JP6269641B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP6269641B2
JP6269641B2 JP2015226394A JP2015226394A JP6269641B2 JP 6269641 B2 JP6269641 B2 JP 6269641B2 JP 2015226394 A JP2015226394 A JP 2015226394A JP 2015226394 A JP2015226394 A JP 2015226394A JP 6269641 B2 JP6269641 B2 JP 6269641B2
Authority
JP
Japan
Prior art keywords
remaining capacity
vehicle
section
control
downhill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015226394A
Other languages
English (en)
Other versions
JP2017094789A (ja
Inventor
清美 永宮
清美 永宮
靖裕 田島
靖裕 田島
春紀 小栗
春紀 小栗
誠文 内原
誠文 内原
茂樹 松本
茂樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015226394A priority Critical patent/JP6269641B2/ja
Priority to US15/356,254 priority patent/US10155510B2/en
Priority to DE102016122254.2A priority patent/DE102016122254A1/de
Publication of JP2017094789A publication Critical patent/JP2017094789A/ja
Application granted granted Critical
Publication of JP6269641B2 publication Critical patent/JP6269641B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/181Hill climbing or descending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Navigation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両の駆動源として内燃機関及び電動機の両方を備えるハイブリッド車両を制御するハイブリッド車両の制御装置に関する。
車両の駆動源として内燃機関(以下、単に「機関」とも称呼される。)及び電動機の両方を備えるハイブリッド車両(以下、単に「車両」とも称呼される。)が知られている。車両は蓄電池を備え、蓄電池は電動機に電力を供給する一方、機関の出力によって充電される。
加えて、車軸の回転が電動機に伝達されるときに発電機が電力を発生させ(即ち、電動機が発電し)、その電力によっても蓄電池が充電される。即ち、車両の運動エネルギーが電気エネルギーに変換され、その電気エネルギーが蓄電池に回収される。このエネルギーの変換は「回生」とも称呼される。回生が行われる場合、電動機が発生させる車両の制動力(即ち、車速を減速させるトルク)は「回生制動力」とも称呼され、回生制動力を用いた車両の制動は「回生制動」とも称呼される。回生制動により蓄電池に回収される電力は「回生電力」とも称呼される。車両の減速時に回生制動を行うことによりエネルギーを蓄電池に回収すれば、車両の燃費(燃料消費率)を向上させることができる。
一方、車両の走行中、蓄電池の残容量SOC(State of Charge、以下、単に「SOC」とも称呼される。)は変動する。残容量SOCが高い状態及び低い状態のいずれかの状態にあるとき残容量SOCの上昇及び低下が繰り返されると、蓄電池の劣化が促進される。そのため、車両の走行中、車両の制御装置は、目標残容量を残容量上限値と残容量下限値と間の適当な値に設定し、残容量SOCが目標残容量に近づくように機関及び電動機を制御する。
ところで、車両が下り坂を走行するとき、一般に運転者はアクセルペダルから足を離し、更に、場合によりブレーキペダルを踏む。このとき、車両の制御装置は、回生制動力によって車速の上昇を抑え、それにより残容量SOCを上昇させる。
残容量SOCが上昇すると、即ち、蓄電池に充電されている電力量が増加すると、機関の運転を停止したまま電動機の出力のみによって走行できる距離が長くなる。従って、車両が下り坂を走行するときに残容量SOCを残容量上限値未満の範囲においてできるだけ大きくすることができれば、車両の燃費をより向上させることができる。
しかし、下り坂が長い場合、やがて残容量SOCが残容量上限値に達するので、それ以上残容量SOCを増加させることができなくなる。従って、下り坂を走行することによって得られる燃費向上の効果は、下り坂の開始地点における残容量SOCと残容量上限値との差分が大きいほど大きくなる。
そこで、従来のハイブリッド車両の制御装置の一つ(以下、「従来装置」とも称呼される。)は、走行予定経路上に所定の標高差を有する下り坂区間が存在するとき、下り坂区間に進入するまでに残容量SOCが残容量下限値にできるだけ近づくように、機関の運転を停止して電動機のみを作動させる走行を、機関及び電動機の両方を作動させる走行よりも優先する(例えば、特許文献1を参照。)。なお、以下において、機関の運転を停止して電動機のみを作動させる走行は「EV走行」と称呼され、機関及び電動機の両方を作動させる走行は「HV走行」と称呼される場合がある。
この従来装置によれば、下り坂区間の開始地点に到達するまでの区間(以下、「プレユース区間」と称呼される場合がある。)を車両が走行している期間において残容量SOCが通常時よりも低下させられるので、その期間における機関の使用頻度は低下する。更に、下り坂区間の開始時点において残容量SOCと残容量上限値との差が大きくなるので、下り坂区間の走行中により多くの電力を回収することができる。従って、その後における機関の使用頻度もまた低下する。その結果、ハイブリッド車両の燃費を向上させることができる。
一方、当該技術分野においては「回生拡大制御」と称呼される技術も知られている。回生拡大制御を行う制御装置は、運転者の運転傾向(例えば、減速行動等)及び車両の位置に関する情報等に基づいて当該車両が減速すると予測される場合、当該減速が終了すると予測される位置を目標減速終了位置として設定する。更に、この制御装置は、この目標減速終了位置までの減速走行時に回生電力量が多くなるように(換言すると、急な減速を行うことに起因する摩擦制動装置を用いた制動によるエネルギーの消費量が小さくなるように)、適切な減速開始位置を設定し、その減速開始位置から回生制動力を大きくすることによって回生電力量を多くする制御である(例えば、特許文献2を参照。)。
このように、回生拡大制御は、残容量SOCをより上昇させることができるので、EV走行可能な距離が長くなる。従って、回生拡大制御を採用することにより、ハイブリッド車両の燃費をより向上させることができる。
特開2005−160269号公報 特開2014−110677号公報
ところで、車両が渋滞区間を走行するとき、車両は低速で走行したり、低速走行と停止とを繰り返したりする。従って、車両が渋滞区間を走行するとき、EV走行の頻度が上昇し且つ低速走行から減速する頻度が上昇するので回生電力量は少ない。その結果、残容量SOCが低下する。
従って、渋滞区間が長ければ、残容量SOCが残容量下限値に達するので、それ以上EV走行を継続することができなくなり、HV走行に切り替えざるを得なくなる。更に、残容量SOCを上昇させることを目的として機関を運転し、機関の出力によって蓄電池を強制的に充電する「強制充電」が行われる場合も生じる。このように機関の運転機会が増えると車両の燃費は悪化する。従って、渋滞区間を走行することに起因する燃費悪化の程度は、渋滞区間の開始地点における残容量SOCと残容量下限値との差分が小さいほど大きくなる。
このような観点から、走行予定経路上に渋滞区間の存在が予想される場合、渋滞区間に到達するまで残容量SOCの目標残容量を通常時よりも高く設定することにより、渋滞区間の開始地点における残容量SOCを上昇させておく制御が検討されている。このような制御は「渋滞制御」とも称呼される。更に、渋滞制御及び前述した下り坂制御は「先読み支援制御」と総称される場合がある。
しかしながら、先読み支援制御としての下り坂制御と、回生拡大制御と、が併用された場合、例えば、前述したプレユース区間及び下り坂区間を車両が走行している期間において回生拡大制御が実行される場合がある。この場合、プレユース区間において目標残容量を通常時よりも低い値に設定したにも拘わらず、下り坂区間の開始地点における残容量SOCが回生拡大制御により十分に低下していない場合が生じ得る。更に、下り坂区間において残容量SOCが回生拡大制御により想定以上に上昇してしまう場合が生じ得る。その結果、残容量SOCが残容量上限値に達する場合が生じてそれ以上残容量SOCを増加させることができず、下り坂区間の走行中に本来であれば蓄電池に回収できる電力を回収することができない事態が生じ得る。
更に、先読み支援制御としての渋滞制御と、回生拡大制御と、が併用された場合、例えば、渋滞制御によって目標残容量が高く設定されているために残容量SOCが高くなっている状況において回生拡大制御が実行され、それにより、残容量SOCが更に上昇して残容量上限値に達する場合が生じ得る。この場合にも、それ以上残容量SOCを増加させることができないので、本来であれば蓄電池に回収できる電力を回収することができない。
以上の説明から理解されるように、先読み支援制御と回生拡大制御とが併用された場合、本来は回収できる回生電力が回収できない虞がある。
そこで、本発明の目的の一つは、先読み支援制御(下り坂制御及び渋滞制御の少なくとも一方)と回生拡大制御とを実行可能に構成された制御部を備える「ハイブリッド車両の制御装置」において、より多くの回生電力を回収することによって燃費を改善することが可能なハイブリッド車両の制御装置を提供することである。
上記目的を達成するための本発明に係るハイブリッド車両の制御装置(以下、「本発明装置」とも称呼される。)は、
車両の駆動源としての内燃機関(23)及び同駆動源としての電動機(21,22)、並びに、前記電動機に電力を供給する蓄電池(31)を搭載し、前記電動機を用いて回生制動を行うとともに同回生制動により発生した電力を前記蓄電池に充電可能であり且つ前記内燃機関の出力を用いて発電した電力を前記蓄電池に充電可能に構成されたハイブリッド車両(10)に適用される。
加えて、本発明装置は、前記車両に要求される要求駆動力を満たすように且つ前記蓄電池の残容量が標準残容量(Sn)に設定された目標残容量(SOC*)に近づくように前記内燃機関及び電動機を制御する制御部(40)を備える。
更に、前記制御部は、
前記車両の走行予定経路及び同車両の位置に関する情報を取得する情報取得手段(40、61、63、ステップS101、ステップS111)と、
下り坂制御(図10又は図14のルーチン)及び渋滞制御(図11又は図15のルーチン)のうちの少なくとも一方の制御を先読み支援制御として実行する支援制御手段(40)と、
回生拡大制御手段(図12のルーチン、40)と、
を備える。
下り坂制御は、
前記車両の走行予定経路に関する情報に基づいて「走行予定経路に所定の下り坂区間条件を満足する下り坂区間」が含まれると判定した場合に「下り坂区間の開始地点よりも所定の第1距離だけ手前にある下り坂制御開始地点」から「下り坂区間の終了地点」までの第1区間、のうちの、少なくとも「下り坂制御開始地点から下り坂区間の開始地点までのプレユース区間」を含む区間、を前記車両が走行するとき、前記目標残容量を標準残容量(Sn)よりも小さい低側残容量(Sd)に変更する制御である。
渋滞制御は、
前記車両の走行予定経路に関する情報に基づいて、走行予定経路に所定の渋滞区間条件を満足する渋滞区間が含まれると判定した場合に、「渋滞区間の開始地点よりも所定の第2距離だけ手前にある渋滞制御開始地点」から「渋滞区間の開始地点」までの間の第2区間、を前記車両が走行するとき、目標残容量を標準残容量(Sn)よりも大きい高側残容量(Sh)に変更する制御である。
回生拡大制御は、
前記車両の位置に関する情報に基づいて、前記車両が減速すると予測される場合には、前記減速が終了すると予測される位置を目標減速終了位置として設定し、前記目標減速終了位置が設定された車両の減速時には前記目標減速終了位置が設定されていない車両の減速時に比べて前記回生制動により前記蓄電池に充電される電力量が多くなるように前記回生制動により車両を減速させる制御である。
前述したように、先読み支援制御としての渋滞制御と、回生拡大制御と、が併用された場合、プレユース区間及び下り坂区間を車両が走行している期間において回生拡大制御が実行され、その結果、残容量SOCが残容量上限値に達する事態が生じ得る。
更に、先読み支援制御としての渋滞制御と、回生拡大制御と、が併用された場合、渋滞制御によって目標残容量が高く設定されているときに拡大回生制御が実行され、その結果、残容量SOCが更に残容量上限値に達する事態が生じ得る。
そこで、前記制御部は、
前記支援制御手段が前記先読み支援制御として前記下り坂制御を実行するように構成されている場合において前記車両が前記第1区間を走行するときに前記回生拡大制御により前記蓄電池に充電される電力量が第1閾値電力量よりも大きいと推定される第1の場合には(図10のステップS104の「Yes」との判定、及び、図14のステップS142の「Yes」との判定)、前記目標残容量を前記低側残容量よりも第1調整幅(ΔS1、ΔS1a)だけ小さい値に修正し(図10のステップS104乃至ステップS106、図14のステップS142乃至ステップS144とステップS105)、
前記支援制御手段が前記先読み支援制御として前記渋滞制御を実行するように構成されている場合において前記車両が前記第2区間を走行するときに前記回生拡大制御により前記蓄電池に充電される電力量が第2閾値電力量よりも大きいと推定される第2の場合には(図11のステップS114の「Yes」との判定、及び、図15のステップS152の「Yes」との判定)、前記目標残容量を前記高側残容量よりも第2調整幅(ΔS2、ΔS2a)だけ小さい値に修正する(図11のステップS114乃至ステップS116、図15のステップS152乃至ステップS154とステップ115)、
目標残容量修正手段(40)を備える。
上記目標残容量修正手段によれば、前記支援制御手段が前記先読み支援制御として前記下り坂制御を実行するように構成されている場合、前記第1の場合に前記目標残容量が「前記低側残容量よりも第1調整幅だけ小さい値」に修正される。従って、下り坂制御と回生拡大制御とが併用された場合であっても、プレユース区間において目標残容量が通常の低側残容量よりも小さい値に修正されるので、プレユース区間及び/又は下り坂区間を車両が走行している期間において回生拡大制御が実行されたとしても、残容量SOCが残容量上限値に達する可能性が低下する。よって、下り坂区間の走行中に本来であれば蓄電池に回収できる電力を回収することができない事態が発生する可能性が低下するので、車両の燃費をより向上することができる。
更に、上記目標残容量修正手段によれば、前記支援制御手段が前記先読み支援制御として前記渋滞制御を実行するように構成されている場合、前記第2の場合に前記目標残容量が「前記低側残容量よりも第2調整幅だけ小さい値」に修正される。従って、渋滞制御と回生拡大制御とが併用された場合であっても、渋滞区間に到達する前の区間における目標残容量が通常の高側残容量よりも小さい値に修正されるので、渋滞区間に到達する前の区間を車両が走行している期間において回生拡大制御が実行されたとしても、残容量SOCが残容量上限値に達する可能性が低下する。よって、渋滞区間に到達する前の区間を走行中に本来であれば蓄電池に回収できる電力を回収することができない事態が発生する可能性が低下するので、車両の燃費をより向上することができる。
本発明装置の一態様において、
前記目標残容量修正手段は、
前記第1の場合に前記車両が前記第1区間を走行する期間において前記回生拡大制御の実行により前記蓄電池に充電される電力量に相関を有する第1指標値が大きいほど、前記第1調整幅をより大きい値に変更し、
前記第2の場合に前記車両が前記第2区間を走行する期間において前記回生拡大制御の実行により前記蓄電池に充電される電力量に相関を有する第2指標値が大きいほど、前記第2調整幅をより大きい値に変更する、
ように構成される。
この態様によれば、回生拡大制御の実行により蓄電池に充電されると予測される電力量に応じた目標残容量を設定することができるので、残容量SOCが残容量上限値に達する可能性がより低下する。よって、本来であれば蓄電池に回収できる電力を回収することができない事態が発生する可能性が一層低下するので、車両の燃費をより一層向上することができる。
なお、上記説明においては、本発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、前記符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
本発明の実施形態に係るハイブリッド車両の制御装置(本制御装置)が適用される車両の概略図である。 第1電動機、第2電動機、機関及びリングギアの間の回転速度の関係を表した共線図である。 車両が下り坂区間を走行するときの残容量の変化を表したグラフである。 車両が渋滞区間を走行するときの残容量の変化を表したグラフである。 車両が減速する場合の車速の推移を概略的に表した説明図である。 下り坂制御と回生拡大制御とが重なった場合における残容量の変化を表したグラフである。 渋滞制御と回生拡大制御とが重なった場合における残容量の変化を表したグラフである。 下り坂制御と回生拡大制御とが重なった場合における本制御装置の作動を説明するためのグラフである。 渋滞制御と回生拡大制御とが重なった場合における本制御装置の作動を説明するためのグラフである。 図1に示したCPUが実行する下り坂制御ルーチンを示したフローチャートである。 図1に示したCPUが実行する渋滞制御ルーチンを示したフローチャートである。 図1に示したCPUが実行する回生拡大制御ルーチンを示したフローチャートである。 図1に示したCPUが実行する回生拡大制御を説明するための図である。 本制御装置の変形例のCPUが実行する下り坂制御ルーチンを示したフローチャートである。 本制御装置の変形例のCPUが実行する渋滞制御ルーチンを示したフローチャートである。 本制御装置の更に別の変形例のCPUが参照するルックアップテーブルである。
(構成)
以下、図面を参照しながら本発明の実施形態に係るハイブリッド車両の制御装置(以下、「本制御装置」とも称呼される。)について説明する。図1に示したように、本制御装置が適用されるハイブリッド車両10は、第1電動機21、第2電動機22及び内燃機関23を搭載している。
車両10は、更に、動力分割機構24、蓄電池31、昇圧コンバータ32、第1インバータ33、第2インバータ34及びECU40を塔載している。ECU40は、本制御装置に対応する。
第1電動機21及び第2電動機22はそれぞれ、発電機及び電動機の何れとしても機能することができる三相の同期発電電動機である。
第1電動機21は、主に発電機として用いられる。第1電動機21は、更に、機関23の始動する際に機関23のクランキングを行う。第2電動機22は、主に電動機として用いられ、車両10の駆動力(車両を走行させるためのトルク)を発生することができる。機関23もまた、車両10の駆動力を発生することができる。機関23は、4気筒の4サイクルガソリンエンジンである。
動力分割機構24は周知の遊星歯車機構である。動力分割機構24は、リングギア、複数の動力分割プラネタリーギア、複数のリダクションプラネタリーギア、第1サンギア、第2サンギア、第1ピニオンキャリア及び第2ピニオンキャリアを含んでいる(いずれも不図示)。
動力分割プラネタリーギア及びリダクションプラネタリーギアのそれぞれは、リングギアと噛合する。第1サンギアは、動力分割プラネタリーギアと噛合する。第2サンギアは、リダクションプラネタリーギアと噛合する。第1プラネタリーキャリアは、複数の動力分割プラネタリーギアを自転可能且つサンギアの回りに公転可能な状態で保持する。第2プラネタリーキャリアは、複数のリダクションプラネタリーギアを自転可能な状態で保持する。
リングギアは、リングギアの外周上に配設されたカウンターギアを介して車軸25とトルク伝達可能に接続されている。第1プラネタリーキャリアには、機関23の出力軸がトルク伝達可能に連結されている。第1サンギアには、第1電動機21の出力軸がトルク伝達可能に連結されている。第2サンギアには、第2電動機22の出力軸がトルク伝達可能に連結されている。
第1電動機21の回転速度(MG1回転速度)Nm1、機関23の機関回転速度NE及び動力分割機構24のリングギア回転速度Nr、並びに、第2電動機22の回転速度(MG2回転速度)Nm2及びリングギア回転速度Nrの関係は、図2に示した周知の共線図により表される。共線図に表される2つの直線は、動作共線L1及び動作共線L2とも称呼される。
動作共線L1によれば、MG1回転速度Nm1と機関回転速度NE及びリングギア回転速度Nrとの関係は、下式(1)により表すことができる。ここで、ギア比ρ1は、リングギアの歯数に対する第1サンギアの歯数である(即ち、ρ1=第1サンギアの歯数/リングギアの歯数)。
Figure 0006269641
一方、動作共線L2によれば、MG2回転速度Nm2とリングギア回転速度Nrとの関係は、下式(2)により表すことができる。ここで、ギア比ρ2は、リングギアの歯数に対する第2サンギアの歯数である(即ち、ρ2=第2サンギアの歯数/リングギアの歯数)。
Figure 0006269641
再び図1を参照すると、車軸25は、ディファレンシャルギア26を介して駆動輪27とトルク伝達可能に連結されている。
蓄電池31は、充放電が可能な二次電池(本例において、リチウムイオン蓄電池)である。蓄電池31が出力した直流電力は、昇圧コンバータ32により電圧変換(昇圧)され高圧電力となる。第1インバータ33は、高圧電力を交流電力に変換して第1電動機21へ供給する。同様に、第2インバータ34は、高圧電力を交流電力に変換して第2電動機22へ供給する。
一方、第1電動機21が発電機として動作するとき、第1インバータ33は、発電された交流電力を直流電力に変換し、昇圧コンバータ32及び/又は第2インバータ34へ供給する。同様に、第2電動機22が発電機として動作するとき、第2インバータ34は、発電された交流電力を直流電力に変換し、昇圧コンバータ32及び/又は第1インバータ33へ供給する。昇圧コンバータ32は、第1インバータ33及び/又は第2インバータ34から供給された直流電力を降圧して蓄電池31へ供給する。この結果、蓄電池31が充電される。
ECU40は、CPU、ROM、RAM、不揮発性メモリ及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。ECUは、エレクトリックコントロールユニットの略称である。CPUは、メモリ(ROM)に格納されたインストラクション(ルーチン)を実行することにより後述する各種機能を実現する。ECU40は、機関23、昇圧コンバータ32、第1インバータ33及び第2インバータ34と接続されていて、これらを制御する。なお、ECU40は、複数のECUに機能別に分割されてもよい。その場合、複数のECUは、通信・センサ系CAN(Controller Area Network)を介してデータ交換可能(通信可能)となっている。
ECU40は、クランク角度センサ51、電流計52、車速センサ53、アクセル開度センサ54及びブレーキ開度センサ55と接続されている。
クランク角度センサ51は、機関23のクランクシャフトの回転位置を測定し、そのクランク角度CAを表す信号を出力する。ECU40は、クランク角度CAに基づいて機関23の機関回転速度NEを算出する。電流計52は、蓄電池31を流れる電流IBを表す信号を出力する。ECU40は、電流IBに基づいて蓄電池に充電された電力量である残容量SOCを算出する。
車速センサ53は、車軸25の回転速度を検出し、車両10の走行速度(車速)Vsを表す信号を出力する。アクセル開度センサ54は、アクセルペダル56の操作量(アクセル操作量)Apを表す信号を出力する。ブレーキ開度センサ55は、ブレーキペダル57の操作量(ブレーキ操作量)Bpを表す信号を出力する。
更に、ECU40は、GPS受信装置61、交通情報受信装置62、データベース63、表示装置64及び摩擦制動装置65と接続されている。
GPS受信装置61は、GPS(Global Positioning System)衛星からの信号に基づいて車両10の現在位置Pnを取得し、現在位置Pnを表す信号をECU40に送信する。
交通情報受信装置62は、道路交通情報通信システム(VICS(登録商標):Vehicle Information and Communication System/不図示)が電波ビーコン及びFM多重放送等を介して提供する現在位置Pn周辺の渋滞情報及び速度規制情報等を含む道路情報を受信する。
データベース63は、地図データ(地図情報)を記憶しているハードディスクドライブ(HDD)を含む。地図データは、交差点及び行き止まり等の「ノード」、ノード同士を接続する「リンク」並びにリンク沿いにある建物及び駐車場等の「施設」に関する情報を含んでいる。更に、地図データは、各リンクに対応する道路の区間の距離、リンクの一端(開始位置)にあるノード及び他端(終了位置)にあるノードの位置座標、並びに、リンクに対応する道路の平均勾配を含んでいる。平均勾配は、「リンクに対応する道路の両端位置(即ち、両ノードの位置)の間の距離」に対する「リンクに対応する道路の両端における標高の差」の比である。
表示装置64は、車両10の車室内に設けられたセンターコンソール(不図示)に配設されている。表示装置64はディスプレイを備え、そのディスプレイ上に地図データに基づく地図及び車両10の現在位置Pn等を表示することができる。
表示装置64のディスプレイは操作入力を受け付けるタッチパネルとしても作動する。更に、表示装置64は発音装置(不図示)を含んでいる。表示装置64はECU40の指示に従って警告音の再生及びアナウンス等を行うことができる。
ECU40は、車両10の運転者が表示装置64を用いて目的地を入力すると、現在位置Pnから目的地までの経路(走行予定経路)を地図データベースに基づいて探索する。走行予定経路は、ノードの集合によって構成される。ECU40は、表示装置64上の表示及び発音装置から発せられる音声によって、走行予定経路に従う案内を運転者に対して行うことができる。
摩擦制動装置65は、ブレーキペダル57の踏力によって作動油を加圧するマスタシリンダと、各車輪に設けられる周知のホイールシリンダを含むブレーキ装置と、ブレーキアクチュエータと、を含む。ブレーキアクチュエータは、ホイールシリンダに供給する油圧を調整することにより、ブレーキディスクに摩擦力を付与する。従って、ECU40は、ブレーキアクチュエータを駆動することにより各車輪に発生する摩擦制動力を調整することができる。
(作動)
次に、本制御装置(ECU40)の作動について説明する。本制御装置は、「下り坂制御及び/又は渋滞制御」と、「回生拡大制御」と、を併用した場合の後述する課題を解決する装置である。そこで、先ず、これらの制御の前提となる制御について説明し、次いで、これらの制御について説明する。なお、「下り坂制御及び渋滞制御」は、本明細書において、「先読み支援制御」、又は、単に「支援制御」とも称呼される。
1.ECUによる駆動力制御
ハイブリッド車両10は、第1電動機21、第2電動機22及び機関23を関連させながら制御する。この制御の基本的内容は、周知であって、例えば、特開2009−126450号公報(米国公開特許番号 US2010/0241297)、及び、特開平9−308012号公報(米国出願日1997年3月10日の米国特許第6,131,680号)等に詳細に記載されている。
簡単に述べると、ECU40は、アクセル操作量Ap及び車速Vsに基づいてリングギアに作用するトルク(リングギア発生トルク)Trの目標値であるリングギア要求トルクTr*を決定する。リングギア発生トルクTrは、駆動輪27に作用するトルクと比例関係にあるので、リングギア発生トルクTrが大きくなるほど駆動輪27に作用するトルクは大きくなる。従って、リングギア要求トルクTr*は車両10に要求される要求駆動力でもある。
ECU40は、リングギア発生トルクTrがリングギア要求トルクTr*と等しくなり且つ残容量SOCが目標残容量SOC*と一致するように(近づくように)機関23、昇圧コンバータ32、第1インバータ33及び第2インバータ34を制御する。
例えば、残容量SOCが目標残容量SOC*と略一致しているとき、機関23の運転効率が高い運転領域では、ECU40は、機関23及び第2電動機22の両方に出力を発生させ、機関23が発生させる機関出力Peの一部によって第1電動機21が発電する。この場合、第1電動機21が発電した電力が第2電動機22に供給される。
残容量SOCが目標残容量SOC*よりも低ければ、ECU40は、機関出力Peを上昇させ、以て、第1電動機21の発電量を上昇させる。これにより、残容量SOCが上昇して目標残容量SOC*に近づく。
一方、車両10の発進時及び低負荷走行時等の機関23の運転効率が低い運転領域では、ECU40は、機関23の運転を停止させ、第2電動機22にのみ出力を発生させる。この場合、残容量SOCが低下する。
ところで、蓄電池31の劣化が早く進まないようにするため、残容量SOCは「残容量下限値Sminと残容量上限値Smaxとの間」維持されることが望ましい。そこで、残容量SOCが残容量下限値Sminよりも低くなると、ECU40は、機関23を作動させ、機関23の出力によって第1電動機21に発電させて蓄電池31を「強制充電」する。これにより、残容量SOCは残容量下限値Sminよりも大きくなる。
更に、残容量SOCが残容量上限値Smaxよりも高くなると、ECU40は、機関23の運転効率が高い運転領域であっても高出力及び高トルクが要求される場合を除き機関23の運転を停止させ、第2電動機22のみに出力を発生させる。これにより、残容量SOCは残容量上限値Smaxよりも小さくなる。
2.ECUによる制動力制御
運転者は、車両10を減速させるために制動力を要求するとき、アクセル操作量Ap及びブレーキ操作量Bpを共に「0」にする操作、又は、アクセル操作量Apを「0」にして且つブレーキ操作量Bpを増加させる操作を行う。ECU40は、制動力が要求されたとき、アクセル操作量Ap、ブレーキ操作量Bp及び車速Vsに基づいて目標制動力を決定し、実際の制動力が目標制動力に一致するように「回生制動力及び摩擦制動力」を発生させる。このとき、回生制動力では不足する制動力が摩擦制動力によって補われる。
ECU40は、回生制動力を発生させるとき、第1電動機21及び/又は第2電動機22に発電させる。換言すれば、ECU40は、車両10の運動エネルギーを「第1電動機21及び/又は第2電動機22」を用いて電気エネルギーに変換する。発電された電力は蓄電池31に充電され、以て、残容量SOCが上昇する。
ECU40は、摩擦制動力を発生させるとき、摩擦制動装置65を制御して車両10の車輪のそれぞれに摩擦制動力を付与する。換言すれば、ECU40は、車両10の運動エネルギーを、摩擦制動装置65を用いて熱エネルギーに変換する。なお、上述した「駆動力制御及び制動力制御並びにこれらに伴う残容量SOCの制御」は、ECU40のCPUが図示しない「車両走行制御ルーチン」を実行することによって実現される。
3.下り坂制御
車両10が下り坂を走行している場合、運転者は大きな制動力を頻繁に要求する。従って、回生電力量が大きくなるので、残容量SOCが上昇して残容量上限値Smaxに達する場合がある。残容量SOCが残容量上限値Smaxに達すると、蓄電池32の保護の観点から回生制動を行うことができない。その結果、制動が摩擦制動装置65によって行われるので、車両10の運動エネルギーが電気エネルギーに変換されずに熱エネルギーに変換される。その結果、車両10が下り坂を走行している場合、本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態が発生する。
そこで、ECU40は、車両10の走行予定経路に、後述する「下り坂区間条件」を満たす下り坂区間(以下、「対象下り坂区間」と称呼される場合がある。)が存在する場合、下り坂区間の開始地点までに残容量SOCを低下させておく制御、即ち、下り坂制御を実行する。
より具体的に述べると、ECU40のCPUは、運転者の表示装置64を操作することによって車両10の走行予定経路が決定された後、その走行予定経路に下り坂区間(対象下り坂区間)が存在するか否かを判定する。対象下り坂区間は、その区間を車両10が走行することにより得られる回生電力量が「蓄電池31の最大充電量(即ち、残容量SOCが100%であるときの蓄電量)の所定の比率(例えば、20%)に相当する電力量S20」よりも大きくなると予想される区間である。
[下り坂区間条件]
下り坂区間の開始地点及び終了地点の間の距離が距離閾値Dth1よりも長く、且つ、開始地点の標高が終了地点の標高に対して高さ閾値Hthよりも高い(開始地点の標高が終了地点の標高よりも高く、且つ、開始地点と終了地点の標高差の絶対値が閾値Hthよりも大きい)。
例えば、図3に示した例において、車両10の走行予定経路を構成するリンクは、リンク1〜リンク8である。更に、リンク4〜リンク6の区間の距離Ddは距離閾値Dth1よりも長い。加えて、リンク4〜リンク6の区間の開始地点(即ち、リンク4の開始地点D3)の標高はH1であり、終了地点(即ち、リンク6の終了地点D6)の標高はH2であり、且つ、開始地点の標高H1が終了地点の標高H2に対して高さ閾値Hthよりも高い(ΔH=H1−H2>Hth)。従って、リンク4〜リンク6によって構成される区間は、下り坂区間(対象下り坂区間)に該当する。なお、リンク1乃至リンク3、リンク7及びリンク8に対する道路は平坦路である。
CPUは、走行予定経路に下り坂区間(対象下り坂区間)が存在すると判定した場合、下り坂区間の開始地点(地点D3)よりも所定のプレユース距離(第1距離)Dpだけ手前の地点(地点D1a)に到達したとき、下り坂制御を開始する。下り坂制御は、通常時において標準残容量Snに設定されている目標残容量SOC*を、標準残容量Snよりも所定値ΔSdだけ小さい低側残容量Sdに設定する制御である(図3の折れ線Lp1を参照。)。
CPUは、車両10が下り坂区間の終了地点(地点D6)に到達したとき、目標残容量SOC*を低側残容量Sdから標準残容量Snに戻すことにより、下り坂制御を終了する。
なお、「下り坂区間の開始地点(地点D3)からプレユース距離Dpだけ手前の地点(地点D1a)」から「下り坂区間の開始地点(地点D3)」までの区間は、プレユース区間とも称呼される。更に、プレユース区間と下り坂区間とを合わせた区間(地点D1a〜地点D6)は「下り坂制御区間」とも称呼される。
この結果、下り坂制御が実行されたときの残容量SOCは図3の実線LC1に示したように変化する。これに対し、下り坂制御が実行されなかった場合の残容量SOCは図3の破線LC2に示したように変化する。図3から明らかなように、下り坂制御が実行されない場合には、車両10がリンク6の地点D5aに達した時点において残容量上限値Smaxに達するので、地点D5a以降において回生電力の回収ができない。
これに対し、下り坂制御が実行される場合、プレユース区間において目標残容量SOC*が低側残容量Sdに設定されるために残容量SOCが標準残容量Snよりも低下する。よって、下り坂区間において残容量SOCが上昇しても、残容量SOCは残容量上限値Smaxに達しない。その結果、下り坂区間において回収できる回生電力の量が大きくなる。しかも、プレユース区間においてEV走行がHV走行(第2電動機22及び機関23の出力を用いた走行)よりも優先される。従って、車両10の燃費が向上する。
なお、目標残容量SOC*を低側残容量Sdに設定する区間(即ち、下り坂制御の実行区間)は、プレユース区間の開始位置からプレユース区間の終了位置(即ち、下り坂区間の開始地点)までを含めばよく、下り坂区間の途中において目標残容量SOC*を標準残容量SOCnに戻してもよい。換言すると、走行予定経路に含まれる下り坂区間の開始地点よりも所定の第1距離だけ手前にある下り坂制御開始地点(プレユース区間の開始時点)から下り坂区間の終了地点までの区間、のうちの少なくとも「下り坂制御開始地点から下り坂区間の開始地点までの区間」を含む第1区間において目標残容量SOC*を低側残容量Sdに設定すればよい。以上が、下り坂制御の概要である。
4.渋滞制御
一方、車両10が渋滞区間を走行する場合、機関23の出力を用いることなく第2電動機22の出力のみにより走行する機会(EV走行の機会)が増大する。更に、渋滞区間における回生電力量は大きくない。その結果、車両10が渋滞区間を走行している最中に残容量SOCが低下して残容量下限値Sminに達し、その結果、「強制充電」が行われる場合が生じるので、燃費が悪化する。
そこで、ECU40は、車両10の走行予定経路に、後述する「渋滞区間条件」を満たす渋滞区間(以下、「対象渋滞区間」と称呼される場合がある。)が存在する場合、渋滞区間の開始地点までに残容量SOCを上昇させておく制御、即ち、渋滞制御を実行する。
より具体的に述べると、ECU40のCPUは、走行予定経路が運転者の操作により決定された後、その走行予定経路に渋滞区間(対象渋滞区間)が存在するか否かを判定する。対象渋滞区間は、その区間を車両10が走行することにより、残容量SOCが「蓄電池31の最大充電量の所定の比率(例えば、20%)に相当する電力量S20」よりも多い電力量だけ減少すると予想される区間である。
[渋滞区間条件]
道路交通情報通信システムにより渋滞中であると認定された区間(例えば、平均車速が数km/h以下となる区間)であって、その区間の開始地点と終了地点との間の距離が距離閾値Dth2よりも長い。
例えば、図4に示した例において、車両10の走行予定経路を構成するリンクは、リンク1〜リンク8であり、それらの各リンクに対する道路は平坦路である。更に、地点D3bから地点D6までの区間で渋滞が発生している。この区間の開始地点D3bと終了地点D6との間の距離Djは距離閾値Dth2よりも長い。よって、開始地点D3bから終了地点D6までは渋滞区間(対象渋滞区間)である。なお、上述した下り坂制御及び渋滞制御が実行されていないとき、CPUは、目標残容量SOC*を標準残容量Snに設定している。
CPUは、走行予定経路に渋滞区間(対象渋滞区間)が存在すると判定した場合、渋滞区間の開始地点(地点D3b)よりも所定のプレチャージ距離(第2距離)Dcだけ手前の地点(地点D1b;渋滞制御開始地点)に車両10が到達したとき、渋滞制御を開始する。渋滞制御は、通常時において標準残容量Snに設定されている目標残容量SOC*を、標準残容量Snよりも所定値ΔShだけ大きい高側残容量Shに設定する制御である(図4の折れ線Lp2を参照。)。
CPUは、車両10が渋滞区間の開始地点(地点D3b)に到達したとき、目標残容量SOC*を高側残容量Shから標準残容量Snに戻すことにより、渋滞制御を終了する。
なお、「渋滞区間の開始地点(地点D3b)からプレチャージ距離Dcだけ手前の地点(地点D1b)」から「渋滞区間の開始地点(地点D3b)」までの区間は、プレチャージ区間又は第2区間とも称呼される。
この結果、渋滞制御が実行されたときの残容量SOCは図4実線LC3に示したように変化する。これに対し、渋滞制御が実行されなかった場合の残容量SOCは図4の破線LC4に示したように変化する。図4から明らかなように、渋滞制御が実行されない場合には、車両10がリンク6の地点D5bに達した時点において残容量下限値Sminに達するので、CPUは機関23の出力を用いた強制充電を実行する。その結果、車両10の燃費が悪化する。
これに対し、渋滞制御が実行される場合、プレチャージ区間において目標残容量SOC*が高側残容量Shに設定されるために残容量SOCが標準残容量Snよりも高くなる。その結果、渋滞区間において残容量SOCが減少しても、残容量SOCは残容量下限値Sminに達しない可能性が高い。その結果、機関23の出力を用いた強制充電が実行され難くなるので、車両10の燃費が向上する。
5.回生拡大制御
例えば、運転者が交差点等で車両を停止させる場合、停止線の直前で急ブレーキ操作をした場合には、一時的に大きな制動力を車輪に付与する必要がある。蓄電池31に流すことのできる充電電流には上限があるため、回生制動力も充電電流が上限を超えないように制限される。更に、急ブレーキ操作時には、要求制動力が回生制動力の最大値を一時的に上回ることがあるため、制動力の不足分は摩擦制動装置65による摩擦制動力によって補われる。従って、運転者が、ブレーキ操作を早めに開始することにより急ブレーキ操作を行わなければ回生制動によって電気エネルギーとして蓄電池31に回収することができたはずのエネルギーが、急ブレーキ操作によって摩擦制動装置65で発生する熱エネルギーという形で無駄に放出されてしまう。
こうした無駄な熱エネルギー放出を低減するために、ECU40のCPUは、少なくとも車両(自車両)の現在位置Pnに基づいて、運転者がブレーキ操作を行う状況を予測し、所定のタイミングでアクセルオフ誘導を行う(図5の点P1を参照。)。アクセルオフ誘導とは、運転者にアクセルペダル54の開放(ブレーキペダルへの踏力の解除)を促すための報知を表示装置65を用いて行うことである。アクセルオフ誘導により、殆どの運転者はアクセルペダル55を開放する。
CPUは、アクセルオフ誘導の開始時点(点P1を参照。)から所定時間(ts秒)後の時点(図5の点P2を参照。)以降において、アクセルペダル54が開放されているときの回生制動力(いわゆるエンジンブレーキに相当する回生制動力)を通常よりも大きくして、蓄電池31への回生電力量を増大する。この結果、運転者がブレーキ操作を開始する時点(図5の点P3を参照。)における車速Vsが十分に低くなるので、その後のブレーキ操作量Bpが小さくなる。従って、要求制動力の多くが回生制動力により賄えるので、摩擦制動装置65による熱エネルギーの放出量が低減し、より多くの電気エネルギーを回収することができる。よって、車両10の燃費が改善される。
より具体的に述べると、ECU40のCPUは、運転者の日常の運転操作に基づいて、当該運転者がブレーキペダルを開放する頻度の高い地図上の位置を学習し、その学習した位置を目標減速終了位置として不揮発性メモリに登録する。また、CPUは、その目標減速終了位置に到達した時点の車速Vsを目標減速終了車速として目標減速終了位置に関連付けながら不揮発性メモリに登録する。目標減速終了位置として学習される可能性が高い位置は、交差点の停止位置、或いは、走行路が曲線路である場合において曲線路を抜け始めて運転者がブレーキペダルからアクセルペダルに踏み換える位置等である。
CPUは、車両10の走行予定経路上の道路であって、車両10の現時点の位置から所定距離(例えば、数百メートル)内に、前記登録されている目標減速終了位置が存在するか否かを判定する。そして、CPUは、その判定結果が肯定判定である場合、その目標減速終了位置を目標減速終了位置P0*として設定し、設定した目標減速終了位置P0*に対応する目標減速終了車速V0*を不揮発性メモリから読み出す。
CPUは、後に詳述する手法により、目標減速終了位置P0*及び目標減速終了車速V0*に基づいてアクセルオフ誘導を開始するタイミング(以下、「アクセルオフ誘導タイミング」とも称呼する。)を決定する。そして、CPUはアクセルオフ誘導タイミングにてアクセルオフ誘導を開始する(図5の点P1を参照。)。
更に、CPUは、アクセルオフ誘導タイミングの後に、実際にアクセルペダル56が開放され、且つ、アクセルオフ誘導タイミングからts秒が経過した時点Ts(図5の点P2を参照。)から、回生制動力を「通常のアクセルペダル56の開放時の回生制動力」よりも大きい値に設定し、それにより、車両の減速度を大きくする。つまり、CPUは、時点Ts以降において回生電力量を増大させる。このように、アクセルオフ誘導を実施し、且つ、その後にアクセルペダル56が開放されているときに車両の減速度が大きくなるように回生電力量を増大させる制御が「回生拡大制御」である。
この回生拡大制御により、運転者がブレーキペダル56を操作するブレーキオン時点における車速が小さくなるので(図5の点P3を参照。)、その後のブレーキ操作によって摩擦制動装置65にて放出される熱エネルギーの量が低減する。換言すると、より多くの電気エネルギーを回生制動により回収することができる。この結果、車両10の燃費を向上することができる。
6.下り坂制御及び/又は渋滞制御と、回生拡大制御と、を併用した場合の課題
ところで、走行予定経路上に下り坂区間(対象下り坂区間)の存在が予想される場合、CPUは下り坂制御を行う。即ち、図6の実線Lp10により示したように、CPUは、プレユース区間の開始地点(D1a)に車両10が到達したとき、目標残容量SOC*を標準残容量Snから低側残容量Sdに変更して下り坂制御を開始する。この結果、破線Lc10により示したように、プレユース区間において残容量SOCは低下して低側残容量Sdに近付く。
しかしながら、図6に四角形により示したように、下り坂制御の実行期間(下り坂制御区間)中に回生拡大制御が一回以上実行される場合がある。この場合、プレユース区間において回生拡大制御が行われると、残容量SOCは低側残容量Sdまで十分には低下しない。更に、下り坂区間において回生拡大制御が行われると、残容量SOCの上昇量が想定を超えて上昇する。以上のことから、残容量SOCが残容量上限値Smaxに達してしまう場合が生じる(点Paを参照。)。その結果、本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態が発生する。
一方、走行予定経路上に渋滞区間(対象渋滞区間)の存在が予想される場合、CPUは渋滞制御を行う。即ち、図7の実線Lp11により示したように、CPUは、プレチャージ区間の開始地点(D1b)に車両10が到達したとき、目標残容量SOC*を標準残容量Snから高側残容量Shに変更して渋滞制御を開始する。この結果、破線Lc11により示したように、プレチャージ区間において残容量SOCは上昇して高側残容量Shに近付く。
しかしながら、図7に四角形により示したように、車両10がプレチャージ区間を走行している期間中に回生拡大制御が一回以上実行される場合がある。この場合、残容量SOCが高側残容量Sh近傍となっているので、残容量SOCが残容量上限値Smaxに達してしまう場合が生じる(点Pcを参照。)。この場合、プレチャージ区間において、残容量SOCを高側残容量Shに近づけるために機関23を不必要に運転したことになる。更に、残容量SOCが残容量上限値Smaxに達してしまうので、その時点以降において回収可能な電気エネルギーを無駄にしていることになる。
7.本制御装置による、下り坂制御及び/又は渋滞制御と、回生拡大制御と、併用
本制御装置は、上述の課題を次のようにして解決する。即ち、図8に示したように、本制御装置は、車両10が下り坂制御区間を走行している最中に回生拡大制御が行なわれることが予想される場合、回生拡大制御による回生電力量の増大に伴う残容量SOCの上昇を見越して、プレユース区間における目標残容量SOC*を「低側残容量Sdよりも第1調整幅ΔS1だけ小さい値Sd’」に設定する。この値Sd’は補正後低側残容量とも称呼される。
これにより、図8の実線Lc12により示したように、残容量SOCは、プレユース区間において十分に低下するので、下り坂区間において回生拡大制御が行われても残容量上限値Smaxに達してしまう可能性が低い(点Pbを参照。)。その結果、本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態が発生する可能性を低下させることができる。
更に、図9に示したように、本制御装置は、車両10が渋滞制御のためのプレチャージ区間を走行している期間において回生拡大制御が行なわれることが予想される場合、回生拡大制御による回生電力量の増大に伴う残容量SOCの上昇を見越して、プレチャージ区間における目標残容量SOC*を「標準残容量SOC*よりも大きく、且つ、高側残容量Shよりも第2調整幅ΔS2だけ小さい値Sh’」に設定する。この値Sh’は補正後高側残容量とも称呼される。
これにより、図9の実線Lc13により示したように、プレチャージ区間において回生拡大制御が行われても、残容量SOCが残容量上限値Smaxに達してしまう可能性が低くなる。その結果、残容量SOCを補正前の高い高側残容量Shに近づけるために機関23から無駄な出力を発生させてしまう可能性及び蓄電池31に回収できる電気エネルギーが回収できない事態が発生する可能性を低下させることができる。
(具体的作動)
次に、本制御装置の具体的作動について説明する。ECU40のCPUは、図10に示すルーチンを所定の時間間隔にて繰り返し実行する。従って、所定のタイミングになると、CPUは図10のステップS100から処理を開始してステップS101に進み、車両10の走行予定経路を取得する。次に、CPUはステップS102に進み、車両10の現時点における走行予定経路に「上述した下り坂区間条件を満足する下り坂区間(対象下り坂区間)」が含まれるか否かを判定する。
走行予定経路に下り坂区間が含まれていない場合、CPUはステップS102にて「No」と判定してステップS103に進み、目標残容量SOC*を標準残容量Snに設定する。その後、CPUはステップS109に進み、本ルーチンを一旦終了する。この結果、CPUが図示しない「車両走行制御ルーチン」を実行することにより、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが標準残容量Snに近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。
CPUがステップS102の処理を実行する時点において、走行予定経路に下り坂区間が含まれている場合、CPUはステップS102にて「Yes」と判定する。そして、CPUはステップS104に進み、その下り坂区間に対応する下り坂制御区間(プレユース区間と下り坂区間とを合わせた区間)内に回生拡大制御が実行される地点が存在するか否かを判定(予測)する。より具体的には、CPUは、車両10の走行予定経路上であって車両10の現在位置から所定距離(例えば、数百メートル)以内の区間に、上述した目標減速終了位置が存在し、且つ、その目標減速終了位置が存在する場合にはその目標減速終了位置が下り坂制御区間内であるか否かを判定する。下り坂制御区間内に回生拡大制御が実行される地点が存在する場合、下り坂制御区間における回生拡大制御によって蓄電池31に充電される電力量が第1閾値電力量よりも大きいと推定することができる。
CPUは、下り坂制御区間内に回生拡大制御が実行される地点が存在しないと判定した場合、ステップS104からステップS105に進み、低側残容量Sdを「標準残容量Snから所定値ΔSdを減じた値(=Sn−ΔSd)」に設定し、ステップS107に進む。
これに対し、CPUは、下り坂制御区間内に回生拡大制御が実行される地点が存在すると判定した場合、ステップS104からステップS106に進み、低側残容量Sdを「補正後の低側残容量Sd(=(Sn−ΔSd)−ΔS1))」に設定し、ステップS107に進む。
CPUは、ステップS107にて、車両10の現在位置が下り坂制御区間(即ち、プレユース区間及び下り坂区間)内であるか否かを判定する。車両10の現在位置が下り坂制御区間内であれば、CPUはステップS107にて「Yes」と判定してステップS108に進み、目標残容量SOC*を「ステップS105又はステップS106にて設定された低側残容量Sd」に設定する。一方、車両10の現在位置が下り坂制御区間内でなければ、CPUはステップS107にて「No」と判定してステップS103に進み、目標残容量SOC*を標準残容量SOC*に設定する。
この結果、CPUが図示しない「車両走行制御ルーチン」を実行することにより、車両10の現在位置が下り坂制御区間でない場合には、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが標準残容量Snに近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。更に、車両10の現在位置が下り坂制御区間である場合には、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが「ステップS105又はステップS106にて設定された低側残容量Sd」に近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。
以上から理解されるように、下り坂制御区間において回生拡大制御が行われる場合であっても、下り坂開始地点における残容量SOCが十分に低下しているので、下り坂区間において残容量SOCが残容量上限値Smaxに達してしまう可能性を低くすることができる。従って、本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態の発生可能性を低下させることができる。
ECU40のCPUは、更に、図11に示すルーチンを所定の時間間隔にて繰り返し実行する。従って、所定のタイミングになると、CPUは図11のステップS110から処理を開始してステップS111に進み、車両10の走行予定経路及び渋滞情報を含む道路情報を取得する。次に、CPUはステップS112に進み、車両10の現時点における走行予定経路に「上述した渋滞区間条件を満足する渋滞区間(対象渋滞区間)」が含まれるか否かを判定する。
走行予定経路に渋滞区間が含まれていない場合、CPUはステップS112にて「No」と判定してステップS113に進み、目標残容量SOC*を標準残容量Snに設定する。その後、CPUはステップS119に進み、本ルーチンを一旦終了する。この結果、CPUが図示しない「車両走行制御ルーチン」を実行することにより、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが標準残容量Snに近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。
CPUがステップS112の処理を実行する時点において、走行予定経路に渋滞区間が含まれている場合、CPUはステップS112にて「Yes」と判定する。そして、CPUはステップS114に進み、その渋滞区間に対応するプレチャージ区間内に回生拡大制御が実行される地点が存在するか否かを判定(予測)する。より具体的には、CPUは、車両10の走行予定経路上であって車両10の現在位置から所定距離(例えば、数百メートル)以内の区間に、上述した目標減速終了位置が存在し、且つ、その目標減速終了位置が存在する場合にはその目標減速終了位置がプレチャージ区間内であるか否かを判定する。プレチャージ区間内に回生拡大制御が実行される地点が存在する場合、プレチャージ区間における回生拡大制御によって蓄電池31に充電される電力量が第2閾値電力量よりも大きいと推定することができる。
CPUは、プレチャージ区間内に回生拡大制御が実行される地点が存在しないと判定した場合、ステップS114からステップS115に進み、高側残容量Shを「標準残容量Snに所定値ΔShを加えた値(=Sn+ΔSh)」に設定し、ステップS117に進む。
これに対し、CPUは、渋滞区間内に回生拡大制御が実行される地点が存在すると判定した場合、ステップS114からステップS116に進み、高側残容量Shを「補正後の高側残容量Sh’(=(Sn+ΔSh)−ΔS2)」に設定し、ステップS117に進む。
CPUは、ステップS117にて、車両10の現在位置がプレチャージ区間内であるか否かを判定する。車両10の現在位置がプレチャージ区間内であれば、CPUはステップS117にて「Yes」と判定してステップS118に進み、目標残容量SOC*を「ステップS115又はステップS116にて設定された高側残容量Sh」に設定する。一方、車両10の現在位置がプレチャージ区間内でなければ、CPUはステップS117にて「No」と判定してステップS113に進み、目標残容量SOC*を標準残容量SOC*に設定する。
この結果、CPUが図示しない「車両走行制御ルーチン」を実行することにより、車両10の現在位置がプレチャージ区間でない場合には、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが標準残容量Snに近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。更に、車両10の現在位置がプレチャージ区間である場合には、車両10に要求される駆動力(トルク)が満足され且つ残容量SOCが「ステップS115又はステップS116にて設定された高側残容量Sh」に近づけられるように、第1電動機21、第2電動機22及び機関23が制御される。
以上から理解されるように、プレチャージ区間において回生拡大制御が行われる場合であっても、そのプレチャージ区間における残容量SOCが過剰に高くなっていないので、プレチャージ区間において残容量SOCが残容量上限値Smaxに達してしまう可能性を低くすることができる。従って、プレチャージ区間において、機関23から無駄な出力を発生させる可能性及び蓄電池31に回収できる電気エネルギーが回収できない事態が発生する可能性を低下させることができる。
更に、ECU40のCPUは、図12に示すルーチン(回生拡大制御ルーチン)を所定の時間間隔にて繰り返し実行する。なお、図12のルーチンが実行されている場合であっても、CPUは他のルーチンを実行するタイミングになると、当該他のルーチンを割込み処理により実行する。
所定のタイミングになると、CPUは図12のステップS120から処理を開始して、「車両10の現在位置」から「車両10の走行予定経路上にある直近の目標減速終了位置P0*」までの距離が所定距離以内になったか否かを判定する。この所定距離は、アクセルオフ誘導を行うタイミングよりも十分に前のタイミングとなる距離に設定されている。CPUは、ステップS121での判定が肯定判定されるまで、ステップS121の処理を繰り返す。
CPUは、ステップS121にて「Yes」と判定するとステップS122に進み、目標減速終了位置P0*及び目標減速終了車速V0*に基づいてアクセルオフ誘導を行う位置(アクセルオフ誘導位置)Psを演算する(図13を参照。)。
より具体的に述べると、前述したように、目標減速終了位置P0*は、車両が停止すると予測される位置又はカーブ走行中などにおいて車両の減速が終了すると予測される位置であり、学習により不揮発性メモリに登録されている。目標減速終了車速V0*は、例えば、目標減速終了位置P0*が停止位置である場合にはゼロであり、学習により不揮発性メモリに登録されている。
CPUは、目標減速終了位置P0*及び目標減速終了車速V0*に基づいて、図13に示した「目標ブレーキ位置Pb*及び目標ブレーキ車速Vb*」を演算する。目標ブレーキ位置Pb*は、車両10が目標減速終了位置P0*に到達したときの車速が目標減速終了車速V0*と一致するように、エネルギーを無駄に消費しない理想的な運転者(モデル運転者)が所定の減速度で車両を減速走行させた場合におけるブレーキペダル操作の開始位置に相当する。
従って、目標減速終了車速V0*が与えられれば、目標ブレーキ位置Pb*から目標減速終了位置P0*までの距離(以下「目標ブレーキ距離Db*」と称呼する。)及び目標ブレーキ車速Vb*は一意に定められる。そこで、ECU40は、目標減速終了車速V0*と、目標ブレーキ距離Db*及び目標ブレーキ車速Vb*のそれぞれと、の関係を予め求め、それを、ルックアップテーブルの形式にてROMに格納している。そして、CPUは、そのルックアップテーブルに実際の目標減速終了車速V0*を適用することにより、目標ブレーキ距離Db*及び目標ブレーキ車速Vb*を算出する。更に、CPUは、算出した目標ブレーキ距離Db*と、目標減速終了位置P0*と、から目標ブレーキ位置Pb*を算出する。
次に、CPUは、「回生拡大制御中に望まれる理想減速度Ge」と、目標ブレーキ車速Vb*と、現在の車両10の車速Vaと、に基づいて、その理想減速度Geで車両10を減速させるべき距離である回生拡大距離Deを以下のようにして求める。
理想減速度Geは、アクセルペダルオフ時に得られる減速度であって、回生拡大制御中以外の走行時(通常走行時)におけるアクセルペダルオフ時に得られる減速度よりも大きな減速度(絶対値が大きい負の加速度)に予め設定されている。具体的には、通常走行時におけるアクセルペダルオフ時の減速度は車速によって変化する。よって、CPUは、車速と理想減速度Geとの関係を規定するルックアップテーブルに、実際の車両10の車速Va及び目標ブレーキ車速Vb*の平均値を当該ルックアップテーブルの引数としての車速として適用することにより、理想減速度Geを求める。
以上から、目標ブレーキ車速Vb*及び理想減速度Geが求められるので、CPUは下記の2つの式に基づいて回生拡大距離De(図13を参照。)を求める。なお、下記の式において、a=−Geである。
Figure 0006269641
更に、CPUは、その回生拡大距離Deと目標ブレーキ位置Pb*とに基づいて、回生拡大制御を開始すべき位置(回生拡大制御開始位置)Pjを算出する。
アクセルオフ誘導を行うタイミングは、車両10が回生拡大制御開始位置Pjに到達する時刻Tの所定時間ts前に設定される。従って、CPUは、現在の車両10の車速Vaに時間tsを乗じた距離を誘導期間距離Dyとして求め、回生拡大制御開始位置Pjと誘導期間距離Dyとからアクセルオフ誘導開始位置Psを求める。
次に、CPUは図12のステップS123に進み、車両10の現在位置がアクセルオフ誘導開始位置Psに到達したか否かを判定する。CPUは、ステップS123での判定が肯定判定されるまで、ステップS123の処理を繰り返す。
ステップS123での判定が肯定判定されると、CPUはステップS124に進み、アクセルオフ誘導を開始する。次いで、CPUはステップS125に進み、アクセルオフ誘導の開始時点から時間tsが経過したか否かを判定する。CPUは、ステップS125での判定が肯定判定されるまで、ステップS125の処理を繰り返す。
アクセルオフ誘導の開始時点から時間tsが経過すると、CPUはステップS125にて「Yes」と判定してステップS126に進み、アクセルペダル54が開放されたか(アクセルオフされたか)否かを判定する。CPUは、ステップS126での判定が肯定判定されるまで、ステップS126の処理を繰り返す。
アクセルペダル54が開放されているか、又は、アクセルペダル54が開放されると、CPUはステップS126にて「Yes」と判定してステップS127に進み、回生拡大制御を開始する。より具体的に述べると、CPUは、車両10の実際の減速度が上述のようにして求めた理想減速度Geに一致するように、回生制動力を発生させる。
次に、CPUは車両10の現在位置が目標減速終了位置P0*に到達したか否かについて判定する。CPUは、ステップS128での判定が肯定判定されるまで、ステップS128の処理を繰り返す。なお、典型的には、運転者は回生拡大制御が実行されている途中でブレーキペダルを踏み込む。これにより、CPUは、ブレーキ操作量Bpに応じた要求回生制動力と等しい回生制動力を発生させ、且つ、ブレーキ操作量Bpに応じた要求摩擦制動力と等しい摩擦制動力を摩擦制動装置65により発生させる。
車両10の現在位置が目標減速終了位置P0*に到達すると、CPUはステップS128にて「Yes」と判定し、以下に述べるステップS129及びステップS130の処理を順に行い、ステップS131に進んで本ルーチンを一旦終了する。その後、CPUはステップS120に進む。
ステップS129:CPUは、アクセルオフ誘導を終了する。
ステップS130:CPUは、回生拡大制御を終了する。
以上、説明したように、本制御装置によれば、下り坂制御区間における回生拡大制御によって蓄電池31に充電される電力量が第1閾値電力量よりも大きいと推定される第1の場合(図10のステップS104の「Yes」との判定を参照。)、下り坂制御区間に設定される目標残容量SOC*が、下り坂制御区間における回生拡大制御によって蓄電池31に充電される電力量が第1閾値電力量よりも小さいと推定される場合(下り坂制御区間において回生拡大制御が行われないと予測される場合を含む。)に設定される目標残容量SOC*(即ち、低側残容量Sd=Sn−ΔSd)よりも第1調整幅ΔS1だけ小さい値に修正される(ステップS106)。
従って、プレユース区間において残容量SOCが十分に小さい値となるので、プレユース区間及び/又は下り坂区間(即ち、下り坂制御区間)を車両10が走行している期間において回生拡大制御が実行されたとしても、残容量SOCが残容量上限値Smaxに達する可能性が低下する。よって、下り坂区間の走行中に本来であれば蓄電池に回収できる電力を回収することができない事態が発生しないので、車両10の燃費をより向上することができる。
更に、本制御装置によれば、渋滞制御を行うプレチャージ区間おける回生拡大制御により蓄電池31に充電される電力量が第2閾値電力量よりも大きいと推定される第2の場合(図11のステップS114の「Yes」との判定を参照。)、プレチャージ区間に設定される目標残容量SOC*が、プレチャージ区間おける回生拡大制御により蓄電池31に充電される電力量が第2閾値電力量よりも小さいと推定される場合(プレチャージ区間において回生拡大制御が行われないと予測される場合を含む。)に設定される目標残容量SOC*(即ち、高側残容量Sh=Sn+ΔSh)よりも第2調整幅ΔS2だけ小さい値に修正される(ステップS116)。
従って、プレチャージ区間において回生拡大制御が実行されたとしても、残容量SOCが残容量上限値Smaxに達する可能性が低下する。よって、本来であれば蓄電池に回収できる電力を回収することができない事態が発生しないので、車両10の燃費をより向上することができる。
なお、本制御装置は、先読み支援制御として「下り坂制御及び渋滞制御」の両方を実行するようになっていたが、下り坂制御及び渋滞制御の何れか一方のみを実行してもよい。その場合、本制御装置が下り坂制御を実行し且つ渋滞制御を実行しない場合には、CPUは図10に示したルーチンを実行し、図11に示したルーチンを実行しない。これに対し、本制御装置が渋滞制御を実行し且つ下り坂制御を実行しない場合には、CPUは図11に示したルーチンを実行し、図10に示したルーチンを実行しない。
<実施形態の第1変形例>
次に、本発明の実施形態の第1変形例について説明する。上述した実施形態に係るハイブリッド車両の制御装置は、下り坂制御区間を車両10が走行している期間に回生拡大制御の実行が予測される場合、目標残容量SOC*として設定される低側残容量Sdを「標準残容量Snよりも所定値ΔSdだけ小さい値」に設定していた。
これに対し、第1変形例は、「下り坂制御区間を車両10が走行している期間に実行される回生拡大制御により蓄電池に充電される電力量の予測値(以下、「第1予測回生電力量」と称呼する。)が電力量閾値よりも大きいと予測される場合に目標残容量SOC*として設定される低側残容量Sdを「標準残容量Snよりも所定値ΔSdと所定値(第1調整幅)ΔS1aの和だけ小さい値」に設定し且つその所定値ΔS1aを第1予測回生電力量の大きさに応じて調整する点において、上記実施形態と相違する。より具体的に述べると、第1変形例は、第1予測回生電力量が大きいほど前記所定値ΔS1aを大きくする。換言すると、第1変形例は、下り坂制御において設定される目標残容量SOC*の値を、残容量下限値Sminより大きい範囲において第1予測回生電力量が大きいほど小さくする。
更に、詳細には、CPUは、以下に列挙するパラメータX1乃至X5のうちの一つを指標値Xとして取得し、その指標値Xが大きいほど第1予測回生電力量が大きいと推定する。そして、CPUは、指標値Xが大きいほど上記所定値ΔS1aを大きくする。即ち、CPUは、指標値Xが大きいほど低側残容量Sdを小さくする。なお、指標値Xは、車両10が下り坂制御区間を走行する期間において実行される回生拡大制御により蓄電池31に充電される電力量に相関を有する(その電力量が大きいほど大きくなる)第1指標値である。
(A1)下り坂制御区間において実行されると予想される回生拡大制御の回数X1。即ち、下り坂制御区間内の、不揮発性メモリに登録されている目標減速終了位置P0*の個数X1。
(A2)下り坂制御区間において実行されると予想される回生拡大制御のそれぞれに対応する「回生拡大距離Deと目標ブレーキ距離Db*との合算距離」の当該下り坂制御区間における合計距離X2。
(A3)車両10の現在の車速と不揮発性メモリに登録されている目標減速終了車速V0*との差が閾値Vthを超えている回生拡大制御の、下り坂制御区間における回数X3。なお、閾値Vthは、車両10において回生電力量が所定量以上となるような「車速と目標減速終了車速との差」の最小値に基づいて定める。
(A4)車両10のイグニッション・キー・スイッチ(又は、ハイブリッド車両のパワースイッチ)がオンされてからオフされるまでの1回のトリップにおいて実行される回生拡大制御の回数の平均値aを、1回のトリップにおける車両10の走行距離の平均値bにより除した値X4(=a/b)。
(A5)1回のトリップにおいて実行される回生拡大制御のそれぞれに対応する「回生拡大距離Deと目標ブレーキ距離Db*との合算距離」の合計距離の平均値cを、1回のトリップにおける車両10の走行距離の平均値bにより除した値X5(=c/b)。
なお、値X4及びX5は、運転者の運転特性(ブレーキ操作を繰り返す傾向)を示す。
(具体的作動)
第1変形例のCPUは、図10に代わる図14にフローチャートにより示したルーチンを所定の時間間隔にて繰り返し実行する。なお、図14に示したステップのうち図10に示したステップと同一の処理を行うためのステップには、図10と同じ符号を付し、説明を省略する。
CPUは、図14のステップS102にて「Yes」と判定してステップS142に進むと、指標値X(上記指標値X1及びX5のうちの一つ)が閾値Xth以上であるか否かを判定する。指標値Xが閾値Xth以上である場合、下り坂制御区間における回生拡大制御により蓄電池31に充電される電力量が第1閾値電力量よりも大きいと推定することができる。
CPUは、指標値Xが閾値Xth以上でない場合、ステップS142にて「No」と判定してステップS105に進み、低側残容量Sdを「標準残容量Snから一定値ΔSd(例えば、蓄電池31の最大充電量の5%)を減じた値」に設定する。この場合、第1調整幅ΔS1aは「0」であると言うこともできる。
これに対し、指標値Xが閾値Xth以上であると、CPUはステップS142にて「Yes」と判定してステップS143に進み、関数fに指標値Xを代入することにより第1調整幅ΔS1a(=f(X))を算出する。関数fは単調に増加する関数であり、指標値Xが大きいほと値f(X)は大きくなる。従って、第1調整幅ΔS1aは指標値Xが大きいほど大きくなる。
次に、CPUはステップS144に進み、低側残容量Sdを「標準残容量Snから、一定値ΔSdを減じた値(Sn−ΔSd)から第1調整幅ΔS1aを減じた値(=(Sn−ΔSd)−ΔS1a))」に設定する。この結果、指標値Xが閾値Xth以上であって、下り坂制御区間を車両10が走行している期間において実行される回生拡大制御により蓄電池31に充電される電力量の予測値(即ち、第1予測回生電力量)が大きいほど、第1調整幅ΔS1aは大きくなり、下り坂制御において設定される目標残容量SOC*は小さくなる。
従って、第1変形例によれば、車両10が下り坂制御区間を走行している期間に残容量SOCが回生拡大制御によって残容量上限値Smaxに達してしまう可能性を一層低くすることができる。よって、本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態の発生可能性をより低下させることができる。
<実施形態の第2変形例>
次に、本発明の実施形態の第2変形例について説明する。上述した実施形態に係るハイブリッド車両の制御装置は、渋滞区間の前のプレチャージ区間を車両10が走行している期間において回生拡大制御の実行が予測される場合、目標残容量SOC*として設定される高側残容量Shを「標準残容量Snよりも所定値ΔShだけ大きい値」に設定していた。
これに対し、第2変形例は、「プレチャージ区間を車両10が走行している期間に実行される回生拡大制御により蓄電池に充電される電力量の予測値(以下、「第2予測回生電力量」と称呼する。)が電力量閾値よりも大きいと予測される場合に目標残容量SOC*として設定される高側残容量Shを「標準残容量Snに所定値ΔShを加えた値から所定値(第2調整幅)ΔS2aを減じた値」に設定し且つその所定値ΔS2aを第2予測回生電力量の大きさに応じて調整する点において、上記実施形態と相違する。より具体的に述べると、第2変形例は、第2予測回生電力量が大きいほど前記所定値ΔS2aを大きくする。換言すると、第2変形例は、下り坂制御において設定される目標残容量SOC*の値を、標準残容量Snよりも大きい範囲において第2予測回生電力量が大きいほど小さくする。
更に、詳細には、CPUは、以下に列挙するパラメータの一つを指標値Yとして取得し、その指標値Yが大きいほど第2予測回生電力量が大きいと推定する。そして、CPUは、指標値Yが大きいほど上記所定値ΔS2aを大きくする。即ち、CPUは、指標値Yが大きいほど高側残容量Shを小さくする。なお、指標値Yは、車両10がプレチャージ区間を走行している期間において実行される回生拡大制御により蓄電池31に充電される電力量に相関を有する(その電力量が大きいほど大きくなる)第2指標値である。
(B1)プレチャージ区間において実行されると予想される回生拡大制御の回数Y1。換言すると、プレチャージ区間内の、不揮発性メモリに登録されている目標減速終了位置P0*の個数Y1。
(B2)プレチャージ区間において実行されると予想される回生拡大制御のそれぞれに対応する「回生拡大距離Deと目標ブレーキ距離Db*との合算距離」の当該プレチャージ区間における合計距離Y2。
(B3)車両10の現在の車速と不揮発性メモリに登録されている目標減速終了車速V0*との差が閾値Vthを超えている回生拡大制御の、プレチャージ区間における回数Y3。なお、閾値Vthは、車両10において回生電力量が所定量以上となるような「車速と目標減速終了車速との差」の最小値に基づいて定める。
(B4)値X4と同じ値Y4。
(B5)値X5と同じ値Y5。
(具体的作動)
第2変形例のCPUは、図11に代わる図15にフローチャートにより示したルーチンを所定の時間間隔にて繰り返し実行する。なお、図15に示したステップのうち図11に示したステップと同一の処理を行うためのステップには、図11と同じ符号を付し、説明を省略する。
CPUは、図15のステップS112にて「Yes」と判定してステップS152に進むと、指標値Y(上記指標値Y1及びY5のうちの一つ)が閾値Yth以上であるか否かを判定する。指標値Yが閾値Yth以上である場合、プレチャージ区間における回生拡大制御により蓄電池31に充電される電力量が第2閾値電力量よりも大きいと推定することができる。
CPUは、指標値Yが閾値Yth以上でない場合、ステップS152にて「No」と判定してステップS115に進み、高側残容量Shを「標準残容量Snに一定値ΔSh(例えば、蓄電池31の最大充電量の5%)を加えた値」に設定する。この場合、第2調整幅ΔS2aは「0」であると言うこともできる。
これに対し、指標値Yが閾値Yth以上であると、CPUはステップS152にて「Yes」と判定してステップS153に進み、関数gに指標値Yを代入することにより第2調整幅ΔS2a(=g(Y))を算出する。関数gは単調に増加する関数であり、指標値Yが大きいほと値g(Y)は大きくなる。従って、第2調整幅ΔS2aは指標値Yが大きいほど大きくなる。但し、第2調整幅ΔS2aが一定値ΔSh以上になる場合、CPUは第2調整幅ΔS2aを一定値ΔShに設定する。
次に、CPUはステップS154に進み、高側残容量Shを「標準残容量Snに一定値ΔShを加えた値(Sn+ΔSh)から第2調整幅ΔS2aを減じた値(=(Sn+ΔSh)−ΔS2a)」に設定する。この結果、指標値Yが閾値Yth以上であって、プレチャージ区間を車両10が走行している場合に期間において実行される回生拡大制御により蓄電池31に充電される電力量の予測値(即ち、第2予測回生電力量)が大きいほど、第2調整幅ΔS2aは大きくなり、プレチャージ区間において設定される目標残容量SOC*は標準残容量Snよりも大きい範囲において小さくなる。
従って、第2変形例によれば、車両10がプレチャージ区間を走行している期間に残容量SOCが回生拡大制御によって残容量上限値Smaxに達してしまう可能性を一層低くすることができる。従って、プレチャージ区間における機関23の無駄な運転を省略でき且つ本来は蓄電池31に回収できる可能性がある電気エネルギーが回収できない事態の発生可能性をより低下させることができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、本発明は、第1変形例と第2変形例とを組み合わせた変形例によっても実施することができる。
更に、第1変形例は、上記X1乃至X5のうちの2以上の指標値に基づいて第1調整幅ΔS1aを変更してもよい。例えば、指標値XとしてX1及びX2を用いる場合、図16に示したように、指標値X1が大きいほど第1調整幅ΔS1aが大きくなり、且つ、指標値X2が大きいほど第1調整幅ΔS1aが大きくなるように、第1調整幅ΔS1aを決定してもよい。
同様に、第2変形例は、上記Y1乃至Y5のうちの2以上の指標値に基づいて第2調整幅ΔS2aを変更してもよい。例えば、指標値YとしてY1及びY2を用いる場合、図16に示したように、指標値Y1が大きいほど第2調整幅ΔS2aが大きくなり、且つ、指標値Y2が大きいほど第2調整幅ΔS2aが大きくなるように、第2調整幅ΔS2aを決定してもよい。
10…車両、21…第1電動機、22…第2電動機、23…内燃機関、24…動力分割機構、31…蓄電池、32…昇圧コンバータ、33…第1インバータ、34…第2インバータ、40…ECU。

Claims (2)

  1. 車両の駆動源としての内燃機関及び同駆動源としての電動機、並びに、前記電動機に電力を供給する蓄電池を搭載し、前記電動機を用いて回生制動を行うとともに同回生制動により発生した電力を前記蓄電池に充電可能であり且つ前記内燃機関の出力を用いて発電した電力を前記蓄電池に充電可能に構成されたハイブリッド車両に適用され、
    前記車両に要求される要求駆動力を満たすように且つ前記蓄電池の残容量が標準残容量に設定された目標残容量に近づくように前記内燃機関及び電動機を制御する制御部を備え、
    前記制御部は、
    前記車両の走行予定経路及び同車両の位置に関する情報を取得する情報取得手段と、
    前記車両の走行予定経路に関する情報に基づいて同走行予定経路に所定の下り坂区間条件を満足する下り坂区間が含まれると判定した場合に同下り坂区間の開始地点よりも所定の第1距離だけ手前にある下り坂制御開始地点から同下り坂区間の終了地点までの第1区間のうちの少なくとも同下り坂制御開始地点から同下り坂区間の開始地点までのプレユース区間を含む区間を前記車両が走行するとき前記目標残容量を前記標準残容量よりも小さい低側残容量に変更する下り坂制御、及び、
    前記車両の走行予定経路に関する情報に基づいて前記走行予定経路に所定の渋滞区間条件を満足する渋滞区間が含まれると判定した場合に同渋滞区間の開始地点よりも所定の第2距離だけ手前にある渋滞制御開始地点から同渋滞区間の開始地点までの間の第2区間を前記車両が走行するとき前記目標残容量を前記標準残容量よりも大きい高側残容量に変更する渋滞制御、
    のうちの少なくとも一方の制御を先読み支援制御として実行する支援制御手段と、
    前記車両の位置に関する情報に基づいて、前記車両が減速すると予測される場合には、前記減速が終了すると予測される位置を目標減速終了位置として設定し、前記目標減速終了位置が設定された車両の減速時には前記目標減速終了位置が設定されていない車両の減速時に比べて前記回生制動により前記蓄電池に充電される電力量が多くなるように前記回生制動により車両を減速させる制御である回生拡大制御を実行する回生拡大制御手段と、
    を備える、ハイブリッド車両の制御装置であって、
    前記制御部は、
    前記支援制御手段が前記先読み支援制御として前記下り坂制御を実行するように構成されている場合において前記車両が前記第1区間を走行するときに前記回生拡大制御により前記蓄電池に充電される電力量が第1閾値電力量よりも大きいと推定される第1の場合には前記目標残容量を前記低側残容量よりも第1調整幅だけ小さい値に修正し、
    前記支援制御手段が前記先読み支援制御として前記渋滞制御を実行するように構成されている場合において前記車両が前記第2区間を走行するときに前記回生拡大制御により前記蓄電池に充電される電力量が第2閾値電力量よりも大きいと推定される第2の場合には前記目標残容量を前記高側残容量よりも第2調整幅だけ小さい値に修正する、目標残容量修正手段を備えた、
    ハイブリッド車両の制御装置。
  2. 請求項1に記載のハイブリッド車両の制御装置において、
    前記目標残容量修正手段は、
    前記第1の場合に前記車両が前記第1区間を走行する期間において前記回生拡大制御の実行により前記蓄電池に充電される電力量に相関を有する第1指標値が大きいほど、前記第1調整幅をより大きい値に変更し、
    前記第2の場合に前記車両が前記第2区間を走行する期間において前記回生拡大制御の実行により前記蓄電池に充電される電力量に相関を有する第2指標値が大きいほど、前記第2調整幅をより大きい値に変更する、
    ように構成された、ハイブリッド車両の制御装置。
JP2015226394A 2015-11-19 2015-11-19 ハイブリッド車両の制御装置 Active JP6269641B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015226394A JP6269641B2 (ja) 2015-11-19 2015-11-19 ハイブリッド車両の制御装置
US15/356,254 US10155510B2 (en) 2015-11-19 2016-11-18 Control device for hybrid vehicle
DE102016122254.2A DE102016122254A1 (de) 2015-11-19 2016-11-18 Steuerungsvorrichtung für ein Hybridfahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226394A JP6269641B2 (ja) 2015-11-19 2015-11-19 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2017094789A JP2017094789A (ja) 2017-06-01
JP6269641B2 true JP6269641B2 (ja) 2018-01-31

Family

ID=58693720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226394A Active JP6269641B2 (ja) 2015-11-19 2015-11-19 ハイブリッド車両の制御装置

Country Status (3)

Country Link
US (1) US10155510B2 (ja)
JP (1) JP6269641B2 (ja)
DE (1) DE102016122254A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187530B2 (ja) * 2014-04-30 2017-08-30 トヨタ自動車株式会社 車両の駆動制御システム
JP6421742B2 (ja) * 2015-11-27 2018-11-14 株式会社デンソー 車両制御装置
US10843680B2 (en) * 2016-06-07 2020-11-24 Lenovo (Singapore) Pte. Ltd. Managing battery and engine power to propel vehicle based on upcoming road feature
JP6344429B2 (ja) * 2016-06-09 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR102638561B1 (ko) * 2016-11-02 2024-02-20 주식회사 에이치엘클레무브 주차지원시스템 및 주차지원방법
JP2018083574A (ja) * 2016-11-25 2018-05-31 株式会社デンソー 車両の走行制御装置
KR20180067262A (ko) * 2016-12-12 2018-06-20 현대자동차주식회사 하이브리드 차량의 주행 제어 장치 및 방법
JP6688430B2 (ja) * 2017-02-21 2020-04-28 日立オートモティブシステムズ株式会社 ハイブリッド車両の制御装置及びハイブリッド車両
JP6546959B2 (ja) * 2017-06-14 2019-07-17 本田技研工業株式会社 車両
US10202048B2 (en) * 2017-06-28 2019-02-12 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for adjusting operation of a vehicle according to HOV lane detection in traffic
KR102485380B1 (ko) * 2017-11-30 2023-01-05 현대자동차주식회사 차량용 알터네이터 제어 장치 및 그 방법
JP7063752B2 (ja) * 2018-07-13 2022-05-09 日野自動車株式会社 充放電制御装置
WO2020090099A1 (ja) * 2018-11-01 2020-05-07 ヤマハ発動機株式会社 動力源付きリーン車両用エネルギー量制御装置
WO2021086374A1 (en) * 2019-10-31 2021-05-06 Cummins Inc. Method and system for controlling a pole switch in an electric motor
KR20210152209A (ko) * 2020-06-08 2021-12-15 현대자동차주식회사 하이브리드 차량의 제어 장치 및 방법
US11718298B2 (en) * 2020-10-21 2023-08-08 Cummins Inc. Methods and systems for coordinating predictive cruise control, engine-off coasting, and hybrid power split
JP2022084354A (ja) * 2020-11-26 2022-06-07 トヨタ自動車株式会社 車両制御装置
US11614335B2 (en) * 2020-12-22 2023-03-28 Nissan North America, Inc. Route planner optimization for hybrid-electric vehicles
KR102562446B1 (ko) * 2021-07-14 2023-08-01 현대위아 주식회사 포탑 구동 제어시스템 및 제어방법
CN117411054B (zh) * 2023-10-17 2024-03-12 宙斯储能科技(广东)有限公司 一种梯次利用储能控制装置及控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050125B2 (ja) 1996-05-20 2000-06-12 トヨタ自動車株式会社 動力出力装置および動力出力装置の制御方法
US6131180A (en) 1997-11-03 2000-10-10 Ericsson, Inc. Trellis coded modulation system
JP3654048B2 (ja) * 1999-05-20 2005-06-02 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP2004246455A (ja) 2003-02-12 2004-09-02 Alpine Electronics Inc 操作画面表示装置
JP3933056B2 (ja) * 2003-02-14 2007-06-20 アイシン・エィ・ダブリュ株式会社 ハイブリッド車両の駆動制御システム
JP4100335B2 (ja) 2003-11-28 2008-06-11 株式会社エクォス・リサーチ 駆動制御装置、及びハイブリッド車両
JP5399616B2 (ja) 2007-05-08 2014-01-29 日産自動車株式会社 ハイブリッド車両の充電制御装置
JP4909863B2 (ja) * 2007-10-04 2012-04-04 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2009126450A (ja) 2007-11-27 2009-06-11 Toyota Motor Corp ハイブリッド車及びハイブリッド車の制御方法
JP2011183962A (ja) 2010-03-09 2011-09-22 Toyota Motor Corp 充電制御システム
JP2013002850A (ja) 2011-06-13 2013-01-07 Nissan Motor Co Ltd ナビゲーション装置
JP5811991B2 (ja) 2012-11-30 2015-11-11 トヨタ自動車株式会社 運転支援装置
JP5811148B2 (ja) * 2013-07-11 2015-11-11 トヨタ自動車株式会社 回生発電機付車両

Also Published As

Publication number Publication date
US10155510B2 (en) 2018-12-18
DE102016122254A1 (de) 2017-05-24
JP2017094789A (ja) 2017-06-01
US20170144650A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6269641B2 (ja) ハイブリッド車両の制御装置
JP6249003B2 (ja) ハイブリッド車両の制御装置
JP6344429B2 (ja) ハイブリッド車両の制御装置
JP6369411B2 (ja) ハイブリッド車両の制御装置
CN106364477B (zh) 混合动力车辆的控制装置
JP6330745B2 (ja) ハイブリッド車両の制御装置
US20170120892A1 (en) Vehicle control apparatus
JP6304193B2 (ja) 車両制御装置
WO2015004782A1 (ja) ハイブリッド車両
JP4581988B2 (ja) ハイブリッド車両の制御装置
JP5838717B2 (ja) ハイブリッド車両の駆動装置
US20150019097A1 (en) Control system for vehicle
JP2017024571A (ja) ハイブリッド車両の制御装置
JP2012224238A (ja) ハイブリッド車両の制御装置
JP6648644B2 (ja) ハイブリッド車両の制御装置
JP2007185986A (ja) 車両の制御装置
CN105263772A (zh) 车辆的控制装置
WO2017086435A1 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
WO2017086471A1 (ja) ハイブリッド車両及びその制御方法
JP2017087799A (ja) 車両制御装置
JP2017035964A (ja) ハイブリッド車両の制御装置
JP7472803B2 (ja) 電動車両の制御装置、電動車両、および、電動車両の制御方法
JP2014114771A (ja) 車両の電力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151