WO2018155083A1 - ハイブリッド車両の制御装置及びハイブリッド車両 - Google Patents

ハイブリッド車両の制御装置及びハイブリッド車両 Download PDF

Info

Publication number
WO2018155083A1
WO2018155083A1 PCT/JP2018/002634 JP2018002634W WO2018155083A1 WO 2018155083 A1 WO2018155083 A1 WO 2018155083A1 JP 2018002634 W JP2018002634 W JP 2018002634W WO 2018155083 A1 WO2018155083 A1 WO 2018155083A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
motor
power
efficiency
hybrid vehicle
Prior art date
Application number
PCT/JP2018/002634
Other languages
English (en)
French (fr)
Inventor
宏之 坂本
関口 秀樹
佐藤 泰亮
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/468,452 priority Critical patent/US11059374B2/en
Priority to JP2019501156A priority patent/JP6688430B2/ja
Priority to CN201880008802.3A priority patent/CN110290993B/zh
Publication of WO2018155083A1 publication Critical patent/WO2018155083A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a control device for a hybrid vehicle that includes an engine and a motor, and that can generate electric power using a driving force from driving wheels by the motor.
  • target SOC State of Charge
  • a technology in which when a vehicle is decelerated, a motor is operated as a generator by driving force of driving wheels to recover regenerative energy and improve fuel efficiency.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of effectively recovering regenerative energy and improving fuel consumption.
  • a control apparatus for a hybrid vehicle includes an engine, a driving wheel capable of transmitting a driving force of the engine, a driving wheel capable of transmitting a driving force from the engine,
  • a control device for a hybrid vehicle comprising: a motor capable of transmitting a driving force between the motor and a battery for supplying electric power for driving the motor and storing electric power generated by the motor.
  • An efficiency range information storage unit for storing information specifying a first efficiency range in which the engine efficiency of the engine is relatively high, and a motor when the engine is operating in a second efficiency range outside the first efficiency range.
  • a power generation amount measuring unit that measures the power generation amount of the second efficiency range, which is the amount of power generated and stored in the battery, and power for driving the motor are supplied. If you need, including a power control unit for the power of the second efficiency range power generation control so as to supply from the battery to the motor.
  • the recovered energy can be recovered effectively and the fuel consumption can be improved.
  • FIG. 1 is a partial configuration diagram of a hybrid vehicle according to an embodiment.
  • FIG. 2 is a functional configuration diagram of the HCM according to the embodiment.
  • FIG. 3 is a diagram illustrating a method for determining a high efficiency range according to an embodiment.
  • FIG. 4 is a flowchart of a power generation amount measurement process according to an embodiment.
  • FIG. 5 is a flowchart of hybrid control processing according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of a traveling state of the hybrid vehicle according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a traveling state of the hybrid vehicle in a plurality of cases according to an embodiment.
  • FIG. 8 is a diagram for explaining power generation control according to the modification.
  • FIG. 1 is a partial configuration diagram of a hybrid vehicle according to an embodiment.
  • the hybrid vehicle 1 includes an engine 10, a clutch 12, a transmission 14, a propeller shaft 15, a differential (differential) 16, drive shafts 17 and 18, drive wheels 19 and 20, and a motor (MOT). 30, lead-acid battery (battery) 40, DCDC converter 41, lithium battery 42, MCU (Motor Control Unit) 43, ECU (Engine Control Unit) 44, TCU (Transmission Control Unit) 45, and control device HCM (Hybrid Control Module) 50 as an example.
  • MCU Motor Control Unit
  • ECU Engine Control Unit
  • TCU Transmission Control Unit
  • HCM Hybrid Control Module
  • the MCU 43 controls the operation of the motor 30.
  • the ECU 44 controls the operation of the engine 10.
  • the TCU 45 controls the operation of the transmission 14.
  • the HCM 50 is connected to the MCU 43, the ECU 44, the TCU 45, and the like, and performs overall control of the operations of the engine 10 and the motor 30. Various information is input to the HCM 50 directly from a sensor (not shown) or via another device (MCU 43, ECU 44, TCU 45, etc.).
  • the information input to the HCM 50 includes information such as the number of revolutions of the engine 10, the output torque of the engine 10 or an estimated value (estimated torque value) of the output torque, the SOC of the battery 40, and the like.
  • the estimated torque value is calculated by the ECU 44 based on the amount of fuel supplied to the engine 10, for example, and the result is input to the HCM by the ECU 44.
  • a torque sensor that measures the torque output from the engine 10 may be provided, and the torque may be input.
  • the output shaft 11 of the engine 10 is connected to the input side of the clutch 12.
  • the output shaft 13 of the clutch 12 is connected to the input side of the transmission 14.
  • a propeller shaft 15 is connected to the output side of the transmission 14.
  • the propeller shaft 15 is connected to drive wheels 19 and 20 via a differential device 16 and drive shafts 17 and 18.
  • the engine 10 is connected to an alternator that generates electric power using the driving force of the engine 10.
  • the clutch 12 transmits and interrupts the driving force between the engine 10 and the transmission 14.
  • the transmission 14 is, for example, a continuously variable transmission (CVT), and changes the gear ratio between the input side shaft and the output side shaft.
  • the transmission 14 may be an AT (Automatic transmission).
  • the output shaft 31 of the motor 30 is connected to the propeller shaft 15 through, for example, gears 32 and 33 so that the driving force can be transmitted.
  • the driving force of the motor 30 can be transmitted to the driving wheels 19 and 20, and the driving force of the driving wheels 19 and 20 can be transmitted to the motor 30. It can also be transmitted to the motor 30.
  • the motor 30 can operate as a drive source for rotating the output shaft 31 by the supplied electric power, and generates electric power by rotating by the driving force from the engine 10 or the drive wheels 19 and 20 supplied from the output shaft 31. Can operate as a generator.
  • the motor 30 is connected to the battery 40 via the DCDC converter 41, the lithium battery 42, and the MCU 43.
  • the DCDC converter 41 converts a DC voltage.
  • the lithium battery 42 stores power of a predetermined voltage.
  • the MCU 43 has an inverter inside, and supplies power from the lithium battery 42 to the motor 30 and supplies (charges) power generated by the motor 30 to the lithium battery 42.
  • FIG. 2 is a functional configuration diagram of the HCM according to one embodiment.
  • the HCM 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read o), a communication I / F (interface), and the like, and includes a power generation amount measurement unit 51 and a power control unit.
  • An overall control unit 52 as an example, a high efficiency range information storage unit 53 as an example of an efficiency range information storage unit, and a power generation amount storage unit 54 are provided.
  • the power generation amount measurement unit 51 and the overall control unit 52 are configured by, for example, the CPU executing a program stored in the RAM.
  • the high efficiency range information storage unit 53 and the power generation amount storage unit 54 are configured by, for example, a RAM.
  • the high efficiency range information storage unit 53 stores information indicating a range (high efficiency range: first efficiency range) in which engine efficiency (energy conversion efficiency to kinetic energy) in the engine characteristics of the engine 10 is high efficiency.
  • the high efficiency range is, for example, a high efficiency range HE (range surrounded by a broken line EL in FIG. 3) in the engine characteristic diagram of the engine speed and torque shown in FIG.
  • information indicating the high efficiency range data indicating whether or not the high efficiency range HE is stored for each position of the map corresponding to the engine speed and torque may be stored. It may be mathematical information that determines whether or not the high-efficiency range HE is obtained from the rotational speed and the torque. A method for determining the high efficiency range will be described later.
  • a range other than the high efficiency range that is, a range where the engine efficiency is low is referred to as a low efficiency range (second efficiency range).
  • the power generation amount storage unit 54 classifies and stores the power generation amount charged by the motor 30 according to the state at the time of power generation.
  • the power generation amount storage unit 54 uses the power generation amount charged by the motor 30 as the power generation amount generated when the engine 10 is operating in the high efficiency range (high efficiency power generation amount: first efficiency range). Power generation amount), the power generation amount generated when the engine 10 is operating in the low efficiency range (low efficiency power generation amount: second efficiency range power generation amount), and the drive wheels 19, It is classified and stored as a power generation amount (regenerative power generation amount) generated as regenerative energy by 20 driving forces.
  • the power generation amount measurement unit 51 When the engine 10 is operating in the high efficiency range when the motor 30 is generating power (when the SOC of the battery 40 is increasing), the power generation amount measurement unit 51 generates power at that time. (For example, the amount of increase in SOC) is added to the high-efficiency power generation amount of the power generation amount storage unit 54, and when the engine 10 is operating in a low efficiency range other than the high efficiency range, the power generation amount at that time is generated. When the engine 10 is stopped while integrating the low-efficiency power generation amount in the amount storage unit 54, the power generation amount at that time is integrated into the regenerative power generation amount in the power generation amount storage unit 54.
  • the power generation amount measurement unit 51 reduces the amount of power used until the low-efficiency power generation amount becomes zero when the power is supplied (when the SOC of the battery 40 decreases).
  • the low-efficiency power generation amount is 0, the low-efficiency power generation amount and the high-efficiency power generation amount are subtracted from the high-efficiency power generation amount until the high-efficiency power generation amount becomes zero.
  • the used electric energy is subtracted from the regenerative power generation amount.
  • the overall control unit 52 controls the operations of the engine 10 and the motor 30 in an integrated manner.
  • the overall control unit 52 needs to drive the motor 30 (when it is necessary to supply electric power for driving the motor 30), for example, the overall control unit 52 needs to run the hybrid vehicle 1 only by the motor 30.
  • the acceleration is greater than or equal to or more than a predetermined value, control is performed so as to supply electric power in the low-efficiency range power generation amount to the motor 30. Even if the low-efficiency range power generation amount is not zero, the overall control unit 52 returns to the motor 30 when the SOC of the battery 40 reaches a minimum value (SOC limit amount: minimum required amount). Stop supplying power.
  • the SOC limit amount is, for example, the amount of SOC determined in consideration of the amount of power fluctuation due to deterioration of the battery 40 and the amount of power required for operation in the hybrid vehicle 1. Specific control of the overall control unit 52 will be described later.
  • FIG. 3 is a diagram illustrating a method for determining a high efficiency range according to an embodiment.
  • engine characteristics indicating engine efficiency corresponding to the engine speed and output torque in the engine 10 are specified.
  • This engine characteristic can be specified by actually performing measurement using the engine 10 or an engine having the same configuration as the engine 10.
  • the MOT rated output line ML indicating the relationship between the rotational speed of the motor 30 and the rated output torque is specified.
  • the MOT rated output line ML can be specified by actually performing measurement using the motor 30 or a motor having the same structure as the motor 30.
  • a point EP (maximum efficiency point) with the highest engine efficiency is identified from the engine characteristics.
  • the rated torque of the motor 30 at the engine speed at the maximum efficiency point EP is specified based on the MOT rated output line ML.
  • the engine efficiency MP corresponding to the specified rated torque of the motor 30 is specified based on the engine characteristics.
  • the high efficiency range HE is determined based on the specified engine efficiency MP.
  • the high efficiency range HE may be a range strictly higher than the engine efficiency MP, that is, a range on the higher efficiency side with respect to the engine efficiency line of the engine efficiency MP, or an efficiency in the vicinity of the engine efficiency MP. It may be included.
  • the boundary line EL of the high efficiency range HE may have a simple shape (straight line, one convex curve, etc.). Good.
  • the boundary line EL has a simple shape, information for specifying the high efficiency range HE can be a simple calculation formula.
  • information specifying the high efficiency range HE determined in this way is stored in the high efficiency range information storage unit 53.
  • FIG. 4 is a flowchart of a power generation amount measurement process according to an embodiment.
  • the power generation amount measuring unit 51 determines whether or not the motor 30 is generating power (step S11). As a result, when the motor 30 is generating power (step S11: Yes), the power generation amount measuring unit 51 determines the operating state of the engine 10 (step S12). Specifically, the power generation amount measurement unit 51 has the operating state of the engine 10 in the low efficiency range based on the torque and engine speed input to the HCM 50 and information in the high efficiency range information storage unit 53. Whether the engine 10 is in the high efficiency range or whether the engine 10 is in the stop state.
  • step S12 low efficiency range
  • the power generation amount measuring unit 51 stores the amount of power generated by the motor 30 at that time in the power generation amount storage unit 54. Addition to the low-efficiency power generation amount (step S13), and the process proceeds to step S11.
  • step S12 high efficiency range
  • the power generation amount measurement unit 51 determines the power amount generated by the motor 30 at that time in the high power generation amount storage unit 54.
  • the efficiency power generation amount is added (step S14), and the process proceeds to step S11.
  • step S12 stop state
  • the power generation amount measuring unit 51 uses the amount of power generated by the motor 30 at that time as the regenerative power generation amount of the power generation amount storage unit 54. (Step S15), and the process proceeds to step S11.
  • the power generation amount generated in the low efficiency state, the power generation amount generated in the high efficiency state, and the power generation amount generated by the regeneration are calculated for the power amount stored in the battery 40. It is possible to grasp by dividing.
  • FIG. 5 is a flowchart of hybrid control processing according to an embodiment.
  • the overall control unit 52 specifies the travel mode of the hybrid vehicle 1 (step S20).
  • the travel modes include, for example, a motor travel mode (MOT travel mode) that travels using only the motor 30 and an engine travel mode (ENG travel) mode that travels using the engine 10.
  • MOT travel mode motor travel mode
  • ENG travel engine travel mode
  • the traveling mode can be specified by the vehicle speed, the accelerator opening, the SOC of the battery 40, and the like input from various sensors.
  • step S21 determines whether or not the travel mode of the hybrid vehicle 1 is the motor travel mode. As a result, when the travel mode is the motor travel mode (step S21: Yes), the overall control unit 52 advances the process to step S22, while when the travel mode is not the motor travel mode (step S21: No). That is, if the travel mode is the engine travel mode, the process proceeds to step S29.
  • step S22 the overall control unit 52 determines whether or not the operating state of the engine 10 (here, the operating state assumed when the engine 10 is moved) is outside the high efficiency range HE (that is, within the low efficiency range). If the operating state of the engine 10 is not outside the high efficiency range (step S22: No), that is, if the operating state of the engine 10 is in the high efficiency range, the efficiency of the engine 10 in that state is good. Therefore, since it is efficient to charge the motor 30 using the driving force of the engine 10 (good fuel efficiency), the overall control unit 52 controls to change the traveling mode to the engine traveling mode (step S23), and processing To step S20. Specifically, the overall control unit 52 controls the MCU 43 to start power generation by the motor 30 and controls the ECU 44 to operate the engine 10.
  • step S22 when the operation state of the engine 10 is outside the high efficiency range (step S22: Yes), the overall control unit 52 determines whether or not the low efficiency power generation amount is 0 (step S24).
  • step S24 when the low-efficiency power generation amount is not 0 (step S24: No), since the low-efficiency power generation amount still remains, the overall control unit 52 continues the motor travel mode (step S25), The process proceeds to step S20.
  • step S24 when the low-efficiency power generation amount is 0 (step S24: Yes), the overall control unit 52 determines whether or not the hybrid vehicle 1 has a low vehicle speed (step S26).
  • step 26: Yes when the hybrid vehicle 1 has a low vehicle speed (step 26: Yes), the overall control unit 52 performs the traveling by the motor 30 until the speed becomes higher. The motor running mode is continued (step S27), and the process proceeds to step S20.
  • step 26: No when the hybrid vehicle 1 is not at a low vehicle speed (step 26: No), the overall control unit 52 controls the MCU 43 so as to stop the supply (discharge) of electric power to the motor 30 to change the motor travel mode.
  • the ECU 10 is stopped and the ECU 44 is controlled to operate the engine 10 (step S28), and the process proceeds to step S20.
  • step S29 the overall control unit 52 determines whether or not the engine running mode is the assist mode. As a result, when the assist mode is set (step S29: Yes), the overall control unit 52 determines whether or not the low-efficiency power generation amount is 0 (step S30).
  • step S30 when the low-efficiency power generation amount is not 0 (step S30: No), since the low-efficiency power generation amount still remains, the overall control unit 52 continues the assist mode (step S31). The process proceeds to step S20.
  • step S30 when the low-efficiency power generation amount is 0 (step S30: Yes), the overall control unit 52 determines whether or not the hybrid vehicle 1 has a low vehicle speed (step S32).
  • the low vehicle speed reference speed here may be, for example, a speed higher than the low vehicle speed reference speed in step S26.
  • step S32: Yes when the hybrid vehicle 1 has a low vehicle speed (step S32: Yes), the overall control unit 52 performs the assist by the motor 30 until the speed becomes higher.
  • the assist mode is continued (step S33), and the process proceeds to step S20.
  • step S34 when the hybrid vehicle 1 is not at a low vehicle speed (step 32: No), the overall control unit 52 controls the MCU 43 so as to stop the supply (discharge) of electric power to the motor 30 to set the assist mode. Stop (step S34), and proceed to step S20.
  • step S35 the overall control unit 52 determines whether or not the hybrid vehicle 1 has a low vehicle speed.
  • the low vehicle speed reference speed here may be, for example, a speed higher than the low vehicle speed reference speed in step S32.
  • step S35: No when the hybrid vehicle 1 is not at a low vehicle speed (step S35: No), the overall control unit 52 controls the MCU 43 to generate power by the motor 30 so that the engine 10 is operating with high efficiency. At this time, power is generated (step S36), and the process proceeds to step S20.
  • step S37 when the hybrid vehicle 1 has a low vehicle speed (step 35: Yes), the overall control unit 52 controls the MCU 43 so that the motor 30 generates power, so that the engine 10 is operating at low efficiency. At this time, power is generated (step S37), and the process proceeds to step S20.
  • the low-efficiency power generation power can be used for motor travel and assist by the motor 30, which can increase the travel distance of the motor travel and improve the acceleration performance of the hybrid vehicle 1. it can.
  • the battery 40 has a free capacity for storing the power amount corresponding to the low-efficiency power generation amount. Regenerative energy can be stored appropriately.
  • FIG. 6 is a diagram illustrating an example of a traveling state of the hybrid vehicle according to the embodiment.
  • the overall control unit 52 causes the hybrid vehicle 1 to travel only by the driving force of the motor 30 as the motor travel mode. As a result, electric power is supplied from the battery 40 to the motor 30, and the amount of power stored in the battery 40 gradually decreases. At this time, the used power is subtracted from the low-efficiency power generation amount.
  • the overall control unit 52 switches to the engine travel (with assist) mode and starts the engine 10. At the same time, the supply of power to the motor 30 is continued.
  • the overall control unit 52 switches to the engine running (no assist) mode and stops the supply of power from the battery 40 to the motor 30. Thereafter, the overall control unit 52 generates power with the motor 30 and accumulates electric power in the battery 40. The electric power generated by the motor 30 during this period is added as a low-efficiency power generation amount because the state of the engine 10 operates in the low-efficiency range. This low-efficiency power generation amount is supplied to the motor 30 when assisting by the motor 30 or when running the motor thereafter.
  • the overall control unit 52 switches to the engine running (with assist) mode. Then, supply of electric power to the motor 30 is started, and assist by the motor 30 is executed. Note that. At this time, the used power is subtracted from the low-efficiency power generation amount.
  • the overall control unit 52 enters the engine running (no assist) mode.
  • the power supply from the battery 40 to the motor 30 is stopped by switching.
  • the overall control unit 52 since the state of the engine 10 is operating in the high efficiency range, the overall control unit 52 generates power by the motor 30 and accumulates electric power in the battery 40. During this time, the electric power generated by the motor 30 is added as a highly efficient power generation amount.
  • the overall control unit 52 enters the regeneration mode.
  • the engine 10 is stopped by the ECU 44, the clutch 12 is disconnected, and the motor 43 is controlled by the MCU 43 to generate power by the driving force from the drive wheels 19 and 20.
  • the kinetic energy of the hybrid vehicle 1 (driving force by the drive wheels 19 and 20) is recovered as regenerative energy
  • the vehicle speed of the hybrid vehicle 1 decreases, and becomes 0 at time t7.
  • the electric power generated by the motor 30 is stored in the battery 40.
  • the electric power generated by the motor 30 is added as a regenerative power generation amount.
  • the overall control unit 52 causes the hybrid vehicle 1 to travel only by the driving force of the motor 30 as the motor traveling mode.
  • the low-efficiency power generation power is used for motor travel (time t0 to t1) and assist by the motor 30 (time t1 to t2, time t4 to t5). Therefore, it is possible to effectively secure a free capacity for accumulating regenerative energy in the battery 40.
  • the motor 30 while using the low-efficiency power generation amount, the motor 30 generates power when the state of the engine 10 is operating in the high-efficiency range (from time t5). Can be accumulated with high efficiency, and fuel efficiency can be improved.
  • FIG. 7 is a diagram illustrating an example of the traveling state of the hybrid vehicle in a plurality of cases according to an embodiment.
  • FIG. 7A shows the case where the SOC of the battery 40 is the same, but the low-efficiency power generation amount (CASE1), the low-efficiency power generation amount (CASE2), and the low-efficiency power generation as in this embodiment.
  • the initial SOC state for the case (CASE 3) where the amount is not managed is shown.
  • FIG. 7B shows changes in vehicle speed.
  • FIG. 7C shows the operating state of the motor when the vehicle travels in CASE 1 to CASE 3.
  • FIG. 7D shows a change in the SOC when the vehicle travels in CASE1 to CASE3.
  • FIG. 7E shows a change in the low-efficiency power generation amount in CASE 1 and CASE 2.
  • the regenerative power generation amount exceeds the SOC limit amount in the SOC of the battery 40.
  • the regenerative power generation amount does not exceed the SOC limit amount in the SOC of the battery 40.
  • the low-efficiency power generation amount of CASE2 is larger than the low-efficiency power generation amount of CASE1.
  • the SOC of the battery 40 is not classified and managed as a low-efficiency power generation amount, a high-efficiency power generation amount, and a regenerative power generation amount.
  • CASE 1 As shown in FIG. 7 (c), from the time t 11 when the motor travel of the hybrid vehicle 1 is completed to the time t 12 until the low-efficiency power generation amount becomes 0 as shown in FIG. 7 (e), the motor 30 is performed, and power is generated by the motor 30 from time t12 to time t14. Then, regeneration is performed by the motor 30 from time t14. According to this regeneration, as shown in FIG. 7D, the SOC of the battery 40 can be improved by the amount of power P1.
  • CASE2 has a lower amount of power generation than CASE1, as shown in FIG. 7 (c), the assistable time is longer, thereby improving the acceleration performance of the hybrid vehicle 1 during that time. it can.
  • CASE 1 and CASE 2 as shown in FIG. 7 (d), it is possible to recover a larger amount of power than in CASE 3.
  • CASE 2 can recover a larger amount of power than CASE 1.
  • the configuration of the hybrid vehicle according to the modified example is the same as that of the hybrid vehicle according to the above-described embodiment, and therefore will be described using the drawings, symbols, and the like used in the description of the above-described embodiment for convenience.
  • the HCM 50 according to the modification differs from the HCM 50 according to the above-described embodiment in the control of power generation by the motor 30.
  • the different points of the HCM 50 according to the modification will be mainly described.
  • FIG. 8 is a diagram for explaining power generation control according to the modification.
  • the overall control unit 52 of the HCM 50 determines the MCU 43 only when the operating state of the engine 10 is on or near the optimum fuel consumption line OL shown in FIG. Is controlled to execute power generation by the motor 30, and in other operating states, power generation by the motor 30 is not executed. Therefore, electric power can be efficiently stored in the battery 40 while maintaining the fuel consumption at an optimum amount.
  • the overall control unit 52 controls the MCU 43 only when the operating state of the engine 10 is in the high efficiency range HE when the SOC of the battery 40 is equal to or lower than a predetermined first threshold and equal to or higher than the second threshold. Then, the power generation by the motor 30 is executed, and the power generation by the motor 30 is not executed in other operating states. Therefore, accumulation of electric power in the battery 40 can be promoted while maintaining the fuel efficiency relatively high.
  • the overall control unit 52 is not only when the operation state of the engine 10 is in the high efficiency range HE but in other low efficiency ranges. Sometimes the MCU 43 is controlled to generate power by the motor 30. Therefore, accumulation of electric power in the battery 40 can be promoted.
  • the battery 40 is output until the low-efficiency power generation amount becomes zero.
  • the low-efficiency power generation amount is zero and the vehicle speed is equal to or lower than the second set speed (second set speed ⁇ first set speed)
  • the high-efficiency power generation amount is zero.
  • the electric power of the battery 40 is supplied to the motor 30 until the low-efficiency power generation amount and the high-efficiency power generation amount are 0 and the vehicle speed is equal to or lower than the third set speed (third set speed ⁇ second set speed)
  • the electric power of the battery 40 may be supplied to the motor 30 until the SOC of the battery 40 reaches the SOC limit value. In this way, when the low-efficiency power generation amount is insufficient, the vehicle speed can be increased using the high-efficiency power generation amount.
  • step S22 when the assumed operating state of the engine 10 is in the high efficiency range during motor traveling, the mode is immediately switched to the engine traveling mode.
  • the invention is not limited to this, and even when the assumed operating state of the engine 10 is in the high efficiency range, the motor travel mode may be maintained until the low efficiency power generation amount becomes zero. .
  • the clutch 12 is used as a power transmission mechanism between the engine 10 and the transmission 14, but the present invention is not limited to this, and a torque converter may be provided as the power transmission mechanism.
  • a power transmission mechanism capable of switching between a state where the driving force is transmitted between the engine 10 and the transmission 14 and a state where the driving force is cut off or the driving force is reduced.
  • part or all of the processing performed by the CPU of the HCM 50 may be performed by a hardware circuit.
  • at least one of the power generation amount measurement unit 51, the overall control unit 52, the high efficiency range information storage unit 53, and the power generation amount storage unit 54 provided in the HCM 50 is connected to other devices (ECU 44, TCU 45, MCU 43) of the hybrid vehicle 1. Etc.).
  • the output shaft of the engine 10 and the output shaft of the motor 30 are arranged at positions separated from each other, and each is connected so as to be able to transmit power via a gear.
  • the output shaft of the engine 10 and the output shaft of the motor 30 may be arranged coaxially and connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

効果的に回生エネルギーを回収でき、燃費を向上できるようにする。そのため、エンジンと、エンジンの駆動力が伝達可能な駆動輪と、エンジンからの駆動力が伝達可能であるとともに、駆動輪との間で駆動力を伝達可能なモータと、モータを駆動させる電力を供給するとともに、モータにより発電された電力を蓄積するバッテリと、を備えるハイブリッド車両のHCM(50)において、エンジンのエンジン特性における、エンジンのエンジン効率が高い高効率範囲を特定する情報を記憶する高効率範囲情報記憶部(53)と、エンジンが高効率範囲から外れた低効率範囲で動作している場合に、モータにより発電されてバッテリに蓄積される電力量である低効率範囲発電量を測定する発電量測定部(51)と、モータを駆動させる電力を供給することが必要な場合に、低効率範囲発電量の電力をモータに供給するように制御する統括制御部(52)とを備えるように構成する。

Description

ハイブリッド車両の制御装置及びハイブリッド車両
 本発明は、エンジンとモータとを備え、モータにより駆動輪からの駆動力を使って発電できるハイブリッド車両の制御装置等に関する。
 エンジンとモータとを駆動源として備えるハイブリッド車両においては、状況に応じてエンジンとモータのいずれを駆動源とするかを切り替えることにより、燃費の向上等を図っている。
 例えば、蓄電装置の蓄電量の目標値(目標SOC(State of Charge))を、充電する際の電力効率に基づいて決定し、目標SOCまで蓄電装置を充電した後に、電動機による走行を継続するか否かを総合力行効率と、エンジンの燃焼効率とを比較して決定する技術が知られている(例えば、特許文献1参照)。
 また、ハイブリッド車両においては、車両を減速する際に、駆動輪の駆動力によりモータを発電機として動作させることにより、回生エネルギーを回収して燃費を向上する技術が知られている。
特開2011-213275号公報
 例えば、モータを発電機として利用して回生エネルギーを回収する際には、バッテリの空き容量分の電力量しか回収することができない。したがって、バッテリのSOCが多い場合には、回生エネルギーの多くを回収できない事態が発生する虞がある。
 これに対して、回生エネルギーを多く回収するために、バッテリのSOCを単に下げておくようにすると、急ブレーキ等により回生エネルギーが回収できない場合に、SOCが極端に低下してしまう虞がある。このような場合には、必要な時にモータの駆動力を利用できないといったことや、必要なSOCを得るために、無駄に燃料を使用しなくてはならず燃費が低下してしまうことなどが発生してしまう。
 本発明は、上記事情に鑑みなされたものであり、その目的は、回生エネルギーを効果的に回収でき、燃費を向上することのできる技術を提供することにある。
 上記目的を達成するため、第1の観点に係るハイブリッド車両の制御装置は、エンジンと、エンジンの駆動力が伝達可能な駆動輪と、エンジンからの駆動力が伝達可能であるとともに、駆動輪との間で駆動力を伝達可能なモータと、モータを駆動させる電力を供給するとともに、モータにより発電された電力を蓄積するバッテリと、を備えるハイブリッド車両の制御装置であって、エンジンのエンジン特性における、エンジンのエンジン効率が比較的高い第1効率範囲を特定する情報を記憶する効率範囲情報記憶部と、エンジンが第1効率範囲から外れた第2効率範囲で動作している場合に、モータにより発電されてバッテリに蓄積される電力量である第2効率範囲発電量を測定する発電量測定部と、モータを駆動させる電力を供給することが必要な場合に、第2効率範囲発電量の電力をバッテリからモータに供給するように制御する電力制御部と、を備える。
 本発明によれば、回収エネルギーを効果的に回収でき、燃費を向上することができる。
図1は、一実施形態に係るハイブリッド車両の一部の構成図である。 図2は、一実施形態に係るHCMの機能構成図である。 図3は、一実施形態に係る高効率範囲の決定方法を説明する図である。 図4は、一実施形態に係る発電量測定処理のフローチャートである。 図5は、一実施形態に係るハイブリッド制御処理のフローチャートである。 図6は、一実施形態に係るハイブリッド車両の走行状態の一例を説明する図である。 図7は、一実施形態に係る複数のケースにおけるハイブリッド車両の走行状態の例を説明する図である。 図8は、変形例に係る発電制御を説明する図である。
 実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、一実施形態に係るハイブリッド車両の一部の構成図である。
 ハイブリッド車両1は、エンジン10と、クラッチ12と、変速機14と、プロペラシャフト15と、差動装置(デフ)16と、ドライブシャフト17,18と、駆動輪19,20と、モータ(MOT)30と、鉛蓄電池(バッテリ)40と、DCDCコンバータ41と、リチウムバッテリ42と、MCU(Moter Control Unit)43と、ECU(Engine Control Unit)44と、TCU(Transmission Control Unit)45と、制御装置の一例としてのHCM(Hybrid Control Module)50とを備えている。
 MCU43は、モータ30の動作を制御する。ECU44は、エンジン10の動作を制御する。TCU45は、変速機14の動作を制御する。HCM50は、MCU43、ECU44、TCU45等と接続されており、エンジン10と、モータ30との動作を統括制御する。HCM50には、図示しないセンサから直接、又は、他の装置(MCU43,ECU44,TCU45等)を介して各種情報が入力されている。
 HCM50に入力される情報としては、例えば、エンジン10の回転数、エンジン10の出力トルク又は出力トルクの推定値(推定トルク値)、バッテリ40のSOC等の情報がある。本実施形態では、推定トルク値は、例えば、エンジン10に供給する燃料の量等に基づいてECU44が算出し、その結果をECU44がHCMに入力している。なお、エンジン10の出力するトルクを測定するトルクセンサを備えるようにし、そのトルクを入力するようにしてもよい。
 エンジン10の出力軸11は、クラッチ12の入力側に接続されている。クラッチ12の出力軸13は、変速機14の入力側に接続されている。変速機14の出力側には、プロペラシャフト15が接続されている。プロペラシャフト15は、差動装置16、ドライブシャフト17,18を介して、駆動輪19,20に接続されている。なお、エンジン10には、エンジン10の駆動力により発電するオルタネータが接続されている。
 クラッチ12は、エンジン10と、変速機14との間の駆動力の伝達及び遮断を行う。
本実施形態では、クラッチ12は、エンジン10の駆動力によりモータ30に発電させる際には、入力側と出力側とが接続され、駆動輪19,20の駆動力によりモータ30に発電させる際には、入力側と出力側とが遮断される。変速機14は、例えば、無段変速機(CVT)であり、入力側の軸と出力側の軸との間の変速比を変える。なお、変速機14は、AT(Automatic transmission)であってもよい。
 モータ30の出力軸31は、例えば、ギヤ32,33を介してプロペラシャフト15との間で駆動力を伝達可能に接続されている。このような構成により、モータ30の駆動力を駆動輪19,20に伝達することができ、また、駆動輪19,20の駆動力をモータ30に伝達することもでき、エンジン10の駆動力をモータ30に伝達することもできる。
 モータ30は、供給される電力により出力軸31を回転させる駆動源として動作できるとともに、出力軸31から供給されるエンジン10又は駆動輪19,20からの駆動力により回転することにより、電力を発電する発電機として動作することができる。
 モータ30は、DCDCコンバータ41、リチウムバッテリ42、MCU43を介してバッテリ40と接続されている。DCDCコンバータ41は、直流電圧の電圧を変換する。リチウムバッテリ42は、所定の電圧の電力を蓄積する。MCU43は、内部にインバータを有しており、リチウムバッテリ42からモータ30への電力の供給及びモータ30により発電された電力のリチウムバッテリ42への供給(充電)を行う。
 次に、HCM50について詳細に説明する。
 図2は、一実施形態に係るHCMの機能構成図である。
 HCM50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read o)、通信I/F(インターフェース)等により構成されており、発電量測定部51と、電力制御部の一例としての統括制御部52と、効率範囲情報記憶部の一例としての高効率範囲情報記憶部53と、発電量記憶部54とを備える。発電量測定部51及び統括制御部52は、例えば、CPUがRAMに格納されたプログラムを実行することにより構成される。高効率範囲情報記憶部53及び発電量記憶部54は、例えば、RAMにより構成される。
 高効率範囲情報記憶部53は、エンジン10のエンジン特性におけるエンジン効率(運動エネルギーへのエネルギー変換効率)が高効率となる範囲(高効率範囲:第1効率範囲)を示す情報を格納する。高効率範囲は、例えば、図3に示すエンジン回転数とトルクとのエンジン特性図における高効率範囲HE(図3中破線ELで囲まれる範囲)である。本実施形態では、高効率範囲を示す情報としては、エンジン回転数とトルクとに対応するマップの各位置について、高効率範囲HEであるか否かを示すデータを格納したものとしてもよく、エンジン回転数とトルクとから、高効率範囲HEであるか否かを判定する数式の情報であってもよい。なお、高効率範囲を決定する方法については後述する。また、本実施形態では、高効率範囲以外の範囲、すなわち、エンジン効率が低効率の範囲を低効率範囲(第2効率範囲)という。
 発電量記憶部54は、モータ30により充電された発電量を、発電時における状態に応じて分類して記憶している。本実施形態では、発電量記憶部54は、モータ30により充電された発電量を、エンジン10が高効率範囲で動作している場合において発電された発電量(高効率発電量:第1効率範囲発電量)と、エンジン10が低効率範囲で動作している場合において発電された発電量(低効率発電量:第2効率範囲発電量)と、エンジン10が停止した状態で、駆動輪19,20の駆動力により回生エネルギーとして発電された発電量(回生発電量)とに分類して記憶している。
 発電量測定部51は、モータ30により発電がされている際(バッテリ40においてSOCが増加している際)において、エンジン10が高効率範囲で動作している場合には、その際の発電量(例えば、SOCの増加量)を発電量記憶部54の高効率発電量に積算し、エンジン10が高効率範囲以外の低効率範囲で動作している場合には、その際の発電量を発電量記憶部54の低効率発電量に積算し、エンジン10が停止している場合には、その際の発電量を発電量記憶部54の回生発電量に積算する。
 また、発電量測定部51は、電力が供給されている際(バッテリ40においてSOCが減少している際)において、低効率発電量が0になるまでは、使用された電力量を低効率発電量から減算し、低効率発電量が0の場合には、高効率発電量が0となるまでは、使用された電力量を高効率発電量から減算し、低効率発電量及び高効率発電量が0の場合には、使用された電力量を回生発電量から減算する。
 統括制御部52は、エンジン10及びモータ30の動作を統括的に制御する。統括制御部52は、モータ30を駆動させることが必要な場合(モータ30を駆動させる電力を供給することが必要とされる場合)、例えば、モータ30のみによりハイブリッド車両1を走行させることが必要とされている場合、又は、所定以上の加速が必要とされている場合に、低効率範囲発電量の電力をモータ30へ供給するように制御する。なお、統括制御部52は、低効率範囲発電量が0となっていなくても、バッテリ40のSOCが最低限度の値(SOC限界量:最低必要量)となった場合には、モータ30への電力の供給を停止する。ここで、SOC限界量は、例えば、バッテリ40の劣化による電力量の変動量や、ハイブリッド車両1における動作に必要な電力量を考慮して決定されたSOCの量である。
統括制御部52の具体的な制御については、後述する。
 次に、高効率範囲の決定方法について説明する。
 図3は、一実施形態に係る高効率範囲の決定方法を説明する図である。
 まず、図3に示すような、エンジン10におけるエンジン回転数と、出力トルクとに対応するエンジン効率を示すエンジン特性を特定する。このエンジン特性は、エンジン10又はエンジン10と同じ構成のエンジンを用いて実際に測定を行うことにより特定することができる。また、モータ30による回転数と定格出力トルクとの関係を示すMOT定格出力線MLを特定する。このMOT定格出力線MLは、モータ30又はモータ30と同じ構造のモータを用いて実際に測定を行うことにより特定することができる。
 次いで、エンジン特性からエンジン効率が最も高い点EP(最高効率点)を特定する。
次いで、最高効率点EPにおけるエンジン回転数におけるモータ30の定格トルクを、MOT定格出力線MLに基づいて特定する。次いで、エンジン特性に基づいて、特定したモータ30の定格トルクに対応するエンジン効率MPを特定する。
 次いで、特定したエンジン効率MPに基づいて、高効率範囲HEを決定する。ここで、高効率範囲HEは、厳密にエンジン効率MP以上の範囲、すなわち、エンジン効率MPの等エンジン効率線に対して効率が高い側の範囲としてもよいし、エンジン効率MPの近傍の効率を含んだ範囲としてもよい。高効率範囲HEとして、エンジン効率MPの近傍の効率を含んだ範囲とする場合には、高効率範囲HEの境界線ELが単純な形状(直線、一方に凸の曲線等)となるようにもよい。境界線ELを単純な形状にすると、高効率範囲HEを特定する情報を、単純な計算式とすることができる。
 本実施形態では、このように決定された高効率範囲HEを特定する情報を高効率範囲情報記憶部53に格納している。
 次に、実施形態に係るハイブリッド車両1のHCM50を中心に実行される各種処理について詳細に説明する。
 まず、発電量測定処理について説明する。
 図4は、一実施形態に係る発電量測定処理のフローチャートである。
 発電量測定部51は、モータ30により発電中か否かを判定する(ステップS11)。
この結果、モータ30が発電中である場合(ステップS11:Yes)には、発電量測定部51は、エンジン10の動作状態を判定する(ステップS12)。具体的には、発電量測定部51は、HCM50に入力されるトルク及びエンジン回転数と、高効率範囲情報記憶部53の情報とに基づいて、エンジン10の動作状態が、低効率範囲にあるのか、高効率範囲にあるのか、それとも、エンジン10がストップ状態にあるのかを判定する。
 この結果、エンジン10の状態が低効率範囲にある場合(ステップS12:低効率範囲)には、発電量測定部51は、その際にモータ30により発電された電力量を発電量記憶部54の低効率発電量に加算し(ステップS13)、処理をステップS11に進める。
 また、エンジン10の状態が高効率範囲にある場合(ステップS12:高効率範囲)には、発電量測定部51は、その際にモータ30により発電された電力量を発電量記憶部54の高効率発電量に加算し(ステップS14)、処理をステップS11に進める。
 また、エンジン10の状態がストップ状態である場合(ステップS12:ストップ状態)には、発電量測定部51は、その際にモータ30により発電された電力量を発電量記憶部54の回生発電量に加算し(ステップS15)、処理をステップS11に進める。
 この発電量測定処理によると、バッテリ40に蓄積されている電力量について、低効率状態で発電された発電量と、高効率状態で発電された発電量と、回生によって発電された発電量とに区分して把握することができる。
 次に、ハイブリッド制御処理について説明する。
 図5は、一実施形態に係るハイブリッド制御処理のフローチャートである。
 統括制御部52は、ハイブリッド車両1の走行モードを特定する(ステップS20)。
ここで、走行モードには、例えば、モータ30のみで走行するモータ走行(MOT走行)モードと、エンジン10を使って走行するエンジン走行(ENG走行)モードとがあり、エンジン走行モードには、モータ30の駆動力のアシストを受けるアシスト有モードと、モータ30の駆動力のアシストを受けないアシストなしモードがある。走行モードは、各種センサ等から入力される、車速、アクセル開度、バッテリ40のSOC等により特定することができる。
 次いで、統括制御部52は、ハイブリッド車両1の走行モードがモータ走行モードであるか否かを判定する(ステップS21)。この結果、走行モードがモータ走行モードである場合(ステップS21:Yes)には、統括制御部52は、処理をステップS22に進める一方、走行モードがモータ走行モードでない場合(ステップS21:No)、すなわち、走行モードがエンジン走行モードであるには、処理をステップS29に進める。
 ステップS22では、統括制御部52は、エンジン10の運転状態(ここでは、エンジン10を動かした場合に想定される運転状態)が高効率範囲HE外(すなわち、低効率範囲内)であるか否かを判定し、エンジン10の運転状態が高効率範囲外でない場合(ステップS22:No)、すなわち、エンジン10の運転状態が高効率範囲にある場合には、その状態のエンジン10の効率が良いので、エンジン10の駆動力を使ってモータ30により充電をすると効率が良い(燃費が良い)ので、統括制御部52は、走行モードをエンジン走行モードに変えるように制御し(ステップS23)、処理をステップS20に進める。具体的には、統括制御部52は、MCU43にモータ30による発電を開始させるように制御し、ECU44にエンジン10を動作させるように制御する。
 一方、エンジン10の運転状態が高効率範囲外である場合(ステップS22:Yes)には、統括制御部52は、低効率発電量が0であるか否かを判定する(ステップS24)。
 この結果、低効率発電量が0でない場合(ステップS24:No)には、低効率発電量の電力がまだ余っているので、統括制御部52は、モータ走行モードを継続させ(ステップS25)、処理をステップS20に進める。
 一方、低効率発電量が0である場合(ステップS24:Yes)には、統括制御部52は、ハイブリッド車両1が低車速か否かを判定する(ステップS26)。
 この結果、ハイブリッド車両1が低車速である場合(ステップ26:Yes)には、より高速になるまでモータ30による走行を行うために、統括制御部52は、高効率発電量が0となるまでモータ走行モードを継続し(ステップS27)、処理をステップS20に進める。一方、ハイブリッド車両1が低車速でない場合(ステップ26:No)には、統括制御部52は、モータ30への電力の供給(放電)を停止するようにMCU43を制御して、モータ走行モードを停止させ、ECU44にエンジン10を動作させるように制御し(ステップS28)、処理をステップS20に進める。
 ステップS29では、統括制御部52は、エンジン走行モードがアシスト有モードであるか否かを判定する。この結果、アシスト有モードである場合(ステップS29:Yes)には、統括制御部52は、低効率発電量が0であるか否かを判定する(ステップS30)。
 この結果、低効率発電量が0でない場合(ステップS30:No)には、低効率発電量の電力がまだ余っているので、統括制御部52は、アシスト有モードを継続させ(ステップS31)、処理をステップS20に進める。
 一方、低効率発電量が0である場合(ステップS30:Yes)には、統括制御部52は、ハイブリッド車両1が低車速か否かを判定する(ステップS32)。なお、ここでの低車速の基準速度は、例えば、ステップS26における低車速の基準速度よりも速い速度であってもよい。
 この結果、ハイブリッド車両1が低車速である場合(ステップS32:Yes)には、より高速になるまでモータ30によるアシストを行うために、統括制御部52は、高効率発電量が0となるまでアシスト有モードを継続し(ステップS33)、処理をステップS20に進める。一方、ハイブリッド車両1が低車速でない場合(ステップ32:No)には、統括制御部52は、モータ30への電力の供給(放電)を停止するようにMCU43を制御して、アシスト有モードを停止させ(ステップS34)、処理をステップS20に進める。
 一方、ステップS29の判定により、アシスト有モードでない場合(ステップS29:No)には、統括制御部52は、ハイブリッド車両1が低車速か否かを判定する(ステップS35)。なお、ここでの低車速の基準速度は、例えば、ステップS32における低車速の基準速度よりも速い速度であってもよい。
 この結果、ハイブリッド車両1が低車速でない場合(ステップS35:No)には、統括制御部52は、モータ30により発電するようにMCU43を制御することにより、エンジン10が高効率で動作している際に発電をさせ(ステップS36)、処理をステップS20に進める。一方、ハイブリッド車両1が低車速である場合(ステップ35:Yes)には、統括制御部52は、モータ30により発電するようにMCU43を制御することにより、エンジン10が低効率で動作している際に発電をさせ(ステップS37)、処理をステップS20に進める。
 上記したハイブリッド制御処理によると、低効率発電量の電力をモータ走行やモータ30によるアシストに利用することができ、モータ走行の走行距離の増加や、ハイブリッド車両1の加速性能等を向上することができる。また、このように低効率発電量の電力を利用した場合には、バッテリ40には、利用した低効率発電量に相当する電力量を蓄積できる空き容量が確保されるので、その空き容量に対して回生エネルギーを適切に蓄積することができる。
 次に、ハイブリッド車両の走行状態の一例を説明する。
 図6は、一実施形態に係るハイブリッド車両の走行状態の一例を説明する図である。
 時刻t0において、ハイブリッド車両1の走行が開始する際には、統括制御部52は、モータ走行モードとして、モータ30の駆動力のみによりハイブリッド車両1を走行させる。この結果、バッテリ40からモータ30に電力が供給され、バッテリ40の蓄電量は、徐々に低下していくことになる。なお、この際には、低効率発電量から使用された電力が減算される。
 そして、時刻t1において、ハイブリッド車両1の車速が所定の速度(モータ走行モードを終了する基準速度)になると、統括制御部52は、エンジン走行(アシスト有)モードに切り替えて、エンジン10を始動させるとともに、モータ30への電力の供給を継続する。
 そして、時刻t2において、低効率発電量が0になると、統括制御部52は、エンジン走行(アシストなし)モードに切り替えて、バッテリ40からモータ30への電力の供給を停止する。これ以降、統括制御部52は、モータ30により発電を行ってバッテリ40に電力を蓄積する。この間にモータ30により発電された電力は、エンジン10の状態が低効率範囲で動作しているので、低効率発電量として加算される。この低効率発電量は、以降における、モータ30によるアシストを行う際やモータ走行を行う際等にモータ30に供給されることとなる。
 その後、時刻t4において、ハイブリッド車両1が加速するように運転者により操作されると(例えば、アクセル開度が増加されると)、統括制御部52は、エンジン走行(アシスト有)モードに切り替えて、モータ30への電力の供給を開始して、モータ30によるアシストを実行する。なお。この際には、低効率発電量から使用された電力が減算される。
 例えば、時刻t5において、ハイブリッド車両1による加速を停止するように運転者により操作されると(例えば、アクセル開度が減少されると)、統括制御部52は、エンジン走行(アシストなし)モードに切り替えて、バッテリ40からモータ30への電力の供給を停止する。このとき、エンジン10の状態が高効率範囲で動作しているので、統括制御部52は、モータ30により発電を行ってバッテリ40に電力を蓄積する。この間にモータ30により発電された電力は、高効率発電量として加算される。
 その後、時刻t6において、ハイブリッド車両1を減速させるように運転者により操作されると(例えば、アクセル開度をさらに減少させる、又はブレーキペダルが踏まれると)、統括制御部52は、回生モードに切り替えて、ECU44によりエンジン10を停止させ、クラッチ12を切断させるとともに、MCU43によりモータ30を駆動輪19,20からの駆動力により発電を行うように制御する。これにより、ハイブリッド車両1の運動エネルギー(駆動輪19,20による駆動力)は回生エネルギーとして回収され、ハイブリッド車両1の車速は低下し、時刻t7には、0となる。この間に、モータ30により発電された電力は、バッテリ40に蓄積される。この間にモータ30により発電された電力は、回生発電量として加算される。
 この後、ハイブリット車両1が速度を上げて走行を再開する場合には、統括制御部52は、モータ走行モードとして、モータ30の駆動力のみによりハイブリッド車両1を走行させる。
 上記したように、本実施形態によるハイブリッド車両1では、低効率発電量の電力をモータ走行(時刻t0~t1)や、モータ30によるアシスト(時刻t1~t2、時刻t4~t5)に利用するようにしているので、バッテリ40に、回生エネルギーを蓄積するための空き容量を効果的に確保することができる。また、低効率発電量の電力を使う一方で、エンジン10の状態が高効率範囲で動作している場合(時刻t5~)にモータ30により発電を行うようにしているので、バッテリ40への電力の蓄積を高効率で行うことができ、燃費の向上を実現できる。
 次に、複数のケースにおけるハイブリッド車両の走行状態の例について説明する。
 図7は、一実施形態に係る複数のケースにおけるハイブリッド車両の走行状態の例を説明する図である。図7(a)は、バッテリ40のSOCが同じであるが、低効率発電量が少ないケース(CASE1)と、低効率発電量が多いケース(CASE2)と、本実施形態のように低効率発電量を管理していないケース(CASE3)とについての初期のSOCの状態を示している。図7(b)は、車速変化を示している。図7(c)は、CASE1~3における車両走行時におけるモータの動作状態を示している。図7(d)は、CASE1~CASE3における車両走行時のSOCの変化を示している。図7(e)は、CASE1及びCASE2における低効率発電量の変化を示している。
 図7(a)に示すように、CASE1では、バッテリ40のSOCのうちで回生発電量がSOC限界量を超えている。CASE2では、バッテリ40のSOCのうちで回生発電量がSOC限界量を超えていない。CASE2の低効率発電量は、CASE1の低効率発電量よりも多くなっている。CASE3では、バッテリ40のSOCについては、低効率発電量、高効率発電量、及び回生発電量に分類されて管理されていない。
 CASE1においては、図7(c)に示すように、ハイブリッド車両1のモータ走行が終了した時刻t11から図7(e)に示すように低効率発電量が0になるまでの時刻t12まで、モータ30によるアシストを行い、時刻t12から時刻t14まで、モータ30により発電している。そして時刻t14からモータ30により回生が行われている。この回生によると、図7(d)に示すように電力量P1だけバッテリ40のSOCを向上させることができる。
 CASE2においては、図7(c)に示すように、ハイブリッド車両1のモータ走行が終了した時刻t11から図7(e)に示すように低効率発電量が0になるまでの時刻t13まで、モータ30によるアシストを行い、時刻t13から時刻t14まで、モータ30により発電している。そして時刻t14からモータ30により回生が行われている。この回生によると、図7(d)に示すように電力量P2だけバッテリ40のSOCを上昇させることができる。
 CASE3においては、図7(c)に示すように、ハイブリッド車両1のモータ走行が終了した時刻t11から時刻t14まで、モータ30により発電している。そして時刻t14からモータ30により回生が行われている。この回生によると、図7(d)に示すように電力量P3だけバッテリ40のSOCを上昇させることができる。
 CASE2は、CASE1よりも低効率発電量が多いので、図7(c)に示すように、アシスト可能な時間が長くなっており、これにより、その間のハイブリッド車両1の加速性能を向上することができる。
 また、CASE1及びCASE2においては、図7(d)に示すように、CASE3よりも多くの電力量を回収することができる。また、CASE2においては、CASE1よりも多くの電力量を回収することができる。
 次に、変形例に係るハイブリッド車両のHCMについて説明する。なお、変形例に係るハイブリッド車両の構成は、上記実施形態に係るハイブリッド車両と同様であるので、便宜的に上記実施形態の説明に用いた図面、符号等を用いて説明する。
 変形例に係るHCM50は、上記した実施形態に係るHCM50とは、モータ30による発電の制御が異なっている。以下、変形例に係るHCM50について異なる点を中心に説明する。
 図8は、変形例に係る発電制御を説明する図である。
 HCM50の統括制御部52は、バッテリ40のSOCが所定の第1閾値よりも大きい場合には、エンジン10の動作状態が図8に示す最適燃費線OLの上またはその近傍にあるときにのみMCU43を制御してモータ30による発電を実行させ、それ以外の動作状態においてはモータ30による発電を実行させない。したがって、燃費を最適な量に維持しつつ、バッテリ40に効率よく電力を蓄積することができる。
 また、統括制御部52は、バッテリ40のSOCが所定の第1閾値以下であり、第2閾値以上である場合には、エンジン10の動作状態が高効率範囲HEにあるときにのみMCU43を制御してモータ30による発電を実行させ、それ以外の動作状態においてはモータ30による発電を実行させない。したがって、燃費を比較的高く維持しつつ、バッテリ40への電力の蓄積を促進することができる。
 また、統括制御部52は、バッテリ40のSOCが所定の第2閾値よりも低い場合には、エンジン10の動作状態が高効率範囲HEにあるときだけでなく、それ以外の低効率範囲にあるときにもMCU43を制御してモータ30による発電を実行させる。したがって、バッテリ40への電力の蓄積を促進することができる。
 なお、本発明は、上述の実施形態及び変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、上記実施形態において、モータ30を駆動させることが必要な場合における統括制御部52の動作として、車速が第1速度設定値以下の場合には、低効率発電量が0になるまでバッテリ40の電力をモータ30に供給し、低効率発電量が0であり、且つ車速が第2設定速度以下(第2設定速度<第1設定速度)の場合には、高効率発電量が0となるまでバッテリ40の電力をモータ30に供給し、低効率発電量及び高効率発電量が0であり、且つ車速が第3設定速度以下(第3設定速度<第2設定速度)の場合には、バッテリ40のSOCがSOC限界値となるまでバッテリ40の電力をモータ30に供給するようにしてもよい。このようにすると、低効率発電量が不十分な場合に、高効率発電量を使用して車速を上昇させることができる。
 また、上記実施形態では、ステップS22に示すように、モータ走行中に、エンジン10の想定される動作状態が高効率範囲にある場合に、直ちに、エンジン走行モードに切り替えるようにしていたが、本発明はこれに限られず、エンジン10の想定される動作状態が高効率範囲にある場合であっても、低効率発電量が0になるまでの間はモータ走行モードを維持するようにしてもよい。
 また、上記実施形態では、エンジン10と、変速機14との間の動力伝達機構としてクラッチ12を用いていたが、本発明はこれに限られず、動力伝達機構としてトルクコンバータを備えるようにしてもよく、要は、エンジン10と、変速機14との間の駆動力を伝達する状態と、駆動力を遮断又は駆動力を低減した状態とを切り替えられる動力伝達機構であればよい。
 また、上記実施形態において、HCM50のCPUが行っていた処理の一部又は全部を、ハードウェア回路で行うようにしてもよい。また、HCM50が備えている発電量測定部51、統括制御部52、高効率範囲情報記憶部53、発電量記憶部54の少なくとも一つを、ハイブリッド車両1の他の装置(ECU44、TCU45、MCU43等)に備えるようにしてもよい。
 また、上記実施形態においては、エンジン10の出力軸と、モータ30の出力軸とを離れた位置に配置し、それぞれをギヤを介して動力伝達可能に接続する構成としていたが、本発明はこれに限られず、例えば、エンジン10の出力軸とモータ30の出力軸とを同軸に配置して接続するようにしてもよい。
 1…ハイブリッド車両、10…エンジン、12…クラッチ、30…モータ、40…バッテリ、50…HCM、51…発電量測定部、52…統括制御部、53…高効率範囲情報記憶部、54…発電量記憶部

Claims (10)

  1.  エンジンと、前記エンジンの駆動力が伝達可能な駆動輪と、前記エンジンからの駆動力が伝達可能であるとともに、前記駆動輪との間で駆動力を伝達可能なモータと、前記モータを駆動させる電力を供給するとともに、前記モータにより発電された電力を蓄積するバッテリと、を備えるハイブリッド車両の制御装置であって、
     前記エンジンのエンジン特性における、前記エンジンのエンジン効率が比較的高い第1効率範囲を特定する情報を記憶する効率範囲情報記憶部と、
     前記エンジンが前記第1効率範囲から外れた第2効率範囲で動作している場合に、前記モータにより発電されて前記バッテリに蓄積される電力量である第2効率範囲発電量を測定する発電量測定部と、
     前記モータを駆動させる電力を供給することが必要な場合に、前記第2効率範囲発電量の電力を前記バッテリから前記モータに供給するように制御する電力制御部と、を備えるハイブリッド車両の制御装置。
  2.  前記電力制御部は、前記モータを駆動させる電力を供給することが必要な場合に、前記バッテリにおける前記第2効率範囲発電量の電力を消費するまで、又は前記バッテリの電力が最低必要量となるまで、前記モータに電力を供給するように制御する請求項1に記載のハイブリッド車両の制御装置。
  3.  前記モータを駆動させる電力を供給することが必要な場合とは、前記モータのみにより前記ハイブリッド車両を走行させる場合、又は、前記エンジンの駆動力をアシストするために前記モータの駆動力を出力させる場合である請求項1又は請求項2のいずれか一項に記載のハイブリッド車両の制御装置。
  4.  前記発電量測定部は、前記エンジンが前記第1効率範囲で動作している場合に、前記モータにより発電されて前記バッテリに蓄積された電力量である第1効率範囲発電量を測定し、
     前記電力制御部は、前記モータを駆動させる電力を供給することが必要な場合に、前記第2効率範囲発電量のすべての電力を消費しても、前記ハイブリッド車両を所定の状態にできない場合に、前記第1効率範囲発電量の電力を前記モータに供給するように制御する請求項1から請求項3のいずれか一項に記載のハイブリッド車両の制御装置。
  5.  前記第1効率範囲は、前記エンジンの回転数と前記エンジンの出力トルクとに対応するエンジン効率に関するエンジン特性における、等エンジン効率線に基づいて決定されている
    請求項1から請求項4のいずれか一項に記載のハイブリッド車両の制御装置。
  6.  前記第1効率範囲は、前記エンジン特性における所定のエンジン効率以上の範囲である請求項5に記載のハイブリッド車両の制御装置。
  7.  前記第1効率範囲は、前記エンジンの回転数と前記エンジンの出力トルクとに対応するエンジン効率に関するエンジン特性における、エンジン効率が最も高い点である最高効率点でのエンジン回転数に対応する、モータの定格トルクと一致するエンジントルクにおけるエンジン効率に基づいて決定されている請求項1から請求項6のいずれか一項に記載のハイブリッド車両の制御装置。
  8.  前記ハイブリッド車両は、
     前記エンジンと、前記モータとの間には、前記エンジンと前記モータとの間の駆動力の伝達、及び、遮断又は低減することが可能な動力伝達機構をさらに備え、
     前記電力制御部は、前記動力伝達機構により前記エンジンと前記モータとの間の駆動力を伝達可能として、前記エンジンの駆動力により前記モータにより電力を発電させる請求項1から請求項7のいずれか一項に記載のハイブリッド車両の制御装置。
  9.  前記電力制御部は、前記エンジンが前記第1効率範囲内で動作している場合に、前記エンジンの駆動力により前記モータにより電力を発電させる請求項8に記載のハイブリッド車両の制御装置。
  10.  エンジンと、前記エンジンの駆動力が伝達可能な駆動輪と、前記エンジンからの駆動力が伝達可能であるとともに、前記駆動輪との間で駆動力を伝達可能なモータと、前記モータを駆動させる電力を供給するとともに、前記モータにより発電された電力を蓄積するバッテリと、制御装置とを備えるハイブリッド車両であって、
     前記制御装置は、
     前記エンジンのエンジン特性における、前記エンジンのエンジン効率が比較的高い第1効率範囲を特定する情報を記憶する効率範囲情報記憶部と、
     前記エンジンが前記第1効率範囲から外れた第2効率範囲で動作している場合に、前記モータにより発電されて前記バッテリに蓄積される電力量である第2効率範囲発電量を測定する発電量測定部と、
     前記モータを駆動させる電力を供給することが必要な場合に、前記第2効率範囲発電量の電力を前記バッテリから前記モータに供給するように制御する電力制御部と、を備えるハイブリッド車両。
PCT/JP2018/002634 2017-02-21 2018-01-29 ハイブリッド車両の制御装置及びハイブリッド車両 WO2018155083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/468,452 US11059374B2 (en) 2017-02-21 2018-01-29 Hybrid vehicle control apparatus and hybrid vehicle
JP2019501156A JP6688430B2 (ja) 2017-02-21 2018-01-29 ハイブリッド車両の制御装置及びハイブリッド車両
CN201880008802.3A CN110290993B (zh) 2017-02-21 2018-01-29 混合动力车辆的控制装置以及混合动力车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-029737 2017-02-21
JP2017029737 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155083A1 true WO2018155083A1 (ja) 2018-08-30

Family

ID=63252734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002634 WO2018155083A1 (ja) 2017-02-21 2018-01-29 ハイブリッド車両の制御装置及びハイブリッド車両

Country Status (4)

Country Link
US (1) US11059374B2 (ja)
JP (1) JP6688430B2 (ja)
CN (1) CN110290993B (ja)
WO (1) WO2018155083A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114633629B (zh) * 2020-12-16 2023-06-20 威马智慧出行科技(上海)股份有限公司 电动汽车的能量回收方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094628A (ja) * 2004-09-24 2006-04-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011213275A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd ハイブリッド車の制御装置
JP2015166204A (ja) * 2014-03-03 2015-09-24 株式会社デンソー 車両制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534271B2 (ja) * 1995-04-20 2004-06-07 株式会社エクォス・リサーチ ハイブリッド車両
CN103764469A (zh) * 2011-09-05 2014-04-30 本田技研工业株式会社 混合动力车辆的控制装置和控制方法
JP5929077B2 (ja) * 2011-09-29 2016-06-01 スズキ株式会社 シリーズ式ハイブリッド車両の駆動制御装置
WO2014064888A1 (ja) * 2012-10-26 2014-05-01 三洋電機株式会社 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
JP6471859B2 (ja) * 2015-03-04 2019-02-20 三菱自動車工業株式会社 ハイブリッド車両の制御装置
JP6269641B2 (ja) * 2015-11-19 2018-01-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094628A (ja) * 2004-09-24 2006-04-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011213275A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd ハイブリッド車の制御装置
JP2015166204A (ja) * 2014-03-03 2015-09-24 株式会社デンソー 車両制御装置

Also Published As

Publication number Publication date
US11059374B2 (en) 2021-07-13
CN110290993A (zh) 2019-09-27
US20200189557A1 (en) 2020-06-18
CN110290993B (zh) 2022-05-24
JP6688430B2 (ja) 2020-04-28
JPWO2018155083A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
CN104024073B (zh) 用于混合动力车辆的控制装置
EP2666690B1 (en) Hybrid vehicle and method for controlling the same
JP4217916B2 (ja) ハイブリッド電気自動車の制御装置
US8942877B2 (en) Hybrid vehicle and method for controlling the same
EP2944494A1 (en) Hybrid-vehicle control device and control method
JP6213497B2 (ja) ハイブリッド車両
US9522673B2 (en) Transmission control apparatus for belt type mild hybrid vehicle and transmission control method using the same
US8818578B2 (en) Control device, hybrid vehicle, control method, and computer program
JP5729475B2 (ja) 車両および車両の制御方法
JP5598555B2 (ja) 車両および車両用制御方法
JP2019202650A (ja) 車両の制御装置及び制御方法
JP4165481B2 (ja) ハイブリッド電気自動車の制御装置
WO2018155083A1 (ja) ハイブリッド車両の制御装置及びハイブリッド車両
JP2016043701A (ja) ハイブリッド車両の制御装置
JP2006136131A (ja) 車両の制御装置
JP6063896B2 (ja) ハイブリッド車両の制御装置
WO2014038442A1 (ja) ハイブリッド車両の制御装置
KR101500095B1 (ko) 울트라캐패시터를 이용한 동력 전달 시스템 및 방법
JP2015214262A (ja) 車両
JP2015089186A (ja) 車両の制御装置
JP2018140682A (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757538

Country of ref document: EP

Kind code of ref document: A1