857146B2 (ja) 2002-01-16 2006-12-13 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3750608B2 (ja) 2002-01-23 2006-03-01 トヨタ自動車株式会社 車両における蓄電装置の制御装置
JP3876979B2 (ja) 2002-03-18 2007-02-07 三菱自動車工業株式会社 バッテリ制御装置
US6686724B2 (en) 2002-05-21 2004-02-03 Ford Motor Company Method of and apparatus for controlling charging and/or discharging of a battery for a hybrid electric vehicle
JP3771526B2 (ja) 2002-10-21 2006-04-26 株式会社日立製作所 二次電池評価方法および蓄電装置
US7078877B2 (en) 2003-08-18 2006-07-18 General Electric Company Vehicle energy storage system control methods and method for determining battery cycle life projection for heavy duty hybrid vehicle applications
US7449891B2 (en) 2003-10-14 2008-11-11 General Motors Corporation Managing service life of a battery
US7200476B2 (en) * 2003-10-14 2007-04-03 General Motors Corporation Optimal selection of input torque considering battery utilization for a hybrid electric vehicle
JP4039355B2 (ja) 2003-10-29 2008-01-30 トヨタ自動車株式会社 二次電池の制御装置および制御方法
US7482767B2 (en) 2004-01-30 2009-01-27 Solomon Technologies, Inc. Regenerative motor propulsion systems
US7295902B2 (en) 2004-04-30 2007-11-13 General Motors Corporation Torque management algorithm for hybrid electric vehicles
US7131708B2 (en) 2004-05-14 2006-11-07 General Motors Corporation Coordinated regenerative and engine retard braking for a hybrid vehicle
US7305873B2 (en) 2004-05-15 2007-12-11 General Motors Corporation Method for dynamically determining peak output torque in an electrically variable transmission
US7689330B2 (en) 2004-12-01 2010-03-30 Ise Corporation Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles
US7935015B2 (en) 2005-05-30 2011-05-03 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus
JP4258492B2 (ja) 2005-06-01 2009-04-30 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
US7398147B2 (en) * 2005-08-02 2008-07-08 Ford Global Technologies, Llc Optimal engine operating power management strategy for a hybrid electric vehicle powertrain
JP4631761B2 (ja) 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
JP4337797B2 (ja) 2005-09-29 2009-09-30 トヨタ自動車株式会社 電力制御装置および電動車両
US7661370B2 (en) 2005-10-19 2010-02-16 Railpower, Llc Design of a large low maintenance battery pack for a hybrid locomotive
CN101292411A (zh) 2005-10-19 2008-10-22 劳伦斯·P·策普 具有去耦以消除磁感应转矩损失的轴向转子的无刷永磁电动机/发电机
KR100740097B1 (ko) 2005-10-20 2007-07-16 삼성에스디아이 주식회사 배터리의 soc 추정 방법 및 이를 이용한 배터리 관리시스템
JP4561616B2 (ja) 2005-10-27 2010-10-13 トヨタ自動車株式会社 モータ駆動システム
JP4462170B2 (ja) 2005-11-07 2010-05-12 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP4341610B2 (ja) 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4254783B2 (ja) 2006-01-27 2009-04-15 トヨタ自動車株式会社 ハイブリッド制御装置
US7923950B2 (en) 2006-02-28 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle drive device and method of controlling vehicle drive device
JP4773848B2 (ja) 2006-03-03 2011-09-14 プライムアースEvエナジー株式会社 二次電池の充放電制御システム、電池制御装置、およびプログラム
WO2007102762A1 (en) 2006-03-09 2007-09-13 Volvo Technology Corporation Hybrid powertrain
DE102006018059A1 (de) 2006-04-19 2007-10-31 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Parallelhybridantriebsstranges
DE102006018057A1 (de) 2006-04-19 2007-11-08 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Parallelhybridantriebsstranges eines Fahrzeuges mit wenigstens einer Verbrennungsmaschine und wenigstens einer elektrischen Maschine
KR100740114B1 (ko) 2006-05-12 2007-07-16 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
JP4929839B2 (ja) 2006-05-22 2012-05-09 トヨタ自動車株式会社 蓄電装置の充放電制御装置
US7730984B2 (en) 2006-06-07 2010-06-08 Gm Global Technology Operations, Inc. Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device
US7550946B2 (en) 2006-06-07 2009-06-23 Gm Global Technology Operations, Inc. Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle
US7639018B2 (en) 2006-06-07 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for predicting change in an operating state of an electric energy storage device
US8091667B2 (en) 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US7538520B2 (en) 2006-06-07 2009-05-26 Gm Global Technology Operations, Inc. Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device
JP4337848B2 (ja) 2006-07-10 2009-09-30 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびに温度管理方法
US7826939B2 (en) * 2006-09-01 2010-11-02 Azure Dynamics, Inc. Method, apparatus, signals, and medium for managing power in a hybrid vehicle
KR100863956B1 (ko) 2006-09-26 2008-10-16 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
US8029408B2 (en) 2006-11-09 2011-10-04 Robert Bosch Gmbh Method and control device for implementing a startup of a combustion engine in a hybrid vehicle
US7967091B2 (en) 2006-11-16 2011-06-28 Ford Global Technologies, Llc Hybrid electric vehicle powertrain with engine start and transmission shift arbitration
JP4793237B2 (ja) 2006-11-28 2011-10-12 トヨタ自動車株式会社 二次電池の充放電制御装置、および、それを備える車両
JP5055999B2 (ja) * 2006-12-18 2012-10-24 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
DE102007001424B4 (de) 2007-01-09 2017-07-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten eines Kolbenmotors, Hybrid-Antrieb für ein Kraftfahrzeug sowie Kraftfahrzeug mit Hybridantrieb
JP4997986B2 (ja) 2007-01-19 2012-08-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4179383B2 (ja) 2007-02-13 2008-11-12 トヨタ自動車株式会社 駆動力発生システムおよびそれを備える車両、ならびにその制御方法
US7987934B2 (en) 2007-03-29 2011-08-02 GM Global Technology Operations LLC Method for controlling engine speed in a hybrid electric vehicle
US7865287B2 (en) 2007-03-29 2011-01-04 Gm Global Technology Operations, Inc. Method and apparatus for controlling power flow in a hybrid powertrain system
JP5083312B2 (ja) 2007-04-20 2012-11-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
US7846051B2 (en) 2007-05-11 2010-12-07 Gm Global Technology Operations, Inc. Hybrid powertrain with an engine input clutch and method of control
US7828693B2 (en) * 2007-06-20 2010-11-09 Ford Global Technologies, Llc Negative driveline torque control incorporating transmission state selection for a hybrid vehicle
US8022674B2 (en) 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
US8035324B2 (en) 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
US8121767B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8002667B2 (en) 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8000866B2 (en) 2007-11-04 2011-08-16 GM Global Technology Operations LLC Engine control system for torque management in a hybrid powertrain system
US8448731B2 (en) 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8321100B2 (en) 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
FR2923422B1 (fr) 2007-11-14 2010-05-14 Renault Sas Procede de controle du freinage recuperatif d'un vehicule comprenant au moins un moteur electrique
EP2226227B1 (en) 2007-11-30 2015-09-30 Bosch Corporation Hybrid system control method
US8020652B2 (en) 2007-12-04 2011-09-20 Ford Global Technologies, Llc Generator power-based cold start strategy
DE102007061730A1 (de) 2007-12-20 2009-06-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung und Prädiktion eines zum Starten eines Verbrennungsmotors notwendigen Startmoments oder Startmomentenverlaufs
US8731751B2 (en) 2008-02-07 2014-05-20 GM Global Technology Operations LLC Method and system for controlling a hybrid vehicle
JP4462366B2 (ja) 2008-04-01 2010-05-12 トヨタ自動車株式会社 動力出力装置およびこれを備える車両並びに動力出力装置の制御方法
US8392030B2 (en) 2008-04-17 2013-03-05 Levant Power Corporation System and method for control for regenerative energy generators
JP5104541B2 (ja) * 2008-05-20 2012-12-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US8261864B2 (en) 2008-06-17 2012-09-11 GM Global Technology Operations LLC Hybrid powertrain auto start control system with engine pulse cancellation
US8063609B2 (en) 2008-07-24 2011-11-22 General Electric Company Method and system for extending life of a vehicle energy storage device
JP4438887B1 (ja) * 2008-09-26 2010-03-24 トヨタ自動車株式会社 電動車両及び電動車両の充電制御方法
US8035349B2 (en) 2008-09-30 2011-10-11 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for absorbing waste electricity from regenerative braking in hybridized vehicles
JP4631962B2 (ja) 2008-11-11 2011-02-16 トヨタ自動車株式会社 エンジン始動制御装置
US8082743B2 (en) 2009-02-20 2011-12-27 Tesla Motors, Inc. Battery pack temperature optimization control system
JP2010220381A (ja) * 2009-03-17 2010-09-30 Toyota Motor Corp 電動車両の充電制御装置およびそれを備えた電動車両ならびに電動車両の充電制御方法
JP5170569B2 (ja) 2009-03-31 2013-03-27 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
DE102009002176B4 (de) 2009-04-03 2017-07-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeuges
US8616312B2 (en) 2009-08-28 2013-12-31 Eaton Corporation Hybrid electric vehicle battery thermal management
US7911184B2 (en) 2009-11-05 2011-03-22 Tesla Motors, Inc. Battery charging time optimization system
US8126604B2 (en) 2009-11-30 2012-02-28 GM Global Technology Operations LLC Method of determining output torque constraints for a powertrain
US8412396B2 (en) 2010-06-07 2013-04-02 GM Global Technology Operations LLC Electric launch of a hybrid vehicle having a belt alternator starter and a dual clutch transmission
US8660726B2 (en) 2010-06-24 2014-02-25 GM Global Technology Operations LLC Torque blending systems for hybrid electric vehicles with electrically continuous variable transmissions
WO2012076026A1 (en) * 2010-12-06 2012-06-14 Volvo Lastvagnar Ab A vehicle comprising a refrigerator arrangement
WO2012114430A1 (ja) * 2011-02-21 2012-08-30 スズキ株式会社 ハイブリッド車両の駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444351A (en) * 1993-07-06 1995-08-22 Nissan Motor Co., Ltd. System and method for controlling induction motor applicable to electric motor-driven vehicle
US5998880A (en) * 1997-08-07 1999-12-07 General Electric Company AC locomotive operation without DC current sensor
CN101386260A (zh) * 2007-09-05 2009-03-18 意大利国立新环境技术能源事务局 混合动力汽车在再生减速期间的控制方法
CN102369127A (zh) * 2009-03-31 2012-03-07 株式会社电装 混合动力车
WO2012005655A1 (en) * 2010-07-08 2012-01-12 Scania Cv Ab Energy control system and method for a hybrid vehicle
FR2965759A1 (fr) * 2010-10-12 2012-04-13 Bosch Gmbh Robert Systeme de recuperation d'energie et procede de commande d'un tel systeme pour la recuperation d'energie cinetique d'un vehicule

Also Published As

Publication number Publication date
AU2016204649A1 (en) 2016-07-21
US20150367834A1 (en) 2015-12-24
CN105102287A (zh) 2015-11-25
KR20150132337A (ko) 2015-11-25
US9296385B2 (en) 2016-03-29
US9517698B2 (en) 2016-12-13
AU2014241787B2 (en) 2016-07-28
AU2016204649B2 (en) 2018-05-17
CA2898310C (en) 2022-07-12
US20160193927A1 (en) 2016-07-07
EP2969687A4 (en) 2017-01-11
CA2898310A1 (en) 2014-10-02
KR20200118900A (ko) 2020-10-16
CN110254416A (zh) 2019-09-20
WO2014158846A1 (en) 2014-10-02
KR102349568B1 (ko) 2022-01-12
CN105102287B (zh) 2019-04-12
EP2969687A1 (en) 2016-01-20
AU2014241787A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
CN110254416B (zh) 用于混合动力电动车再生模式期间能量管理的系统和方法
CN103895641B (zh) 一种气电混合动力客车整车控制系统及其控制方法
US9561726B2 (en) Apparatus and method for calculating regenerative braking amount of hybrid electric vehicle
CN105501214B (zh) 控制轻度混合动力汽车的电池的方法
CN106218442A (zh) 一种电动汽车最高车速控制方法及整车控制器
JP6089887B2 (ja) ハイブリッド車の制御装置
CN105564250B (zh) 用于环境友好型车辆的制动控制方法和系统
CN103863298A (zh) 用于控制混合动力车的行驶模式转换的方法和系统
CN107303906B (zh) 用于控制混合动力车辆的发动机离合器的设备和方法
US9014892B2 (en) Control system and method for hybrid vehicle
WO2010143077A2 (en) Method and system for controlling an electric motor in a hybrid vehicle
CA2898505A1 (en) System and method for optimizing power consumption in a hybrid electric vehicle
CN105292100A (zh) 用于控制混合动力电动车的发动机离合器的装置和方法
WO2024022043A1 (zh) 车辆中动力电池的充放电功率控制方法、装置及车辆
US20160031428A1 (en) Method of power split for hybrid powertrain
CN111688497B (zh) 电动汽车电池高荷电状态下回馈制动系统及控制方法
Wangsupphaphol et al. Acceleration-based design auxiliary power source for Electric Vehicle applications
CN116039391B (zh) 车辆制动方法、装置和汽车
CN116502339A (zh) 一种混合动力汽车驱动系统参数优化方法
CN111791875B (zh) 机电耦合双离合混合动力系统驾驶模式控制系统及方法
CN117454507A (zh) 考虑电量保持的加速踏板map设计方法、装置及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant