CN110176498B - 一种低导通电阻的沟槽碳化硅功率器件及其制造方法 - Google Patents

一种低导通电阻的沟槽碳化硅功率器件及其制造方法 Download PDF

Info

Publication number
CN110176498B
CN110176498B CN201910366654.9A CN201910366654A CN110176498B CN 110176498 B CN110176498 B CN 110176498B CN 201910366654 A CN201910366654 A CN 201910366654A CN 110176498 B CN110176498 B CN 110176498B
Authority
CN
China
Prior art keywords
layer
type
metal
groove
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910366654.9A
Other languages
English (en)
Other versions
CN110176498A (zh
Inventor
魏家行
付浩
赵航波
刘斯扬
孙伟锋
陆生礼
时龙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910366654.9A priority Critical patent/CN110176498B/zh
Publication of CN110176498A publication Critical patent/CN110176498A/zh
Application granted granted Critical
Publication of CN110176498B publication Critical patent/CN110176498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种低导通电阻的沟槽碳化硅功率器件及其制造方法。其元胞结构包括,N型衬底,N型外延层,沟槽,沟槽侧壁设有石墨烯层,沟槽内部设有栅氧化层和多晶硅栅,多晶硅栅上方设有钝化层,沟槽两侧设有P型体区、N型源区和P型体接触区,石墨烯层下方设有P型屏蔽层,源区上表面设有源极金属,衬底下表面设有漏极金属。本发明使用电子束法,以金属和碳源气体辅助,在沟槽侧壁生长石墨烯层。本发明特征在于,沟槽侧壁的石墨烯层,降低了导通电阻。石墨烯层下方的屏蔽层,屏蔽了在器件关断状态时流过石墨烯层的电流,提升器件关断特性。使用了金属镍和碳源气体辅助生长石墨烯层,提高了石墨烯层的均匀性、厚度和生长速率。

Description

一种低导通电阻的沟槽碳化硅功率器件及其制造方法
技术领域
本发明属于功率半导体器件结构设计及制造技术领域,同时涉及一种二维材料在宽禁带半导体衬底上的制造技术,具体而言是一种具有低导通电阻特性的新型沟槽碳化硅功率器件及其制造方法。
背景技术
碳化硅拥有优异的电学和热学特性,被认为是最有希望在功率电子领域替代硅的第三代半导体材料。尽管碳化硅器件的制造工艺逐渐成熟,并已经实现了部分产品的商业化,但由于碳化硅半导体与二氧化硅氧化层之间存在大量界面态,导致碳化硅功率器件的沟道电子迁移率大幅降低,不能发挥碳化硅材料的全部性能。石墨烯是一种具有高电子迁移率的二维电子材料,可以直接生长在碳化硅衬底上,将石墨烯应用于碳化硅功率器件领域,可以大幅降低碳化硅功率器件的导通电阻,但会增大器件的关断电流,影响器件的关断特性。而且,使用传统的碳化硅外延生长法制造石墨烯层,需要1400℃以上的高温环境,与碳化硅功率器件的制造工艺不兼容,而化学气相沉积法又涉及到石墨烯层的湿法转移,工艺难度大而且容易引入污染。
发明内容
本发明针对上述问题,提出了一种与现有碳化硅功率器件制造工艺兼容,既可以降低导通电阻又不影响器件击穿及关断特性的低导通电阻的沟槽碳化硅功率器件及其制造方法。
本发明采用的技术方案如下:
本发明所述的一种低导通电阻的沟槽碳化硅功率器件,包括:N型衬底,在N型衬底的一个表面上设有漏极金属,在N型衬底的另一个表面上设有N型外延层,在N型外延层上设有P型体区,在P型体区上设有N型源区和P型体接触区且P型体接触区位于N型源区的外侧,在N型源区和P型体接触区上连接有源极金属,在N型源区设有沟槽且所述沟槽始于N型源区表面、深及N型外延层内,在沟槽的内壁及底部设有栅氧化层,在栅氧化层内填充多晶硅并形成多晶硅栅,在多晶硅栅上设有钝化层并用于隔离多晶硅栅和源极金属,在栅氧化层侧壁外侧设有石墨烯层,在石墨烯层和栅氧化层的底部下方设有P型屏蔽层,所述钝化层向外侧延伸并覆盖石墨烯层的顶部。
本发明所述的制造方法:
步骤1取一个N型衬底,使用溅射工艺,在N型衬底的一个表面上制作漏极金属,在N型衬底的另一个表面上附上碳化硅以形成N型外延层,使用刻蚀工艺在N型外延层上的表面形成沟槽,
步骤2使用离子注入工艺在沟槽底部形成P型屏蔽层,
步骤3使用溅射工艺和刻蚀工艺,在沟槽侧壁上形成一层能够溶解碳的金属,
步骤4用高能电子束轰击沟槽侧壁,使碳化硅表面的硅碳键断裂,并在能够溶解碳的金属层产生500℃-1200℃的局部高温,碳化硅表面硅碳键断裂产生的碳原子和碳源气体中的碳原子融入能够溶解碳的金属,自然降温使能够溶解碳的金属中的C原子析出,在沟槽侧壁上形成石墨烯层,然后,使用RIE刻蚀技术,刻蚀掉沟槽底部和能够溶解碳的金属层内侧的石墨烯层,再腐蚀去掉能够溶解碳的金属层,
步骤5使用化学气相沉积工艺在沟槽侧壁和底部形成栅氧化层;使用化学气相沉积工艺在沟槽内沉积多晶硅并形成多晶硅栅;使用离子注入工艺在沟槽两侧形成N型源区、P型体区和P型体接触区;用化学气相沉积工艺在多晶硅栅上方形成隔离钝化层;最后,使用溅射工艺分别在N型源区和P型体接触区上表面形成源极金属。
与现有器件结构及制造技术相比,本发明具有如下优点:
(1)在导通状态下,沟槽侧壁的石墨烯层成为电子传输的主要路径,因为石墨烯的电子迁移率高、电子饱和漂移速度快,所以器件导通电阻大幅降低,如图3所示,可以看出本发明器件的电流传输能力相较于常规器件明显提高。然而,由于石墨烯的导带和价带通过狄拉克点相连,所以石墨烯没有禁带,石墨烯层中的主要载流子会随漏压增大,逐渐由电子转换为空穴,最终导致器件无法关断。本发明器件利用沟槽结构导电沟道垂直的特点,在石墨烯层下设有P型屏蔽层,既不影响器件的正常的导通,又可以在器件关断时阻断石墨烯层与N型外延层的传输路径。同时利用P型屏蔽层与N型漂移区形成如图3所示的耗尽层,其中所形成的耗尽层边界如图3中虚线13所示,该耗尽层随反向漏压增大,逐渐向P型屏蔽层四周扩展,可以屏蔽石墨烯层下方电场,防止石墨烯层的主要载流子由电子转换为空穴,提高器件的关断特性
(2)使用高能电子束轰击碳化硅沟槽侧壁,高能电子使碳硅键断裂,沟槽侧壁表面碳原子发生重构,形成石墨烯层。电子束法制造石墨烯层,相较于化学气相沉积生长石墨烯层的方法,不需要再进行石墨烯层的湿法转移,形成的石墨烯层与衬底的贴合度高,接触势垒小。相较于传统的外延生长法,不需要过高的温度和真空度,可以精确控制石墨烯层的生长位置,与现有碳化硅功率器件制造工艺兼容。在进行电子束轰击前,本发明将金属镍沉积在沟槽侧壁,并在生长腔中通入碳源气体。在电子束轰击期间,沟槽侧壁局部温度升高,利用金属镍对碳原子溶解度高的特点,碳硅键断裂后的碳原子和碳源气体中的碳原子溶解进金属镍中。在电子束轰击后降温,碳原子将自然析出金属镍并在沟槽侧壁形成石墨烯层。相较于传统的电子束法,使用金属镍辅助,可使石墨烯层生长的更均匀,使用碳源气体辅助可以增加金属镍中的碳原子浓度,生长出更厚的石墨烯层。
附图说明
图1是常规沟槽碳化硅功率半导体器件元胞结构剖面图。
图2是本发明的低导通电阻沟槽碳化硅功率半导体器件元胞结构剖面图。
图3是本发明的低导通电阻沟槽碳化硅功率半导体器件P型屏蔽层与N型外延层在石墨烯层下方形成的耗尽层示意图。
图4是本发明的低导通电阻沟槽碳化硅功率半导体器件元胞结构在沟槽中部的剖面图。
图5是本发明器件与常规沟槽碳化硅功率半导体器件在栅压10V时的电流电压曲线图。
图6是本发明制造方法在碳化硅外延层上表面使用刻蚀工艺形成沟槽的示意图。
图7是本发明制造方法使用离子注入工艺在沟槽底部形成P型屏蔽层的示意图。
图8是本发明制造方法使用溅射和刻蚀工艺在沟槽侧壁形成镍层的示意图。
图9是本发明制造方法在镍和碳源气体辅助下,使用电子束工艺在沟槽侧壁形成石墨烯层的示意图。
图10是本发明制造方法使用刻蚀工艺去掉镍层的示意图。
图11是本发明制造方法使用化学气相沉积工艺在沟槽侧壁和底部形成栅氧化层的示意图。
图12是本发明制造方法使用化学气相沉积工艺在沟槽内形成多晶硅栅的示意图。
图13是本发明制造方法使用离子注入工艺在沟槽两侧形成N型源区、P型体区和P型体接触区的示意图。
图14是本发明制造方法使用化学气相沉积工艺在多晶硅栅上方形成隔离钝化层的示意图。
图15是本发明制造方法使用溅射工艺在N型源区和P型体接触区上表面和N型衬底下表面形成源极金属和漏极金属的示意图。
具体实施方式:
实施例1
一种低导通电阻的沟槽碳化硅功率器件,如图2所示,包括:N型衬底1,在N型衬底1的一个表面上设有漏极金属10,在N型衬底1的另一个表面上设有N型外延层2,在N型外延层2上设有P型体区5,在P型体区5上设有N型源区7和P型体接触区6且P型体接触区6位于N型源区7的外侧,在N型源区7和P型体接触区6上连接有源极金属9,在N型源区7设有沟槽且所述沟槽始于N型源区7表面、深及N型外延层2内,在沟槽的内壁及底部设有栅氧化层3,在栅氧化层3内填充多晶硅并形成多晶硅栅4,在多晶硅栅4上设有钝化层8并用于隔离多晶硅栅4和源极金属9,其特征在于,在栅氧化层3侧壁外侧设有石墨烯层12,在石墨烯层12和栅氧化层3的底部下方设有P型屏蔽层11,所述钝化层8向外侧延伸并覆盖石墨烯层12的顶部。其中,石墨烯层12的厚度为5~15nm。
实施例2
一种低导通电阻的沟槽碳化硅功率器件的制造方法,
步骤1如图6所示,取一个N型衬底1,在N型衬底1的另一个表面上附上碳化硅以形成N型外延层2,使用刻蚀工艺在N型外延层2上的表面形成沟槽,
步骤2如图7所示,使用离子注入工艺,在沟槽底部形成浓度为10-4-10-6cm-3的P型屏蔽层11,
步骤3使用溅射工艺和刻蚀工艺,在沟槽侧壁上形成一层能够溶解碳的金属,
步骤4使用高能电子束轰击沟槽侧壁,使碳化硅表面的硅碳键断裂,并在能够溶解碳的金属层产生500℃-1200℃的局部高温,碳化硅表面硅碳键断裂产生的碳原子和碳源气体中的碳原子融入能够溶解碳的金属,自然降温(可以降温至室温,例如:降温至25℃,维持20~30分钟)使溶解碳的金属中的C原子完全析出,在沟槽侧壁上形成石墨烯层12,然后,使用RIE刻蚀技术,刻蚀掉沟槽底部和能够溶解碳的金属层内侧的石墨烯层,再腐蚀去掉能够溶解碳的金属层,
步骤5使用化学气相沉积工艺在沟槽侧壁和底部形成栅氧化层3;使用化学气相沉积工艺在沟槽内沉积多晶硅并形成多晶硅栅4;使用离子注入工艺在沟槽两侧形成N型源区7、P型体区5和P型体接触区6;用化学气相沉积工艺在多晶硅栅4上方形成隔离钝化层8;最后,使用溅射工艺分别在N型源区7和P型体接触区6上表面形成源极金属9,在N型衬底1的一个表面上制作漏极金属10。
在本实施例中,在完成步骤3操作后,向反应室内通入10~20分钟氩气后关闭氩气阀,抽取反应室真空至10-4-10-6Torr,再向反应室中充入甲烷气体,使用高能电子束轰击沟槽侧壁,使碳化硅表面的硅碳键断裂,并在能够溶解碳的金属层产生500℃-1200℃的局部高温后,甲烷气体中的碳原子与碳化硅表面硅碳键断裂产生的碳原子一起融入能够溶解碳的金属。其中,氩气的通入速率为10-40L/min,甲烷气体的充入速率为0.5-10L/min。
发射高能电子束的电子枪发射电压设为10-30kV,入射角度为15°~30°。
能够溶解碳的金属很多,本实施例将能够溶解碳的金属选择为镍,能够溶解碳的金属层为镍层12.1,镍层12.1的厚度为20-100nm。
本发明的工作原理和工作过程如下:
本发明提出的一种低导通电阻的沟槽碳化硅功率器件,其元胞结构包括,N型衬底,N型外延层,沟槽,沟槽侧壁设有石墨烯层,沟槽内部设有栅氧化层和多晶硅栅,多晶硅栅上方设有钝化层,沟槽两侧设有P型体区、N型源区和P型体接触区,沟槽下方设有P型屏蔽层,源区上表面设有源极金属,衬底下表面设有漏极金属。沟槽侧壁设有可被掺杂的石墨烯层,可以大幅降低器件的导通电阻,提高器件的电流传输能力。由于石墨烯的导带和价带通过狄拉克点相连,所以石墨烯没有禁带,石墨烯层中的主要载流子会随漏压增大,逐渐由电子转换为空穴,最终导致器件无法关断。石墨烯层下方设有P型屏蔽层,在器件处于关断状态时屏蔽石墨烯层的电流,提升器件关断特性。
本发明使用高能电子束轰击沟槽侧壁,以金属镍和碳源气体共同辅助,在沟槽侧壁生长石墨烯层。在进行电子束轰击前,将金属镍沉积在沟槽侧壁,并在生长腔中通入碳源气体。在电子束轰击期间,沟槽侧壁局部温度升高,由于金属镍对碳原子溶解度高,碳硅键断裂后的碳原子和碳源气体中的碳原子溶解进金属镍中。在电子束轰击后降温,碳原子将自然析出金属镍并在沟槽侧壁形成石墨烯层。相较于传统的电子束法,使用金属镍辅助,可使石墨烯层生长的更均匀,使用碳源气体辅助可以增加金属镍中的碳原子浓度,生长更厚的石墨烯层。

Claims (8)

1.一种低导通电阻的沟槽碳化硅功率器件,包括:N型衬底(1),在N型衬底(1)的一个表面上设有漏极金属(10),在N型衬底(1)的另一个表面上设有N型外延层(2),在N型外延层(2)上设有P型体区(5),在P型体区(5)上设有N型源区(7)和P型体接触区(6)且P型体接触区(6)位于N型源区(7)的外侧,在N型源区(7)和P型体接触区(6)上连接有源极金属(9),在N型源区(7)设有沟槽且所述沟槽始于N型源区(7)表面、深及N型外延层(2)内,在沟槽的内壁及底部设有栅氧化层(3),在栅氧化层(3)内填充多晶硅并形成多晶硅栅(4),在多晶硅栅(4)上设有钝化层(8)并用于隔离多晶硅栅(4)和源极金属(9),在栅氧化层(3)侧壁外侧设有石墨烯层(12),其特征在于,在石墨烯层(12)和栅氧化层(3)的底部下方设有P型屏蔽层(11)且所述石墨烯层(12)接触P型屏蔽层(11),所述钝化层(8)向外侧延伸并覆盖石墨烯层(12)的顶部,在器件关断时所述P型屏蔽层(11)阻断石墨烯层与N型外延层的传输路径,防止石墨烯层的主要载流子由电子转换为空穴,提高器件的关断特性。
2.根据权利要求1所述的低导通电阻的沟槽碳化硅功率器件,其特征在于,石墨烯层(12)的厚度为5~15nm。
3.一种低导通电阻的沟槽碳化硅功率器件的制造方法,其特征在于,
步骤1取一个N型衬底(1),在N型衬底(1)的另一个表面上附上碳化硅以形成N型外延层(2),使用刻蚀工艺在N型外延层(2)上的表面形成沟槽,
步骤2使用离子注入工艺在沟槽底部形成P型屏蔽层(11),
步骤3使用溅射工艺和刻蚀工艺,在沟槽底部和侧壁上形成一层能够溶解碳的金属,
步骤4用高能电子束轰击沟槽侧壁,使碳化硅表面的硅碳键断裂,并在能够溶解碳的金属层产生500℃-1200℃的局部高温,碳化硅表面硅碳键断裂产生的碳原子融入能够溶解碳的金属,自然降温使能够溶解碳的金属中的C原子析出,在沟槽侧壁上形成石墨烯层(12),然后,使用RIE刻蚀技术,刻蚀掉沟槽底部和能够溶解碳的金属层内侧的石墨烯层,再腐蚀去掉能够溶解碳的金属层,
步骤5使用化学气相沉积工艺在沟槽侧壁和底部形成栅氧化层(3);使用化学气相沉积工艺在沟槽内沉积多晶硅并形成多晶硅栅(4);使用离子注入工艺在沟槽两侧形成N型源区(7)、P型体区(5)和P型体接触区(6);用化学气相沉积工艺在多晶硅栅(4)上方形成隔离钝化层(8);最后,使用溅射工艺在N型源区(7)和P型体接触区(6)上表面形成源极金属(9),在N型衬底(1)的另一个表面上制作漏极金属(10)。
4.根据权利要求3所述的制造方法,其特征在于,在完成步骤3操作后,向反应室内通入10~20分钟氩气后关闭氩气阀,抽取反应室真空至10-4-10-6Torr,再向反应室中充入甲烷气体,使用高能电子束轰击沟槽侧壁,使碳化硅表面的硅碳键断裂,并在能够溶解碳的金属层产生500℃-1200℃的局部高温后,甲烷气体中的碳原子与碳化硅表面硅碳键断裂产生的碳原子一起融入能够溶解碳的金属。
5.根据权利要求4所述的制造方法,其特征在于,氩气的通入速率为10-40L/min,甲烷气体的充入速率为0.5-10L/min。
6.根据权利要求3所述的制造方法,其特征在于,发射高能电子束的电子枪发射电压设为10-30kV,入射角度为15°~30°。
7.根据权利要求3所述的制造方法,其特征在于,能够溶解碳的金属为镍,能够溶解碳的金属层为镍层(12.1)。
8.根据权利要求7所述的制造方法,其特征在于,镍层(12.1)的厚度为20-100nm。
CN201910366654.9A 2019-04-30 2019-04-30 一种低导通电阻的沟槽碳化硅功率器件及其制造方法 Active CN110176498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910366654.9A CN110176498B (zh) 2019-04-30 2019-04-30 一种低导通电阻的沟槽碳化硅功率器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366654.9A CN110176498B (zh) 2019-04-30 2019-04-30 一种低导通电阻的沟槽碳化硅功率器件及其制造方法

Publications (2)

Publication Number Publication Date
CN110176498A CN110176498A (zh) 2019-08-27
CN110176498B true CN110176498B (zh) 2022-06-14

Family

ID=67690640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366654.9A Active CN110176498B (zh) 2019-04-30 2019-04-30 一种低导通电阻的沟槽碳化硅功率器件及其制造方法

Country Status (1)

Country Link
CN (1) CN110176498B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729346B (zh) * 2019-09-30 2023-10-13 东南大学 一种低导通电阻高耐压能力的宽禁带半导体整流器件
CN114361248A (zh) * 2020-05-18 2022-04-15 华润微电子(重庆)有限公司 沟槽栅金属氧化物半导体场效应管及其制备方法
CN111668312B (zh) * 2020-06-15 2023-08-04 东南大学 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺
CN111863969B (zh) * 2020-07-17 2021-06-01 上海陆芯电子科技有限公司 屏蔽栅沟槽型mosfet器件及其制造方法
KR20220033587A (ko) 2020-09-08 2022-03-17 삼성전자주식회사 반도체 소자
CN113555414A (zh) * 2021-07-20 2021-10-26 江苏中科汉韵半导体有限公司 沟槽型碳化硅场效应晶体管及其制备方法
CN114496783B (zh) * 2022-04-18 2022-08-05 深圳芯能半导体技术有限公司 一种基于缓冲层制备的沟槽型碳化硅mosfet及其制备方法
CN114843346B (zh) * 2022-06-29 2022-09-20 瑞能半导体科技股份有限公司 低阻沟槽型碳化硅晶体管及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
CN101798706A (zh) * 2009-02-10 2010-08-11 中国科学院物理研究所 在碳化硅(SiC)基底上外延生长石墨烯的方法
CN104465765A (zh) * 2013-09-20 2015-03-25 株式会社东芝 半导体装置及其制造方法
JP2016213374A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 半導体装置
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087691B2 (en) * 2011-09-16 2015-07-21 Institute of Microelectronics, Chinese Academy of Sciences Method for manufacturing graphene nano-ribbon, mosfet and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
CN101798706A (zh) * 2009-02-10 2010-08-11 中国科学院物理研究所 在碳化硅(SiC)基底上外延生长石墨烯的方法
CN104465765A (zh) * 2013-09-20 2015-03-25 株式会社东芝 半导体装置及其制造方法
JP2016213374A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 半導体装置
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigations on the Degradations of Double-Trench SiC Power MOSFETs Under Repetitive Avalanche Stress;Jiaxing Wei 等;《IEEE TRANSACTIONS ON ELECTRON DEVICES》;20190131;第66卷(第1期);第546-551页正文部分 *

Also Published As

Publication number Publication date
CN110176498A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN110176498B (zh) 一种低导通电阻的沟槽碳化硅功率器件及其制造方法
CN106711207B (zh) 一种纵向沟道的SiC结型栅双极型晶体管及其制备方法
CN110504310B (zh) 一种具有自偏置pmos的ret igbt及其制作方法
CN109616523B (zh) 一种4H-SiC MOSFET功率器件及其制造方法
CN110518070A (zh) 一种适用于单片集成的碳化硅ldmos器件及其制造方法
CN111668312A (zh) 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺
EP3193374B1 (en) Complementary tunneling field effect transistor and manufacturing method therefor
CN103681827A (zh) 具有嵌入式发射极短路触点的快速切换igbt及其制作方法
CN111048580A (zh) 一种碳化硅绝缘栅双极晶体管及其制作方法
CN110571275A (zh) 氧化镓mosfet的制备方法
CN104810282A (zh) 一种采用n型碳化硅衬底制作n沟道igbt器件的方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
CN104465765A (zh) 半导体装置及其制造方法
CN105185833A (zh) 一种隐埋沟道碳化硅沟槽栅MOSFETs器件及其制备方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN117525140A (zh) 一种集成条形沟槽源极控制续流通道SiC UMOS及制备方法
CN110504314B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN116779685A (zh) 一种具备sj sbd的sj vdmos及制备方法
CN115410922A (zh) 一种垂直型氧化镓晶体管及其制备方法
CN109216256B (zh) 沟槽隔离结构及其制造方法
CN106298976B (zh) 一种沟槽型肖特基二极管
KR101096980B1 (ko) 반도체 소자의 제조 방법
CN113270423A (zh) 一种抗辐射soi器件及制造方法
CN113838914A (zh) 具有分离栅结构的ret igbt器件结构及制作方法
CN112599603A (zh) 基于纵向肖特基源隧穿结的准垂直场效应晶体管及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant