CN110098253A - 半导体装置、电力变换装置以及半导体装置的制造方法 - Google Patents

半导体装置、电力变换装置以及半导体装置的制造方法 Download PDF

Info

Publication number
CN110098253A
CN110098253A CN201910072862.8A CN201910072862A CN110098253A CN 110098253 A CN110098253 A CN 110098253A CN 201910072862 A CN201910072862 A CN 201910072862A CN 110098253 A CN110098253 A CN 110098253A
Authority
CN
China
Prior art keywords
layer
type
semiconductor substrate
semiconductor device
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910072862.8A
Other languages
English (en)
Other versions
CN110098253B (zh
Inventor
铃木健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN110098253A publication Critical patent/CN110098253A/zh
Application granted granted Critical
Publication of CN110098253B publication Critical patent/CN110098253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Inverter Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)

Abstract

本发明得到能够降低接通电压,同时将阈值电压的波动减小,制造简单的半导体装置、电力变换装置以及半导体装置的制造方法。在n型半导体衬底(1)的表面形成有p型基极层(3)。在p型基极层(3)之上形成有n型发射极层(5)。沟槽栅极(7)贯穿p型基极层(3)以及n型发射极层(5)。与n型半导体衬底(1)相比浓度高的n型载流子积蓄层(14)在n型半导体衬底(1)与p型基极层(3)之间形成。p型集电极层(16)在n型半导体衬底(1)背面形成。关于n型载流子积蓄层(14),与从峰值浓度的位置朝向p型基极层(3)的浓度梯度相比,从峰值浓度的位置朝向n型半导体衬底(1)的背面侧的浓度梯度大,作为杂质而注入了质子。

Description

半导体装置、电力变换装置以及半导体装置的制造方法
技术领域
本发明涉及半导体装置、电力变换装置以及半导体装置的制造方法。
背景技术
作为在通用逆变器、AC伺服等领域进行三相电动机的可变速控制的功率模块等,从节能的观点出发,使用了绝缘栅型双极晶体管(Insulated Gate Bipolar Transistor,IGBT)。就IGBT而言,在通断损耗、接通电压与SOA(Safe Operating Area)之间存在折衷的关系,但正在谋求通断损耗、接通电压低且SOA宽的器件。
接通电压的大半受耐压保持所需的厚的n-型半导体衬底的电阻影响。为了使该电阻降低,使来自背面的空穴在n-型半导体衬底积蓄,使电导调制变得活跃,使n-型半导体衬底的电阻降低是有效的。作为使IGBT的接通电压得到了降低的器件,存在CSTBT(CarrierStored Trench Gate Bipolar Transistor)或者IEGT(Injection Enhanced GateTransistor)等。
就CSTBT而言,通过在p型基极层的正下方加入被称为载流子积蓄(CareerStored)层的n型层,从而在载流子积蓄层与n-型半导体衬底之间形成电位壁垒。由此,来自背面的空穴变得易于积蓄,能够降低n-型半导体衬底的电阻。
p型基极层的浓度决定阈值电压。但是,由于载流子积蓄层的影响,p型基极层的浓度变得易于波动,因此阈值电压变得易于波动。为了将阈值电压的波动减小,只要在p型基极层的附近将载流子积蓄层的浓度降低即可(例如,参照专利文献1的图2(d))。
专利文献1:日本特开2004-22941号公报
但是,即使试图通过通常的磷注入和热扩散而形成具有上述那样的浓度分布的载流子积蓄层,也存在杂质注入的控制困难的问题。
发明内容
本发明就是为了解决上述课题而提出的,其目的在于得到能够降低接通电压,同时将阈值电压的波动减小,制造简单的半导体装置、电力变换装置以及半导体装置的制造方法。
本发明涉及的半导体装置,其特征在于,具备:n型半导体衬底;p型基极层,其在所述n型半导体衬底的表面形成;n型发射极层,其在所述p型基极层之上形成;沟槽栅极,其贯穿所述p型基极层以及所述n型发射极层;n型载流子积蓄层,其在所述n型半导体衬底与所述p型基极层之间形成,与所述n型半导体衬底相比浓度高;以及p型集电极层,其在所述n型半导体衬底的背面形成,关于所述n型载流子积蓄层,与从峰值浓度的位置朝向所述p型基极层的浓度梯度相比,从所述峰值浓度的位置朝向所述n型半导体衬底的背面侧的浓度梯度大,作为杂质而注入了质子。
发明的效果
在本发明中,关于n型载流子积蓄层,与从峰值浓度的位置朝向p型基极层的浓度梯度相比,从峰值浓度的位置朝向n-型半导体衬底的浓度梯度大。因此,载流子积蓄层的浓度在p型基极层的附近充分低,没有大幅地抵消p型基极层的浓度,因此能够将阈值电压的波动减小。另外,由于载流子积蓄层的浓度在n型半导体衬底的附近升高,因此能够降低接通电压。具有上述这样的浓度分布的载流子积蓄层能够通过作为杂质而将质子进行注入,从而容易地形成。
附图说明
图1是表示实施方式1涉及的半导体装置的剖面图。
图2是表示沿图1的Ⅰ-Ⅱ的载流子浓度分布的图。
图3是实施方式涉及的半导体装置的制造方法的流程图。
图4是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图5是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图6是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图7是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图8是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图9是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图10是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图11是表示实施方式1涉及的半导体装置的制造方法的剖面图。
图12是表示对质子的加速电压与在Si、Al、聚酰亚胺中的射程的关系进行模拟得到的结果的图。
图13是表示对比例涉及的半导体装置的载流子浓度分布的图。
图14是表示实施方式和对比例的载流子积蓄层的峰值浓度与Vce(sat)的关系的图。
图15是表示实施方式和对比例的载流子积蓄层的峰值浓度与阈值电压Vth的关系的图。
图16是表示电力变换系统的结构的框图,在该电力变换系统中应用了实施方式2涉及的电力变换装置。
标号的说明
1n-型半导体衬底,3p型基极层,5n+型发射极层,7沟槽栅极,16p型集电极层,14n型载流子积蓄层,200电力变换装置,201主变换电路,202半导体装置,203控制电路
具体实施方式
参照附图,对实施方式涉及的半导体装置、电力变换装置以及半导体装置的制造方法进行说明。对相同或相应的结构要素标注相同的标号,有时省略重复说明。
实施方式1.
图1是表示实施方式1涉及的半导体装置的剖面图。该半导体装置是CSTBT。n-型半导体衬底1具有形成晶体管构造的MOS区域、为了保持耐压而在MOS区域的外周配置的外周区域和在两者之间配置的配线区域。
在外周区域以及配线区域,在n-型半导体衬底1的表面,为了保持耐压而形成有p型阱层2。在MOS区域,在n-型半导体衬底1的表面形成有p型基极层3。p型阱层2比p型基极层3深。在外周区域以及配线区域,在衬底之上形成有厚的氧化膜4。
在p型基极层3之上形成有n+型发射极层5以及p+型接触层6。沟槽栅极7贯穿p型基极层3以及n+型发射极层5。沟槽栅极7是在沟槽内隔着栅极绝缘膜埋入有多晶硅等栅极电极而成的。沟槽栅极7越深,集电极-发射极饱和电压Vce(sat)越降低,但如果过深,则导致制造上的难度增加,成品率降低。因此,将沟槽栅极7的深度设为4~7μm左右。与沟槽栅极7连接的多晶硅等的栅极配线8在配线区域形成在氧化膜4之上。在沟槽栅极7之上形成有层间绝缘膜9。
发射极电极10与n+型发射极层5以及p+型接触层6连接。栅极配线11形成在栅极配线8之上。在外周区域,电极12经由氧化膜4的开口与p型阱层2连接。发射极电极10、栅极配线11以及电极12由Al构成,厚度为在导线键合时器件不会受到损伤的程度,具体地说为3~6μm。在外周区域以及配线区域,在n型半导体衬底1的表面作为表面保护膜形成有聚酰亚胺13。聚酰亚胺13不在MOS区域形成。
与n-型半导体衬底1相比浓度高的n型载流子积蓄层14在n-型半导体衬底1与p型基极层3之间形成。在n型载流子积蓄层14注入有质子。n型载流子积蓄层14在MOS区域形成,不在外周区域以及配线区域形成。n+型缓冲层15以及p型集电极层16在n-型半导体衬底1的背面形成。集电极电极17与p型集电极层16连接。
图2是表示沿图1的Ⅰ-Ⅱ的载流子浓度分布的图。按照n+型发射极层5、p型基极层3、n型载流子积蓄层14的顺序浓度升高。关于n型载流子积蓄层14,与从峰值浓度的位置朝向p型基极层3的浓度梯度相比,从峰值浓度的位置朝向n-型半导体衬底1的背面侧的浓度梯度大。
接下来,对本实施方式涉及的半导体装置的制造方法进行说明。图3是实施方式涉及的半导体装置的制造方法的流程图。图4至图11是表示实施方式1涉及的半导体装置的制造方法的剖面图。
首先,如图4所示,通过照相制版技术以及在1100℃等高温下长时间的热处理,在外周区域以及配线区域选择性地形成p型阱层2(步骤S1)。
接下来,如图5所示,在衬底整面形成氧化膜4,在MOS区域,将氧化膜4去除而在n-型半导体衬底1的表面形成p型基极层3。接下来,如图6所示,在p型基极层3之上形成n+型发射极层5。接下来,如图7所示,形成贯穿p型基极层3以及n+型发射极层5的沟槽栅极7(步骤S2)。
接下来,如图8所示,在衬底整面形成层间绝缘膜9,使用照相制版技术将氧化膜4以及层间绝缘膜9选择性地去除,形成接触区域(步骤S3)。接下来,如图9所示,形成发射极电极10(步骤S4)。接下来,如图10所示,在外周区域以及配线区域作为表面保护膜形成聚酰亚胺13(步骤S5)。接下来,如图11所示,将聚酰亚胺13作为掩模,只在MOS区域在衬底表面将质子选择性地进行注入。图中的×标记示出质子的停止位置。接下来,通过进行350~400℃左右的热处理,从而形成n型载流子积蓄层14。在这些表面工序之后,作为背面工序而形成p型集电极层16以及集电极电极17(步骤S6)。
这里,在制作n型载流子积蓄层14之后,如果通过n+型发射极层5的激活或者栅极氧化膜的形成等进行热处理,则发生各扩散层的深度的变动或者向栅极氧化膜的硼或者磷的汲出与偏析,阈值电压波动。因此,在本实施方式中,在p型基极层3以及沟槽栅极7的形成之后,形成n型载流子积蓄层14。由此,能够抑制阈值电压的波动。
另外,如果在发射极电极10以及聚酰亚胺13等表面构造形成之前制作n型载流子积蓄层14,则需要使用照相制版选择性地在MOS区域将质子进行注入。能够在发射极电极10以及聚酰亚胺13等表面构造形成之后,通过对发射极电极10以及聚酰亚胺13的厚度进行优化,从而无需照相制版即可只在MOS区域将质子进行注入。
如果在外周区域注入了质子,则由于质子的施主化,有可能使p型阱层2被抵消而导致耐压降低。与此相对,尽管也能够使用照相制版技术只在MOS区域选择性地将质子进行注入而形成n型载流子积蓄层14,但制造成本上升。因此,将为了表面保护而在外周区域形成的聚酰亚胺13作为掩模,只在MOS区域将质子选择性地进行注入。由此,能够防止质子进入外周区域,防止耐压的降低。
图12是表示对质子的加速电压与在Si、Al、聚酰亚胺中的射程的关系进行模拟得到的结果的图。使用软件SRIM-2008的Stopping/Range Tables进行模拟。基于该结果,可知在将质子注入至比沟槽栅极7略浅的深度3~6μm左右的情况下,只要以加速电压600~1100keV将质子进行注入即可。在这种情况下为了不使质子进入外周区域,需要聚酰亚胺13的膜厚为3~7μm。
通过350~450℃的热处理而实施质子的施主化。在这种程度的热处理中,不会引起注入至其他扩散层的硼、磷或者砷等杂质的扩散,因而不易引起Vth波动。
接下来,与对比例进行比较而对本实施方式的效果进行说明。图13是表示对比例涉及的半导体装置的载流子浓度分布的图。在对比例中,n型载流子积蓄层14的载流子浓度在p型基极层3的附近升高。
图14是表示实施方式和对比例的载流子积蓄层的峰值浓度与Vce(sat)的关系的图。无论本实施方式还是对比例,峰值浓度越高,载流子积蓄效果越高,因此Vce(sat)下降。Vce(sat)是IGBT的接通电压。
图15是表示实施方式和对比例的载流子积蓄层的峰值浓度与阈值电压Vth的关系的图。在对比例中,如果n型载流子积蓄层14的浓度升高,则有效的p型基极层3的浓度下降,因此阈值电压降低。相反,如果n型载流子积蓄层14的浓度下降,则阈值电压上升。因此,在对比例中,由于相对于n型载流子积蓄层14的浓度波动,阈值电压波动,因此IGBT的饱和电流和短路耐量波动,产品的品质降低。如果将n型载流子积蓄层14的杂质注入得深,则不与p型基极层3干涉,但如果比沟槽栅极深,则耐压降低。另一方面,在本实施方式中,相对于n型载流子积蓄层14的浓度波动,阈值电压Vth的敏感度变低。
如以上说明所述,在本实施方式中,关于n型载流子积蓄层14,与从峰值浓度的位置朝向p型基极层3的浓度梯度相比,从峰值浓度的位置朝向n-型半导体衬底1的浓度梯度大。因此,n型载流子积蓄层14的浓度在p型基极层3的附近充分低,不会大幅地抵消p型基极层3的浓度,因此能够将阈值电压的波动减小。由此,在制造上,即使注入量波动,接通电压也不波动。另外,由于n型载流子积蓄层14的浓度在n-型半导体衬底1的附近升高,因此能够降低接通电压。
具有这样的浓度分布的n型载流子积蓄层14能够通过作为杂质而将质子进行注入而容易地形成。通过在将质子进行注入之后进行热处理,从而在质子通过区域Si晶体缺陷与氧原子发生耦合,产生施主化,形成宽的分布。另一方面,由于与峰值浓度的位置相比在n-型半导体衬底1侧没有形成晶体缺陷,因此即使质子扩散,也不促进施主化。另外,由于作为轻元素的质子的射程大,因此能够使用通常的离子注入装置以低能量注入至衬底的深处。其结果,能够容易地形成上述的浓度梯度的n型载流子积蓄层14。
另外,n型载流子积蓄层14如果比沟槽栅极7深,则难以耗尽化,其附近的电场升高,因此耐压降低。与此相对,在本实施方式中,n型载流子积蓄层14的浓度朝向n-型半导体衬底1急剧地衰减,n型载流子积蓄层14的深度与沟槽栅极7相比变浅。由此,能够防止耐压的降低。
此外,n-型半导体衬底1不限于由硅形成,也可以由与硅相比带隙大的宽带隙半导体形成。宽带隙半导体例如是碳化硅、氮化镓类材料或者金刚石。由上述宽带隙半导体形成的半导体装置,由于耐电压性、容许电流密度高,因此能够小型化。通过使用该小型化的半导体装置,从而能够使组装有该半导体装置的半导体模块也小型化、高集成化。另外,由于半导体装置的耐热性高,因此能够使散热器的散热鳍片小型化,能够将水冷部风冷化,因此能够进一步将半导体模块小型化。另外,由于半导体装置的电力损耗低且高效,因此能够使半导体模块高效化。
实施方式2.
本实施方式是将上述实施方式1所涉及的半导体装置应用于电力变换装置。电力变换装置例如是逆变器装置、转换器装置、伺服放大器、电源单元等。本发明不限定于特定的电力变换装置,以下对将本发明应用于三相逆变器的情况进行说明。
图16是表示电力变换系统的结构的框图,在该电力变换系统中应用了实施方式2涉及的电力变换装置。该电力变换系统具备电源100、电力变换装置200、负载300。电源100是直流电源,向电力变换装置200供给直流电力。电源100能够由各种电源构成,例如,能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路或AC/DC转换器构成。另外,也可以使电源100由将从直流系统输出的直流电力变换为规定的电力的DC/DC转换器构成。
电力变换装置200是连接在电源100和负载300之间的三相逆变器,将从电源100供给的直流电力变换为交流电力,向负载300供给交流电力。电力变换装置200具备:主变换电路201,其将直流电力变换为交流电力而输出;以及控制电路203,其将对主变换电路201进行控制的控制信号向主变换电路201输出。
负载300是由从电力变换装置200供给的交流电力进行驱动的三相电动机。此外,负载300不限定于特定的用途,是搭载于各种电气设备的电动机,例如,用作面向混合动力汽车、电动汽车、铁路车辆、电梯或者空调设备的电动机。
以下,对电力变换装置200详细地进行说明。主变换电路201具备开关元件和续流二极管(未图示),通过使开关元件进行通断,从而将从电源100供给的直流电力变换为交流电力,向负载300供给。就主变换电路201的具体的电路结构而言,存在各种结构,但本实施方式涉及的主变换电路201是两电平的三相全桥电路,能够由6个开关元件和与各个开关元件逆并联的6个续流二极管构成。主变换电路201的各开关元件和各续流二极管由与上述实施方式1~4中的任意者相当的半导体装置202构成。6个开关元件两个两个地串联连接,构成上下桥臂,各上下桥臂构成全桥电路的各相(U相、V相、W相)。并且,各上下桥臂的输出端子即主变换电路201的3个输出端子与负载300连接。
另外,主变换电路201具备对各开关元件进行驱动的驱动电路(未图示),但驱动电路既可以内置于半导体装置202,也可以是独立于半导体装置202而另外具有驱动电路的结构。驱动电路生成对主变换电路201的开关元件进行驱动的驱动信号,供给至主变换电路201的开关元件的控制电极。具体地说,按照来自后述的控制电路203的控制信号,向各开关元件的控制电极输出将开关元件设为接通状态的驱动信号和将开关元件设为断开状态的驱动信号。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号成为小于或等于开关元件的阈值电压的电压信号(断开信号)。
控制电路203对主变换电路201的开关元件进行控制,以向负载300供给期望的电力。具体地说,基于应向负载300供给的电力,对主变换电路201的各开关元件应成为接通状态的时间(接通时间)进行计算。例如,能够通过与应输出的电压相对应地对开关元件的接通时间进行调制的PWM控制,对主变换电路201进行控制。并且,向主变换电路201所具备的驱动电路输出控制指令(控制信号),以使得在各时刻向应成为接通状态的开关元件输出接通信号,向应成为断开状态的开关元件输出断开信号。驱动电路按照该控制信号,将接通信号或者断开信号作为驱动信号而向各开关元件的控制电极输出。
就本实施方式涉及的电力变换装置而言,由于应用实施方式1涉及的半导体装置作为半导体装置202,因此能够降低接通电压,同时将阈值电压的波动减小,制造简单。
在本实施方式中,对在两电平的三相逆变器应用本发明的例子进行了说明,但本发明不限定于此,能够应用于各种电力变换装置。在本实施方式中,采用了两电平的电力变换装置,但也可以是三电平或多电平的电力变换装置,在向单相负载供给电力的情况下,也可以在单相逆变器应用本发明。另外,在向直流负载等供给电力的情况下,也能够在DC/DC转换器或者AC/DC转换器应用本发明。
另外,应用了本发明的电力变换装置不限定于上述的负载为电动机的情况,例如,还能够用作放电加工机、激光加工机、或感应加热烹调器、非接触器供电系统的电源装置,并且,也能够用作太阳能发电系统或蓄电系统等的功率调节器。

Claims (12)

1.一种半导体装置,其特征在于,具备:
n型半导体衬底;
p型基极层,其在所述n型半导体衬底的表面形成;
n型发射极层,其在所述p型基极层之上形成;
沟槽栅极,其贯穿所述p型基极层以及所述n型发射极层;
n型载流子积蓄层,其在所述n型半导体衬底与所述p型基极层之间形成,与所述n型半导体衬底相比浓度高;以及
p型集电极层,其在所述n型半导体衬底的背面形成,
关于所述n型载流子积蓄层,与从峰值浓度的位置朝向所述p型基极层的浓度梯度相比,从所述峰值浓度的位置朝向所述n型半导体衬底的背面侧的浓度梯度大,作为杂质而注入了质子。
2.根据权利要求1所述的半导体装置,其特征在于,
所述n型载流子积蓄层的深度比所述沟槽栅极浅。
3.根据权利要求1或2所述的半导体装置,其特征在于,
所述n型半导体衬底具有形成有所述p型基极层、所述n型发射极层、所述沟槽栅极的MOS区域、和为了保持耐压而在所述MOS区域的外周配置的外周区域,
所述n型载流子积蓄层在所述MOS区域形成,不在所述外周区域形成。
4.根据权利要求1至3中任一项所述的半导体装置,其特征在于,
所述n型半导体衬底由宽带隙半导体形成。
5.一种电力变换装置,其特征在于,具备:
主变换电路,其具有权利要求1至4中任一项所述的半导体装置,该主变换电路对被输入来的电力进行变换而输出;以及
控制电路,其将对所述主变换电路进行控制的控制信号向所述主变换电路输出。
6.一种半导体装置的制造方法,其特征在于,具备以下工序:
在n型半导体衬底的表面形成p型基极层;
在所述p型基极层之上形成n型发射极层;
形成贯穿所述p型基极层以及所述n型发射极层的沟槽栅极;
通过将质子进行注入,从而在所述n型半导体衬底与所述p型基极层之间,形成与所述n型半导体衬底相比浓度高的n型载流子积蓄层;以及
在所述n型半导体衬底的背面形成p型集电极层,
关于所述n型载流子积蓄层,与从峰值浓度的位置朝向所述p型基极层的浓度梯度相比,从所述峰值浓度的位置朝向所述n型半导体衬底的浓度梯度大。
7.根据权利要求6所述的半导体装置的制造方法,其特征在于,
使所述n型载流子积蓄层的深度比所述沟槽栅极浅。
8.根据权利要求6或7所述的半导体装置的制造方法,其特征在于,
所述n型半导体衬底具有形成有所述p型基极层、所述n型发射极层、所述沟槽栅极的MOS区域、和为了保持耐压在所述MOS区域的外周配置的外周区域,
将所述n型载流子积蓄层在所述MOS区域形成,不在所述外周区域形成。
9.根据权利要求8所述的半导体装置的制造方法,其特征在于,
在所述外周区域,在所述n型半导体衬底的所述表面形成聚酰亚胺,将所述聚酰亚胺作为掩模,在所述MOS区域将所述质子进行注入。
10.根据权利要求9所述的半导体装置的制造方法,其特征在于,
将所述质子以600~1100keV进行注入,
所述聚酰亚胺的膜厚大于或等于3μm。
11.根据权利要求6至10中任一项所述的半导体装置的制造方法,其特征在于,
通过350~450℃的热处理而实施所述质子的施主化。
12.根据权利要求6至11中任一项所述的半导体装置的制造方法,其特征在于,
在所述p型基极层以及所述沟槽栅极的形成之后,形成所述n型载流子积蓄层。
CN201910072862.8A 2018-01-31 2019-01-25 半导体装置、电力变换装置以及半导体装置的制造方法 Active CN110098253B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015163A JP7143085B2 (ja) 2018-01-31 2018-01-31 半導体装置、電力変換装置及び半導体装置の製造方法
JP2018-015163 2018-01-31

Publications (2)

Publication Number Publication Date
CN110098253A true CN110098253A (zh) 2019-08-06
CN110098253B CN110098253B (zh) 2022-07-26

Family

ID=67224285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910072862.8A Active CN110098253B (zh) 2018-01-31 2019-01-25 半导体装置、电力变换装置以及半导体装置的制造方法

Country Status (4)

Country Link
US (1) US10916631B2 (zh)
JP (1) JP7143085B2 (zh)
CN (1) CN110098253B (zh)
DE (1) DE102018217675A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129955B4 (de) * 2017-12-14 2021-10-07 Infineon Technologies Austria Ag Halbleitervorrichtung mit einem barrierengebiet sowie elektrische vorrichtung
JP6946219B2 (ja) * 2018-03-23 2021-10-06 株式会社東芝 半導体装置
WO2021049351A1 (ja) * 2019-09-13 2021-03-18 富士電機株式会社 半導体装置
CN111863607B (zh) * 2020-07-28 2023-05-05 哈尔滨工业大学 一种抗辐射功率晶体管及其制备方法
JP7462587B2 (ja) 2021-03-25 2024-04-05 三菱電機株式会社 半導体装置の製造方法
CN113990944B (zh) * 2021-09-22 2024-04-19 深圳市迪浦电子有限公司 一种用于电源转换系统的防护芯片及其制备方法
CN117038451B (zh) * 2023-10-09 2024-02-20 深圳市锐骏半导体股份有限公司 沟槽栅igbt器件、制作方法及仿真方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267663A1 (en) * 2006-05-19 2007-11-22 Mitsubishi Electric Corporation Semiconductor device having improved insulated gate bipolar transistor and method for manufacturing the same
US20080197379A1 (en) * 2007-02-16 2008-08-21 Mitsubishi Electric Corporation Semiconductor device and manufacturing method thereof
JP2008205205A (ja) * 2007-02-20 2008-09-04 Toyota Central R&D Labs Inc 半導体装置とその製造方法
CN103956379A (zh) * 2014-05-09 2014-07-30 常州中明半导体技术有限公司 具有优化嵌入原胞结构的cstbt器件
CN103999225A (zh) * 2012-01-19 2014-08-20 富士电机株式会社 半导体装置及其制造方法
JP2016157934A (ja) * 2015-02-25 2016-09-01 株式会社デンソー 半導体装置
CN105940495A (zh) * 2014-01-29 2016-09-14 三菱电机株式会社 电力用半导体装置
WO2017187670A1 (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 半導体装置および電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260639A (ja) * 1996-03-27 1997-10-03 Hitachi Ltd シリコン半導体装置の製造方法
JP3435635B2 (ja) 1999-10-27 2003-08-11 株式会社豊田中央研究所 絶縁ゲート型半導体装置、およびその製造方法ならびにインバータ回路
JP2004022941A (ja) 2002-06-19 2004-01-22 Toshiba Corp 半導体装置
JP5396689B2 (ja) * 2006-09-07 2014-01-22 富士電機株式会社 半導体装置およびその製造方法
US10411111B2 (en) * 2012-05-30 2019-09-10 Kyushu Institute Of Technology Method for fabricating high-voltage insulated gate type bipolar semiconductor device
JP6102092B2 (ja) * 2012-06-22 2017-03-29 サンケン電気株式会社 半導体装置及びその製造方法
JP6135178B2 (ja) 2013-02-25 2017-05-31 富士電機株式会社 超接合半導体装置の製造方法
DE112013007163T5 (de) 2013-06-12 2016-02-25 Mitsubishi Electric Corp. Halbleitervorrichtung
US9520798B2 (en) * 2014-08-26 2016-12-13 General Electric Company Multi-level DC-DC converter with galvanic isolation and adaptive conversion ratio
JP6269858B2 (ja) * 2014-11-17 2018-01-31 富士電機株式会社 炭化珪素半導体装置の製造方法
DE112015006006T5 (de) * 2015-01-14 2017-10-26 Mitsubishi Electric Corporation Halbleitervorrichtung und verfahren zum herstellen dieser
JP6676988B2 (ja) 2016-01-29 2020-04-08 株式会社デンソー 半導体装置
JP6299816B2 (ja) 2016-07-26 2018-03-28 サミー株式会社 遊技機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267663A1 (en) * 2006-05-19 2007-11-22 Mitsubishi Electric Corporation Semiconductor device having improved insulated gate bipolar transistor and method for manufacturing the same
US20080197379A1 (en) * 2007-02-16 2008-08-21 Mitsubishi Electric Corporation Semiconductor device and manufacturing method thereof
JP2008205205A (ja) * 2007-02-20 2008-09-04 Toyota Central R&D Labs Inc 半導体装置とその製造方法
CN103999225A (zh) * 2012-01-19 2014-08-20 富士电机株式会社 半导体装置及其制造方法
US20170025520A1 (en) * 2012-01-19 2017-01-26 Fuji Electric Co., Ltd. Semiconductor device and method for producing the same
CN105940495A (zh) * 2014-01-29 2016-09-14 三菱电机株式会社 电力用半导体装置
CN103956379A (zh) * 2014-05-09 2014-07-30 常州中明半导体技术有限公司 具有优化嵌入原胞结构的cstbt器件
JP2016157934A (ja) * 2015-02-25 2016-09-01 株式会社デンソー 半導体装置
CN107251231A (zh) * 2015-02-25 2017-10-13 株式会社电装 半导体装置
WO2017187670A1 (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 半導体装置および電力変換装置

Also Published As

Publication number Publication date
CN110098253B (zh) 2022-07-26
US10916631B2 (en) 2021-02-09
JP2019134069A (ja) 2019-08-08
US20190237545A1 (en) 2019-08-01
JP7143085B2 (ja) 2022-09-28
DE102018217675A1 (de) 2019-08-01

Similar Documents

Publication Publication Date Title
CN110098253A (zh) 半导体装置、电力变换装置以及半导体装置的制造方法
US11158704B2 (en) Semiconductor device and power conversion device
US11984492B2 (en) Silicon carbide semiconductor device, power converter, and method of manufacturing silicon carbide semiconductor device
JP2020096202A (ja) 炭化珪素半導体装置および電力変換装置
JP7055052B2 (ja) 半導体装置および電力変換装置
JP6709062B2 (ja) 半導体装置、その製造方法、及びそれを用いた電力変換装置
WO2021014570A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN110246887B (zh) 半导体装置及电力变换装置
US10121908B2 (en) High withstand voltage diode and power conversion device
CN108878508A (zh) 半导体装置、半导体装置的制造方法及电力变换装置
JPWO2020145109A1 (ja) 半導体装置及び電力変換装置
WO2019124384A1 (ja) 炭化珪素半導体装置および電力変換装置
JP7094439B2 (ja) 炭化珪素半導体装置および電力変換装置
WO2021038787A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
WO2019225567A1 (ja) 炭化珪素半導体装置および電力変換装置
JP7207512B2 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
US20230411448A1 (en) Semiconductor device and power conversion apparatus
WO2021240789A1 (ja) 半導体装置および電力機器
WO2021106152A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN117461143A (zh) 碳化硅半导体装置以及使用碳化硅半导体装置的电力变换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant