CN110088132A - 抗tigit抗体,抗pvrig抗体及其组合 - Google Patents

抗tigit抗体,抗pvrig抗体及其组合 Download PDF

Info

Publication number
CN110088132A
CN110088132A CN201780050131.2A CN201780050131A CN110088132A CN 110088132 A CN110088132 A CN 110088132A CN 201780050131 A CN201780050131 A CN 201780050131A CN 110088132 A CN110088132 A CN 110088132A
Authority
CN
China
Prior art keywords
antibody
cha
cell
cpa
pvrig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780050131.2A
Other languages
English (en)
Other versions
CN110088132B (zh
Inventor
M·怀特
S·库玛
C·陈
S·梁
L·斯特普尔顿
A·W·德拉克
Y·戈兹兰
I·瓦克尼恩
S·萨梅斯-格林瓦德
L·达萨
Z·蒂兰
G·S·柯乔卡鲁
M·寇特杜里
H-Y·程
K·汉森
D·N·吉拉迪
E·萨弗永
E·奥菲尔
L·普莱斯塔
R·希奥里斯
R·迪赛
P·瓦尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compugen Ltd
Original Assignee
Compugen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compugen Ltd filed Critical Compugen Ltd
Priority to CN202011070171.3A priority Critical patent/CN112274637A/zh
Publication of CN110088132A publication Critical patent/CN110088132A/zh
Application granted granted Critical
Publication of CN110088132B publication Critical patent/CN110088132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/035Fusion polypeptide containing a localisation/targetting motif containing a signal for targeting to the external surface of a cell, e.g. to the outer membrane of Gram negative bacteria, GPI- anchored eukaryote proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Storage Device Security (AREA)

Abstract

提供抗PVRIG和抗TIGIT抗体。

Description

抗TIGIT抗体,抗PVRIG抗体及其组合
相关申请
本申请要求于2016年8月17日提交的美国申请序列号62/376,334,2017年6月1日提交的美国申请序列号62/513,771,2016年8月17日提交的美国申请序列号62/376,3352016年11月3日提交的美国申请序列号62/417,217,2017年6月1日提交的美国申请序列号62/513,775,2017年3月28日提交的美国申请序列号62/477,974,2017年6月1日提交的美国申请序列号62/513,916和2017年7月28日提交的美国申请序列号62/538,561的优先权,所有这些申请均通过引用整体并入本文。
序列表
本申请包含序列表,所述序列表已经以ASCII格式电子提交,并且其全部内容通过引用并入本文。在2017年8月17日创建的所述ASCII拷贝命名为114386-5008-WO_SL.txt,大小为590,436字节。
背景技术
初始T细胞必须从抗原呈递细胞(APC)接收两个独立的信号,以便有效地活化。第一信号1是抗原特异性的,并且出现在T细胞抗原受体遇到APC上的适当抗原-MHC复合物时。免疫反应的命运由第二抗原非依赖性信号(信号2)决定,该信号通过与其APC表达的配体接合的T细胞共刺激分子递送。该第二信号可以是刺激性的(正性共刺激)或抑制性的(负性共刺激或共抑制)。在没有共刺激信号或存在共抑制信号的情况下,T细胞活化受损或中止,这可能导致抗原特异性无反应状态(称为T细胞无反应性),或可能导致T细胞凋亡死亡。
共刺激分子对通常由在APC上表达的配体和在T细胞上表达的它们的同源受体组成。共刺激分子的原型配体/受体对是B7/CD28和CD40/CD40L。B7家族由结构相关的细胞表面蛋白配体组成,其可以为免疫反应提供刺激性或抑制性输入。B7家族的成员在结构上相关,细胞外结构域含有至少一个可变或恒定的免疫球蛋白结构域。
正性和负性共刺激信号在细胞介导的免疫反应的调节中起关键作用,并且介导这些信号的分子已被证明是免疫调节的有效靶标。基于这一知识,已经开发了数种涉及靶向共刺激分子的治疗方法,并且显示所述治疗方法可用于通过在癌症患者中开启免疫反应或阻止免疫反应关闭来预防和治疗癌症,可用于预防和治疗自身免疫疾病和炎性疾病以及同种异体移植排斥,分别通过在具有这些病理状况的受试者中关闭不受控制的免疫反应或利用负性共刺激(或共抑制)诱导“关闭信号”来实现。
对B7配体递送的信号的操纵已显示出治疗自身免疫性、炎性疾病和移植排斥的潜力。治疗策略包括使用针对共刺激对的配体或受体的单克隆抗体,或使用由可结合并阻断其适当配体的共刺激受体构成的可溶性融合蛋白阻断共刺激。另一种方法是使用抑制性配体的可溶性融合蛋白诱导共抑制。这些方法至少部分依赖于最终缺失自身或异体反应性T细胞(它们分别是造成自身免疫疾病或移植中的致病过程的原因),可能是因为在没有共刺激(其诱导细胞存活基因)的情况下,T细胞变得非常容易诱导细胞凋亡。因此,能够调节共刺激信号而不损害免疫系统抵抗病原体的能力的新型药剂对于治疗和预防这种病理状况是非常有利的。
共刺激途径在肿瘤发展中起重要作用。有趣的是,肿瘤已被证明通过抑制B7-CD28和TNF家族中的共刺激因子以及通过吸引抑制抗肿瘤T细胞反应的调节性T细胞阻止T细胞活化来逃避免疫破坏(参见Wang(2006),“癌症中肿瘤特异性CD4+调节性T细胞的免疫抑制(Immune Suppression by Tumor Specific CD4+Regulatory T cells in Cancer)”,《癌生物学研究文辑(Semin.Cancer.Biol.)》16:73-79;Greenwald等人,(2005),“重新审视B7家庭(The B7 Family Revisited)”,《免疫学年鉴(Ann.Rev.Immunol.)》23:515-48;Watts(2005),“共刺激T细胞反应的TNF/TNFR家族成员(TNF/TNFR Family Members in Co-stimulation of T Cell Responses)”,《免疫学年鉴》23:23-68;Sadum等人,(2007)“小鼠和人类癌症的免疫特征显示肿瘤逃逸的独特机制和癌症免疫疗法的新靶点(ImmuneSignatures of Murine and Human Cancers Reveal Unique Mechanisms of TumorEscape and New Targets for Cancer Immunotherapy)”,《临床癌症研究(Clin.Canc.Res.)》13(13):4016-4025)。这种肿瘤表达的共刺激分子已经成为有吸引力的癌症生物标志物,并且可以充当肿瘤相关抗原(TAA)。此外,已经将共刺激途径鉴定为免疫检查点,其在肿瘤转移中的起始和效应功能水平上减弱T细胞依赖性免疫反应。随着工程改造的癌症疫苗的不断改进,越来越清楚的是,这种免疫检查点是疫苗诱导治疗性抗肿瘤反应能力的主要障碍。为此,共刺激分子可以充当主动(疫苗接种)和被动(抗体介导)癌症免疫疗法的佐剂,提供阻止免疫耐受性和刺激免疫系统的策略。
在过去的十年中,已开发出用于治疗自身免疫疾病、移植物排斥、过敏和癌症的各种共刺激蛋白的激动剂和/或拮抗剂。例如,CTLA4-Ig(阿巴西普(Abatacept),)被批准用于治疗RA,用于预防急性肾移植排斥的突变CTLA4-Ig(贝拉西普(Belatacept),)和抗CTLA4抗体(伊匹单抗(Ipilimumab),)最近被批准用于治疗黑素瘤。其它共刺激调节剂已获批准,例如Merck和BMS的抗PD-1抗体已被批准用于癌症治疗,并且也在测试病毒感染。
然而,虽然使用抗检查点抑制剂抗体的单一疗法已显示出希望,但许多调查肿瘤浸润淋巴细胞(TIL)的研究(Ahmadzadeh等人,《血液(Blood)》114:1537(2009),Matsuzaki等人,《美国科学院院报(PNAS)》107(17):7875-7880(2010),Fourcade等人,《癌症研究(Cancer Res.)》72(4):887-896(2012)和Gros等人,《临床研究杂志(J.ClinicalInvest.)》124(5):2246(2014))已显示TIL通常表达多个检查点受体。此外,表达多个检查点的TIL可能实际上是最具肿瘤反应性的。相反,外周的非肿瘤反应性T细胞更可能表达单个检查点。使用单特异性全长抗体的检查点阻断对于肿瘤反应性TIL的去抑制与假设导致自身免疫毒性的自身抗原反应性单表达T细胞相比可能是非歧视性的。
一个所关注的靶标是PVRIG。PVRIG,也称为含有脊髓灰质炎病毒受体相关免疫球蛋白结构域的蛋白、Q6DKI7或C7orf15,是一种长度为326个氨基酸的跨膜结构域蛋白,具有信号肽(跨越氨基酸1至40)、细胞外结构域(跨越氨基酸41至171)、跨膜结构域(跨越氨基酸172至190)和细胞质结构域(跨越氨基酸191至326)。PVRIG与脊髓灰质炎病毒受体相关蛋白2(PVLR2,也称为nectin-2、CD112或疱疹病毒侵入介体B(HVEB)、人质膜糖蛋白),即PVRIG的结合配偶体结合。
另一个所关注的靶标是TIGIT。TIGIT是一种在效应和调节(Treg)CD4+T细胞、效应CD8+T细胞和NK细胞上高效表达的共抑制受体。已显示TIGIT通过(1)直接信号传导,(2)诱导配体信号传导,以及(3)竞争和破坏利用共刺激受体CD226(也称为DNAM-1)的信号传导来减弱免疫反应。TIGIT信号传导已经在NK细胞中得到最充分的研究,其中已经证明与其同源配体脊髓灰质炎病毒受体(PVR,也称为CD155)的接合通过其细胞质ITIM结构域直接抑制NK细胞的细胞毒性。TIGIT基因的敲除或TIGIT/PVR相互作用的抗体阻断已显示在体外增强NK细胞杀伤,以及加剧体内自身免疫疾病。除了对T细胞和NK细胞的直接作用外,TIGIT还可在树突状细胞或肿瘤细胞中诱导PVR介导的信号传导,从而导致抗炎细胞因子如IL10的产生增加。在T细胞中,TIGIT还可以通过破坏共刺激受体CD226的同二聚化,并通过与其竞争结合PVR来抑制淋巴细胞反应。
TIGIT在淋巴细胞上高度表达,包括浸润不同类型肿瘤的肿瘤浸润淋巴细胞(TIL)和Treg。PVR也在肿瘤中广泛表达,表明TIGIT-PVR信号轴可能是癌症的主要免疫逃逸机制。值得注意的是,TIGIT表达与另一种重要的共抑制受体PD1的表达密切相关。TIGIT和PD1在许多人和鼠肿瘤的TIL上共表达。与TIGIT和CTLA4不同,PD1对T细胞反应的抑制不涉及配体与共刺激受体结合的竞争。
因此,TIGIT是单克隆抗体疗法的有吸引力的靶标,并且另外与包括抗PVRIG抗体的其它抗体组合。
发明内容
因此,在一个方面,本发明提供了包含结合人TIGIT(SEQ ID NO:97)的抗原结合结构域的组合物,所述抗原结合结构域包含有包含SEQ ID NO:160的重链可变结构域和包含SEQ ID NO:165的轻链可变结构域。此外,抗原结合结构域包含有包含SEQ ID NO:150的重链可变结构域和包含SEQ ID NO:155的轻链可变结构域此外,抗原结合结构域包含有包含SEQ ID NO:560的重链可变结构域和包含SEQ ID NO:565的轻链可变结构域。
在另一方面,本发明提供了包含抗体的组合物,所述抗体包含有包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:160;和包含VL-VC的轻链,其中所述VL包含SEQ ID NO:165并且VC是κ或λ。此外,抗体可包含有包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:150;和包含VL-VC的轻链,其中所述VL包含SEQ ID NO:159并且VC是κ或λ。此外,抗体可包含有包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:560;和包含VL-VC的轻链,其中所述VL包含SEQ ID NO:565并且VC是κ或λ。
在一些方面,CH1-铰链-CH2-CH3的序列选自人IgG1、IgG2和IgG4及其变体。在一些方面,重链具有SEQ ID NO:164,轻链具有SEQ ID NO:169。
在另一个方面,组合物可以进一步包含结合人检查点受体蛋白的第二抗体,所述人检查点受体蛋白可以是人PD-1或人PVRIG。第二抗体可包含抗原结合结构域,其包含有包含SEQ ID NO:5的重链可变结构域和包含SEQ ID NO:10的轻链可变结构域,或具有SEQ IDNO:9的重链和具有SEQ ID NO:14的轻链。
在另一方面,本发明提供核酸组合物,其包含编码包含SEQ ID NO:160的重链可变结构域的第一核酸和编码包含SEQ ID NO:165的轻链可变结构域的第二核酸。或者,核酸组合物包含编码包含SEQ ID NO:150的重链可变结构域的第一核酸和编码包含SEQ ID NO:155的轻链可变结构域的第二核酸。或者,核酸组合物包含编码包含SEQ ID NO:560的重链可变结构域的第一核酸和编码包含SEQ ID NO:565的轻链可变结构域的第二核酸。
在另一方面,本发明还提供了包含这些核酸组合物的表达载体组合物,例如包含第一核酸的第一表达载体和包含第二核酸的第二表达载体,或者包含第一和第二核酸的表达载体。
在另一方面,本发明提供了包含表达载体组合物的宿主细胞,以及制备抗体的方法,包括在产生抗体的条件下培养宿主细胞并回收抗体。
在另一方面,本发明提供了抗PVRIG抗体,其包含具有SEQ ID NO:9的重链和具有SEQ ID NO:14的轻链。本发明还提供了包含具有SEQ ID NO:19的重链;和具有SEQ ID NO:24的轻链的抗体。
在另一方面,抗PVRIG抗体(CHA.7.518.1.H4(S241P)或CHA.7.538.1.2.H4(S241P)与结合人检查点受体蛋白的第二抗体,例如结合PD-1的抗体共同施用。
在另一方面,抗PVRIG抗体(CHA.7.518.1.H4(S241P)或CHA.7.538.1.2.H4(S241P))与结合人检查点受体蛋白的第二抗体,例如结合人TIGIT的抗体,例如CPA.9.086或CPA.9.083或CHA.9.547.13共同施用。
在另一方面,本发明提供核酸组合物,其包含分别编码CHA.7.518.1.H4(S241P)或CHA.7.538.1.2.H4(S241P))的重链的第一核酸和编码CHA.7.518.1.H4(S241P)或CHA.7.538.1.2.H4(S241P)的轻链的第二核酸。
在另一方面,本发明还提供了包含这些核酸组合物的表达载体组合物,例如包含第一核酸的第一表达载体和包含第二核酸的第二表达载体,或者包含第一和第二核酸的表达载体。
在另一方面,本发明提供了包含表达载体组合物的宿主细胞,以及制备抗体的方法,包括在产生抗体的条件下培养宿主细胞并回收抗体。
在另一方面,本发明提供的方法包括:a)提供来自患者的肿瘤样品的细胞群体;b)用标记的抗体将所述群体染色,所述抗体结合:i)TIGIT蛋白;ii)PVR蛋白;iii)PD-1蛋白;iv)PD-L1蛋白;和v)同种型对照;c)运行荧光活化细胞分选术(FACS);d)对于TIGIT、PVR、PD-1和PD-L1中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;其中如果所有4种受体的阳性细胞百分比≥1%那么e)向所述患者施用针对TIGIT和PD-1的抗体。
在另一方面,本发明提供的方法包括:a)提供来自患者的肿瘤样品的细胞群体;b)用标记的抗体将所述群体染色,所述抗体结合:i)PVRIG蛋白;ii)PVRL2蛋白;iii)PD-1蛋白;iv)PD-L1蛋白;和v)同种型对照;c)运行荧光活化细胞分选术(FACS);d)对于PVRIG、PVRL2、PD-1和PD-L1中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;其中如果所有4种受体的阳性细胞百分比≥1%,那么e)向所述患者施用针对PVRIG和PD-1的抗体。
在另一方面,本发明提供的方法包括:a)提供来自患者的肿瘤样品的细胞群体;b)用标记的抗体将所述群体染色,所述抗体结合:i)PVRIG蛋白;ii)PVRL2蛋白;iii)TIGIT蛋白;iv)PVR蛋白;和v)同种型对照;c)运行荧光活化细胞分选术(FACS);d)对于PVRIG、PVRL2、TIGIT和PVR中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;其中如果所有4种受体的阳性细胞百分比≥1%,那么e)向所述患者施用针对PVRIG和TIGIT的抗体。
附图说明
图1.描绘了人PVRIG的全长序列(示出了两个不同的甲硫胺酸起始点)。信号肽加下划线,ECD加双下划线。
图2.描绘了PVRIG的结合配偶体人脊髓灰质炎病毒受体相关蛋白2(PVLR2,也称为nectin-2、CD112或疱疹病毒侵入介体B(HVEB))的序列。PVLR2是人质膜糖蛋白。
图3A和B.描绘了本发明所列举的CHA抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)中每一个的可变重链和轻链以及vhCDR1、vhCDR2、vhCDR3、vlCDR1、vlCDR2和vlCDR3序列。
图4A和B.PVRIG抗体增加了MLR中的T细胞增殖。示出了来自用所指示的PVRIG抗体处理过的MLR分析的CFSE低细胞的百分比。每个图表示一个单独的CD3T细胞供体。实验描述于USSN 15/048,967的实例23中,所述文献以引用的方式并入本文中。
图5A和B.PVRIG杂交瘤抗体与HEK hPVRIG工程改造的细胞系、HEK亲本细胞和Jurkat细胞的结合特征。HEK OE表示HEK hPVRIG细胞,HEK par表示HEK亲本细胞。对于Jurkat数据gMFIr表示PVRIG抗体染色的几何MFI相对于其对照的倍数差异。浓度指示计算gMFIr时的浓度。无结合表明抗体不与所测试的细胞系结合。突出显示的抗体是‘前四名’所关注的抗体。
图6A和B.PVRIG杂交瘤抗体与原代人PBMC、食蟹猴过表达细胞和食蟹猴原代PBMC的结合特征。Expi cyno OE表示用cPVRIG瞬时转染的expi细胞expi par表示expi亲本细胞。gMFIr表示PVRIG抗体染色的几何MFI相对于其对照的倍数差异。浓度指示计算gMFIr时的浓度。未测试表明由于不存在与人HEK hPVRIG、expi cPVRIG细胞的结合或不符合PBMC亚组的结合要求而未测试的抗体。突出显示的抗体是‘前四名’所关注的抗体。实验描述于USSN15/048,967的实例21中,所述文献以引用的方式并入本文中。
图7A和B.PVRIG抗体在基于FACS的竞争分析中的阻断能力的汇总。指出了抑制的IC50。无IC50表明这些抗体是非阻断剂。突出显示的抗体是‘前四名’所关注的抗体。实验描述于USSN 15/048,967的实例21中,所述文献以引用的方式并入本文中。
图8A和B.TIL与黑素瘤细胞624在1∶1 E∶T下在抗PVRIG抗体(CPA.7.021;10ug/ml)、抗TIGIT(10A7克隆;10ug/ml)或其组合存在下共培养18小时。收集上清液并在Th1 Th2Th17细胞计数珠阵列分析中测试以检测分泌的细胞因子。检测IFNγ(A)和TNF(B)水平。通过一式三份样品的学生t检验(Student′s t-test)(*P≤0.05,**P≤0.01)对各处理进行比较。
图9A至F.MART-1或209TIL与黑素瘤细胞624在1∶1 E∶T下在抗PVRIG抗体(CPA.7.021;10ug/ml)、抗DNAM1(DX11克隆,BD Biosciences目录号559787;10ug/ml)或其组合存在下共培养18小时。收集上清液并在Th1 Th2 Th17细胞计数珠阵列分析中测试以检测分泌的细胞因子。检测IFNγ(A,D)和TNF(B,E)水平。对TIL进行染色以获得CD137的表面表达(C,F)。
图10A和B.TIL(F4)与黑素瘤细胞624在1∶3 E∶T下在抗PVRIG抗体(CPA.7.021;10ug/ml)、抗TIGIT(10A7克隆;10ug/ml)、抗PD1(mAb 1B8,Merck;10ug/ml)或其组合存在下共培养18小时。收集上清液并在Th1 Th2 Th17细胞计数珠阵列分析中测试以检测分泌的细胞因子。检测IFNγ(A)和TNF(B)水平。
图11A至E.描绘了CHA.7.518、CHA.7.524、CHA.7.530、CHA.7.538_1和CHA.7.538_2中每一个的四个人源化序列。所有人源化抗体均包含H4(S241P)取代。请注意CHA.7.538_2的轻链与CHA.7.538_1的轻链相同。每一个的“H1”是不改变人类框架的“CDR交换”。后续序列改变了以较大的粗体字显示的框架改变。CDR序列以粗体表示。CDR定义是网站www.bioinf.org.uk/abs/的AbM。人类种系和连接序列来自即国际信息系统www.imgt.org(创始人和董事:Marie-Paule Lefranc,法国蒙彼利埃(Montpellier,France))。残基编号按顺序(seq)或根据网站www.bioinf.org.uk/abs/的Chothia(AbM)显示。“b”表示埋入的侧链;“p”表示部分埋入;“i”表示在VH与VL结构域之间的界面处的侧链。人类与鼠类种系之间的序列差异由星号(*)标注。在序列下方标注框架中潜在的额外突变。如图所示,CDR序列中的潜在变化标注在每个CDR序列下方(#脱酰胺取代:Q/S/A;这些可以防止天冬酰胺(N)脱酰胺。@色氨酸氧化取代:Y/F/H;这些可以防止色氨酸氧化;@甲硫胺酸氧化取代:L/F/A)。
图12A至E.描绘了三种CHA抗体的人源化序列的归类:CHA.7.518、CHA.7.538.1和CHA.7.538.2。
图13.描绘了用于组合人源化VH和VL CHA抗体的方案。“chimVH”和“chimVL”是连接到人IgG恒定结构域的小鼠可变重链和轻链序列。
图14.PVRIG杂交瘤抗体与原代人PBMC、食蟹猴过表达细胞和食蟹猴原代PBMC的结合特征。Expi cyno OE表示用cPVRIG瞬时转染的expi细胞,expi par表示expi亲本细胞。gMFIr表示PVRIG抗体染色的几何MFI相对于其对照的倍数差异。浓度指示计算gMFIr时的浓度。未测试表明由于不存在与人HEK hPVRIG、expi cPVRIG细胞的结合或不符合PBMC亚组的结合要求而未测试的抗体。突出显示的抗体是完成人源化的四种抗体(参见图24)。实验描述于USSN15/048,967的实例21中,所述文献以引用的方式并入本文中。
图15.PVRIG抗体在基于FACS的竞争分析中的阻断能力的汇总。指出了抑制的IC50。无IC50表明这些抗体是非阻断剂。突出显示的抗体是完成人源化的四种抗体(参见图24)。
图16.所选PVRIG抗体在针对Reh和MOLM-13细胞的NK细胞细胞毒性分析中的活性的汇总。通过将PVRIG抗体条件下的绝对杀伤水平(%)除以对照抗体情况下的绝对杀伤水平(%)来计算相对于对照的细胞毒性的倍数变化。由5∶1的效应物与靶标比计算倍数变化。
图17.PVRIG直系同源物的序列比对。比对人、食蟹猴、狨猴以及恒河猴PVRIG胞外结构域的序列。人与食蟹猴之间的差异用黄色突出显示。
图18.抗人PVRIG抗体与食蟹猴、人食蟹猴/人杂合PVRIG变体的结合。示出了抗体与野生型食蟹猴PVRIG(●)、H61R食蟹猴PVRIG(■)、P67S食蟹猴PVRIG(▲)、L95R/T97I食蟹猴PVRIG和野生型人类PVRIG(◆)的结合。标绘随抗体浓度而变化的ELISA信号。
图19.抗人PVRIG抗体的表位组与食蟹猴交叉反应性的相关性。
图20A至B.(A)CHA.7.518.1.H4(S241P)对经过工程改造以过表达PVRIG的HEK细胞和HEK亲本细胞的特异性。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。(B)CHA.7.538.1.2.H4(S241P)对经过工程改造以过表达PVRIG的HEK细胞和HEK亲本细胞的特异性。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。
图21A至B.示出了CHA.7.518.1.H4(S241P)(A)和CHA.7.538.1.2.H4(S241P)(B)与通过RNA表达证实内源性表达PVRIG的Jurkat细胞结合的能力。(A)CHA.7.518.1.H4(S241P)与Jurkat细胞的结合。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。同种型染色显示为阴性对照。(B)CHA.7.538.1.2.H4(S241P)与Jurkat细胞的结合。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。同种型染色显示为阴性对照。两种抗体都能够以与HEK hPVRIG细胞相当的亲和力结合Jurkat细胞。
图22.示出了CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)与通过暴露于CMV肽(494-503,NLVPMVATV)扩增并且通过RNA表达证实内源性表达PVRIG的CD8T细胞结合的能力。CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)与CMV肽扩增的CD8 T细胞的结合。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。同种型染色显示为阴性对照。
图23A至B.(A)CHA.7.518.1.H4(S241P)对经过工程改造以过表达食蟹猴PVRIG的expi细胞和expi亲本细胞的特异性。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。CHA.7.538.1.2.H4(S241P)对经过工程改造以过表达食蟹猴PVRIG的expi细胞和expi亲本细胞的特异性。数据显示随抗体浓度增加而变化的绝对几何MFI(gMFI)测量值。
图24A至B.(A)通过CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)阻断PVRIG Fc与HEK细胞结合。数据显示PVRIG Fc与HEK细胞结合的百分比随相对于最大PVRIGFc诱导信号和仅次级背景增加的抗体浓度而变化。(B)CHA.7.544对PVRIG Fc与HEK细胞结合的影响。数据显示在递增的CHA.7.544浓度存在下,由PVRIG Fc与HEK细胞结合推导出的绝对gMFI。通过与Alexa 647缀合的抗小鼠Fc二级检测PVRIG Fc结合的量。
图25A至B.(A)通过CHA.7.518.1.H4(S241P)、CHA.7.538.1.2.H4(S241P)和CHA.7.530.3阻断PVRL2Fc与HEK hPVRIG细胞结合。数据显示PVRL2 Fc与HEK hPVRIG细胞结合的百分比随相对于最大PVRL2 Fc诱导信号和仅次级背景增加的抗体浓度而变化。(B)CHA.7.544对PVRL2 Fc与HEK hPVRIG细胞结合的影响。数据显示PVRL2 Fc与HEK hPVRIG细胞结合的百分比随相对于最大PVRL2 Fc诱导信号和仅次级背景增加的抗体浓度而变化。
图26.显示Alexa 647缀合的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)结合相对于其在Jurkat细胞与未缀合的CHA.7.518.1.H4(S241P)、CHA.7.538.1.2.H4(S241P)和同种型对照预孵育后的最大信号的百分比。
图27A至B.A)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增加CD4+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3hPVRL2细胞在抗DNAM-1抗体或不同抗PVRIG抗体或IgG同种型对照存在下共培养时,来自单个人CD4+T细胞供体的CFSE低、增殖CD4+T细胞的百分比(平均值加标准差)。虚线表示在用人IgG4同种型对照抗体处理后增殖的CFSE低CD4+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。(B)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)以hPVRL2依赖性方式增加CD4+T细胞增殖。代表性数据(n≥2)显示响应与CHO-S OKT3亲本或CHO-S OKT3 hPVRL2细胞在抗DNAM-1抗体或不同抗PVRIG抗体或IgG同种型对照存在下共培养的单个人CD4+T细胞供体的CFSE低、增殖CD4+T细胞的百分比(平均值加标准差)。虚线表示在用人IgG4或小鼠IgG1同种型抗体处理后增殖的CFSE低CD4+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。
图28A至C.(A)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增加CD8+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3 hPVRL2细胞在抗DNAM-1抗体或不同抗PVRIG抗体或IgG同种型对照存在下共培养时,来自单个人CD8+T细胞供体(供体232)的CFSE低、增殖CD8+T细胞的百分比(平均值加标准差)。虚线表示在用小鼠IgG1或人IgG4同种型抗体处理后增殖的CFSE低CD8+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。(B)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增加CD8+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3 hPVRL2细胞在抗DNAM-1抗体或不同抗PVRIG抗体或IgG同种型对照存在下共培养时,来自单个人CD8+T细胞供体(供体234)的CFSE低、增殖CD8+T细胞的百分比(平均值加标准差)。虚线表示在用小鼠IgG1或人IgG4同种型抗体处理后增殖的CFSE低CD8+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。(C)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增加CD8+T细胞的IFNγ分泌。代表性数据(n≥2)显示当与CHO-S OKT3 hPVRL2细胞在抗DNAM-1抗体或不同抗PVRIG抗体或IgG同种型对照存在下共培养时,由三个不同的人CD8+T细胞供体(供体231、232和234)产生的IFNγ的pg/ml(平均值加标准差)。虚线表示在用人IgG4同种型抗体处理后的基线IFNγ产生。数字是指与IgG4同种型对照相比,抗PVRIG抗体处理的IFNγ分泌增加百分比。
图29.人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)在多个供体中持续增加CD4+T细胞增殖,而CHA.7.530.3和CHA.7.544不增加。相对于同种型对照的增殖百分比通过将PVRIG抗体处理后CFSE低、CD4+T细胞的百分比除以每个供体的同种型抗体处理来计算。同种型抗体处理的增殖百分比设定为零。图中的每个符号代表不同的供体。
图30A至D.(A)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)对CD4+T细胞增殖的剂量依赖性作用。2个不同人供体的代表性数据(n≥2)显示用人IgG4同种型CHA.7.518.1.H4(S241P)或CHA.7.538.1.2.H4(S241P)抗体剂量滴定66nM至0.726nM后增殖的CD4+T细胞的平均百分比。估计的EC50在个位数nM范围内。(B)人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)对CD8+T细胞增殖的剂量依赖性作用。2个不同人供体的代表性数据(n≥2)显示用人IgG4同种型CHA.7.518.1.H4(S241P)、CHA.7.38.1.2或CHA.7.544抗体剂量滴定66nM至0.264nM后增殖的CD8+T细胞的平均百分比。估计的EC50在个位数nM范围内。
图31A至C.(A)流式细胞术分析TIGIT和PVRIG在TIL和PVR上的表达,PVRL2在624黑素瘤细胞系上的表达。值代表相对于同种型对照的平均荧光强度(MFI)比率。(B-C)显示在与黑素瘤细胞624在1∶3 E∶T下在同种型对照、抗TIGIT(30μg/ml)或抗PVRIG抗体(10ug/ml)作为单一处理(蓝色直方图)或与抗TIGIT(绿色直方图)组合存在下共培养18小时后由TIL分泌的IFNγ(B)和TNF(C)的代表性实验。将抗体单一处理作用的百分比与同种型对照处理mIgG1进行比较,并将抗体组合处理作用的百分比与抗TIGIT单一处理进行比较。
图32A至H.TIL(209-gp100/463-F4-gp100)与黑素瘤细胞624在1∶3 E∶T中在与或不与抗TIGIT(aTIGIT)组合的抗PVRIG抗体CHA.7.518.1.H4(S241P)或CHA.7.538存在下共培养18小时,并测试细胞因子分泌。将抗体处理作用的百分比与同种型对照处理进行比较,并绘制5次实验(F4)或6次实验(209)的平均值。与同种型或组合相比,计算每种处理的配对的双尾T检验-与单独的抗TIGIT相比,指示p值。
图33A至B.(A)与单一抗体处理相比,人源化PVRIG抗体CHA.7.518.1.H4(S241P)和抗TIGIT抗体增加CD4+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3hPVRL2细胞共培养时,来自单个人CD3+T细胞供体(供体143)的CFSE低、增殖CD4+T细胞的百分比(平均值加标准差)。虚线表示在用人IgG4同种型对照抗体处理后增殖的CFSE低CD4+T细胞的基线百分比。(B)与单一抗体处理相比,人源化PVRIG抗体CHA.7.518.1.H4(S241P)和抗TIGIT抗体增加CD4+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3hPVRL2细胞共培养时,来自单个人CD4+T细胞供体(供体201)的CFSE低、增殖CD4+T细胞的百分比(平均值加标准差)。虚线表示在用人IgG4同种型对照抗体处理后增殖的CFSE低CD4+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。
图34A至B.(A):人源化PVRIG抗体CHA.7.518.1.H4(S241P)与抗TIGIT抗体的组合增加CD8+T细胞增殖。代表性数据(n≥2)显示当与CHO-S OKT3hPVRL2细胞共培养时,来自代表性人CD8+T细胞供体(供体232)的CFSE低、增殖CD8+T细胞的百分比(平均值加标准差)。虚线表示在用人IgG4同种型抗体处理后增殖的CFSE低CD8+T细胞的基线百分比。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的增殖增加或减少的百分比。(B)人源化PVRIG抗体CHA.7.518.1.H4(S241P)与抗TIGIT抗体的组合增加CD8+T细胞的IFNγ分泌。代表性数据(n≥2)显示当与CHO-S OKT3hPVRL2细胞共培养时,由代表性人CD8+T细胞供体(供体232)产生的IFNγ的pg/ml(平均值加标准差)。虚线表示在用人IgG4同种型抗体处理后的基线IFNγ产生。数字分别指与相关同种型对照抗体相比,抗PVRIG或抗DNAM-1抗体处理的IFNγ分泌增加或减少的百分比。
图35.描绘了实例2(3)的实验系统设计。
图36A至C.示出了描绘TIL中PVRIG(使用抗人PVRIG CHA.7.538.AF647)、TIGIT(使用抗人TIGIT目录号17-9500-41 eBioscience)和DNAM-1(使用抗人CD226-APC目录号338312 biolegend)表达水平的直方图。将表达的倍数与同种型(Iso)对照进行比较。
图37.汇总了抗PVRIG抗体对TIL分泌IFNγ的影响的绘图。TIL与过表达PVRL2的CHO-S HLA-A2/B2M细胞以1∶3的E∶T比在抗PVRIG抗体(c518,c538和544)或抗TIGIT抗体存在下共培养18小时。每个点代表来自不同实验的相同TIL的IFNγ分泌的平均数据。指示的百分比是每种抗体治疗与同种型对照之间的差异。与544或组合相比,计算每种处理的配对的双尾T检验,与单独的抗TIGIT相比,指示p值。每个TIL进行的实验数量;209(N=3),F4(N=2),F5(N=3)和MART1(N=2)。
图38.汇总了c518和c538剂量反应对TIL分泌TNF-α的影响的绘图。TIL与过表达PVRL2的CHO-S HLA-A2/B2M细胞以1∶3的效应物与靶标比在抗PVRIG抗体(c518、c538或同型对照)存在下共培养18小时,如实例2(3)中所述。
图39A至C.TIL与过表达PVRL2的CHO-S HLA-A2/B2M靶细胞以1∶3的E∶T比在抗PVRIG抗体(c518,c538和544)或抗TIGIT抗体存在下共培养18小时。上表中指出的百分比是每种抗体处理剂与其同种型对照相比对TIL分泌细胞因子的影响的差异。第一个实验在图A和B中表示,第二个实验在图C中表示。
图40.CHO-S OKT3共培养分析设计。CFSE标记的CD3+T细胞与CHO-S-OKT3-PVRL2或模拟转染的细胞共培养5天。分析抗PVRIG抗体对T细胞增殖和细胞因子分泌的影响。
图41.抗PVRIG抗体对反应者与无反应者供体中CHO-OKT3PVRL2细胞的IFNγ分泌的影响。来自2个不同供体的CD3+细胞与CHO-S-PVRL2细胞以5∶1 E∶T在抗PVRIG抗体存在下共培养5天,并测试细胞因子分泌和T细胞增殖。(A)我们观察到抗PVRIG抗体作用的‘反应者供体’。(B)我们没有观察到抗体处理作用的‘无反应者供体’。
图42.抗PVRIG抗体对反应者供体CD4和CD8增殖的影响。CFSE标记的CD3+T细胞与CHO-S-PVRL2细胞以5∶1 E∶T在抗PVRIG抗体或抗TIGIT抗体存在下共培养5天。通过流式细胞术评估对CD4或CD8上的T细胞增殖门控的影响。提供增殖细胞(CFSE低)的百分比(A)或CD4+CFSE低或CD8+CFSE低的总细胞数(B)。
图43.显示抗PVRIG抗体对反应者供体的IFNγ分泌或CD8增殖的影响。CD3+细胞与CHO-S-PVRL2细胞以5∶1 E∶T在抗PVRIG抗体存在下共培养5天,并测试(A)细胞因子分泌和(B)T细胞增殖。将抗体处理作用的百分比与同种型对照治疗进行比较,并给出5个‘反应者’供体(反应者)的平均值。(C)在用同种型与抗PVRIG抗体处理后,如A部分和B部分所述,在与CHOS-OKT3PVRL2共培养后来自相同的5个供体的IFNγ分泌水平。p值代表配对T检验的比率。
图44.是测试供体(n=10)中抗体处理作用的汇总表。指示的百分比表示与相关同种型对照相比,抗体处理对特定读数(在列标题中指示)的影响。‘反应者’供体(供体#3、72、226、345和ES_001)被认为是‘反应者’,其中一些抗PVRIG抗体(主要是CHA.7.518)与同种型对照相比增强IFNγ或增殖。
图45A至B.描绘了使用数种抗体的实验结果。亲和力(nM)显示在A中,其中HEKhPVRIG细胞是用本文所述的hPVRIG转化的HEK细胞和表达内源性hPVRIG的Jurkat细胞。(B)描绘了使用针对供体1原代CD8T细胞和(C)供体2原代CD8T细胞的4种不同抗体的gMFI。
图46A至B.描绘了TIGIT与CHO细胞的相互作用。(A)人TIGIT Fc蛋白与CHO细胞结合。在基于FACS的结合分析中评定分级浓度的人TIGIT Fc和synagis IgG1对照与CHO细胞结合的能力。(B)人PVR在活化的CD4 T细胞上表达。CD4 T细胞与表达OKT3抗体的scFv的CHO细胞共培养并活化5天。在第5天,分析CD4T细胞的PVR表达和CFSE的稀释。
图47A至C.描绘了抗mPVRIg和抗PDL-1抗体在CT26肿瘤模型中的抗肿瘤反应。A-B.向各组10只BALB/c小鼠皮下注射5×105个CT26细胞。在第4天测量肿瘤后,将小鼠随机分组(每组40mm3平均肿瘤体积),然后用指定的mAb(100或200μg/剂量IP)处理,接着在第7天、第11天、第14天、第18天和第21天用额外剂量处理。A.用6个剂量的单一药剂处理各组。抗PDL-1对比对照***p<0.0001。肿瘤体积表示为平均体积+SEM。B.每周测量肿瘤体积两次。指出每组无肿瘤(TF)小鼠的数量。C.指定组的存活比例;抗PDL-1对比对照**p=0.005。
图48A至C.描绘了抗PVRIG与抗PDL-1抗体组合在CT26肿瘤模型中的抗肿瘤反应。A-B.向各组10只BALB/c小鼠皮下注射5×105个CT26细胞。在第7天测量肿瘤后,将小鼠随机分组(每组75mm3平均肿瘤体积),然后用指定的mAb(300μg/剂量IP)处理,接着在第11天、第14天、第18天、第21天和第25天用额外剂量处理。A.用6个剂量的组合药剂处理各组。抗PDL-1+mAb 407对比对照p=0.0005;抗PDL-1和mAb 406对比对照p=0.056。B.每周测量肿瘤体积3次。指出每组无肿瘤(TF)小鼠的数量。C.指定组的存活比例;抗PDL-1+mAb 407对比对照*p=0.0088。
图49A至D.描绘了AB-407(BOJ-5G4-F4)的可变重链的氨基酸序列和核酸序列(分别是A和B)以及可变轻链的氨基酸序列和核酸序列(分别是C和D)。
图50.描绘了人IgG1(具有一些有用的氨基酸取代)、IgG2、IgG3、IgG4、具有可用于本发明中的特定用途的铰链变体的IgG4的恒定结构域以及κ和λ轻链的恒定结构域的氨基酸序列。
图51.描绘了人和食蟹猕猴(称为食蟹猴)TIGIT ECD以及人PVR ECD蛋白的序列。
图52.显示抗TIGIT Fab的流式细胞术结合汇总。通过流式细胞术分析所有独特的ELISA阳性Fab。测量过表达人或食蟹猴TIGIT的Expi293细胞以及亲本Expi293细胞的平均荧光强度(MFI)。计算靶特异性结合对比脱靶结合的MFI比。显示所选克隆的数据。
图53A和B.描绘了抗TIGIT抗体的序列。除非另外指出,否则CDR利用IMGT编号(包括序列表的抗体。
图54.显示如实例12中所述的与Expi293人TIGIT过表达细胞结合的抗TIGIT mAb的FACS KD结果。
图55.显示与Expi293食蟹猴TIGIT过表达细胞结合的mAb的FACS KD结果。
图56.显示实例14的结果,其显示所得动力学速率常数和平衡解离常数,其中数据足够可靠以便估计结合常数。
图57A至B.显示实例4中与Expi293人TIGIT过表达细胞结合的人PVR-Fc变体的结果。图A(左):用Expi293人TIGT过表达细胞滴定的人PVR-m2aFc构建体产生的结合曲线。显示了KD和95%置信区间。图B(右):用Expi293人TIGT过表达细胞滴定的人PVR-hlFc构建体产生的结合曲线。显示了KD和95%置信区间。
图58.显示抑制人PVR-m2aFc与Expi293细胞上过表达的人TIGIT结合的噬菌体抗体的表。针对已知阻断(BM26)基准抗体和人IgG4同种型对照(Synagis)抗体测试mAb。“是”表示mAb抑制类似于BM26的hPVR。
图59.显示抗TIGIT杂交瘤抗体抑制人PVR-hlFc与Expi293细胞上过表达的人TIGIT结合的IC50值的表。值代表两个独立实验之一。两个独立进行的实验的IC50结果显示仅1.2-2倍的差异范围。
图60.显示实例6的结果,即噬菌体源性和BM抗人TIGIT抗体CPA.9.027、CPA.9.049、CPA.9.059、BM26和BM29增加IL-2信号传导。BM26和BM29均为人IgG4(具有S241P变体的hIgG4)同种型。代表性数据(n≥2)显示来自Jurkat IL-2-RE荧光素酶人TIGIT细胞和aAPC CHO-K1人PVR细胞的6小时共培养物的荧光素酶信号的RLU(平均值+/-标准差)。每种抗体的浓度为10μg/ml。
图61.显示实例6的其它结果,即噬菌体源性和BM hIgG4抗人TIGIT抗体CPA.9.027、CPA.9.049、CPA.9.059、BM26和BM29以剂量依赖性方式增加IL-2信号传导。BM26和BM29都是hIgG4同种型。代表性数据(n≥2)显示来自Jurkat IL-2-RE荧光素酶人TIGIT细胞和aAPC CHO-K1人PVR细胞的6小时共培养物的荧光素酶信号的RLU(平均值+/-标准差)。每种抗体使用以20μg/ml开始的10个点的2倍稀释系列。
图62.显示实例6的结果,即杂交瘤源性和BM抗人TIGIT抗体CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547、CHA.9.560、BM26和BM29增加IL-2信号传导。BM26和BM29都是mIgG1同种型。非阻断性抗人TIGIT抗体CHA.9.543不增强IL-2信号传导。代表性数据(n≥2)显示来自Jurkat IL-2-RE荧光素酶人TIGIT细胞和aAPC CHO-K1人PVR细胞的6小时共培养物的荧光素酶信号的RLU(平均值+/-标准差)。每种抗体的浓度为10μg/ml。
图63.显示实例6的结果,即杂交瘤源性和基准mIgG1抗人TIGIT抗体CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547、CHA.9.560和BM26以剂量依赖性方式增加IL-2信号传导。BM26是mIgG1同种型。代表性数据(n≥2)显示来自Jurkat IL-2-RE荧光素酶人TIGIT细胞和aAPC CHO-K1人PVR细胞的6小时共培养物的荧光素酶信号的RLU(平均值+/-标准差)。每种抗体使用以20μg/ml开始的10个点的2倍稀释系列。
图64.显示噬菌体、杂交瘤和BM抗人TIGIT抗体CPA.9.027、CPA.9.049、CPA.9.059、CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547、CHA.9.560、BM26和BM29增加抗原特异性IFNγ信号传导。BM26作为hIgG4和mIgG1同种型进行测试,而BM29仅作为hIgG4同种型进行测试。代表性数据(n=2)显示CMV特异性CD8+T细胞与Me1624人PVR细胞共培养24小时后培养物上清液中IFNγ的量(平均值+/-标准差)。每种抗体的浓度为分析中使用的Mel624人PVR用0.0033μg/ml或0.001μg/ml肽脉冲。
图65.显示噬菌体、杂交瘤和BM抗人TIGIT抗体CPA.9.027、CPA.9.049、CPA.9.059、CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547和CHA.9.560以及BM26单独(空心条)或与抗PVRIG抗体CHA.7.518.1.H4(S241P)(阴影条)组合增加抗原特异性IFNγ信号传导。BM26是mIgG1同种型。对于同种型抗体对照处理,空心条是指单独的同种型抗体,阴影条是指与CHA.7.518.1.H4(S241P)组合的同种型抗体。代表性数据(n=2)显示CMV特异性CD8+T细胞与过表达人PVR和人PVRL2的Me1624细胞共培养24小时后培养物上清液中IFNγ的量(平均值+/-标准差)。每种抗体的浓度为10μg/ml。分析中所用的Me1624人PVR/人PVRL2细胞用0.0033μg/ml或0.001μg/ml肽脉冲。
图66.显示用抗人TIGIT抗体、CHA.7.518.1.H4(S241P)和抗人TIGIT抗体与CHA.7.518.1.H4(S241P)的组合增加IFNγ分泌超过相应同种型对照抗体的百分比。
图67.是实例7的表位分箱实验的树状图。
图68.是来自实例7的表位分箱实验的抗体的分组。
图69.显示在人TIGIT过表达Expi293细胞上亲和力成熟的噬菌体抗体(CPA.9.083,CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)、基准抗体(BM26、BM29)和hIgG4同种型对照(抗Synagis)的剂量滴定中与人TIGIT过表达细胞的高亲和力结合,如实例3的实验中所述。使用以10μg/ml(133.33nM[结合位点])开始的11个点的连续2倍稀释液滴定所有抗体。将AF647标记的山羊抗人F(ab′)(Jackson Immunoresearch)添加至细胞中以侦测抗TIGIT抗体的结合。显示与人TIGIT过表达Expi293细胞(黑线)和亲本Expi293细胞(灰线)结合的抗TIGIT抗体的gMFI。在每个图下方指示KD值+/-95%CI和曲线拟合。
图70.显示在食蟹猴TIGIT过表达Expi293细胞上亲和力成熟的噬菌体抗体(CPA.9.083,CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)、基准抗体(BM26、BM29)和hIgG4同种型对照(抗Synagis)的剂量滴定中,抗TIGIT抗体与食蟹猴TIGIT交叉反应,如实例3的实验中所述。使用以10μg/ml(133.33nM[结合位点])开始的11个点的连续2倍稀释液滴定所有抗体。将AF647标记的山羊抗人F(ab′)(Jackson Immunoresearch)添加至细胞中以侦测抗TIGIT抗体的结合。显示与食蟹猴TIGIT过表达Expi293细胞(黑线)和亲本Expi293细胞(灰线)结合的抗TIGIT抗体的gMFI。在每个图下方指示KD值+/-95%CI和曲线拟合。
图71.显示在重新格式化为小鼠IgG1(mIgG1)之亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、基准抗小鼠TIGIT抗体(BM27mIgG1、BM30mIgG1)和mIgG1同种型对照(抗Synagis)的剂量滴定中,亲和力成熟的噬菌体抗体与小鼠TIGIT交叉反应,如实例3的实验中所述。A)与小鼠TIGIT过表达HEK细胞(黑线)和亲本HEK细胞(灰线)结合的抗TIGIT抗体的gMFI。B)与从Balb/c小鼠皮下植入的Renca肿瘤分离的调节性CD4+CD25+Foxp3+T细胞结合的抗TIGIT抗体(黑线)或Synagis mIgG1(灰线)的gMFI。使用分别以15μg/ml(200nM[结合位点])或10μg/ml(132nM[结合位点])开始的连续2或3倍稀释液系列滴定抗TIGIT抗体。将AF647标记的山羊抗小鼠IgG-Fc(Southern Biotech)添加至细胞中以检测小鼠TIGIT过表达细胞上抗TIGIT抗体的结合。将抗TIGIT抗体直接缀合至AF647以进行小鼠Treg结合。指出了每种抗TIGIT抗体的KD值。
图72.显示来自3个健康供体PBMC(供体321、322和334)的人效应记忆CD95+CD28-CD8+CD3+T细胞上亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)和基准抗体(BM26、BM29)的剂量滴定,如实例3的实验中所述。用针对以下谱系标志物CD3、CD4、CD8、CD14、CD16、CD28、CD56和CD95的抗体(BDBiosciences,BioLegend)以及活/死可固定的水性染料(Life Technologies)对PBMC进行表面染色。然后使用以30μg/ml(396nM[结合位点])开始的12个点的连续3倍稀释液滴定AF647标记的抗TIGIT抗体和hIgG4同种型对照抗体(抗Synagis)。显示与效应记忆T细胞结合的抗TIGIT抗体的gMFI。表中报告了3种不同供体中每种抗体的KD值。亲和力成熟噬菌体抗体(CPA.9.083和CPA.9.086)对人效应记忆T细胞具有最高的结合亲和力。
图73.显示从2只幼稚食蟹猴分离的PBMC的食蟹猴效应记忆CD95+CD28-CD8+CD3+T细胞(BioreclamationIVT)上亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086、CPA.9.103)、人源化杂交瘤抗体(CHA.9.547.1)和基准抗体(BM26)的剂量滴定,如实例3的实验中所述。用针对以下谱系标志物CD3、CD4、CD8、CD14、CD16、CD28、CD56和CD95的抗体(BDBiosciences,BioLegend)以及活/死可固定的水性染料(Life Technologies)对PBMC进行表面染色。然后使用以30μg/ml(396nM[结合位点])开始的12个点的连续3倍稀释液滴定AF647标记的抗TIGIT抗体和hIgG4同种型对照抗体(抗Synagis)。显示与效应记忆T细胞结合的抗TIGIT抗体的gMFI,减去抗Synagis hIgG4同种型对照抗体的gMFI。表中报告了2个供体中每种抗体的KD值。亲和力成熟噬菌体抗体(CPA.9.083和CPA.9.086)对食蟹猴效应记忆T细胞具有最高的结合亲和力。
图74.显示与人、食蟹猴和小鼠TIGIT结合的抗TIGIT抗体的SPR动力学,如实例5的实验中所述。亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086、CPA.9.103)、人源化杂交瘤抗体(CHA.9.547.1和CHA.9.547.7)和基准抗体(BM26、BM29)的动力学速率和平衡解离常数在ProteOn仪器上通过SPR来测定。
图75.显示抗TIGIT抗体阻断PVR/TIGIT相互作用,如实例4的实验中所述。人TIGIT过表达Expi293细胞与亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)、基准抗体(BM26、BM29)或hIgG4同种型对照(抗Synagis)一起预孵育。使用以10μg/ml(133.33nM[结合位点])开始的11个点的连续2.5倍稀释液滴定所有抗体。在抗体预孵育后,将人PVR-m2aFc以158nM[结合位点]或EC90加入细胞中。然后将AF647标记的山羊抗小鼠IgG-Fc(Southern Biotech)加入细胞中以检测抗TIGIT抗体的结合。显示了每种抗体对PVR-m2aFc与人TIGIT过表达Expi293细胞结合的抑制百分比。表中报告了每种抗人TIGIT抗体的IC50值(n=2次实验)。
图76.显示实例6的结果,即亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)和基准抗体(BM26)以剂量依赖性方式增加IL-2信号传导。Synagis hIgG4是同种型对照抗体。代表性数据(n≥2)显示来自Jurkat IL-2-RE荧光素酶人TIGIT细胞和CHO-K1人PVR细胞的6小时共培养物的荧光素酶信号的RLU(平均值/-标准差)。每种抗体使用以20μg/ml开始的19个点的1.5倍稀释系列。
图77.显示抗TIGIT抗体在CMV特异性CD8+T细胞中诱导IFNγ。利用人CMV特异性CD8+T细胞的体外共培养分析来评定亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)和基准抗体(BM26、BM29)对抗原特异性细胞因子分泌的影响,如实例6的实验中所述。分析中所用的靶细胞系是内源性表达人PVR和PVRL2的HLA-A2+胰腺癌细胞Panc.05.04。将Panc.05.04细胞用CMV pp65肽以0.03μg/mi或0.01μg/ml在37℃下脉冲1小时。然后洗涤细胞且以50,000个细胞/孔涂覆在96孔圆底组织培养物处理的平板中。以0.1μg/ml的浓度添加抗人TIGIT抗体或同种型对照hIgG4抗体(抗Synagis)。根据上述方案扩增来自单个供体的人CMV特异性CD8+T细胞。每孔加入50,000个人CD8+T细胞。将共培养物在37℃,5%CO2下孵育24小时。使用细胞计数珠分析(BDBiosciences)通过流式细胞术测量共培养物上清液中人干扰素γ(IFNγ)的量。相对于hIgG4同种型,每种抗体的IFNγ分泌增加百分比汇总在表中(n=2次实验)。
图78.显示当与PVRIG抗体CHA.7.518.1.H4(S241P)组合时,抗TIGIT抗体增强IFNγ。利用人CMV特异性CD8+T细胞的体外共培养分析来评定亲和力成熟的噬菌体抗体(CPA.9.083、CPA.9.086)、人源化杂交瘤抗体(CHA.9.547.7、CHA.9.547.13)和基准抗体(BM26、BM29)与抗PVRIG抗体CHA.7.518.1组合对抗原特异性细胞因子分泌的影响。分析中所用的靶细胞系是内源性表达人PVR和PVRL2的HLA-A2+胰腺癌细胞Panc.05.04。将Panc.05.04细胞用CMV pp65肽以0.03μg/ml或0.01μg/ml在37℃下脉冲1小时。然后洗涤细胞且以50,000个细胞/孔涂覆在96孔圆底组织培养物处理的平板中。抗人TIGIT抗体或同种型对照hIgG4抗体(抗Synagis)以0.1μg/ml的浓度与10μg/ml的CHA.7.518.1(阴影条)或对照hIgG4同种型抗体(实心条)组合添加。根据上述方案扩增来自单个供体的人CMV特异性CD8+T细胞。每孔加入50,000个人CD8+T细胞将共培养物在37℃,5%CO2下孵育24小时。使用细胞计数珠分析(BD Biosciences)通过流式细胞术测量共培养物上清液中人IFNγ的量。相对于hIgG4同种型,每种抗体的IFNγ分泌增加百分比汇总在表中(n=2次实验)。
图79.显示来自解离的肿瘤的CD4+和CD8+T细胞上PVRIG和TIGIT表达的相关性分析。对于每个肿瘤样品,计算平均荧光强度比(MFIr),进行斯皮尔曼相关性分析(Spearman′s correlation analysis),并报告r2和p值。
图80.显示用抗小鼠PVRIG抗体处理的TIGIT KO小鼠的肿瘤生长抑制和存活率结果。向各组7-10只TIGIT KO和C57BL/6WT小鼠皮下注射1×105个B16/Db-hmgp100细胞。从接种日(第0天)开始用指定的抗体每周处理小鼠两次,持续3周。A)平均肿瘤体积/-平均值的标准误差(SEM)显示在上图中,其中***指示用抗小鼠PVRIG抗体(克隆407)处理的TIGIT KO与用mIgG1同种型对照抗体处理的C57BL/6WT相比p值<0.001。每个抗体处理组内个别小鼠的肿瘤体积在下图中以蜘蛛图显示。B)汇总了与用mIgG1同种型对照处理的对照C57BL/6WT小鼠相比在指定天测量的TGI的表。C)皮下注射B16/Db-hmgp100细胞后小鼠的存活率。
图81A至C.描绘了与Mel-624、Colo205和Panc.05.04细胞中的对照相比使用指定抗体的组合处理。将gp100或CMVpp65特异性T细胞与10mg/ml Mel-624、Colo205和Panc.05.04细胞、gp100或CMVpp65肽以及指定抗体共培养。在24小时测定条件培养基中的IFN-γ浓度。显示一式三份的平均值+标准差。显示了相对于hIgG4的每种条件的IFN-γ的%变化。
图82A至C.描绘了CD8T细胞上PD-1/TIGIT/PVRIG的表达和Colo205、Panc.05.04细胞上PD-L1、PVR、PVRL2的表达。A)在用pp65肽与IL-2和IL-7扩增10天的CMVpp65反应性T细胞上PVRIG、TIGIT和PD-1的表达。显示了CMVpp65反应性T细胞上PVRIG、TIGIT和PD-1的表达。B)显示了在Colo205和Panc.05.04细胞上PD-L1、PVR和PVRL2的表达。C)将CMVpp65特异性T细胞与10mg/ml Colo205和Panc.05.04细胞、CMVpp65肽和指定抗体共培养。在24小时测定条件培养基中的IFN-γ浓度。显示一式三份的平均值+标准差。显示了相对于hIgG4的每种条件的IFN-γ的%变化。
图83.PVRIG在人癌症的细胞毒性淋巴细胞亚群中表达最高。A)显示了PVRIG在5-8个健康供体PBMC的白细胞细胞亚群上的表达。PVRIG表达定义为PVRIG MFI相对于同种型对照MFI的比率。B)显示了与来自5个健康供体PBMC的CD8T细胞亚群相比,外周血Treg上PVRIG、TIGIT、CD96和PD-1的表达。C)来自3个健康供体的CMV pp65特异性T细胞在体外用pp65(495-503)肽、IL-2和IL-7扩增长达7天。显示了TIGIT(蓝色)和PVRIG(黑色)在HLA-A2/pp65(495-503)四聚体阳性细胞上的表达。D)用同种异体DC培养人T细胞,并在活化后第0天、第1天、第2天和第7天显示CD4+T细胞上TIGIT和PVRIG的表达。E)显示来自代表性肺癌和肾癌的TILS(CD4T细胞、CD8T细胞和NK细胞)上与同种型对照(红色)相比的PVRIG(蓝色)表达的代表性FACS图。F)显示了PVRIG、TIGIT和PD-1在来自肺癌样品的CD4和CD8TILS上的共表达。G)显示了PVRIG在来自各种癌症类型的解离的人肿瘤的CD8+和CD4+TILS上的表达。每个点代表来自个别患者的不同肿瘤。H)评定来自子宫内膜、肾和肺肿瘤的CD8 TIL与TregTILS上PVRIG、TIGIT和PD-1的相对表达。对于每个肿瘤,将CD8 TILS上的倍数表达标准化为在Treg TILS上的倍数表达并绘图。对于A、B、C、G和H,误差条表示平均值±SEM。
图84.PVRL2表达在肿瘤微环境中增强。A)通过IHC评定肺、卵巢/子宫内膜、乳腺、结肠、肾和黑素瘤肿瘤的PVRL2表达。条形图描绘了平均值±SEM。对于每个肿瘤,由病理学家评定2个核心,并基于补充方法中描述的肿瘤细胞上膜染色的盛行率和强度进行评分。对于每个肿瘤,显示2个核心的平均得分。B)显示代表性黑素瘤肿瘤,其在肿瘤细胞(箭头)和基质中的免疫细胞(*)中显示PVRL2表达。C)显示CD45-、CD14+TAM和Lin-CD14-CD33hi mDC细胞亚群上通过FACS确定的解离肿瘤在log2标度上的PVRL2表达。显示每种癌症类型的平均值±SEM。虚线表示未观察到染色。对于每种细胞类型,至少需要100个事件才能进行分析。D)显示关于肺癌的PVRL2表达(蓝色)与IgG(红色)相比的代表性FACS图。E)对于我们能够评定PVRIG和PVRL2表达的肿瘤样品,将CD8+T细胞上的PVRIG表达相对于每个肿瘤的CD14+TAMS和CD45-细胞上的PVRL2表达作图。每个点代表单个肿瘤样品。与IgG相比,红线代表PVRIG或PVRL2的2倍表达。图84F中的表显示了PVRL2在各种肿瘤样品中的盛行率。
图85.PVRL2和PD-L1对肿瘤细胞的不同调节。A)通过IHC在连续切片上评定PD-L1和PVRL2的表达。基于组织类型对来自图84A的肿瘤样品进行分组,并且显示PD-L1阴性和PD-L1阳性的PVRL2的表达。PD-L1阴性肿瘤定义为对于给定肿瘤,来自任一一式两份核心的肿瘤或免疫细胞上没有膜染色。PD-L1阳性染色定义为肿瘤的至少1个核心上的膜染色。条形图描绘了每组的平均值±SEM。B,C)PVRL2+PD-L1-子宫内膜(B)肿瘤和PVRL2+PD-L1-肺(C)肿瘤的代表性表达。D)用指定的刺激物培养未成熟的BM-DC,并在培养的第2天通过FACS评定PVR、PVRL2和PD-L1表达。对于每种条件,将表达相对于仅培养基对照条件标准化。E)显示了仅用或培养基处理的HT-29细胞上PVR、PVRL2和PD-L1的表达。PD-L1或PVRL2以蓝色显示,IgG同种型对照以红色显示。
图86.CHA.7.518.1.H4(S241P)是一种增强T细胞活化的高亲和力抗体。A)通过FACS显示CHA.7.518.1.H4(S241P)或IgG同种型对照与HEK293PVRIG或HEK293亲本细胞的结合。显示CHA.7.518.1.H4(S241P)与HEK293hPVRIG、HEK293cPVRIG和Jurkat细胞结合的FACSKD值。B)CHA.7.518.1.H4(S241P)破坏PVRL2Fc与异位表达PVRIG的HEK293细胞的结合。显示一式三份值的平均值±标准差。C)CHA.7.518.1.H4(S241P)阻断PVRIG Fc与内源性表达PVRL2的HEK293细胞的结合。D)人类CD4T细胞与表达细胞表面结合的抗CD3抗体和hPVRL2的aAPC CHO细胞在10μg/ml抗PVRIG抗体和人类IgG同种型对照抗体存在下共培养。显示了抗PVRIG Ab对从11个不同供体分离的CD4T细胞增殖的影响。条形图描绘了平均值±SEM。E)gp100特异性T细胞系(TIL-209、TIL-463)与经过工程改造以表达HLA-A2和PVRL2的CHO细胞连同10μg/ml抗PVRIG或IgG同种型对照抗体共培养。在共培养后24小时测试IFN-γ和TNF-α的产生。显示一式三份值的平均值±标准差。相对于同种型对照的每种条件下IFN-γ和TNF-α的百分比变化由每个条上方的数字表示。F)显示MEL624、Colo205和Panc.05.04细胞上PVR、PVRL2和PD-L1(红色)相对于IgG(蓝色)的表达。对于T细胞,显示TIL-209和TIL-463gp100特异性T细胞上以及CMVpp65特异性T细胞上PVRIG、TIGIT和PD-1(红色)相对于IgG(蓝色)的表达。为了扩增CMVpp65反应性T细胞,将PBMC与pp65(495-503)肽、IL-2和IL-7一起培养10天。PVRIG、TIGIT、PD-1的表达显示在HLA-A2/pp65四聚体阳性细胞上。G)由来源于黑素瘤肿瘤的TILS扩增的gp100特异性T细胞(TIL-209、TIL-463)与MEL624细胞在指定抗体存在下共培养。在24小时测定条件培养基中的IFN-γ浓度。H,I)将扩增的CMVpp65特异性T细胞与Colo205和Panc.05.04细胞、CMVpp65肽和指定抗体共培养。在24小时测定条件培养基中的IFN-γ浓度。对于E、G、H、I,显示一式三份的平均值±标准差。相对于同种型对照的每种条件下IFN-γ的百分比变化由每个条上方的数字表示。
图87.PVRIG缺陷小鼠具有增加的T细胞功能。A)评定通过qRT-PCR从纯化的小鼠免疫细胞亚群测量的PVRIG的RNA表达。管家的相对表达由法确定。B)用gp100(25-33)活化pmel CD8+TCR转基因T细胞,并在指定的时间点通过qRT-PCR评定PVRIG和TIGIT RNA转录物水平。图表显示来自5个不同实验的结果的平均值±SEM。C)从PVRIG-/-和WT同窝仔畜收获脾脏,并通过流式细胞术分析PVRIG在NK、CD4+和CD8+T细胞(“静息”细胞)上的表达。另外,从脾细胞分离CD3+T细胞并用抗CD3/抗CD28珠活化11天。活化后,通过流式细胞术分析CD4+和CD8+T细胞(“活化”细胞)上的PVRIG表达。每个点代表来自单个小鼠的细胞。D)WT和PVRIG-/-源性脾细胞用Cell Proliferation Dye eFluor450标记,并在对照-Fc(小鼠IgG2a)或小鼠PVRL2Fc存在下培养。培养4天后,通过流式细胞术分析细胞分裂。给出了来自实验的代表性FACS图(左)和3个独立实验的PVRL2Fc的抑制百分比概述(定义为%增殖对照-Fc从%增殖PVRL2Fc中减去)(右)。*表示WT对比PVRIG-/-T细胞中在PVRL2-FC存在下的增殖相对于在蛋白质对照存在下的增殖变化的配对学生t检验的p值<0.05。E)来源于pmelPVRIG-/-或pmel PVRIG WT小鼠的pmel CD8+T细胞用其同源肽和IL2活化11天。然后将活化的pmel CD8+细胞与B16-Db/gp100细胞共培养18小时,并在共培养后评估CD107表达和细胞因子产生。如每个配对点所示,呈现四个独立实验。*表示比较PVRIG-/-与WT的学生t检验的p值<0.05。
图88.PVRIG缺乏导致肿瘤生长减少和CD8+效应T细胞机制增加。A)向C57BL/6WT或PVRIG-/-小鼠皮下注射5×105个MC38细胞。每周测量肿瘤体积2次。每组n=10只小鼠,显示平均值±SEM,*表示WT小鼠与PVRIG-/-小鼠的学生未配对t检验的p值<0.05(ANOVA)。B)显示个体肿瘤生长曲线。每组n=10只小鼠,显示一个代表性实验(n=2)。C)向C57BL/6WT或PVRIG-/-小鼠皮下注射5×105个MC38细胞。在接种后14天,用抗PD-L1处理小鼠,每周2次,持续2周。每周测量肿瘤体积2次。每组n=10只小鼠,显示平均值±SEM,WT小鼠与PVRIG-/-小鼠的学生未配对t检验的p值=0.052,WT小鼠与PVRIG-/-小鼠均用抗PD-L1处理。D)显示个体肿瘤生长曲线。显示一个代表性实验(n=2)。E-H)在单独的一式两份实验中,在小鼠接受2剂量的抗PD-L1或相关同种型对照后第18天收获肿瘤。在布雷菲德菌素A(BrefeldinA)存在下用PMA和离子霉素(Ionomycin)刺激4小时前,解离的肿瘤富集CD45+细胞。图表显示来自同种型处理的野生型和PVRIG-/-小鼠(E)和来自抗PD-L1处理的野生型和PVRIG-/-小鼠(F)的CD45+免疫细胞、CD8+T细胞和干扰素-γ-产生CD8+T细胞的每mg肿瘤组织的总数。G-H)显示同种型和抗PD-L1处理的PVRIG-/-小鼠相对于其相应野生型群组在肿瘤引流淋巴结中的CD8+ 效应细胞的频率。对于E-H,显示平均值±SEM,并显示学生未配对t检验的p值。
图89.拮抗性抗PVRIG抗体协同抑制PD-1抑制剂或TIGIT遗传缺陷组合中生长的肿瘤。A)显示mPVRL2Fc融合蛋白与mPVRIG HEK293工程细胞的结合,所述mPVRIG HEK293工程细胞与连续稀释的抗mPVRIG mAb或IgG同种型对照Ab预孵育。B)向BALB/c小鼠皮下注射5×105个CT26细胞。在接种后第14天,处死小鼠并收获脾脏、引流淋巴结和肿瘤。通过流式细胞术分析细胞有关PVRIG在CD3+CD4+T细胞、CD3+CD8+T细胞、CD3-CD49b+NK细胞、CD11b+Gr-1+骨髓衍生的抑制细胞(MDSC)和CD11b+F4/80+巨噬细胞上的表达。C,D)向BALB/c小鼠皮下注射5×105个CT26细胞。在接种后第7天,用抗PD-L1及/或抗PVRIG Ab处理小鼠,每周2次,持续3周(箭头指示Ab处理)。C)显示肿瘤体积。***表示与处理组相比,aPD-L1+大鼠IgG2b的p值<0.001(ANOVA)。箭头表示何时给予抗体。D.完全反应者小鼠的存活率分析。*表示与处理组相比, 大鼠IgG2b的p值<0.05(对数秩检验)。显示3项研究中的一项代表性研究。E.向C57BL/6或TIGIT-/-小鼠皮下注射1×105个B16/Db-hmgp100细胞。从接种当天(第0天)开始,用指定的mAb每周处理小鼠2次,持续3周。E.每周测量肿瘤体积2次,显示平均值±SEM。在指定天测量的肿瘤生长抑制与对照WT+mIgG1同种型对照相比。***表示与WT+mIgG1同种型对照相比,TIGIT-/-+aPVRIG的p值<0.001。箭头表示何时给予抗体。F.显示每只小鼠的个体肿瘤生长曲线。显示所进行的2个实验中的一个代表性实验。
图90.PVRIG在人癌症中TILS的T细胞和NK细胞上表达。A)显示PVRIG、TIGIT、CD96和PD-1在来自健康供体PBMC的CD4T细胞亚群上的表达。显示平均值±SEM。B)将人T细胞与同种异体PBMC共培养,并显示PVRIG蛋白在CD4和CD8T细胞上的表达(上图)。C)解离肿瘤并用抗CD3和抗CD28活化单细胞。在第0天(直接离体)和活化后第5天评定PVRIG(蓝色)相对于IgG同种型对照(红色)的表达。D)显示PVRIG在来自解离的人肿瘤的NK细胞上的表达。每个点代表来自个别患者的不同肿瘤。显示平均值±95%置信区间。D)解离的肿瘤细胞用抗CD3和抗CD28珠活化5天。对于2个解离的肿瘤样品,显示在第0天直接离体和在活化后第5天PVRIG(蓝色)相对于IgG对照(红色)在CD4和CD8T细胞上的表达。E)评定PVRIG在来自解离的肿瘤和来自解离的供体匹配的正常邻近组织的CD4和CD8T细胞上的表达。每条线代表从个别患者获得的匹配组织。进行了配对的学生t检验。F)显示在来自肿瘤的CD4和CD8T细胞上PVRIG、TIGIT和PD-1相对于IgG同种型对照的倍数表达量级的相关性分析。每个点代表单个肿瘤样品。显示了斯皮尔曼相关系数和p值。
图91.PVRL2的表达在结肠癌、皮肤癌和乳腺癌中得到增强A)显示Sigma抗人PVRL2抗体与阳性细胞CHO-S人PVRL2(右)的FFPE切片的结合与在pH9下抗原修复后的阴性细胞CHO-S(左)相比的显微照片。B)在一组PVRL2+(HT29、MCF7、PC3、PANC1、RT4、NCI-H1573)和PVRL2-(Jurkat、OPM2、Daudi、CA46)细胞系上测试抗PVRL2抗体。C-F)PVRL2在肺正常组织和癌组织中的实例表达。C)正常组织显示无染色。D)肺腺癌显示部分阳性染色。E)肺腺癌显示阳性染色。F)肺腺癌显示强阳性染色。
图92.与正常邻近组织相比,肿瘤中TAM和CD45-细胞上的PVRL2上调。显示PVRL2在来自供体匹配的肿瘤和正常邻近组织的CD45-细胞和TAM上的表达。显示配对学生t检验的p值。
图93.PVRIG和PVRL2在相同的肿瘤样品中共表达。对于单个肿瘤,将CD4T细胞(A)和NK细胞(B)上的PVRIG表达针对TAMS上的PVRL2表达作图。
图94.CHA.7.518.1.H4(S241P)对人T细胞的活性。A)PVRIG在用表达细胞表面结合的抗CD3和PVRL2的CHO细胞活化的CD4T细胞上的表达。B)显示HLA-A2、B-2m和PVRL2在CHO-S亲本细胞系和经过工程改造的CHO-S细胞系上的表达。相对于同种型的表达倍数由数字表示。C)异位表达细胞表面结合的抗CD3和PVRL2的CHO细胞与纯化的CD8T细胞在不同浓度的抗PVRIG Ab或相关IgG对照存在下共培养。显示%增殖。每个点代表一式三份值的平均值。D)异位表达HLA-A2/B2m和PVRL2的CHO细胞与2个gp100特异性T细胞系(TIL F4、TIL 209)在1μg/ml gp100和不同浓度的抗PVRIG抗体或相关IgG对照存在下共培养。TNF-α浓度在共培养的第3天下降。每个值代表一式三份的平均值。
图95.mPVRIG结合相互作用和替代抗mPVRIG抗体的表征。A,B)通过表面等离子共振评定mPVRIG与mPVRL2的结合。C)可溶性受体Fc或对照蛋白在剂量反应中与固定化的mPVRL2HIS以ELISA形式孵育。显示了结合的受体Fc。D)可溶性PVRL2HIS蛋白在剂量反应中用PVRIG Fc或Fc涂布板孵育。E)显示mPVRIG Fc或对照Fc融合蛋白与用mPVRL2siRNA、mPVRsRNA或乱序siRNA转染转染的B16-F10细胞系的结合。F)通过检查抗mPVRIG与过表达mPVRIG的HEK293细胞的结合来进行大鼠抗小鼠PVRIG mAb的亲和力表征。G)显示通过检查抗mPVRIG与内源性表达mPVRIG的D10.G4.1细胞系相对于同种型对照大鼠IgG来进行大鼠抗小鼠PVRIG mAb的亲和力表征。H)抗mPVRIG与用小鼠PVRIG-siRNA(绿色直方图)相对于scrsiRNA(橙色直方图)转染的D10.G4.1细胞的结合。I)用抗mPVRIG Ab预孵育的mPVRIG Fc与内源性表达PVRL2的B16-F10细胞的结合。
图96.转基因PVRIG和TIGIT敲除小鼠的产生PVRIG条件性敲除和Tigit敲除小鼠品系由Ozgene Pty Ltd(Bentley WA,Australia)生成。A)将PVRIG外显子1至4条件性敲除的靶向构建体电穿孔至C57BL/6ES细胞系Bruce4中(Koentgen等人,《国际免疫学(IntImmunol)》5:957-964,1993)。B)将Tigit外显子1(包括ATG)以及外显子2和3的编码区用FRT侧翼的neo盒替换的靶向构建体电穿孔至C57BL/6ES细胞系Bruce4中。通过Southern杂交鉴定同源重组ES细胞克隆并将其注射至goGermline胚泡中(Koentgen等人,《起源(genesis)》54:326-333,2016)。获得雄性嵌合小鼠并与C57BL/6J雌性杂交以在C57BL/6背景上建立杂合种系后代。将种系小鼠与普遍存在的FLP C57BL/6小鼠品系杂交以除去FRT侧翼选择标记盒并产生条件性或敲除等位基因(分别用于PVRIG和Tigit)。对于PVRIG敲除,将小鼠进一步与普遍存在的Cre C57BL/6小鼠品系杂交以除去loxP侧翼外显子并产生敲除等位基因。
图97.PVRIG敲除小鼠与野生型小鼠的免疫表型相似。在静脉血收集在抗凝血剂涂布的试管中并收获器官之前,对小鼠(每个野生型和PVRIG敲除群组n=5)实施安乐死。从新收获的骨髓、胸腺、脾脏、皮肤和肠系膜淋巴结中回收单细胞。细胞用荧光染料缀合的表面标志物抗体染色并在BD LSR Fortessa流式细胞仪上获得。各图示出了各种淋巴组织类型中骨髓细胞(A)、树突状细胞(B)、B细胞(C)、T细胞(D)、CD4T细胞(E)、CD8T细胞(F)和NK细胞(G)的可比频率。(H-I)在Hemavet 950兽医血液学系统上运行全静脉血,以比较来自野生型和PVRIG缺陷小鼠的血细胞亚群的差异计数和频率。
图98.与用抗PD-L1处理的WT相比,用抗PDL1处理的PVRIG-/-小鼠的T细胞效应功能增加。将MC38肿瘤接种至WT或PVRIG-/-小鼠中,随后用抗PD-L1或大鼠IgG2b同种型对照处理。在第18天,从肿瘤中纯化CD45+肿瘤浸润淋巴细胞,提取RNA并进行转录谱分析。显示了数种T细胞相关基因,每个点代表单个小鼠。显示了学生t检验的p值。
图99.抗TIGIT和抗PVRIG抗体诱导肿瘤细胞杀伤。利用扩增的人CMV特异性CD8+T细胞的体外共培养分析来评定基准抗TIGIT抗体和CHA.7.518.1.H4(S241P)对抗原特异性肿瘤细胞杀伤的影响。用于分析的HLA-A2+靶细胞系是Me1624(A)和Panc05.04(B)。SynagishIgG4是同种型对照抗体。用Bio-Glo荧光素酶底物测量靶细胞中的荧光素酶活性。代表性数据(n≥2)显示与来自三个不同供体的人CMV特异性CD8+T细胞共培养16小时后Mel624或Panc05.04细胞的特异性杀伤百分比(平均值+/-标准差)。
图100.抗TIGIT抗体与CHA.7.518.1.H4(S241P)的剂量依赖性肿瘤细胞杀伤。用人CMV特异性CD8+T细胞进行体外共培养分析,用于评定两种不同抗TIGIT抗体BM26和CPA.9.086与CHA.7.518.1.H4(S241P)组合时对抗原特异性Me1624细胞杀伤的影响。用Bio-Glo荧光素酶底物测量靶细胞中的荧光素酶活性。代表性数据(n≥2)显示与来自一个供体的人CMV特异性CD8+T细胞共培养16小时后Me1624细胞的特异性杀伤百分比(平均值+/-标准差)。
图101.CPA.9.086CDR序列,IMGT和Kabat编号。
图102.抗TIGIT hIgG4+CHA.7.518.1.H4(S241P)组合诱导肿瘤细胞杀伤。CMV反应性CD8+T细胞与Mel624PVR、PVRL2和荧光素酶OE单剂量10μg/ml aTIGITAb和10μg/mlCHA.7.518.1.H4(S241P)与CMV反应性供体4共培养,而剂量滴定开始于0.5μg/mlaTIGITAb和10μg/ml CHA.7.518.1.H4(S241P)与CMV反应性供体156。
具体实施方式
A.概观
本发明提供了许多单独或组合使用的有用抗体,用于治疗癌症。癌症可以被认为是患者无法识别和消除癌细胞。在许多情况下,这些转化的(例如癌性)细胞抵消免疫监视。存在限制体内T细胞活化的自然控制机制以防止无限制的T细胞活性,其可被癌细胞利用以逃避或抑制免疫反应。恢复免疫效应细胞(尤其是T细胞)识别和消除癌症的能力是免疫疗法的目标。免疫肿瘤学领域,有时被称为“免疫疗法”,正在迅速发展,最近批准了T细胞检查点抑制性抗体,如Yervoy、Keytruda和Opdivo。这些抗体通常被称为“检查点抑制剂”,因为它们阻断T细胞免疫的正常负调节因子。通常理解的是,共刺激和共抑制的各种免疫调节信号可用于协调最佳抗原特异性免疫反应。通常,这些抗体结合检查点抑制蛋白,例如CTLA-4或PD-1,其在正常情况下预防或抑制细胞毒性T细胞(CTL)的活化。通过抑制检查点蛋白质,例如通过使用结合这些蛋白质的抗体,可以实现针对肿瘤的T细胞反应增加。也就是说,这些癌症检查点蛋白质抑制免疫反应;当例如使用针对检查点蛋白质的抗体阻断蛋白质时,免疫系统被活化,产生免疫刺激,从而治疗如癌症和传染病的病况。
本发明涉及针对其它检查点蛋白质PVRIG和TIGIT的抗体的用途PVRIG在NK细胞和T细胞的细胞表面上表达,并且与其它已知的免疫检查点具有若干相似之处。用于显示PVRIG是检查点受体的鉴定和方法在WO2016/134333中进行了讨论,所述文献通过引用明确地并入本文。本文提供了阻断PVLR2的相互作用和/或结合的人PVRIG抗体。当PVRIG与其配体(PVRL2)结合时,引发抑制信号,其起到减弱NK细胞和T细胞针对靶细胞的免疫反应(即类似于PD-1/PDL1)的作用。阻断PVRL2与PVRIG的结合会切断PVRIG的这种抑制信号,并因此调节NK细胞和T细胞的免疫反应。利用阻断与PVRL2结合的PVRIG抗体是一种增强NK细胞和T细胞杀伤癌细胞的治疗方法。已经产生阻断抗体,其结合PVRIG并阻断其配体PVRL2的结合。提供了抗PVRIG抗体与其它检查点抑制剂抗体如PD-1的组合。
类似地,已经显示TIGIT也具有检查点受体的属性,并且本发明提供了阻断TIGIT与PVR的相互作用和/或结合的抗TIGIT抗体。当TIGIT与其配体(PVR)结合时,引发抑制信号,其起到减弱NK细胞和T细胞针对靶细胞的免疫反应(即类似于PD-1/PDL1)的作用。阻断PVR与TIGIT的结合会切断TIGIT的这种抑制信号,并因此调节NK细胞和T细胞的免疫反应。利用抗TIGIT的抗体阻断与PVR的结合是一种增强NK细胞和T细胞杀伤癌细胞的治疗方法。已经产生阻断抗体,其结合TIGIT并阻断其配体PVR的结合。提供了抗TIGIT抗体与其它检查点抑制剂抗体如PD-1的组合。
另外,本发明提供了用于治疗癌症的抗PVRIG和抗TIGIT抗体的组合。
B.定义
为了能更全面地了解本申请,下文阐述若干定义。这些定义意味着包含语法等同物。
本文的“消融”是指活性的降低或除去。在一些实施例中,从抗体的恒定结构域中除去活性是有用的。因此,例如,“消融FcγR结合”意指与不含特定变体的Fc区相比,Fc区氨基酸变体具有小于50%的起始结合,其中小于70-80-90-95-98%的活性损失是优选的,并且通常,活性低于Biacore分析中可检测的结合水平。如图50所示,IgG1恒定区中的一个消融变体是N297A变体,其除去天然糖基化位点并显著降低FcγRIIIa结合,从而降低抗体依赖性细胞介导的细胞毒性(ADCC)。
“抗原结合结构域”或“ABD”在本文中是指一组六个互补决定区(ComplementaryDetermining Region,CDR),当作为多肽序列的一部分存在时,特异性结合如本文所论述的靶抗原。因此,“TIGIT抗原结合结构域”结合如本文所概述的TIGIT抗原(其序列如图51所示)。类似地,“PVRIG抗体结合结构域”结合如本文所概述的PVRIG抗原(其序列如图1所示)。如本领域中已知,这些CDR通常作为第一组可变重链CDR(vhCDR或VHCDR)和第二组可变轻链CDR(vlCDR或VLCDR)存在,其各自包含三个CDR:重链的vhCDR1、vhCDR2、vhCDR3和轻链的vlCDR1、vlCDR2和vlCDR3。CDR分别存在于重链可变结构域和轻链可变结构域中,并且一起形成Fv区。因此,在一些情况下,抗原结合结构域的六个CDR由可变重链和可变轻链贡献。在“Fab”形式中,6个CDR的集合由两个不同的多肽序列贡献,重链可变结构域(vh或VH;含有vhCDR1、vhCDR2和vhCDR3)和轻链可变结构域(vl或VL;含有vlCDR1、vlCDR2和vlCDR3),其中vh结构域的C端连接到重链CH1结构域的N端,vl结构域的C端连接到轻链恒定结构域的N端(从而形成轻链)。
本文的“修饰”是指多肽序列中的氨基酸取代、插入和/或缺失或与蛋白质化学连接的部分的改变。例如,修饰可以是连接于蛋白质的改变的碳水化合物或PEG结构。本文的“氨基酸修饰”是指多肽序列中的氨基酸取代、插入和/或缺失。为清楚起见,除非另有说明,否则氨基酸修饰始终是由DNA编码的氨基酸,例如在DNA和RNA中具有密码子的20个氨基酸。
本文的“氨基酸取代”或“取代”是指用不同的氨基酸替换亲本多肽序列中特定位置的氨基酸。特别地,在一些实施例中,取代是针对并非天然存在于特定位置、并非天然存在于生物体内或任何生物体内的氨基酸。例如,取代N297A是指在位置297处的天冬酰胺被丙氨酸替换的变体多肽,在这种情况下是Fc变体。为了清楚起见,已经过工程改造以改变核酸编码序列但不改变起始氨基酸(例如将CGG(编码精氨酸)换成CGA(仍然编码精氨酸)来提高宿主生物体表达水平)的蛋白质不是“氨基酸取代”;也就是说,尽管创建了编码相同蛋白质的新基因,但是如果蛋白质在其起始的特定位置具有相同的氨基酸,那么它就不是氨基酸取代。
本文所用的“氨基酸插入”或“插入”是指在亲本多肽序列的特定位置添加氨基酸序列。例如,-233E或233E表示在位置233之后和位置234之前插入谷氨酸。另外,-233ADE或A233ADE表示在位置233之后和位置234之前插入AlaAspGlu。
本文所用的“氨基酸缺失”或“缺失”是指除去亲本多肽序列中特定位置的氨基酸序列。例如,E233-或E233#,E233()或E233del表示在位置233处的谷氨酸的缺失。另外,EDA233-或EDA233#表示从位置233开始的序列GluAspA1a的缺失。
本文所用的“变体蛋白质”或“蛋白质变体”或“变体”是指通过至少一个氨基酸修饰而不同于亲本蛋白质的蛋白质。蛋白质变体可以指蛋白质本身、包含蛋白质的组合物或编码它的氨基酸序列。优选地,蛋白质变体与亲本蛋白质相比具有至少一个氨基酸修饰,例如与亲本相比,约1个至约70个氨基酸修饰,优选约1个至约5个氨基酸修饰。如下所述,在一些实施例中,亲本多肽,例如Fc亲本多肽,是人野生型序列,例如来自IgG1、IgG2、IgG3或IgG4的Fc区,尽管具有变体的人序列也可以充当“亲本多肽”。本文的蛋白质变体序列优选与亲本蛋白质序列具有至少约80%的同一性,最优选至少约90%的同一性,更优选至少约95-98-99%的同一性。变体蛋白质可以指变体蛋白质本身、包含蛋白质变体的组合物或编码它的DNA序列。因此,本文所用的“抗体变体”或“变体抗体”是指通过至少一个氨基酸修饰与亲本抗体不同的抗体,本文所用的“IgG变体”或“变体IgG”是指通过至少一个氨基酸修饰与亲本IgG(同样,在许多情况下,来自人IgG序列)不同的抗体,并且本文所用的“免疫球蛋白变体”或“变体免疫球蛋白”是指通过至少一个氨基酸修饰与亲本免疫球蛋白序列不同的免疫球蛋白序列。本文所用的“Fc变体”或“变体Fc”是指包含Fc结构域中的氨基酸修饰的蛋白质。本发明的Fc变体是根据构成它们的氨基酸修饰来定义。因此,例如,S241P或S228P是相对于亲本IgG4铰链多肽在位置228处具有取代脯氨酸的铰链变体,其中编号S228P是根据EU索引而S241P是Kabat编号。EU索引或如Kabat或EU编号方案中的EU索引是指EU抗体的编号(Edelman等人,1969,《美国国家科学院院刊(Proc Natl Acad Sci USA)》63:78-85,在此通过引用整体并入)。修饰可以是添加、缺失或取代。取代可包括天然存在的氨基酸,在某些情况下,可包括合成氨基酸。实例包括美国专利第6,586,207号;WO 98/48032;WO 03/073238;US2004-0214988A1;WO 05/35727A2;WO 05/74524A2;J.W.Chin等人,(2002),《美国化学会志(Journal of the American Chemical Society)》124:9026-9027;J.W.Chin和P.G.Schultz,(2002),《生物化学(ChemBioChem)》11:1135-1137;J.W.Chin等人,(2002),《美国PICAS》99:11020-11024;以及L.Wang和P.G.Schultz,(2002),《化学(Chem.)》1-10,全部通过引用并入。
如本文所用,“蛋白质”在本文中是指至少两个共价连接的氨基酸,其包括蛋白质、多肽、寡肽和肽。肽基可包含天然存在的氨基酸和肽键,或合成的拟肽结构,即“类似物”,例如拟肽(参见Simon等人,《美国科学院院报》89(20):9367(1992),通过引用整体并入)。氨基酸可以是天然存在的或合成的(例如不是由DNA编码的氨基酸);如本领域技术人员所理解的。例如,出于本发明的目的,同型苯丙氨酸、瓜氨酸、鸟氨酸和正亮氨酸被认为是合成氨基酸,并且可以使用D-和L-(R或S)构型的氨基酸。本发明的变体可包含修饰,其包括使用例如Schultz和同事开发的技术掺入的合成氨基酸,所述技术包括但不限于Cropp和Shultz,2004,《遗传学趋势(Trends Genet.)》20(12):625-30,Anderson等人,2004,《美国国家科学院院刊》101(2):7566-71,Zhang等人,2003,303(5656):371-3和Chin等人,2003,《科学(Science)》301(5635):964-7所描述的方法,均通过引用整体并入。另外,多肽可包括一个或多个侧链或末端的合成衍生、糖基化、聚乙二醇化、环状排列、环化、与其它分子的接头、与蛋白质或蛋白质结构域的融合以及肽标签或标记的添加。
本文所用的“残基”是指蛋白质中的位置及其相关的氨基酸身份标识。例如,天冬酰胺297(也称为Asn297或N297)是人抗体IgG1中位置297处的残基。
本文所用的“Fab”或“Fab区”是指包含VH、CH1、VL和CL免疫球蛋白结构域的多肽。Fab可以单独指代该区域,或者在全长抗体或抗体片段的背景下指代该区域。
本文所用的“Fv”或“Fv片段”或“Fv区”是指包含单一抗体的VL和VH结构域的多肽。如本领域技术人员所理解,这些通常由两条链构成。
本文中的“单链Fv”或“scFv”是指通常使用如本文所讨论的scFv接头将重链可变结构域共价连接至轻链可变结构域,以形成scFv或scFv结构域。scFv结构域从N端至C端可呈任一定向(vh-接头-vl或vl-接头-vh)。通常,接头是本领域公知的scFv接头,接头肽主要包括以下氨基酸残基:Gly、Ser、Ala或Thr。接头肽应具有足以连接两个分子的长度,使得它们相对于彼此呈现正确的构象,从而使得它们保留所需的活性。在一个实施例中,接头为约1至50个氨基酸长,优选约1至30个氨基酸长。在一个实施例中,可以使用1至20个氨基酸长的接头,在一些实施例中发现使用约5至约10个氨基酸。有用的接头包括甘氨酸-丝氨酸聚合物,包括例如(GS)n、(GSGGS)n、(GGGGS)n和(GGGS)n,其中n是至少一(通常为3至4)的整数;甘氨酸-丙氨酸聚合物;丙氨酸-丝氨酸聚合物和其它柔性接头。或者,各种非蛋白质聚合物,包括但不限于可用作接头的聚乙二醇(PEG)、聚丙二醇、聚氧化烯或聚乙二醇和聚丙二醇的共聚物,可用作接头。
本文所用的“IgG亚类修饰”或“同种型修饰”是指将一种IgG同种型的一个氨基酸转化为不同的比对IgG同种型中的相应氨基酸的氨基酸修饰。例如,因为在EU位置296处IgG1包含酪氨酸并且IgG2包含苯丙氨酸,所以IgG2中的F296Y取代被认为是IgG亚类修饰。类似地,因为IgG1在位置241处具有脯氨酸而IgG4在那里具有丝氨酸,所以具有S241P的IgG4分子被认为是IgG亚类修饰。注意,亚类修饰在本文中被认为是氨基酸取代。
本文所用的“非天然存在的修饰”是指不是同种型的氨基酸修饰。例如,因为没有IgG在位置297处包含天冬酰胺,所以IgG1、IgG2、IgG3或IgG4(或其杂合体)中的取代N297A被认为是非天然存在的修饰。
本文所用的“氨基酸”和“氨基酸身份标识”是指由DNA和RNA编码的20种天然存在的氨基酸之一。
本文所用的“效应功能”是指由抗体Fc区与Fc受体或配体相互作用产生的生物化学事件。效应功能包括但不限于ADCC、ADCP和CDC。
本文所用的“IgG Fc配体”是指与IgG抗体Fc区结合以形成Fc/Fc配体复合物的任何生物体的分子,优选多肽。Fc配体包括但不限于FcγRI、FcγRII、FcγRIII、FcRn、C1q、C3、甘露聚糖结合凝集素、甘露糖受体、葡萄球菌蛋白A、链球菌蛋白G和病毒FcγR。Fc配体还包括Fc受体同源物(FcRH),其是与FcγR同源的Fc受体家族(Davis等人,2002,《免疫评论(Immunological Reviews)》190:123-136,通过引用整体并入)。Fc配体可包括结合Fc的未发现分子。特定的IgG Fc配体是FcRn和Fcγ受体。本文所用的“Fc配体”是指与抗体Fc区结合以形成Fc/Fc配体复合物的任何生物体的分子,优选多肽。
本文所用的“亲本多肽”是指随后经过修饰以产生变体的起始多肽。亲本多肽可以是天然存在的多肽,或天然存在的多肽的变体或工程改造版本。亲本多肽可以指多肽本身、包含亲本多肽的组合物或编码它的氨基酸序列。因此,本文所用的“亲本免疫球蛋白”是指未修饰的免疫球蛋白多肽,其被修饰以产生变体,并且本文所用的“亲本抗体”是指未修饰的抗体,其被修饰以产生变体抗体。应注意,“亲本抗体”包括如下概述的已知的商业重组产生的抗体。
本文使用的“Fc”或“Fc区”或“Fc结构域”是指包含抗体恒定区(不包括第一恒定区免疫球蛋白结构域)的多肽,并且在一些情况下是铰链的一部分。因此,Fc是指IgA、IgD和IgG的最后两个恒定区免疫球蛋白结构域,IgE和IgM的最后三个恒定区免疫球蛋白结构域,以及这些结构域N端的柔性铰链。对于IgA和IgM,Fc可包括J链。对于IgG,Fc结构域包含免疫球蛋白结构域Cγ2和Cγ3(Cγ2和Cγ3)以及Cγ1(Cγ1)和Cγ2(Cγ2)之间的下铰链区。尽管Fc区的边界可以变化,但是人IgG重链Fc区通常被定义为包括其羧基端的残基C226或P230,其中编号是根据如Kabat中的EU索引。在一些实施例中,如下文更全面地描述,对Fc区进行氨基酸修饰,例如改变与一种或多种FcγR受体或FcRn受体的结合。
“重链恒定区”在本文中是指抗体的CH1-铰链-CH2-CH3部分。
本文所用的“位置”是指蛋白质序列中的位置。位置可以顺序编号,或根据确定的形式(例如用于抗体编号的EU索引)编号。
本文所用的“靶抗原”是指由给定抗体的可变区特异性结合的分子。在本发明的情况下,本文中所关注的一种靶抗原是TIGIT,通常是人TIGIT和任选的食蟹猴TIGIT,如下文所定义。另一种所关注的靶抗原是PVRIG,通常是人PVRIG和任选的食蟹猴PVRIG,如下文所定义。
本文使用的“靶细胞”是指表达靶抗原的细胞。
本文所用的“可变区”是指免疫球蛋白的区域,其包含一个或多个基本上由分别构成κ、λ和重链免疫球蛋白基因座的Vκ(V.κ)、Vλ(V.λ)和/或VH基因编码的Ig结构域。
“野生型或WT”在本文中是指在自然界中发现的氨基酸序列或核苷酸序列,包括等位基因变异。WT蛋白质具有未经有意修饰的氨基酸序列或核苷酸序列。
本发明的抗体通常是分离的或重组的。当用于描述本文公开的各种多肽时,“分离的”是指多肽已经从表达其的细胞或细胞培养物中鉴定和分离和/或回收。通常,通过至少一个纯化步骤制备分离的多肽。“分离的抗体”是指基本上不含具有不同抗原特异性的其它抗体的抗体。“重组”是指使用重组核酸技术在外源宿主细胞中产生抗体。
“特异性结合”或“特异性结合于”特定抗原或表位,或“对”特定抗原或表位“具有特异性”意指与非特异性相互作用可测量地不同的结合。特异性结合可以例如通过相较于对照分子的结合测定分子的结合来测量,对照分子通常是不具有结合活性的类似结构的分子。例如,可以通过与类似于靶标的对照分子竞争来确定特异性结合。
针对特定抗原或表位的特异性结合可以例如通过抗体对抗原或表位的KD为至少约10-9M、至少约10-10M、至少约10-11M、至少约10-12M、至少约10-13M、至少约10-14M、至少约10- 15M来展现,其中KD是指特定抗体-抗原相互作用的解离速率。通常,特异性结合抗原的抗体的KD是对照分子相对于抗原或表位的20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍。
另外,可以例如通过抗体对抗原或表位的KA或Ka对于表位相对于对照大至少20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍来展现对特定抗原或表位的特异性结合,其中KA或Ka是指特定抗体-抗原相互作用的缔合速率。通常使用表面等离子共振(例如Biacore分析)和使用表达抗原的细胞的流式细胞术测量结合亲和力。
C.序列
序列表提供了许多基于图53格式的序列;参考USSN 62/513,916的图4(在此明确通过引用并入)作为序列标记的指导。重链可变结构域用标识符标记(例如“CPA.0.86”),接下来的序列遵循本说明书的图53的格式(与上面提及的图4的格式相同),其中下一个序列标识符是vhCDR1,紧接着是vhCDR2与vhCDR3、全长重链、轻链可变结构域vlCDR1、vlCDR2、vlCDR3和全长轻链。因此,单个抗体具有10个相关的序列标识符。)。序列表中包括BM26小鼠IgG1(BM26-M1)(WO2016/028656A1,克隆31C6)和BM29小鼠IgG1(BM29-M1)(US2016/0176963A1,克隆22G2)的序列。除非另有说明,否则TIGIT抗体的全长HC序列是H4(S241P)形式。
D.PVRIG蛋白
本发明提供了特异性结合PVRIG蛋白并防止被其配体蛋白PVRL2(人质膜糖蛋白)活化的抗体。PVRIG,也称为含有脊髓灰质炎病毒受体相关免疫球蛋白结构域的蛋白质、Q6DKI7或C7orf15,涉及RefSeq登录标识符NP_076975中所示的氨基酸和核酸序列,如图1所示。人脊髓灰质炎病毒受体相关蛋白2(PVLR2,也称为nectin-2、CD112或疱疹病毒侵入介体B(HVEB)),即PVRIG的结合配偶体(如美国公开2016/0244521的实例5中所示)的序列如图2所示。本发明的抗体对PVRIG细胞外结构域具有特异性,从而阻断PVRIG和PVLR2的结合。
PVRIG是一种长度为326个氨基酸的跨膜结构域蛋白,具有信号肽(跨越氨基酸1至40)、细胞外结构域(跨越氨基酸41至171)、跨膜结构域(跨越氨基酸172至190)和细胞质结构域(跨越氨基酸191至326)。有两个可以是起始密码子的甲硫氨酸,但成熟蛋白质是相同的。
因此,如本文所用,术语“PVRIG”或“PVRIG蛋白”或“PVRIG多肽”可任选地包括任何此类蛋白质,或其变体、缀合物或片段,包括但不限于如本文所述的已知或野生型PVRIG以及任何天然存在的剪接变体、氨基酸变体或同种型,特别是PVRIG的ECD片段。
如本文所指出并在下文中更全面地描述,抗PVRIG抗体(包括抗原结合片段)既与PVRIG结合又防止被PVRL2活化(例如最常见地通过阻断PVRIG和PVLR2的相互作用),用于增强T细胞和/或NK细胞活化并用于治疗如癌症和病原体感染的疾病。
E.TIGIT蛋白
本发明提供了特异性结合TIGIT蛋白并防止被其配体蛋白PVR,即脊髓灰质炎病毒受体(也称为CD155),一种人质膜糖蛋白活化的抗体。TIGIT或具有Ig和ITIM结构域的T细胞免疫受体是共抑制性受体蛋白,也称为WUCAM、Vstm3或Vsig9。TIGIT具有免疫球蛋白可变结构域、跨膜结构域和基于免疫受体酪氨酸的抑制基序(ITIM),并含有PVR蛋白家族的特征序列元件。TIGIT和PVR的细胞外结构域(ECD)序列显示在图51中。本发明的抗体对TIGIT ECD具有特异性,从而阻断TIGIT和PVR的结合
因此,如本文所用,术语“TIGIT”或“TIGIT蛋白”或“TIGIT多肽”可任选地包括任何此类蛋白质,或其变体、缀合物或片段,包括但不限于如本文所述的已知或野生型TIGIT,以及任何天然存在的剪接变体、氨基酸变体或同种型,特别是TIGIT的ECD片段。
如本文所指出并在下文中更全面地描述,抗TIGIT抗体(包括抗原结合片段)既结合TIGIT又防止被PVR活化(例如最常见地通过阻断TIGIT和PVR的相互作用),用于增强T细胞和/或NK细胞活化并用于治疗如癌症和病原体感染的疾病。
VI.抗体
如下所述,通常使用术语“抗体”。传统的抗体结构单元通常包含四聚体。每个四聚体通常由两对相同的多肽链构成,每对具有一个“轻链”(通常具有约25kDa的分子量)和一个“重链”(通常具有约50-70kDa的分子量)。人轻链被分类为κ和λ轻链。本发明涉及通常基于IgG类的单克隆抗体,其具有几个亚类,包括但不限于IgG1、IgG2、IgG3和IgG4。通常,IgG1、IgG2和IgG4比IgG3更频繁地使用。应注意,IgG1具有不同的同种异型,其在356(D或E)和358(L或M)处具有多态性。本文描述的序列使用356D/358M同种异型,然而本文包括其它同种异型。也就是说,本文包括的包括IgG1 Fc结构域的任何序列可以具有356E/358L替代356D/358M同种异型。
每条链的氨基端部分包括主要负责抗原识别的约100至110个或更多个氨基酸的可变区,在本领域和本文中通常称为“Fv结构域”或“Fv区”。在可变区中,重链和轻链的每个V结构域聚集三个环以形成抗原结合位点。每个环被称为互补决定区(下文中称为“CDR”),其中氨基酸序列的变化是最显著的。“可变”是指可变区的某些区段在抗体之间序列差异很大的事实。可变区内的可变性不是均匀分布的。相反,V区由通过称为“高变区”的极端可变的较短区分隔开的称为框架区(FR)的15-30个氨基酸的相对不变的区段组成,所述高变区各自9-15个氨基酸长或更长。
每个VH和VL由三个高变区(“互补决定区”,“CDR”)和四个FR构成,从氨基端到羧基端按以下顺序排列:FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4。
高变区通常包含来自轻链可变区中约氨基酸残基24-34(LCDR1;“L”表示轻链)、50-56(LCDR2)和89-97(LCDR3)以及重链可变区中约31-35B(HCDRl;“H”表示重链)、50-65(HCDR2)和95-102(HCDR3)的氨基酸残基;Kabat等人,《免疫学相关蛋白质的序列(SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST)》,第5版.马里兰州贝塞斯达美国国家卫生研究院公共卫生服务部(Public Health Service,National Institutes ofHealth,Bethesda,Md.)(1991)和/或那些形成高变环的残基(例如轻链可变区中的残基26-32(LCDR1)、50-52(LCDR2)和91-96(LCDR3)以及重链可变区中的26-32(HCDR1)、53-55(HCDR2)和96-101(HCDR3);Chothia和Lesk(1987)《分子生物学杂志(J.Mol.Biol.)》196:901-917。下面描述本发明的特定CDR。
如本领域技术人员所理解,CDR的确切编号和放置在不同编号系统之间可以是不同的。然而,应理解,可变重链和/或可变轻链序列的公开内容包括相关(固有)CDR的公开内容。因此,每个重链可变区的公开内容是vhCDR(例如vhCDR1、vhCDR2和vhCDR3)的公开内容,并且每个轻链可变区的公开内容是vlCDR(例如vlCDR1、vlCDR2和vlCDR3)的公开内容。CDR编号的有用比较如下,参见Lafranc等人,《发育与比较免疫学(Dev.Comp.Immunol.)》27(1):55-77(2003):
Kabat+Clothia IMGT Kabat AbM Chothia Contact
vhCDR1 26-35 27-38 31-35 26-35 26-32 30-35
vhCDR2 50-65 56-65 50-65 50-58 53-55 47-58
vhCDR3 95-102 105-117 95-102 95-102 96-101 93-101
vlCDR1 24-34 27-38 24-34 24-34 26-32 30-36
vlCDR2 50-56 56-65 50-56 50-56 50-52 46-55
vlCDR3 89-97 105-117 89-97 89-97 91-96 89-96
在整个本说明书中,当提及可变结构域(大致是轻链可变区的残基1-107和重链可变区的残基1-113)和铰链中的残基以及用于Fc区的EU编号系统时,通常使用Kabat编号系统(例如Kabat等人,见上文(1991))。
本发明提供了大量不同的CDR组。在这种情况下,“完整CDR组”包含三个可变轻链和三个可变重链CDR,例如vlCDR1、vlCDR2、vlCDR3、vhCDR1、vhCDR2和vhCDR3。这些可以分别是较大轻链可变结构域或重链可变结构域的一部分。另外,如本文中更全面概述,当使用重链和轻链时,重链可变结构域和轻链可变结构域可以在分开的多肽链上,或者在scFv序列的情况下,可以在单个多肽链上。
CDR有助于形成抗体的抗原结合位点,或更具体地,表位结合位点。“表位”是指与称为互补位的抗体分子可变区中的特定抗原结合位点相互作用的决定簇。表位是分子的分组,例如氨基酸或糖侧链,并且通常具有特定的结构特征以及特定的电荷特征。单个抗原可具有多于一个表位。
表位可以包含直接参与结合的氨基酸残基(也称为表位的免疫显性组分)和其它不直接参与结合的氨基酸残基,例如被特异性抗原结合肽有效阻断的氨基酸残基;换句话说,氨基酸残基在特异性抗原结合肽的覆盖面积内。
表位可以是构象的也可以是线性的。通过来自线性多肽链的不同区段的空间并置的氨基酸产生构象表位。线性表位是由多肽链中的相邻氨基酸残基产生的表位。构象和非构象表位的区别在于,在变性溶剂存在下,与前者而非后者的结合丧失。
表位通常包含独特空间构象中的至少3个,更通常至少5个或8-10个氨基酸。识别相同表位的抗体可以在简单的免疫分析中验证,所述免疫分析显示一种抗体阻断另一种抗体与靶抗原结合的能力,例如“分箱”。如下所述,本发明不仅包括本文列举的抗原结合结构域和抗体,还包括竞争与所列举的抗原结合结构域结合的表位结合的抗原结合结构域和抗体。
每条链的羧基端部分限定了主要负责效应功能的恒定区。Kabat等人收集了重链和轻链可变区的许多一级序列。基于序列的保守程度,他们将单个一级序列分类为CDR和框架并列出其列表(参见《免疫学相关序列(SEQUENCESOF IMMUNOLOGICAL INTEREST)》,第5版,NIH公开第91-3242号,E.A.Kabat等人,通过引用完全并入本文)。
在免疫球蛋白的IgG亚类中,重链中存在数个免疫球蛋白结构域。“免疫球蛋白(Ig)结构域”在本文中是指具有不同三级结构的免疫球蛋白区域。本发明所关注的是重链结构域,包括重链恒定(CH)结构域和铰链结构域。在IgG抗体的情况下,IgG同种型各自具有三个CH区。因此,IgG背景下的“CH”结构域如下:“CH1”根据如Kabat中的EU索引是指位置118-220。“CH2”根据如Kabat中的EU索引是指位置237-340,“CH3”根据如Kabat中的EU索引是指位置341-447。
重链的另一种类型的Ig结构域是铰链区。“铰链”或“铰链区”或“抗体铰链区”或“免疫球蛋白铰链区”在本文中是指包含抗体的第一和第二恒定结构域之间的氨基酸的柔性多肽。在结构上,IgG CHI结构域在EU位置220处终止,并且IgG CH2结构域在残基EU位置237处开始。因此,对于IgG,抗体铰链在本文中定义为包括位置221(IgG1中的D221)至236(IgG1中的G236),其中编号是根据如Kabat中的EU索引。
轻链通常包含两个结构域,即轻链可变结构域(含有轻链CDR并与重链可变结构域一起形成Fv区)和轻链恒定区(通常称为CL或Cκ)。通常,可以使用恒定λ或恒定κ结构域,其中λ通常可用于本发明。
下文概述的用于其它取代的另一所关注区是Fc区。
A.嵌合和人源化抗体
在一些实施例中,本文的抗体可衍生自来自不同物种的混合物,例如嵌合抗体和/或人源化抗体。通常,“嵌合抗体”和“人源化抗体”均指组合来自不止一种物种的区域的抗体。例如,“嵌合抗体”传统上包含来自小鼠(或在某些情况下为大鼠)的可变区和来自人的恒定区。“人源化抗体”通常是指非人抗体,其具有与人抗体中发现的序列交换的可变结构域框架区。通常,在人源化抗体中,除CDR之外的整个抗体由人源多核苷酸编码或除了其CDR之外与这种抗体相同。CDR(部分或全部由源自非人生物体的核酸编码)被移植到人抗体可变区的β-折叠框架中以产生抗体,其特异性由移植的CDR决定。此类抗体的产生描述于例如WO 92/11018,Jones,1986,《自然(Nature)》321:522-525,Verhoeyen等人,1988,《科学》239:1534-1536,所有这些都通过引用整体并入。所选择的受体框架残基“回复突变”到相应的供体残基通常需要重新获得在初始移植构建体中丧失的亲和力(US 5530101;US5585089;US 5693761;US5693762;US 6180370;US 5859205;US 5821337;US 6054297;US6407213,均通过引用整体并入)。人源化抗体最佳地还将包含免疫球蛋白恒定区(通常是人免疫球蛋白的恒定区)的至少一部分,通常是全部,因此通常包含人Fc区。使用具有基因工程改造的免疫系统的小鼠也可以产生人源化抗体。Roque等人,2004,《生物技术进展(Biotechnol.Prog.)》20:639-654,通过引用整体并入。用于人源化和重塑非人抗体的多种技术和方法是本领域熟知的(参见Tsumshita和Vasquez,2004,《单克隆抗体的人源化(Humanization of Monoclonal Antibodies)》,《B细胞分子生物学(Molecular Biologyof B Cells)》,533-545,Elsevier Science(USA)和其中引用的参考文献,全部通过引用整体并入)。人源化方法包括但不限于Jones等人,1986,《自然》321:522-525;Riechmann等人,1988;《自然》332:323-329;Verhoeyen等人,1988,《科学》,239:1534-1536;Queen等人,1989,《美国国家科学院院刊》86:10029-33;He等人,1998,《免疫学杂志(J.Immunol.)》160:1029-1035;Carter等人,1992,《美国国家科学院院刊》89:4285-9;Presta等人,1997,《癌症研究》57(20):4593-9;Gorman等人,1991,《美国国家科学院院刊》88:4181-4185;O′Connor等人,1998,《蛋白质工程(Protein Eng)》11:321-8中所描述的方法,均通过引用整体并入。人源化或降低非人抗体可变区的免疫原性的其它方法可包括表面重修方法,如例如Roguska等人,1994,《美国国家科学院院刊》91:969-973中所述,通过引用整体并入。
因此,来自本文所列举的任何抗体的vhCDR和vlCDR可以是人源化的(或者对于那些已经人源化的抗体来说是“再人源化的”)。
在某些实施例中,本发明的抗体包含来自特定种系重链免疫球蛋白基因的重链可变区和/或来自特定种系轻链免疫球蛋白基因的轻链可变区。例如,此类抗体可包含人抗体或由人抗体组成,所述人抗体包含作为特定种系序列“的产物”或“衍生自”特定种系序列的重链或轻链可变区。通过比较人抗体的氨基酸序列与人种系免疫球蛋白的氨基酸序列并选择序列与人抗体序列最接近(即,最大%同一性)的人种系免疫球蛋白,可以鉴定人抗体是人种系免疫球蛋白序列“的产物”或“衍生自”人种系免疫球蛋白序列。由于例如天然存在的体细胞突变或有意引入定点突变,作为特定人种系免疫球蛋白序列“的产物”或“衍生自”特定人种系免疫球蛋白序列的人抗体与种系序列相比可含有氨基酸差异。然而,人源化抗体的氨基酸序列与人种系免疫球蛋白基因编码的氨基酸序列通常至少90%相同,并且与其它物种的种系免疫球蛋白氨基酸序列(例如鼠种系序列)相比时,含有将抗体鉴定为衍生自人类序列的氨基酸残基。在某些情况下,人源化抗体的氨基酸序列与不包括CDR的种系免疫球蛋白基因编码的氨基酸序列可以至少95、96、97、98或99%,或甚至至少96%、97%、98%或99%相同。也就是说,CDR可以是鼠类,但(重链或轻链)可变区的框架区的氨基酸序列与人种系免疫球蛋白基因编码的框架氨基酸可以至少96%、97%、98%或99%相同。
通常,衍生自特定人种系序列的人源化抗体将显示与人种系免疫球蛋白基因编码的氨基酸序列不超过10-20个氨基酸差异。在某些情况下,人源化抗体可显示与种系免疫球蛋白基因编码的氨基酸序列不超过5个,或甚至不超过4个、3个、2个或1个氨基酸差异(同样,在引入本文的任何变体之前;即,变体的数量通常较低)。
在一个实施例中,亲本抗体已经亲和力成熟,如本领域已知的。基于结构的方法可用于人源化和亲和力成熟,例如USSN 11/004,590中所述。基于选择的方法可用于使抗体可变区人源化和/或亲和成熟,包括但不限于Wu等人,1999,《分子生物学杂志》294:151-162;Baca等人,1997,《生物化学杂志(J.Biol.Chem.)》272(16):10678-10684;Rosok等人,1996,《生物化学杂志》271(37):22611-22618;Rader等人,1998,《美国国家科学院院刊》95:8910-8915;Krauss等人,2003,《蛋白质工程》16(10):753-759中所描述的方法,均通过引用整体并入。其它人源化方法可涉及仅移植部分CDR,包括但不限于USSN 09/810,510;Tan等人,2002,《免疫学杂志》169:1119-1125;De Pascalis等人,2002,《免疫学杂志》169:3076-3084中所描述的方法,均通过引用整体并入。
B.可选抗体工程
本发明抗体可以通过氨基酸取代进行修饰或工程改造以改变氨基酸序列。如本文所讨论,可以进行氨基酸取代以改变CDR对蛋白质(例如TIGIT或PVRIG,包括增加和降低的结合)的亲和力,以及改变抗体的其它功能特性。例如,抗体可以经过工程改造以在Fc区内包括修饰,通常用于改变抗体的一种或多种功能特性,例如血清半衰期、补体结合、Fc受体结合和/或抗原依赖性细胞毒性。此外,根据本发明的至少一些实施例的抗体可以经过化学修饰(例如,一个或多个化学部分可以连接到抗体上)或被修饰以改变其糖基化,同样用于改变抗体的一种或多种功能特性。下面进一步描述这些实施例。Fc区中残基的编号是Kabat的EU索引的编号。
在一个实施例中,修饰CH1的铰链区,使得铰链区中半胱氨酸残基的数量改变,例如增加或减少。该方法在Bodmer等人的美国专利第5,677,425号中进一步描述。改变CH1铰链区中半胱氨酸残基的数目,以便例如促进轻链和重链的装配或增加或降低抗体的稳定性。
在另一个实施例中,可以修饰抗体以消除体内Fab臂交换,特别是当使用IgG4恒定结构域时。具体而言,该过程涉及在其它IgG4抗体之间交换IgG4半分子(一条重链加一条轻链),这有效地产生功能上单价的双特异性抗体。铰链区和重链恒定结构域的突变可以消除这种交换(参见Aalberse,RC,Schuurman J.,2002,《免疫学(Immunology)》105:9-19)。如本文所概述,在本发明中特别有用的突变是在IgG4恒定结构域情形中的S241P。IgG4可用于本发明,因为它没有显著的效应功能,因此用于阻断受体与其配体(例如PVRIG与PVRL2或TIGIT与PVR)的结合而没有细胞耗竭。
在一些实施例中,氨基酸取代可以在Fc区中进行,通常用于改变与FcγR受体的结合。本文所用的“Fcγ受体”、“FcγR”或“FcγR(FcgammaR)”是指结合IgG抗体Fc区并由FcγR基因编码的蛋白质家族的任何成员。在人类中,该家族包括但不限于FcγRI(CD64),包括同种型FcγRIa、FcγRIb和FcγRIc;FcγRII(CD32),包括同种型FcγRIIa(包括同种异型H131和R131)、FcγRIIb(包括FcγRIIb-1和FcγRIIb-2)和FcγRIIc;和FcγRIII(CD16),包括同种型FcγRIIIa(包括同种异型V158和F158)和FcγRIIIb(包括同种异型FcγRIIIb-NA1和FcγRIIIb-NA2)(Jefferis等人,2002,《免疫学快报(Immunol Lett)》82:57-65,通过引用整体并入),以及任何未发现的人FcγR或FcγR同种型或同种异型。FcγR可以来自任何生物体,包括但不限于人、小鼠、大鼠、兔和猴。小鼠FcγR包括但不限于FcγRI(CD64)、FcγRII(CD32)、FcγRIII-1(CD16)和FcγRIII-2(CD16-2),以及任何未发现的小鼠FcγR或FcγR同种型或同种异型。
可以进行许多有用的Fc取代以改变与一种或多种FcγR受体的结合。导致结合增加以及结合降低的取代可能是有用的。例如,已知增加与FcγRIIIa的结合通常导致ADCC增加(抗体依赖性细胞介导的细胞毒性;细胞介导的反应,其中表达FcγR的非特异性细胞毒性细胞识别靶细胞上的结合抗体并随后引起靶细胞的裂解。类似地,在一些情况下,与FcγRIIb(抑制性受体)的结合降低也是有益的。可用于本发明的氨基酸取代包括美国序列号11/124,620(特别是图41)和美国专利第6,737,056号中所列出的那些,两者都通过引用整体明确地并入本文,并且特别是其中公开的变体。
在又一个实例中,通过修饰在以下位置的一个或多个氨基酸来修饰Fc区,以增加抗体介导抗体依赖性细胞毒性(ADCC)的能力和/或增加抗体对Fcγ受体的亲和力和/或增加FcRn结合:238、239、248、249、252、254、255、256、258、265、267、268、269、270、272、276、278、280、283、285、286、289、290、292、293、294、295、296、298、301、303、305、307、309、312、315、320、322、324、326、327、329、330、331、333、334、335、337、338、340、360、373、376、378、382、388、389、398、414、416、419、430、434、435、437、438或439。Presta在PCT公开WO 00/42072中进一步描述了该方法。此外,已经绘制了人IgG1上FcγRI、FcγRII、FcγRIII和FcRn的结合位点,并且已经描述了具有改善的结合的变体(参见Shields,R.L.等人(2001)《生物化学杂志》276:6591-6604)。显示位置256、290、298、333、334和339处的特异性突变改善了与FcγRIII的结合。另外,显示以下组合突变体改善FcγRIII结合:T256A/S298A、S298A/E333A、S298A/K224A和S298A/E333A/K334A。此外,如M252Y/S254T/T256E或M428L/N434S的突变改善了与FcRn的结合并增加了抗体循环半衰期(参见Chan CA和Carter PJ(2010)《自然综述免疫学(Nature RevImmunol)》10:301-316)。
此外,修饰本发明的抗体以增加其生物半衰期。各种方法都是可能的。例如,可以引入一个或多个以下突变:T252L、T254S、T256F,如Ward在美国专利第6,277,375号中所述。或者,为了增加生物半衰期,可以在CH1或CL区内改变抗体以包含取自IgG的Fc区的CH2结构域的两个环的补救受体结合表位,如Presta等人在美国专利第5,869,046号和第6,121,022号中所述。另外的增加血清半衰期的突变公开于美国专利第8,883,973号、第6,737,056号和第7,371,826号中,并且包括428L、434A、434S和428L/434S。
在另一个实施例中,修饰抗体的糖基化。例如,可以制备无糖基化抗体(即,抗体缺乏糖基化)。可以改变糖基化,以例如增加抗体对抗原的亲和力或降低效应子功能,例如ADCC。此类碳水化合物修饰可以通过例如改变抗体序列内的一个或多个糖基化位点,例如N297来完成。例如,可以进行一个或多个氨基酸取代,其导致消除一个或多个可变区框架糖基化位点,从而消除该位点的糖基化,在一些实施例中发现使用丙氨酸取代。
另外或可替代地,可以制备具有改变的糖基化类型的抗体,例如具有减少量的岩藻糖基残基的低岩藻糖基化抗体或具有增加的二等分GlcNac结构的抗体。已经证明这种改变的糖基化模式增加了抗体的ADCC能力。这种碳水化合物修饰可以通过例如在具有改变的糖基化机制的宿主细胞中表达抗体来实现。具有改变的糖基化机制的细胞已在本领域中描述,并且可用作宿主细胞,其中根据本发明的至少一些实施例表达重组抗体,从而产生具有改变的糖基化的抗体。参见例如美国专利公开号20040110704和WO 2003/035835。
本发明考虑的本文抗体的另一种修饰是聚乙二醇化或添加其它水溶性部分,通常是聚合物,例如以增强半衰期。如本领域已知的,可以使抗体聚乙二醇化以例如增加抗体的生物(例如血清)半衰期。
除了进行取代以改变对FcγR和/或FcRn的结合亲和力和/或增加体内血清半衰期之外,可以进行另外的抗体修饰,如下文进一步详细描述。
在某些情况下,完成亲和力成熟。CDR中的氨基酸修饰有时被称为“亲和力成熟”。“亲和力成熟的”抗体是在一个或多个CDR中具有一个或多个改变的抗体,与不具有那些改变的亲本抗体相比,其导致抗体对抗原的亲和力的改善。在某些情况下,可能需要降低抗体对其抗原的亲和力。
在一些实施例中,在本发明抗体(PVRIG或TIGIT抗体)的一个或多个CDR中进行一个或多个氨基酸修饰。通常,在任何单个CDR中仅取代1个或2个或3个氨基酸,并且通常不超过1个、2个、3个。在一组6个CDR(例如vhCDR1-3和vlCDR1-3)内进行4、5、6、7、8、9或10次变化。然而,应理解,在任何CDR中没有取代、1个、2个或3个取代的任何组合可以独立地和任选地与任何其它取代组合。
与“亲本”抗体相比,可以进行亲和力成熟以使抗体对抗原的结合亲和力增加至少约10%至50-100-150%或更多,或1至5倍。优选的亲和力成熟抗体对抗原具有纳摩尔或甚至皮摩尔的亲和力。亲和力成熟的抗体通过已知方法产生。亲和力和功效的相关性在下面讨论。
或者,可以在本发明抗体的一个或多个CDR中进行“沉默的”氨基酸修饰,例如不显著改变抗体对抗原的亲和力。这么做的原因有很多,包括优化表达(如可以对编码本发明抗体的核酸进行)。
因此,包括在本发明的CDR和抗体的定义内的是变体CDR和抗体;也就是说本发明的抗体可以包括本发明所列举的抗体的一个或多个CDR中的氨基酸修饰。另外,如下所述,氨基酸修饰也可以独立地和任选地在CDR之外的任何区域中进行,包括框架区和恒定区。
a.产生额外的抗体
如本领域众所周知的,可以使用众所周知的方法,例如实施例中概述的方法,产生针对人PVRIG的额外抗体。因此,可以通过传统方法产生额外的抗PVRIG抗体,例如使小鼠免疫(有时使用DNA免疫接种,例如Aldevron所使用的),然后针对人PVRIG蛋白质和杂交瘤产生进行筛选,进行抗体纯化和回收。
VII.本发明的TIGIT抗体
本发明提供抗TIGIT抗体。(为方便起见,“抗TIGIT抗体”和“TIGIT抗体”可互换使用)。本发明的抗TIGIT抗体特异性结合人TIGIT,优选人TIGIT的ECD。本发明进一步提供了抗原结合结构域,包括全长抗体,其含有许多与TIGIT结合的特定的、列举的6个CDR的集合。
可以例如通过抗体具有至少约10-4M、至少约10-5M、至少约10-6M、至少约10-7M、至少约10-8M、至少约10-9M,或者至少约10-10M、至少约10-11M、至少约10-12M、至少约10-13M、至少约10-14M、至少约10-15M或更大的KD展现对TIGIT或TIGIT表位的特异性结合,其中KD是指特定抗体-抗原相互作用的平衡解离常数。通常,特异性结合抗原的抗体对于对照分子的KD相对于TIGIT抗原或表位大20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍。
然而,为了最佳地结合在NK细胞和T细胞表面上表达的TIGIT,抗体优选具有小于50nM且最优选小于1nM的KD,其中小于0.1nM和小于1pM适用于本发明方法中。
此外,可以例如通过抗体对TIGIT抗原或表位的ka(指代缔合速率常数)对于表位相对于对照大至少20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍来展现对特定抗原或表位的特异性结合,其中ka是指特定抗体-抗原相互作用的缔合速率常数。
在一些实施例中,本发明的抗TIGIT抗体以100nM或更小、50nM或更小、10nM或更小、或1nM或更小(即,更高的结合亲和力)或1pM或更小的KD结合人TIGIT,其中KD通过已知方法测定,例如表面等离子共振(SPR,例如Biacore分析)、ELISA、KINEXA,并且最典型地是在25℃或37℃下的SPR。
本文描述的TIGIT抗体标记如下。抗体具有参考编号,例如“CPA.9.086”。这代表可变重链和可变轻链的组合,如图53所示,例如,理解这些抗体包括两条重链和两条轻链。“CPA.9.086.VH”是指CPA.9.086的可变重链部分,而“CPA.9.086.VL”是可变轻链。“CPA.9.086.vhCDR1”、“CPA.9.086.vhCDR2”、“CPA.9.086.vhCDR3”、“CPA.9.086.vlCDR1”、“CPA.9.086.vlCDR2”和“CPA.9.086.vlCDR3”是指所指示的CDR。“CPA.9.086.HC”是指该分子的整个重链(例如可变结构域和恒定结构域),“CPA.9.086.LC”是指同一分子的整个轻链(例如可变结构域和恒定结构域)。通常,人κ轻链用于本文中每种噬菌体(或人源化杂交瘤)抗体的恒定结构域,尽管在一些实施例中使用λ轻链恒定结构域。“CPA.9.086.H1”是指包含可变重链和轻链结构域的全长抗体包括人IgG1的恒定结构域(因此,H1;IgG1、IgG2、IgG3和IgG4的序列显示在图50中)。因此,“CPA.9.086.H2”将是与人IgG2连接的CPA.9.086可变结构域。“CPA.9.086.H3”将是与人IgG3连接的CPA.9.086可变结构域,“CPA.9.086.H4”将是与人IgG4连接的CPA.9.086可变结构域。注意,在一些情况下,人IgG可能具有额外的突变,如下所述,并且可以注释。例如,在许多实施例中,人IgG4中可能存在S241P突变,并且这可以例如注释为“CPA.9.086.H4(S241P)”。具有该S241P铰链变体的人IgG4序列示于图50中。其它可能的变体是IgG1(N297A),(或在该位点消除糖基化的其它变体,因此许多效应功能与FcγRIIIa结合相关)和IgG1(D265A),其降低与FcγR受体的结合。
本发明还提供重域可变结构域和轻域可变结构域以及全长重链和轻链。
在一些实施例中,本发明提供结合TIGIT的scFv,其包含如上所述通过scFv接头连接的重链可变结构域和轻链可变结构域。VL和VH结构域可以呈任一定向,例如从N端到C端“VH-接头-VL”或“VL-接头”VH”。这些是由它们的组成部分命名的;例如“scFv-CPA.9.086.VH-接头-VL”或“scFv-CPA.9.086.VL-接头-VH”。因此,“scFv-CPA.9.086”可以呈任一定向。
在许多实施例中,本发明的抗体是人(衍生自噬菌体)并阻断TIGIT和PVR的结合。如图58和75所示,结合和阻断受体-配体相互作用的CPA抗体如下,其组分也被概述(如“序列”部分中所讨论的,除了scFv构建体之外的所有序列都在序列表中):
CPA.9.018、CPA.9.018.VH、CPA.9.018.VL、CPA.9.018.HC、CPA.9.018.LC、CPA.9.018.H1、CPA.9.018.H2、CPA.9.018.H3、CPA.9.018.H4;CPA.9.018.H4(S241P);CPA.9.018.vhCDR1、CPA.9.018.vhCDR2、CPA.9.018.vhCDR3、CPA.9.018.vlCDR1、CPA.9.018.vlCDR2、CPA.9.018.vlCDR3和scFv-CPA.9.018;
CPA.9.027、CPA.9.027.VH、CPA.9.027.VL、CPA.9.027.HC、CPA.9.027.LC、CPA.9.027.H1、CPA.9.027.H2、CPA.9.027.H3、CPA.9.027.H4;CPA.9.018.H4(S241P);CPA.9.027.vhCDR1、CPA.9.027.vhCDR2、CPA.9.027.vhCDR3、CPA.9.027.vlCDR1、CPA.9.027.vlCDR2、CPA.9.027.vlCDR3和scFv-CPA.9.027;
CPA.9.049、CPA.9.049.VH、CPA.9.049.VL、CPA.9.049.HC、CPA.9.049.LC、CPA.9.049.H1、CPA.9.049.H2、CPA.9.049.H3;CPA.9.049.H4;CPA.9.049.H4(S241P);CPA.9.049.vhCDR1、CPA.9.049.vhCDR2、CPA.9.049.vhCDR3、CPA.9.049.vlCDR1、CPA.9.049.vlCDR2、CPA.9.049.vlCDR3和scFv-CPA.9.049;
CPA.9.057、CPA.9.057.VH、CPA.9.057.VL、CPA.9.057.HC、CPA.9.057.LC、CPA.9.057.H1、CPA.9.057.H2、CPA.9.057.H3;CPA.9.057.H4;CPA.9.057.H4(S241P);CPA.9.057.vhCDR1、CPA.9.057.vhCDR2、CPA.9.057.vhCDR3、CPA.9.057.vlCDR1、CPA.9.057.vlCDR2、CPA.9.057.vlCDR3和scFv-CPA.9.057;
CPA.9.059、CPA.9.059.VH、CPA.9.059.VL、CPA.9.059.HC、CPA.9.059.LC、CPA.9.059.H1、CPA.9.059.H2、CPA.9.059.H3;CPA.9.059.H4;CPA.9.059.H4(S241P);CPA.9.059.vhCDR1、CPA.9.059.vhCDR2、CPA.9.059.vhCDR3、CPA.9.059.vlCDR1、CPA.9.059.vlCDR2、CPA.9.059.vlCDR3和scFv-CPA.9.059;
CPA.9.083、CPA.9.083.VH、CPA.9.083.VL、CPA.9.083.HC、CPA.9.083.LC、CPA.9.083.H1、CPA.9.083.H2、CPA.9.083.H3;CPA.9.083.H4;CPA.9.083.H4(S241P);CPA.9.083.vhCDR1、CPA.9.083.vhCDR2、CPA.9.083.vhCDR3、CPA.9.083.vlCDR1、CPA.9.083.vlCDR2、CPA.9.083.vlCDR3和scFv-CPA.9.083;
CPA.9.086、CPA.9.086.VH、CPA.9.086.VL、CPA.9.086.HC、CPA.9.086.LC、CPA.9.086.H1、CPA.9.086.H2、CPA.9.086.H3;CPA.9.086.H4;CPA.9.086.H4(S241P);CPA.9.086.vhCDR1、CPA.9.086.vhCDR2、CPA.9.086.vhCDR3、CPA.9.086.vlCDR1、CPA.9.086.vlCDR2、CPA.9.086.vlCDR3和scFv-CPA.9.086;
CPA.9.089、CPA.9.089.VH、CPA.9.089.VL、CPA.9.089.HC、CPA.9.089.LC、CPA.9.089.H1、CPA.9.089.H2、CPA.9.089.H3;CPA.9.089.H4;CPA.9.089.H4(S241P);CPA.9.089.vhCDR1、CPA.9.089.vhCDR2、CPA.9.089.vhCDR3、CPA.9.089.vlCDR1、CPA.9.089.vlCDR2、CPA.9.089.vlCDR3和scFv-CPA.9.089;
CPA.9.093、CPA.9.093.VH、CPA.9.093.VL、CPA.9.093.HC、CPA.9.093.LC、CPA.9.093.H1、CPA.9.093.H2、CPA.9.093.H3;CPA.9.093.H4;CPA.9.093.H4(S241P);CPA.9.093.vhCDR1、CPA.9.093.vhCDR2、CPA.9.093.vhCDR3、CPA.9.093.vlCDR1、CPA.9.093.vlCDR2、CPA.9.093.vlCDR3和scFv-CPA.9.093;
CPA.9.101、CPA.9.101.VH、CPA.9.101.VL、CPA.9.101.HC、CPA.9.101.LC、CPA.9.101.H1、CPA.9.101.H2、CPA.9.101.H3;CPA.9.101.H4;CPA.9.101.H4(S241P);CPA.9.101.vhCDR1、CPA.9.101.vhCDR2、CPA.9.101.vhCDR3、CPA.9.101.vlCDR1、CPA.9.101.vlCDR2、CPA.9.101.vlCDR3和scFv-CPA.9.101;和
CPA.9.103、CPA.9.103.VH、CPA.9.103.VL、CPA.9.103.HC、CPA.9.103.LC、CPA.9.103.H1、CPA.9.103.H2、CPA.9.103.H3;CPA.9.103.H4;CPA.9.103.H4(S241P);CPA.9.103.vhCDR1、CPA.9.103.vhCDR2、CPA.9.103.vhCDR3、CPA.9.103.vlCDR1、CPA.9.103.vlCDR2、CPA.9.103.vlCDR3和scFv-CPA.9.103。
此外,本发明提供了许多CHA抗体,它们是由杂交瘤产生的鼠抗体。如本领域众所周知的,当置于人框架可变重链和可变轻链区中或当重链可变结构域和轻链可变结构域人源化时,六个CDR是有用的。
因此,本发明提供了抗体,通常是全长或scFv结构域,其包含以下CDR集合,其序列显示在图53和/或序列表中:
CHA.9.536.1、CHA.9.536.1.VH、CHA.9.536.1.VL、CHA.9.536.1.HC、CHA.9.536.1.LC、CHA.9.536.1.H1、CHA.9.536.1.H2、CHA.9.536.1.H3;CHA.9.536.1.H4、CHA.9.536.1.H4(S241P)、CHA.9.536.1.vhCDR1、CHA.9.536.1.vhCDR2、CHA.9.536.1.vhCDR3、CHA.9.536.1.vlCDR1、CHA.9.536.1.vlCDR2和CHA.9.536.1.vhCDR3;
CHA.9.536.3、CHA.9.536.3.VH、CHA.9.536.3.VL、CHA.9.536.3.HC、CHA.9.536.3.LC、CHA.9.536.3.H1、CHA.9.536.3.H2、CHA.9.536.3.H3;CHA.9.536.3.H4、CHA.9.536.3.H4(S241P);CHA.9.536.3.vhCDR1、CHA.9.536.3.vhCDR2、CHA.9.536.3.vhCDR3、CHA.9.536.3.vlCDR1、CHA.9.536.3.vlCDR2和CHA.9.536.3.vhCDR3;
CHA.9.536.4、CHA.9.536.4.VH、CHA.9.536.4.VL、CHA.9.536.4.HC、CHA.9.536.4.LC、CHA.9.536.4.H1、CHA.9.536.4.H2、CHA.9.536.4.H3;CHA.9.536.4.H4、CHA.9.536.4.H4(S241P)、CHA.9.536.4.vhCDR1、CHA.9.536.4.vhCDR2、CHA.9.536.4.vhCDR3、CHA.9.536.4.vlCDR1、CHA.9.536.4.vlCDR2和CHA.9.536.4.vhCDR3;
CHA.9.536.5、CHA.9.536.5.VH、CHA.9.536.5.VL、CHA.9.536.5.HC、CHA.9.536.5.LC、CHA.9.536.5.H1、CHA.9.536.5.H2、CHA.9.536.5.H3;CHA.9.536.5.H4、CHA.9.536.5.H4(S241P)、CHA.9.536.5.vhCDR1、CHA.9.536.5.vhCDR2、CHA.9.536.5.vhCDR3、CHA.9.536.5.vlCDR1、CHA.9.536.5.vlCDR2和CHA.9.536.5.vhCDR3;
CHA.9.536.6、CHA.9.536.6.VH、CHA.9.536.6.VL、CHA.9.536.6.HC、CHA.9.536.6.LC、CHA.9.536.6.H1、CHA.9.536.6.H2、CHA.9.536.6.H3:CHA.9.536.6.H4、CHA.9.536.6.vhCDR1、CHA.9.536.6.vhCDR2、CHA.9.536.6.vhCDR3、CHA.9.536.6.vlCDR1、CHA.9.536.6.vlCDR2和CHA.9.536.6.vhCDR3;
CHA.9.536.7、CHA.9.536.7.VH、CHA.9.536.7.VL、CHA.9.536.7.HC、CHA.9.536.7.LC、CHA.9.536.7.H1、CHA.9.536.7.H2、CHA.9.536.7.H3;CHA.9.536.7.H4、CHA.9.536.5.H4(S241P);CHA.9.536.7.vhCDR1、CHA.9.536.7.vhCDR2、CHA.9.536.7.vhCDR3、CHA.9.536.7.vlCDR1、CHA.9.536.7.vlCDR2和CHA.9.536.7.vhCDR3;
CHA.9.536.8、CHA.9.536.8.VH、CHA.9.536.8.VL、CHA.9.536.8.HC、CHA.9.536.8.LC、CHA.9.536.8.H1、CHA.9.536.8.H2、CHA.9.536.8.H3;CHA.9.536.8.H4、CHA.9.536.8.H4(S241P)、CHA.9.536.8.vhCDR1、CHA.9.536.8.vhCDR2、CHA.9.536.8.vhCDR3、CHA.9.536.8.vlCDR1、CHA.9.536.8.vlCDR2和CHA.9.536.8.vhCDR3;
CHA.9.560.1、CHA.9.560.1VH、CHA.9.560.1.VL、CHA.9.560.1.HC、CHA.9.560.1.LC、CHA.9.560.1.H1、CHA.9.560.1.H2、CHA.9.560.1.H3;CHA.9.560.1.H4、CHA.9.560.1.H4(S241P)、CHA.9.560.1.vhCDR1、CHA.9.560.1.vhCDR2、CHA.9.560.1.vhCDR3、CHA.9.560.1.vlCDR1、CHA.9.560.1.vlCDR2和CHA.9.560.1.vhCDR3;
CHA.9.560.3、CHA.9.560.3VH、CHA.9.560.3.VL、CHA.9.560.3.HC、CHA.9.560.3.LC、CHA.9.560.3.H1、CHA.9.560.3.H2、CHA.9.560.3.H3;CHA.9.560.3.H4、CHA.9.560.3.H4(S241P);CHA.9.560.3.vhCDR1、CHA.9.560.3.vhCDR2、CHA.9.560.3.vhCDR3、CHA.9.560.3.vlCDR1、CHA.9.560.3.vlCDR2和CHA.9.560.3.vhCDR3;
CHA.9.560.4、CHA.9.560.4VH、CHA.9.560.4.VL、CHA.9.560.4.HC、CHA.9.560.4.LC、CHA.9.560.4.H1、CHA.9.560.4.H2、CHA.9.560.4.H3;CHA.9.560.4.H4、CHA.9.560.4.H4(S241P)、CHA.9.560.4.vhCDR1、CHA.9.560.4.vhCDR2、CHA.9.560.4.vhCDR3、CHA.9.560.4.vlCDR1、CHA.9.560.4.vlCDR2和CHA.9.560.4.vhCDR3;
CHA.9.560.5、CHA.9.560.5VH、CHA.9.560.5.VL、CHA.9.560.5.HC、CHA.9.560.5.LC、CHA.9.560.5.H1、CHA.9.560.5.H2、CHA.9.560.5.H3;CHA.9.560.5.H4、CHA.9.560.5.vhCDR1、CHA.9.560.5.vhCDR2、CHA.9.560.5.vhCDR3、CHA.9.560.5.vlCDR1、CHA.9.560.5.vlCDR2和CHA.9.560.5.vhCDR3;
CHA.9.560.6、CHA.9.560.6VH、CHA.9.560.6.VL、CHA.9.560.6.HC、CHA.9.560.6.LC、CHA.9.560.6.H1、CHA.9.560.6.H2、CHA.9.560.6.H3;CHA.9.560.6.H4、CHA.9.560.6.H4(S241P)、CHA.9.560.6.vhCDR1、CHA.9.560.6.vhCDR2、CHA.9.560.6.vhCDR3、CHA.9.560.6.vlCDR1、CHA.9.560.6.vlCDR2和CHA.9.560.6.vhCDR3;
CHA.9.560.7、CHA.9.560.7VH、CHA.9.560.7.VL、CHA.9.560.7.HC、CHA.9.560.7.LC、CHA.9.560.7.H1、CHA.9.560.7.H2、CHA.9.560.7.H3;CHA.9.560.7.H4;CHA.9.560.7.H4(S241P);CHA.9.560.7.vhCDR1、CHA.9.560.7.vhCDR2、CHA.9.560.7.vhCDR3、CHA.9.560.7.vlCDR1、CHA.9.560.7.vlCDR2和CHA.9.560.7.vhCDR3;
CHA.9.560.8、CHA.9.560.8VH、CHA.9.560.8.VL、CHA.9.560.8.HC、CHA.9.560.8.LC、CHA.9.560.8.H1、CHA.9.560.8.H2、CHA.9.560.8.H3;CHA.9.560.8.H4、CHA.9.560.8.H4(S241P);CHA.9.560.8.vhCDR1、CHA.9.560.8.vhCDR2、CHA.9.560.8.vhCDR3、CHA.9.560.8.vlCDR1、CHA.9.560.8.vlCDR2和CHA.9.560.8.vhCDR3;
CHA.9.546.1、CHA.9.546.1VH、CHA.9.546.1.VL、CHA.9.546.1.HC、CHA.9.546.1.LC、CHA.9.546.1.H1、CHA.9.546.1.H2、CHA.9.546.1.H3;CHA.9.546.1.H4、CHA.9.546.1.H4(S241P)、CHA.9.546.1.vhCDR1、CHA.9.546.1.vhCDR2、CHA.9.546.1.vhCDR3、CHA.9.546.1.vlCDR1、CHA.9.546.1.vlCDR2和CHA.9.546.1.vhCDR3;
CHA.9.547.1、CHA.9.547.1VH、CHA.9.547.1.VL、CHA.9.547.1.HC、CHA.9.547.1.LC、CHA.9.547.1.H1、CHA.9.547.1.H2、CHA.9.547.1.H3;CHA.9.547.1.H4、CHA.9.547.1.H4(S241P)、CHA.9.547.1.vhCDR1、CHA.9.547.1.vhCDR2、CHA.9.547.1.vhCDR3、CHA.9.547.1.vlCDR1、CHA.9.547.1.vlCDR2和CHA.9.547.1.vhCDR3;
CHA.9.547.2、CHA.9.547.2VH、CHA.9.547.2.VL、CHA.9.547.2.HC、CHA.9.547.2.LC、CHA.9.547.2.H1、CHA.9.547.2.H2、CHA.9.547.2.H3;CHA.9.547.2.H4、CHA.9.547.2.H4(S241P)、CHA.9.547.2.vhCDR1、CHA.9.547.2.vhCDR2、CHA.9.547.2.vhCDR3、CHA.9.547.2.vlCDR1、CHA.9.547.2.vlCDR2和CHA.9.547.2.vhCDR3;
CHA.9.547.3、CHA.9.547.3VH、CHA.9.547.3.VL、CHA.9.547.3.HC、CHA.9.547.3.LC、CHA.9.547.3.H1、CHA.9.547.3.H2、CHA.9.547.3.H3;CHA.9.547.3.H4、CHA.9.547.3.H4(S241P)、CHA.9.547.3.vhCDR1、CHA.9.547.3.vhCDR2、CHA.9.547.3.vhCDR3、CHA.9.547.3.vlCDR1、CHA.9.547.3.vlCDR2和CHA.9.547.3.vhCDR3;
CHA.9.547.4、CHA.9.547.4VH、CHA.9.547.4.VL、CHA.9.547.4.HC、CHA.9.547.4.LC、CHA.9.547.4.H1、CHA.9.547.4.H2、CHA.9.547.4.H3;CHA.9.547.4.H4、CHA.9.547.4.H4(S241P)、CHA.9.547.4.vhCDR1、CHA.9.547.4.vhCDR2、CHA.9.547.4.vhCDR3、CHA.9.547.4.vlCDR1、CHA.9.547.4.vlCDR2和CHA.9.547.4.vhCDR3;
CHA.9.547.6、CHA.9.547.6VH、CHA.9.547.6.VL、CHA.9.547.6.HC、CHA.9.547.6.LC、CHA.9.547.6.H1、CHA.9.547.6.H2、CHA.9.547.6.H3;CHA.9.547.6.H4、CHA.9.547.6.H4(S241P)、CHA.9.547.6.vhCDR1、CHA.9.547.6.vhCDR2、CHA.9.547.6.vhCDR3、CHA.9.547.6.vlCDR1、CHA.9.547.6.vlCDR2和CHA.9.547.6.vhCDR3;
CHA.9.547.7、CHA.9.547.7VH、CHA.9.547.7.VL、CHA.9.547.7.HC、CHA.9.547.7.LC、CHA.9.547.7.H1、CHA.9.547.7.H2、CHA.9.547.7.H3;CHA.9.547.7.H4、CHA.9.547.7.H4(S241P)、CHA.9.547.7.vhCDR1、CHA.9.547.7.vhCDR2、CHA.9.547.7.vhCDR3、CHA.9.547.7.vlCDR1、CHA.9.547.7.vlCDR2和CHA.9.547.7.vhCDR3;
CHA.9.547.8、CHA.9.547.8VH、CHA.9.547.8.VL、CHA.9.547.8.HC、CHA.9.547.8.LC、CHA.9.547.8.H1、CHA.9.547.8.H2、CHA.9.547.8.H3;CHA.9.547.8.H4、CHA.9.547.8.H4(S241P)、CHA.9.547.8.vhCDR1、CHA.9.547.8.vhCDR2、CHA.9.547.8.vhCDR3、CHA.9.547.8.vlCDR1、CHA.9.547.8.vlCDR2和CHA.9.547.8.vhCDR3;
CHA.9.547.9、CHA.9.547.9、CHA.9.547.9VH、CHA.9.547.9.VL、CHA.9.547.9.HC、CHA.9.547.9.LC、CHA.9.547.9.H1、CHA.9.547.9.H2、CHA.9.547.9.H3;CHA.9.547.9.H4、CHA.9.547.9.H4、CHA.9.547.9.H4(S241P)、CHA.9.547.9.H4(S241P)、CHA.9.547.9.vhCDR1、CHA.9.547.9.vhCDR2、CHA.9.547.9.vhCDR3、CHA.9.547.9.vlCDR1、CHA.9.547.9.vlCDR2和CHA.9.547.9.vhCDR3;
CHA.9.547.13、CHA.9.547.13、CHA.9.547.13VH、CHA.9.547.13.VL、CHA.9.547.13.HC、CHA.9.547.13.LC、CHA.9.547.13.H1、CHA.9.547.13.H2、CHA.9.547.13.H3:CHA.9.547.13.H4、CHA.9.547.13.H4、CHA.9.547.13.H4(S241P)、CHA.9.547.13.H4(S241P)、CHA.9.547.13.vhCDR1、CHA.9.547.13.vhCDR2、CHA.9.547.13.vhCDR3、CHA.9.547.13.vlCDR1、CHA.9.547.13.vlCDR2和CHA.9.547.13.vhCDR3;
CHA.9.541.1、CHA.9.541.1.VH、CHA.9.541.1.VL、CHA.9.541.1.HC、CHA.9.541.1.LC、CHA.9.541.1.H1、CHA.9.541.1.H2、CHA.9.541.1.H3;CHA.9.541.1.H4、CHA.9.541.1.H4(S241P)、CHA.9.541.1.vhCDR1、CHA.9.541.1.vhCDR2、CHA.9.541.1.vhCDR3、CHA.9.541.1.vlCDR1、CHA.9.541.1.vlCDR2和CHA.9.541.1.vhCDR3;
CHA.9.541.3、CHA.9.541.3.VH、CHA.9.541.3.VL、CHA.9.541.3.HC、CHA.9.541.3.LC、CHA.9.541.3.H1、CHA.9.541.3.H2、CHA.9.541.3.H3;CHA.9.541.3.H4、CHA.9.541.3.H4(S241P)、CHA.9.541.3.vhCDR1、CHA.9.541.3.vhCDR2、CHA.9.541.3.vhCDR3、CHA.9.541.3.vlCDR1、CHA.9.541.3.vlCDR2和CHA.9.541.3.vhCDR3;
CHA.9.541.4、CHA.9.541.4.VH、CHA.9.541.4.VL、CHA.9.541.4.HC、CHA.9.541.4.LC、CHA.9.541.4.H1、CHA.9.541.4.H2、CHA.9.541.4.H3;CHA.9.541.4.H4、CHA.9.541.4.H4(S241P)、CHA.9.541.4.vhCDR1、CHA.9.541.4.vhCDR2、CHA.9.541.4.vhCDR3、CHA.9.541.4.vlCDR1、CHA.9.541.4.vlCDR2和CHA.9.541.4.vhCDR3;
CHA.9.541.5、CHA.9.541.5.VH、CHA.9.541.5.VL、CHA.9.541.5.HC、CHA.9.541.5.LC、CHA.9.541.5.H1、CHA.9.541.5.H2、CHA.9.541.5.H3;CHA.9.541.5.H4、CHA.9.541.5.H4(S241P)、CHA.9.541.5.vhCDR1、CHA.9.541.5.vhCDR2、CHA.9.541.5.vhCDR3、CHA.9.541.5.vlCDR1、CHA.9.541.5.vlCDR2和CHA.9.541.5.vhCDR3;
CHA.9.541.6、CHA.9.541.6.VH、CHA.9.541.6.VL、CHA.9.541.6.HC、CHA.9.541.6.LC、CHA.9.541.6.H1、CHA.9.541.6.H2、CHA.9.541.6.H3;CHA.9.541.6.H4、CHA.9.541.6.H4(S241P)、CHA.9.541.6.vhCDR1、CHA.9.541.6.vhCDR2、CHA.9.541.6.vhCDR3、CHA.9.541.6.vlCDR1、CHA.9.541.6.vlCDR2和CHA.9.541.6.vhCDR3;
CHA.9.541.7、CHA.9.541.7.VH、CHA.9.541.7.VL、CHA.9.541.7.HC、CHA.9.541.7.LC、CHA.9.541.7.H1、CHA.9.541.7.H2、CHA.9.541.7.H3;CHA.9.541.7.H4、CHA.9.541.7.H4(S241P)、CHA.9.541.7.vhCDR1、CHA.9.541.7.vhCDR2、CHA.9.541.7.vhCDR3、CHA.9.541.7.vlCDR1、CHA.9.541.7.vlCDR2和CHA.9.541.7.vhCDR3;和
CHA.9.541.8、CHA.9.541.8.VH、CHA.9.541.8.VL、CHA.9.541.8.HC、CHA.9.541.8.LC、CHA.9.541.8.H1、CHA.9.541.8.H2、CHA.9.541.8.H3;CHA.9.541.8.H4、CHA.9.541.8.H4(S241P);CHA.9.541.8vhCDR1、CHA.9.541.8.vhCDR2、CHA.9.541.8.vhCDR3、CHA.9.541.8.vlCDR1、CHA.9.541.8.vlCDR2和CHA.9.541.8.vhCDR3。
在包含上述抗体的CDR的scFv的情况下,将这些标记为scFv,其包括包含具有vhCDR的重链可变结构域、接头和具有vlCDR的轻链可变结构域的scFv,同样如上所述呈任一定向。因此,本发明包括scFv-CHA.9.536.3.1、scFv-CHA.9.536.3、scFv-CHA.9.536.4、scFv-CHA.9.536.5、scFv-CHA.9.536.7、scFv-CHA.9.536.8、scFv-CHA.9.560.1、scFv-CHA.9.560.3、scFv-CHA.9.560.4、scFv-CHA.9.560.5、scFv-CHA.9.560.6、scFv-CHA.9.560.7、scFv-CHA.9.560.8、scFv-CHA.9.546.1、scFv-CHA.9.547.1、scFv-CHA.9.547.2、scFv-CHA.9.547.3、scFv-CHA.9.547.4、scFv-CHA.9.547.6、scFv-CHA.9.547.7、scFv-CHA.9.547.8、scFv-CHA.9.547.9、scFv-CHA.9.547.13、scFv-CHA.9.541.1、scFv-CHA.9.541.3、scFv-CHA.9.541.4、scFv-CHA.9.541.5、scFv-CHA.9.541.6、scFv-CHA.9.541.7和scFv-CHA.9.541.8。
此外,CHA.9.543与TIGIT结合但不阻断TIGIT-PVR相互作用。
如本文所讨论的,本发明还提供了上述组分(CPA和CHA)的变体,包括CDR中的变体,如上所述。因此,本发明提供了包含本文概述的一组6个CDR的抗体,其可以在CDR组中含有一个、两个或三个氨基酸差异,只要所述抗体仍然与TIGIT结合即可。用于测试抗TIGIT抗体与本文概述的CDR序列相比是否含有突变的合适分析是本领域已知的,例如Biacore分析。
此外,本发明还提供了上述可变重链和轻链的变体。在这种情况下,可变重链可以与本文的“VH”序列80%、90%、95%、98%或99%相同,和/或当使用Fc变体时,含有1、2、3、4、5、6、7、8、9、10个氨基酸变化或更多。提供可变轻链,其可与本文的“VL”序列(特别是CPA.9.086)80%、90%、95%、98%或99%相同,和/或当使用Fc变体时,含有1、2、3、4、5、6、7、8、9、10个氨基酸变化或更多。在这些实施例中,只要抗体仍与TIGIT结合,本发明就包括这些变体。用于测试抗TIGIT抗体与本文概述的CDR序列相比是否含有突变的合适分析是本领域已知的,例如Biacore分析。
类似地,提供重链和轻链,其与本文的全长“HC”和“LC”序列(特别是CPA.9.086)80%、90%、95%、98%或99%相同,及/或当使用Fc变体时,含有1、2、3、4、5、6、7、8、9、10个氨基酸变化或更多。在这些实施例中,只要抗体仍与TIGIT结合,本发明就包括这些变体。用于测试抗TIGIT抗体与本文概述的CDR序列相比是否含有突变的合适分析是本领域已知的,例如Biacore分析。
此外,本文中CPA或CHA抗体的可变重链和可变轻链的框架区可以如本领域已知的(根据需要偶尔在CDR中产生变体)人源化(或者,在CHA抗体的情况下,“再人源化”,达到可以进行替代人源化方法的程度),因此可以产生图53的VH和VL链的人源化变体(特别是CPA.9.086)。此外,人源化可变重链和轻链结构域然后可以与人恒定区融合,例如来自IgG1、IgG2、IgG3和IgG4的恒定区(包括IgG4(S241P))。
特别地,如本领域已知的,鼠VH和VL链可以如本领域已知的人源化,例如,使用NCBI网站的IgBLAST程序,如Ye等人《核酸研究(Nucleic Acids Res.)》41:W34-W40(2013)所述,其全部内容通过引用并入本文用于人源化方法。IgBLAST采用鼠VH和/或VL序列并将其与已知人种系序列的文库进行比较。如本文所示,对于本文产生的人源化序列,使用的数据库是IMGT人VH基因(F+ORF,273个种系序列)和IMGT人VLκ基因(F+ORF,74个种系序列)。选择示例性的五种CHA序列:CHA.9.536、CHA9.560、CHA.9.546、CHA.9.547和CHA.9.541(参见图53)。对于人源化的这个实施例,5个全都选择人种系IGHV1-46(等位基因1)作为受体序列并且选择人重链IGHJ4(等位基因1)连接区(J基因)。对于四个(CHA.7.518、CHA.7.530、CHA.7.538_1和CHA.7.538_2)中的三个,选择人种系IGKVl-39(等位基因1)作为受体序列并且选择人轻链IGKJ2(等位基因1)(J基因)。J基因选自国际ImMunoGeneTics信息系统汇编的人类连接区序列,如www.imgt.org。CDR根据AbM定义来定义(参见www.bioinfo.org.uk/abs/)。
在一些实施例中,本发明的抗TIGIT抗体包括这样的抗TIGIT抗体,其中不同抗TIGIT抗体的VH和VL序列可以“混合和匹配”以产生其它抗TIGIT抗体。可以使用上述结合分析测试这种“混合和匹配”抗体的TIGIT结合。例如,ELISA或Biacore分析)。在一些实施例中,当VH和VL链混合并匹配时,来自特定VH/VL配对的VH序列被结构上类似的VH序列替换。同样地,在一些实施例中,来自特定VH/VL配对的VL序列被结构上类似的VL序列替换。例如,同源抗体的VH和VL序列特别适合于混合和匹配。
因此,本发明的TIGIT抗体包含选自下组的CDR氨基酸序列:(a)本文所列的序列;(b)由于1、2、3、4、5、6、7、8、9、10或更多个氨基酸取代而与(a)中指定的那些CDR氨基酸序列不同的序列;(c)与(a)或(b)中指定的序列具有90%或更高、95%或更高、98%或更高、或99%或更高序列同一性的氨基酸序列;(d)具有由多核苷酸编码的氨基酸序列的多肽,所述多核苷酸具有编码本文所列氨基酸的核酸序列。特别地,CPA.9.086抗体可以具有选自(a)、(b)、(c)或(d)的序列。
在TIGIT抗体的定义中另外包括与本文列举的TIGIT抗体共有同一性的抗体。即,在某些实施例中,根据本发明的抗TIGIT抗体包含重链和轻链可变区,其包含与优选的抗TIGIT抗体的全部或部分抗TIGIT氨基酸序列相同的氨基酸序列,其中抗体保留亲本抗TIGIT抗体的所需功能特性。两个序列之间的同一性百分比是序列共有的相同位置的数量的函数(即,%同源性=相同位置的数量/位置总数X100),考虑到空位的数量和每个空位的长度,这些需要引入以使两个序列最佳对齐。序列的比较和两个序列之间的同一性百分比的确定可以使用数学算法完成,如下面的非限制性实例中所述。
两个氨基酸序列之间的同一性百分比可以使用E.Meyers和W.Miller(《生物科学计算机应用(Comput.Appl.Biosci.)》,4:11-17(1988))的算法来确定,其已被纳入ALIGN程序(2.0版),使用PAM120权重残基表,空位长度罚分为12,空位罚分为4。另外,两个氨基酸序列之间的同一性百分比可以使用Needleman和Wunsch(《分子生物学杂志》48:444-453(1970))算法来确定,其已被纳入GCG软件包(商业上可获得)中的GAP程序中,使用Blossum62矩阵或PAM250矩阵,空位权重为16、14、12、10、8、6或4,长度权重为1、2、3、4、5或6。
另外或可替代地,本发明的蛋白质序列可进一步用作“查询序列”以对公共数据库进行搜索,以例如鉴定相关序列。可以使用Altschul等人(1990)《分子生物学杂志》215:403-10的XBLAST程序(2.0版)来执行这样的搜索。可以用XBLAST程序进行BLAST蛋白质搜索,得分=50,字长=3,以获得与根据本发明的至少一些实施例的抗体分子同源的氨基酸序列。为了获得用于比较目的的空位比对,可以如Altschul等人,(1997)《核酸研究》25(17):3389-3402中所述使用空位BLAST。当使用BLAST和空位BLAST程序时,可以使用相应程序(例如XBLAST和NBLAST)的默认参数。
通常,TIGIT抗体之间比较的同一性百分比为至少75%、至少80%、至少90%,优选同一性百分比至少约95、96、97、98或99%。同一性百分比可以沿着整个氨基酸序列,例如整个重链或轻链或沿着链的一部分。例如,包括在本发明的抗TIGIT抗体的定义内的是那些沿着整个可变区,或沿着整个恒定区,或仅沿着Fc结构域共享同一性的抗体(例如,其中同一性是沿着可变区95或98%相同)。特别地本发明提供了与CPA.9.086抗体具有至少75%、至少80%、至少90%,优选具有至少约95、96、97、98或99%同一性的TIGIT抗体。
另外,还包括可以具有相同CDR但在可变结构域(或整个重链或轻链)的框架部分中发生变化的序列。例如,TIGIT抗体包括具有与图53中所示相同的CDR的那些,但其沿着可变区的同一性可以更低,例如95或98%相同。特别地,本发明提供了TIGIT抗体,其具有与CPA.9.086相同的CDR但具有与CPA.9.08695%或98%相同的框架区。
A.竞争结合的TIGIT抗体
本发明不仅提供所列举的抗体,而且提供与所列举的抗体(本文列举的特异性结合TIGIT的CPA编号)竞争特异性结合TIGIT分子的其它抗体。如实例16中所示,本发明的TIGIT抗体“分箱”成不同的表位箱。在表位分箱研究中的44种TIGIT抗体中,存在四个群落,每个群落具有相关的成对阻断模式,其分成本文概述的12个总离散箱并显示在图67和68中。这里概述了12个离散箱;1)BM9-H4、CHA.9.525、CPA.9.081-H4、CHA.9.538、CHA.9.553、CPA.9.069-H4、CHA.9.543、CHA.9.556、CPA.9.077-H4和CHA.9.561;2)CHA.9.560和CHA.9.528;3)CHA.9.552、CHA.9.521、CHA.9.541、CHA.9.529、CHA.9.519、CHA.9.527和CHA.9.549;4)CPA.9.057-H4和CHA.9.554;5)CHA.9.546、CPA.9.012-H4、CHA.9.547、CPA.9.013-H4、CPA.9.018-H4、MBSA43-M1、Sino PVR-Fc(配体)、CHA.9.555、PVR-Fc M2A(配体)、BM29-H4、CPA.9.027-H4、CPA.9.049-H4和CPA.9.053-H4;6)CPA.9.064-H4;7)BM26-H4;8)CPA.9.059-H4;9)CHA.9.535和CPA.9.009-H4;10)CHA.9.536、CHA.9.522和CPA.9.015-H4;11)CPA.9.011-H4和BM8-H4和12)CPA.9.071-H4。
因此,本发明提供了抗TIGIT抗体,其与离散的表位箱1至12中的抗体竞争结合。在一个具体实施例中,本发明提供抗TIGIT抗体,其与CPA.9.086竞争结合并且与CPA.9.086至少95、96、97、98或99%相同。
产生与所列举的抗体竞争的其它抗体,如本领域已知的并且一般概述如下。竞争性结合研究可以如本领域已知的那样进行,通常使用结合分析,以及ELISA和基于细胞的分析。
VIII.PVRIG抗体
本发明提供抗PVRIG抗体。(为方便起见,“抗PVRIG抗体”和“PVRIG抗体”可互换使用)。本发明的抗PVRIG抗体特异性结合人PVRIG,优选人PVRIG的ECD。
可以例如通过抗体具有至少约10-4M、至少约10-5M、至少约10-6M、至少约10-7M、至少约10-8M、至少约10-9M、或者至少约10-10M、至少约10-11M、至少约10-12M或更大的KD来展现对PVRIG或PVRIG表位的特异性结合,其中KD是指特定的抗体-抗原相互作用的解离速率。通常,特异性结合抗原的抗体对于对照分子的KD相对于PVRIG抗原或表位大20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍。
然而,如WO2016/134333的实例中所示,为了最佳地结合在NK细胞和T细胞表面上表达的PVRIG,抗体优选具有小于50nM并且最优选小于1nM的KD,其中小于0.1nM和小于1pM和0.1pM适用于本发明方法中。
此外,可以例如通过抗体对PVRIG抗原或表位的KA或Ka对于表位相对于对照大至少20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍来展现对特定抗原或表位的特异性结合,其中KA或Ka是指特定的抗体-抗原相互作用的缔合速率。
在一些实施例中,本发明的抗PVRIG抗体以100nM或更小、50nM或更小、10nM或更小、或1nM或更小(即,更高的结合亲和力)或1pM或更小的KD结合人PVRIG,其中KD通过已知方法测定,例如表面等离子共振(SPR,例如Biacore分析)、ELISA、KINEXA,并且最典型地是在25℃或37℃下的SPR。
重要的是要注意,抗PVRIG抗体的结合亲和力令人惊讶地与活性相关。筛选数据的累积分析显示本发明的抗PVRIG抗体的亲和力与它们结合原代人T细胞的能力高度相关。更具体地,在T细胞上产生最高最大信号的抗体是具有皮摩尔范围内亲和力的抗体。在低纳摩尔范围及以上具有亲和力的抗体在T细胞上产生相对弱的最大信号。因此,数据表明抗PVRIG抗体对基于T细胞的免疫疗法的有用性可能部分地基于它们的亲和力来定义。参考WO2016/134333的抗体序列,其通过引用并入本文,特别是图38中概述的抗PVRIG抗原结合结构域(描绘结合PVRIG并阻断PVRIG和PVRL2相互作用的序列),图39(描绘结合PVRIG并且不阻断PVRIG和PVRL2的相互作用的序列),图40(描绘CDR和来自这些抗体的数据),和图41(描绘来自结合和阻断的杂交瘤的CDR)。也就是说,来自WO2016/134333的所有CPA.7和CHA.7抗体(包括CDR、VH和VL和全长序列)的图和图例以及特定序列和SEQ ID NO:明确地并入本文。
图45示出不同亲和力的两种抗PVRIG抗体结合原代CD8T细胞的能力。如图45中所示,通过与经过工程改造以过表达PVRIG的HEK细胞(HEK hPVRIG)结合测量,CHA.7.518具有比CPA.7.021(WO2016/13433中的序列)高约8倍的亲和力。与此一致,通过与Jurkat细胞结合测量,CHA.7.518具有比CPA.7.021高约13倍的亲和力。CHA.7.518的较高亲和力确实对应于来自HEK hPVRIG细胞的更大的最大结合信号,但不对应于Jurkat细胞。
相反,与CPA.7.021相比,CHA.7.518始终从原代CD8T细胞获得更高的最大结合信号。这在结合滴定实验中说明,其中将不同浓度的同种型或抗PVRIG抗体加入原代CD8T细胞中,并测量所得的最大结合信号。在所示两个供体中(图45),CHA.7.518始终以滴定依赖性方式给出比CPA.7.021更高的最大信号(几何平均荧光强度,GMFI)。gMFIr=所关注抗体的几何荧光强度/对照抗体的几何荧光强度。gMFIr测量所关注抗体相对于同种型抗体在两者的固定浓度下给出的信号。
因此,本发明的抗PVRIG抗体具有皮摩尔范围内的结合亲和力(如使用本文概述的技术测量的),例如0.1至9pM,优选约0.2至约2,并且约0.2至约0.5特别有用。
对于TIGIT抗体,PVRIG抗体类似地标记如下。抗体具有参考编号,例如“CHA.7.518.1”。这代表可变重链和可变轻链的组合,如图3所描绘,例如,理解这些抗体包括两条重链和两条轻链。“CPA.7.518.1.VH”是指CPA.7.518.1的可变重链部分,而“CPA.7.518.1.VL”是可变轻链。“CPA.7.518.1.vhCDR1”、“CPA.7.518.1.vhCDR2”、“CPA.7.518.1.vhCDR3”、“CPA.7.518.1.vlCDR1”、“CPA.7.518.1.vlCDR2”和“CPA.7.518.1.vlCDR3”是指所指示的CDR。“CPA.7.518.1.HC”是指该分子的整个重链(例如可变结构域和恒定结构域),“CPA.7.518.1.LC”是指同一分子的整个轻链(例如可变结构域和恒定结构域)。通常,人κ轻链用于本文中每种噬菌体(或人源化杂交瘤)抗体的恒定结构域,尽管在一些实施例中使用λ轻链恒定结构域。“CPA.7.518.1.H1”是指包含可变重链和轻链结构域的全长抗体,包括人IgG1的恒定结构域(因此H1;IgG1、IgG2、IgG3和IgG4序列显示在图50中)。因此,“CPA.7.518.1.H2”将是与人IgG2连接的CPA.7.518.1可变结构域。“CPA.7.518.1.H3”将是与人IgG3连接的CPA.7.518.1可变结构域,“CPA.7.518.1.H4”将是与人IgG4连接的CPA.7.518.1可变结构域。注意,在一些情况下,人IgG可能具有额外的突变,如下所述,并且可以注释。例如,在许多实施例中,人IgG4中可能存在S241P突变,并且这可以注释为例如“CPA.7.518.1.H4(S241P)”。具有该S241P铰链变体的人IgG4序列示于图50中。其它可能的变体是IgG1(N297A),(或在该位点消除糖基化的其它变体,因此许多效应功能与FcγRIIIa结合相关)和IgG1(D265A),其降低与FcγR受体的结合。
本发明还提供重域可变结构域和轻域可变结构域以及全长重链和轻链。
在一些实施例中,本发明提供结合PVRIG的scFv,其包含如上所述通过scFv接头连接的重链可变结构域和轻链可变结构域。VL和VH结构域可以呈任一定向,例如从N端到C端“VH-接头-VL”或“VL-接头”VH”。这些是由它们的组成部分命名的;例如“scFv-CHA.7.518.1VH-接头-VL”或“scFv-CPA.7.518.1.VL-接头-VH”。因此,“scFv-CPA.7.518.1”可以呈任一定向。
IX.编码抗体的核酸
还提供了编码本发明抗体的核酸组合物,以及含有核酸的表达载体和用核酸和/或表达载体组合物转化的宿主细胞。如本领域技术人员所理解的,由于遗传密码的简并性,本文描述的蛋白质序列可由任何数量的可能核酸序列编码。
编码抗体的核酸组合物将取决于抗体的形式。对于传统的,含有两条重链和两条轻链的四聚体抗体由两种不同的核酸编码,一种编码重链,一种编码轻链。这些可以放入单个表达载体或两个表达载体中,如本领域中已知,转化到宿主细胞中,在宿主细胞中表达它们以形成本发明的抗体。在一些实施例中,例如当使用scFv构建体时,通常使用编码可变重链-接头-可变轻链的单个核酸,其可以插入表达载体中以转化到宿主细胞中。可将核酸置于含有适当转录和翻译控制序列的表达载体中,转录和翻译控制序列包括但不限于信号和分泌序列、调控序列、启动子、复制起点、选择基因等。
用于表达根据本发明的至少一些实施例的重组抗体的优选哺乳动物宿主细胞包括中国仓鼠卵巢(CHO细胞)、PER.C6、HEK293和本领域已知的其它细胞。
核酸可以存在于完整细胞中、细胞裂解物中、或部分纯化或基本上纯的形式中。当通过标准技术(包括碱/SDS处理、CsCl条带、柱层析、琼脂糖凝胶电泳和本领域熟知的其它技术)从其它细胞组分或其它污染物(例如其它细胞核酸或蛋白质)中纯化时,核酸被“分离”或“基本上纯化”。
为了产生scFv基因,编码VH和VL的DNA片段可操作地连接到编码柔性接头,例如编码氨基酸序列(G1y4-Ser)3的另一片段和本文讨论的其它片段,使得VH和VL序列可以表达为连续的单链蛋白质,其中VL和VH区通过柔性接头连接。
X.配制品
用于实施前述方法的治疗组合物(特别是CHA.7.518.1.H4(S241P)和CPA.9.086)可以配制成包含适合于所需递送方法的载剂的药物组合物。合适的载剂包括当与治疗组合物组合时保留治疗组合物的抗肿瘤功能并且通常不与患者的免疫系统反应的任何材料。实例包括但不限于许多标准药物载剂中的任何一种,例如无菌磷酸盐缓冲盐水溶液、抑菌水等(一般参见《雷明顿氏药物科学(Remington′s Pharmaceutical Sciences)》第16版,A.Osal.编,1980)。可接受的载剂、赋形剂或稳定剂在所用剂量和浓度下对接受者无毒,并且可包括缓冲剂。
在一个优选的实施例中,包含本发明抗体的药物组合物可以是水溶形式,例如作为药学上可接受的盐存在,其意在包括酸加成盐和碱加成盐。“药学上可接受的酸加成盐”是指那些保留游离碱的生物有效性并且不在生物学上或其它方面不合意的用无机酸等形成的盐。“药学上可接受的碱加成盐”包括衍生自无机碱等的盐。
优选呈无菌水溶液形式、包含本发明抗体的药物组合物的施用可以通过多种方式进行,包括但不限于皮下和静脉内。
在优选的实施例中,给药量和施用频率选择为治疗或预防有效的。如本领域中已知,可能需要针对蛋白质降解、全身性对比局部递送和新蛋白酶合成速率以及年龄、体重、一般健康状况、性别、饮食、施用时间、药物相互作用和病况的严重程度做出调整,并且这些调整将由本领域技术人员通过常规实验来确定。
为了治疗患者,可以施用治疗有效剂量的本发明的Fc变体。本文的“治疗有效剂量”是指产生其施用效果的剂量。确切的剂量将取决于治疗的目的,并且本领域技术人员可以使用已知技术确定。
XI.使用抗体的方法
本发明的抗体,包括PVRIG和TIGIT抗体,可用于许多诊断和治疗应用。在一些情况下,使用对样品肿瘤活组织检查物的表达水平(基因表达水平或蛋白质表达水平,后者优选)的评估来确定向患者施用哪种抗体,以确定样品是否过表达TIGIT或PVRIG或两者,以确定要施用什么治疗性抗体。
A.诊断用途
因此,本发明的抗体还可用于分别过表达PVRIG或TIGIT的肿瘤的体外或体内诊断,包括成像。然而,应该注意的是,如本文所讨论的,TIGIT和PVRIG,作为免疫肿瘤学靶蛋白,不一定在癌细胞上过表达,而是在癌症中的免疫浸润中过表达。因此,它是作用机制,例如免疫细胞如T细胞和NK细胞的活化,其导致癌症诊断。因此,这些抗体可用于诊断癌症。使用PVRIG抗体的诊断也在WO 2016/134333[0434至0459]中概述,其通过引用并入本文。
通常,诊断可以通过几种方式完成。在一个实施例中,使来自患者的组织(例如活组织检查样品)与通常标记的TIGIT抗体接触,使得抗体结合内源性TIGIT。将信号水平与来自相同患者或参考样品的正常非癌组织的信号水平进行比较,以确定癌症的存在或不存在。活组织检查样品可来自实体瘤、血液样品(对于淋巴瘤和白血病,如ALL、T细胞淋巴瘤等)。
一般来说,在这个实施例中,例如用可使用荧光计或本领域中众所周知的其它光学检测系统检测的荧光团或其它光标记来标记抗TIGIT。在另一个实施例中,使二级标记的抗体与样品接触,例如使用来自不同哺乳动物(小鼠、大鼠、兔、山羊等)的抗人IgG抗体,以形成如本领域已知的夹心分析。或者,可以直接标记抗TIGIT mAb(即生物素),并且可以通过针对本领域中的标记试剂的二级Ab进行检测。
一旦发现TIGIT的过表达,就可以施用本文所述的根据本发明的抗TIGIT抗体进行治疗。
在其它实施例中,进行体内诊断。通常,在该实施例中,将抗TIGIT抗体(包括抗体片段)注射到患者体内并进行成像。在这个实施例中,举例来说,一般用光标记或MRI标记来标记抗体,如mAb(包括片段)的放射性标记钆螯合物。
在一些实施例中,本文描述的抗体用于诊断和治疗,或仅用于诊断。当抗TIGIT抗体用于诊断和治疗时,一些实施例依赖于针对两种不同表位的两种不同的抗TIGIT抗体,使得诊断抗体不与治疗抗体竞争结合,尽管在一些情况下可以将相同的抗体用于诊断和治疗。例如,这可以使用位于不同分箱中,例如结合TIGIT上的不同表位的抗体来完成,例如本文概述的。因此包括在本发明中的是包含诊断抗体和治疗抗体的组合物,并且在一些实施例中,如本文所述标记诊断抗体。此外,治疗和诊断抗体的组合物也可以与本文所述的其它药物共同施用。
特别适用于诊断的抗体包括但不限于这些列举的抗体或利用CDR与变体序列的抗体,或与图53中的任何抗体竞争结合的抗体。
在许多实施例中,标记诊断抗体。本文中“标记”是指本文公开的抗体附接有一种或多种元素、同位素或化合物,其能够在筛选或诊断程序中进行检测。一般来说,标记分成几类:a)免疫标记,其可以是作为由抗体识别的融合伴侣并入的表位;b)同位素标记,其可以是放射性同位素或重同位素;c)小分子标记,其可以包括荧光染料和比色染料,或能够实现其它标记方法的分子,如生物素;以及d)允许身体成像的标记,如颗粒(包括用于超声标记的气泡)或顺磁标记。标记可以在任何位置并入抗体中,并且可以在蛋白质表达期间体外或体内并入,如本领域已知的。
可以在体内,通过施用允许如下所述的全身成像的诊断抗体,或在体外,对从患者取出的样品进行诊断。在此上下文中的“样品”包括任何数量的物质,包括但不限于体液(包括但不限于血液、尿液、血清、淋巴液、唾液、肛门和阴道分泌物、汗液和精液),以及组织样本,例如由相关组织的活组织检查产生的样品。
此外,如下文以及实例和图中所述关于PVRIG或TIGIT或两者,或PVRIG和PD-1,或TIGIT和PD-1的蛋白质表达水平的信息可用于确定哪些抗体应该施用于患者。
B.癌症治疗
本发明的抗体特别适用于治疗癌症。通常,本发明的抗体是免疫调节的,因为本发明的抗体通常通过抑制检查点受体(例如PVRIG或TIGIT)的作用来刺激免疫系统而不是直接攻击癌细胞。因此,与旨在抑制对肿瘤生长和发育至关重要的分子途径和/或消耗肿瘤细胞的肿瘤靶向疗法不同,癌症免疫疗法旨在刺激患者自身的免疫系统以消除癌细胞,破坏长期的肿瘤。各种方法可用于癌症免疫疗法,其中包括用于诱导肿瘤特异性T细胞反应的治疗性癌症疫苗,以及用于去除免疫抑制途径的免疫刺激性抗体(即抑制性受体的拮抗剂=免疫检查点)。
靶向疗法或常规抗癌疗法的临床反应往往是短暂的,因为癌细胞产生抗性,并且发生肿瘤复发。然而,过去几年中癌症免疫疗法的临床应用表明,这种类型的疗法可以具有持久的临床反应,显示出对长期存活的显著影响。然而,尽管反应是长期的,但只有少数患者有反应(与常规或靶向疗法相反,大量患者有反应,但反应是短暂的)。
当临床上检测到肿瘤时,它已经通过获得免疫耐受和免疫抑制性质以及通过各种机制和多种免疫细胞产生免疫抑制性肿瘤微环境来逃避免疫防御系统。
因此,本发明的抗体可用于治疗癌症。由于免疫肿瘤学作用机制的性质,检查点受体(TIGIT或PVRIG)不一定需要在特定癌症类型上过表达或与特定癌症类型相关;也就是说目标是使抗体去除对T细胞和NK细胞活化的抑制,以使得免疫系统将对癌症起作用。
如本文所用,“癌症”泛指任何肿瘤性疾病(无论是侵袭性的还是转移性的),其特征在于引起恶性生长或肿瘤的异常和不受控制的细胞分裂(例如,不受调节的细胞生长)。本文所用的术语“癌症”或“癌性”应理解为包括任何肿瘤性疾病(无论是侵袭性的,非侵袭性的还是转移性的),其特征在于引起恶性生长或肿瘤的异常和不受控制的细胞分裂,其非限制性实例在本文中有描述。这包括哺乳动物中通常以不受调节的细胞生长为特征的任何生理病况。癌症实例举例说明于实施例中并且在说明书内也有描述。
可使用本发明的抗体治疗的癌症的非限制性实例包括但不限于癌、淋巴瘤、胚细胞瘤、肉瘤和白血病。这类癌症的更具体的实例包括鳞状细胞癌、肺癌(包括小细胞肺癌、非小细胞肺癌、肺腺癌和肺鳞癌)、腹膜癌、肝细胞癌、胃癌(包括胃肠癌)、胰腺癌、胶质母细胞瘤、宫颈癌、卵巢癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、肝癌、膀胱癌、肝癌、乳腺癌、结肠癌、结直肠癌、子宫内膜或子宫癌、唾液腺癌、肾癌、肝癌、前列腺癌、外阴癌、甲状腺癌、肝癌和各种类型的头颈癌,以及B细胞淋巴瘤(包括低级/滤泡性非霍奇金淋巴瘤(NHL);小淋巴细胞(SL)NHL;中级/滤泡性NHL;中级弥漫性NHL;高级免疫母细胞NHL;高级淋巴母细胞性NHL;高级小型非裂解细胞NHL;肿块性病变NHL;套细胞淋巴瘤;AIDS相关淋巴瘤;和瓦尔登斯特伦巨球蛋白血症);慢性淋巴细胞白血病(CLL);急性淋巴母细胞性白血病(ALL);毛细胞白血病;慢性骨髓母细胞白血病;多发性骨髓瘤和移植后淋巴增生性疾病(PTLD)。
如WO2016/134333的实例中所示,PVRIG在许多不同来源的不同肿瘤中过表达和/或与肿瘤淋巴细胞浸润相关(如通过与CD3、CD4、CD8和PD-1表达的相关性所证明),并且因此可用于治疗任何癌症,包括但不限于前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(非霍奇金淋巴瘤(NHL)和霍奇金淋巴瘤(HD))、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤和食道癌。
特别是,CHA.7.518.1H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
特别是,CHA.7.538.1.2.H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
特别是,CPA.9.086H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
特别是,CPA.9.083H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
特别是,CHA.9.547.7.H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
特别是,CHA.9.547.13.H4(S241P)可用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
C.TIGIT抗体单一治疗
本发明的TIGIT抗体特别作为单一疗法用于治疗癌症。由于免疫肿瘤学作用机制的性质,TIGIT不一定需要在特定癌症类型上过表达或与特定癌症类型相关;也就是说目标是使抗TIGIT抗体去除对T细胞和NK细胞活化的抑制,以使得免疫系统将对癌症起作用。
虽然图53的任何抗TIGIT抗体用于治疗癌症(包括如下文所述的T细胞活化),但CPA.9.086.H4(S241P)、CPA.9.083.H4(S241P)、CHA.9.547.7.H4(S241P)、和CHA.9.547.13.H4(S241P)在一些实施例中发现特定用途。
D.PVRIG抗体单一治疗
本发明的PVRIG抗体特别作为单一疗法用于治疗癌症。由于免疫肿瘤学作用机制的性质,TIGIT不一定需要在特定癌症类型上过表达或与特定癌症类型相关;也就是说目标是使抗TIGIT抗体去除对T细胞和NK细胞活化的抑制,以使得免疫系统将对癌症起作用。
特别地,CHA.7.518.1H4(S241P)可用作单一疗法。
类似地,特别是,CHA.7.538.1.2.H4(S241P)可作为单一疗法用于治疗前列腺癌、肝癌(HCC)、结肠直肠癌、卵巢癌、子宫内膜癌、乳腺癌、胰腺癌、胃癌、宫颈癌、头颈癌、甲状腺癌、睾丸癌、泌尿道上皮癌、肺癌、黑素瘤、非黑素瘤皮肤癌(鳞状和基底细胞癌)、神经胶质瘤、肾癌(RCC)、淋巴瘤(NHL或HL)、急性骨髓性白血病(AML)、T细胞急性淋巴母细胞性白血病(T-ALL)、弥漫性大B细胞淋巴瘤、睾丸生殖细胞肿瘤、间皮瘤、膀胱癌和食道癌。
E.组合疗法
如本领域中已知,包含靶向免疫疗法靶标的治疗抗体和特异性针对疾病病况的额外治疗剂的组合疗法正展现出巨大的前景。例如,在免疫疗法领域,存在许多使用化学治疗剂(小分子药物或抗肿瘤抗体)或免疫肿瘤学抗体的有前景的组合疗法。
术语“与......组合”和“共同施用”不限于在完全相同的时间施用所述预防或治疗剂。相反,这意味着抗体和其它一种或多种药剂以一定的顺序和时间间隔施用,使得它们可以共同起作用以提供与仅用本发明的抗体或仅用其它一种或多种药剂治疗相比增加的益处。优选抗体和其它一种或多种药剂相加起作用,特别优选它们协同起作用。这些分子合适地以对预期目的有效的量组合存在。有经验的开业医生能够凭经验或通过考虑药剂的药物动力学和作用模式来确定每种治疗剂的合适剂量以及合适的施用时序和方法。
因此,本发明的抗体可以与一种或多种其它治疗方案或药剂同时施用。另外的治疗方案或药剂可用于改善抗体的功效或安全性。而且,额外的治疗方案或药剂可用于治疗相同的疾病或合并症,而不是改变抗体的作用。例如,可以将本发明的抗体与化学疗法、放射疗法或化学疗法和放射疗法一起施用于患者。
1.TIGIT抗体与化学治疗小分子
本发明的TIGIT抗体可以与一种或多种其它预防剂或治疗剂组合施用,包括但不限于细胞毒性剂、化学治疗剂、细胞因子、生长抑制剂、抗激素剂、激酶抑制剂、抗血管生成剂、心脏保护剂、免疫刺激剂、免疫抑制剂、促进血液细胞增殖的药剂、血管生成抑制剂、蛋白酪氨酸激酶(PTK)抑制剂或其它治疗剂。
在此上下文中,“化学治疗剂”是可用于治疗癌症的化合物。化学治疗剂的实例包括烷化剂,如噻替派(thiotepa)和环磷酰胺;烷基磺酸盐,如白消安(busulfan)、英丙舒凡(improsulfan)和哌泊舒凡(piposulfan);氮丙啶,如苯唑多巴(benzodopa)、卡波醌(carboquone)、米特多巴(meturedopa)和尤利多巴(uredopa);乙烯亚胺和甲基三聚氰胺,包括六甲蜜胺(altretamine)、三亚乙基三聚氰胺、三亚乙基磷酰胺、三亚乙基硫代磷酰胺和三羟甲基三聚氰胺;乙酰精宁(acetogenins)(尤其布拉他辛(bullatacin)和布拉他辛酮(bullatacinone));δ-9-四氢大麻酚(屈大麻酚(dronabinol),MARINOL′);β-拉帕酮(beta-lapachone);拉帕醇(lapachol);秋水仙碱(colchicine);桦木酸(betulinic acid);喜树碱(camptothecin)(包括合成类似物拓朴替康(topotecan)CPT-11(伊立替康(irinotecan),)、乙酰喜树碱、东莨菪素(scopolectin)和9-氨基喜树碱);苔藓虫素(bryostatin);卡利他汀(callystatin);CC-1065(包括其阿多来新(adozelesin)、卡折来新(carzelesin)和比折来新(bizelesin)合成类似物);鬼臼毒素(podophyllotoxin);鬼臼酸(podophyllinic acid);替尼泊苷(teniposide);念珠藻环肽(cryptophycin)(特别是念珠藻环肽1和念珠藻环肽8);海兔毒素(dolastatin);多卡霉素(duocarmycin)(包括合成类似物KW-2189和CB1-TM1);艾榴塞洛素(eleutherobin);盘克斯塔叮(pancratistatin);沙考的汀(sarcodictyin);海绵毒素(spongistatin);氮芥(nitrogen mustard),诸如苯丁酸氮芥(chlorambucil)、萘氮芥(chlornaphazine)、氯磷酰胺(cholophosphamide)、雌莫司汀(estramustine)、异环磷酰胺(ifosfamide)、氮芥(mechlorethamine)、盐酸氧氮芥(mechlorethamine oxide hydrochloride)、美法仑(melphalan)、新氮芥(novembichin)、苯芥胆甾醇(phenesterine)、泼尼氮芥(prednimustine)、曲磷胺(trofosfamide)、尿嘧啶氮芥(uracil mustard);亚硝基脲,诸如卡莫司汀(carmustine)、氯脲菌素(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)和雷莫司汀(ranimnustine);抗生素,诸如烯二炔抗生素(例如卡奇霉素(calicheamicin),尤其卡奇霉素γII和卡奇霉素ωII(参见例如《德国应用化学(Agnew,Chem Intl.Ed.Engl.)》,33:183-186(1994));达米辛(dynemicin),包括达米辛A;埃斯培拉霉素(esperamicin);以及新制癌菌素(neocarzinostatin)发色团和相关色蛋白烯二炔抗生素发色团)、阿克拉霉素(aclacinomysin)、放线菌素(actinomycin)、氨茴霉素(authramycin)、氮杂丝氨酸(azaserine)、博来霉素(bleomycin)、放线菌素C(cactinomycin)、卡柔比星(carabicin)、洋红霉素(carminomycin)、嗜癌霉素(carzinophilin)、色霉素(chromomycin)、更生霉素(dactinomycin)、道诺霉素(daunorubicin)、地托比星(detorubicin)、6-重氮-5-氧代-L-正亮氨酸、多柔比星(doxorubicin)(包括吗啉代-多柔比星、氰基吗啉代-多柔比星、2-吡咯啉基-多柔比星和脱氧多柔比星)、表柔比星(epirubicin)、依索比星(esorubicin)、伊达比星(idarubicin)、麻西罗霉素(marcellomycin)、丝裂霉素(mitomycin)如丝裂霉素C、霉酚酸(mycophenolicacid)、诺拉霉素(nogalamycin)、橄榄霉素(olivomycins)、培洛霉素(peplomycin)、泊非罗霉素(porfiromycin)、嘌呤霉素(puromycin)、奎那霉素(quelamycin)、罗多比星(rodorubicin)、链黑霉素(streptonigrin)、链佐星(streptozocin)、杀结核菌素(tubercidin)、乌苯美司(ubenimex)、净司他丁(zinostatin)、左柔比星(zorubicin);抗代谢物,如甲氨蝶呤(methotrexate)和5-氟尿嘧啶(5-FU);叶酸类似物,如迪诺特宁(denopterin)、甲氨蝶呤、蝶罗呤(pteropterin)、三甲曲沙(trimetrexate);嘌呤类似物,如氟达拉滨(fludarabine)、6-巯基嘌呤、噻咪嘌呤(thiamiprine)、硫鸟嘌呤(thioguanine);嘧啶类似物,如安西他滨(ancitabine)、阿扎胞苷(azacitidine)、6-氮尿苷(6-azauridine)、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、双脱氧尿苷(dideoxyuridine)、脱氧氟尿苷(doxifluridine)、依诺他滨(enocitabine)、氟尿苷(floxuridine);雄激素,如二甲睾酮(calusterone)、丙酸屈他雄酮(dromostanolonepropionate)、环硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾内酯(testolactone);抗肾上腺素,如氨鲁米特(aminoglutethimide)、米托坦(mitotane)、曲洛司坦(trilostane);叶酸补充剂,如亚叶酸(frolinic acid);醋葡醛内酯(aceglatone);醛磷酰胺糖苷;氨基乙酰丙酸;恩尿嘧啶(eniluracil);安吖啶(amsacrine);倍思塔布(bestrabucil);比生群(bisantrene);艾达曲克(edatraxate);得弗伐胺(defofamine);秋水仙碱;地吖醌(diaziquone);依氟鸟氨酸(elfomithine);依利醋铵(elliptiniumacetate);埃博霉素(epothilone);依托格鲁(etoglucid);硝酸镓;羟基脲;香菇多糖(1entinan);罗尼达宁(lonidainine);美登素类(maytansinoid),如美登素(maytansine)和安丝菌素(ansamitocin);米托胍腙(mitoguazone);米托蒽醌(mitoxantrone);莫哌达醇(mopidanmol);硝拉维林(nitraerine);喷司他汀(pentostatin);凡那明(phenamet);吡柔比星(pirarubicin);洛索蒽醌(losoxantrone);2-乙酰肼;丙卡巴肼(procarbazine);PSK.RTM.多糖复合物(JHS Natural Products,Eugene,Oreg.);雷佐生(razoxane);根霉素(rhizoxin);西佐喃(sizofiran);螺环锗(spirogermanium);细交链孢菌酮酸(tenuazonicacid);三亚胺醌(triaziquone);2,2′,2″-三氯三乙基胺;单端孢霉烯(trichothecene)(尤其T-2毒素、疣孢菌素A(verracurin A)、杆孢菌素A(roridin A)和蛇形菌素(anguidine));乌拉坦(urethan);长春地辛(vindesine)达卡巴嗪(dacarbazine);甘露氮芥(mannomustine);二溴甘露醇(mitobronitol);二溴卫矛醇(mitolactol);哌泊溴烷(pipobroman);甲托辛(gacytosine);阿拉伯糖苷(「Ara-C」);噻替派(thiotepa);紫杉烷类(taxoids),例如太平洋紫杉醇(paclitaxel)(Bristol-Myers Squibb Oncology,Princeton,N.J.)、太平洋紫杉醇的无克列莫佛(cremophor-free)的白蛋白工程化的纳米颗粒配制品(AmericanPharmaceutical Partners,Schaumberg,I11.)和多西他赛(docetaxel)(Rhone-Poulenc Rorer,Antony,France);苯丁酸氮芥(chloranbucil);吉西他滨(gemcitabine)6-硫鸟嘌呤;巯基嘌呤;甲氨蝶呤;铂类似物,如顺铂(cisplatin)和卡铂(carboplatin);长春花碱(vinblastine)铂;依托泊苷(etoposide)(VP-16);异环磷酰胺(ifosfamide);米托蒽醌(mitoxantrone);长春新碱(vincristine)奥沙利铂(oxaliplatin);甲酰四氢叶酸(1eucovovin);长春瑞宾(vinorelbine)米托蒽醌(novantrone);依达曲沙(edatrexate);道诺霉素(daunomycin);氨基喋呤(aminopterin);伊班膦酸盐(ibandronate);拓扑异构酶抑制剂RFS 2000;二氟甲基鸟氨酸(DMFO);类维生素A(retinoids),如维甲酸(retinoic acid);卡培他滨(capecitabine)上述任一种的药学上可接受的盐、酸或衍生物;以及上述两种或多种的组合,如CHOP,即环磷酰胺、多柔比星、长春新碱和泼尼松龙组合疗法的缩写;CVP,即环磷酰胺、长春新碱和泼尼松龙组合疗法的缩写;以及FOLFOX,即奥沙利铂与5-FU和甲酰四氢叶酸组合的治疗方案的缩写。
根据至少一些实施例,抗TIGIT免疫分子可以与本领域已知的任何护理癌症治疗标准(例如,可以在http://www.cancer.gov/cancertopics中找到)组合使用。
因此,在一些情况下,本文描述的抗PVRIG抗体(尤其包括CHA.7.538.1.2.H4(S241P)或CHA.7.518.1.H4(S241P))可与化学治疗剂组合。类似地,本文描述的抗TIGIT抗体(尤其包括CPA.9.086H4(S241P)、CPA.9.083H4(S241P)和CHA.9.547.13.H4(S241P))可与化学治疗剂组合。
此外,本发明的抗PVRIG和抗TIGIT抗体也可以与其它检查点抑制剂或活化剂一起施用。
2.TIGIT和检查点抗体组合疗法
如本文所示,本发明的TIGIT抗体可与许多检查点受体抗体中的一种组合。在一些实施例中,可评估患者肿瘤的受体表达,然后将结果用于告知临床医生应施用哪种抗体:PVRIG和PD-1,TIGIT和PD-1或TIGIT和PVRIG。这些分析如下所述。
a.抗TIGIT抗体与抗PD-1抗体组合
在一个实施例中,本发明提供了本发明的抗TIGIT抗体和抗PD-1抗体的组合。
在一个实施例中,活组织检查物取自癌症患者的肿瘤,并且如本领域已知的解离用于FACS分析。用针对(1)TIGIT(例如使用本文所述的任何抗体或本领域中的其它抗体,如MBSA43);(2)PD-1(例如使用本领域已知的那些,包括EH12.2H7、等);(3)PD-L1(例如使用本领域已知的那些,如本文概述的BM-1)和(4)PVR(例如使用本领域已知的那些,如SKII.4);和(5)同种型对照抗体的标记抗体对细胞进行染色。进行FACS,并且对于每种受体,计算表达受体的细胞相对于对照抗体的百分比。如果对于所有4种受体,TIGIT、PD-1、PD-1和PVR的阳性细胞百分比≥1%,则如本文所述用针对TIGIT和PD-1的抗体治疗患者。
因此,本发明提供了本发明的抗TIGIT抗体和抗PD-1抗体的组合。有两种已批准的抗PD-1抗体派立珠单抗(pembrolizumab)和纳武单抗(nivolumab)以及更多开发中的抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)(如图53B中所示)与派立珠单抗;如图53B中所示的CPA.9.083.H4(S241P)与纳武单抗;如图53A中所示的CPA.9.086.H4(S241P)与派立珠单抗;如图53A中所示的CPA.9.086.H4(S241P)与纳武单抗;CHA.9.547.7H4(S241P)与派立珠单抗;CHA.9.547.7H4(S241P与纳武单抗;CHA.9.547.13.H4(S241P)与派立珠单抗以及CHA.9.547.13.H4(S241P)与纳武单抗。(参考序列表)。
b.抗TIGIT抗体与抗CTLA-4抗体组合
在另一个实施例中,本发明提供了本发明的抗TIGIT抗体和抗CTLA-4抗体的组合。有两种已批准的抗CTLA-4抗体伊匹单抗(ipilimumab)和曲美单抗(tremelimumab)以及其它开发中的抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)与伊匹单抗;CPA.9.083.H4(S241P)与曲美单抗;CPA.9.086.H4(S241P)与伊匹单抗;CPA.9.086.H4(S241P)与曲美单抗;CHA.9.547.7H4(S241P)与伊匹单抗;CHA.9.547.7H4(S241P)与曲美单抗;CHA.9.547.13.H4(S241P)与伊匹单抗以及CHA.9.547.13.H4(S241P)与曲美单抗。
c.抗TIGIT抗体与抗PD-L1抗体组合
在另一个实施例中,本发明提供了本发明的抗TIGIT抗体和抗PD-L1抗体的组合。有三种已批准的抗PD-L1抗体阿特珠单抗(atezolizumab)阿维鲁单抗(avelumab)和度伐单抗(durvalumab)(IMFINZITM)以及其他开发中的抗PD-L1抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)与阿特珠单抗;CPA.9.083.H4(S241P)与阿维鲁单抗;CPA.9.083.H4(S241P)与度伐单抗;CPA.9.086.H4(S241P)与阿特珠单抗;CPA.9.086.H4(S241P)与阿维鲁单抗;CPA.9.086.H4(S241P)与度伐单抗;CHA.9.547.7H4(S241P)与阿特珠单抗;CHA.9.547.7H4(S241P)与阿维鲁单抗;CHA.9.547.7H4(S241P)与度伐单抗;CHA.9.547.13.H4(S241P)与阿特珠单抗;CHA.9.547.13.H4(S241P)与阿维鲁单抗;以及CHA.9.547.13.H4(S241P)与度伐单抗。
d.抗TIGIT抗体与抗LAG-3抗体组合
在另一个实施例中,本发明提供了本发明的抗TIGIT抗体和抗LAG-3抗体的组合。有几种开发中的抗LAG-3抗体,包括BMS-986016(参见国际专利申请第WO2010/019570A2号,通过引用整体并入本文)、GSK2831781(参见美国专利申请第2016/0017037A号通过引用整体并入本文)和Merck克隆22D2、11C9、4A10和/或19E8(参见WO2016/028672A1,通过引用整体并入本文)和GSK2831781以及开发中的其它抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)与BMS-986016;CPA.9.083.H4(S241P)与GSK2831781;CPA.9.086.H4(S241P)与BMS-986016;CPA.9.086.H4(S241P)与GSK2831781;CHA.9.547.7H4(S241P)与BMS-986016;CHA.9.547.7H4(S241P)与GSK2831781;CHA.9.547.13.H4(S241P)与BMS-986016以及CHA.9.547.13.H4(S241P)与GSK2831781。
因此,本发明还提供了以下特定组合:CPA.9.083.H4(S241P)与Merck克隆22D2、11C9和/或4A10;CPA.9.086.H4(S241P)与Merck克隆22D2、11C9和/或4A10;CHA.9.547.7H4(S241P)与Merck克隆22D2、11C9和/或4A10;CHA.9.547.13.H4(S241P)与Merck克隆22D2、11C9和/或4A10。
e.抗TIGIT抗体与抗TIM-3抗体组合
在另一个实施例中,本发明提供了本发明的抗TIGIT抗体和抗TIM-3抗体的组合。存在至少一种开发中的抗TIM-3抗体TSR-022以及其它开发中的抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)与TSR-022;CPA.9.086.H4(S241P与TSR-0226;CHA.9.547.7H4(S241P)与TSR-022;以及CHA.9.547.13.H4(S241P)与TSR-022。
f.抗TIGIT抗体与抗BTLA抗体组合
在另一个实施例中,本发明提供本发明的抗TIGIT抗体和抗BTLA抗体的组合,参见WO2011/014438,其全部内容通过引用并入本文,特别是关于其中公开的抗BTLA抗体的CDR和全长序列。因此,本发明提供了以下特定组合:CPA.9.083.H4(S241P)与抗BTLA抗体;CPA.9.086.H4(S241P)与抗BTLA抗体;CHA.9.547.7H4(S241P)与抗BTLA抗体;以及CHA.9.547.13.H4(S241P与抗BTLA抗体。
g.TIGIT抗体与抗肿瘤抗体
在一些实施例中,本发明的抗TIGIT抗体与如下抗体共同施用,所述抗体与通常作用于免疫系统以增加患者的天然免疫反应的免疫肿瘤学/检查点抑制剂不同,而是针对特定肿瘤靶抗原(TTA)。存在大量已批准或开发中的抗TTA抗体可与本发明TIGIT抗体组合。目前批准的抗体包括但不限于西妥昔单抗(cetuximab)、帕尼单抗(panitumumab)、尼妥珠单抗(nimotuzumab)(全部针对EGFR)、利妥昔单抗(rituximab)(CD20)、曲妥珠单抗(trastuzumab)和帕妥珠单抗(pertuzumab)(HER2)、阿仑单抗(alemtuzumab)(CD52)、贝伐单抗(bevacizumab)(VEGF)、奥法木单抗(ofatumumab)(CD20)、地诺单抗(denosumab)(RANK配体)、贝伦妥单抗(brentuximab)(CD30)、达土木单抗(daratumumab)(CD38)、替伊莫单抗(ibritumomab)(CD20)和伊匹单抗(ipilimumab)(CTLA-4)。可以与本文的抗TIGIT抗体组合的临床试验中的特异性靶肿瘤抗体包括但不限于抗CTLA4mAb,如伊匹单抗、曲美单抗;抗PD-1,如纳武单抗BMS-936558/MDX-1106/ONO-4538、AMP224、CT-011、MK-3475,抗PDL-1拮抗剂,如BMS-936559/MDX-1105、MEDI4736、RG-7446/MPDL3280A;抗LAG-3,如IMP-321)、抗TIM-3、抗BTLA、抗B7-H4、抗B7-H3、抗VISTA;靶向免疫刺激性蛋白质的激动性抗体,包括抗CD40mAb,如CP-870,893、鲁卡木单抗(lucatumumab)、达西珠单抗(dacetuzumab);抗CD137mAb,如BMS-663513乌瑞鲁单抗(urelumab)(抗4-1BB;参见例如美国专利第7,288,638号和第8,962,804号,其全部内容通过引用并入本文);PF-05082566优图鲁单抗(utomilumab)(参见例如美国专利第8,821,867号;第8,337,850号;及第9,468,678号,以及国际专利申请公开号WO 2012/032433,其全部内容通过引用并入本文);抗OX40mAb,如抗OX40(参见例如WO2006/029879或WO2010096418,其全部内容通过引用并入本文);抗GITRmAb,如TRX518(参见例如美国专利第7,812,135号,其全部内容通过引用并入本文);抗CD27mAb,如瓦力鲁单抗(varlilumab)CDX-1127(参见例如WO 2016/145085和美国专利公开号US 2011/0274685和US 2012/0213771,其全部内容通过引用并入本文);抗ICOS mAb(例如MEDI-570、JTX-2011和抗TIM3抗体(参见例如WO 2013/006490或美国专利公开号US2016/0257758,其全部内容通过引用并入本文)以及针对前列腺癌、卵巢癌、乳腺癌、子宫内膜癌、多发性骨髓瘤、黑素瘤、淋巴瘤、肺癌包括小细胞肺癌、肾癌、结肠直肠癌、胰腺癌、胃癌、脑癌的单克隆抗体(一般参见www.clinicaltrials.gov)。
3.PVRIG和PD-1组合疗法
如本文所示,本发明的PVRIG抗体可与许多检查点受体抗体中的一种组合。
a.抗PVRIG抗体与抗PD-1抗体组合
在另一个实施例中,本发明提供了本发明的抗PVRIG抗体和抗PD-1抗体的组合。
在一个实施例中,活组织检查物取自癌症患者的肿瘤,并且如本领域已知的解离用于FACS分析。用针对(1)PVRIG(通常使用例如CHA.7.518.1H4(S241P),尽管可使用WO2016/134333(具体包括结合,即使它们不阻断的任何抗体)或WO2017/041004中概述的任何抗体);(2)PD-1(例如使用本领域已知的那些包括EH12.2H7、等);(3)PD-L1(例如使用本领域已知的那些,如本文概述的BM-1)和(4)PVRL2(例如使用本领域已知的那些,如TX11);和(5)同种型对照抗体的标记抗体对细胞进行染色。进行FACS,并且对于每种受体,计算表达受体的细胞相对于对照抗体的百分比。如果对于所有4种受体,PVRIG、PD-1、PD-1和PVRL2的阳性细胞百分比≥1%,则如本文所述用针对PVRIG和PD-1的抗体治疗患者。
有两种已批准的抗PD-1抗体派立珠单抗和纳武单抗以及更多开发中的抗体,其可与本发明的抗PVRIG抗体组合使用。
因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)(如图3中所示)与派立珠单抗;如图3中所示的CHA.7.518.1.H4(S241P)与纳武单抗;如图3中所示的CHA.7.538.1.2.H4(S241P)与派立珠单抗以及如中所示的CHA.7.538.1.2.H4(S241P)与纳武单抗。
b.抗PVRIG抗体与抗CTLA-4抗体组合
在另一个实施例中,本发明提供了本发明的抗PVRIG抗体和抗CTLA-4抗体的组合。有两种已批准的抗CTLA-4抗体伊匹单抗和曲美单抗以及其它开发中的抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)与伊匹单抗;CHA.7.518.1.H4(S241P)与曲美单抗;CHA.7.538.1.2.H4(S241P)与伊匹单抗以及CHA.7.538.1.2.H4(S241P)与曲美单抗。
c.抗PVRIG抗体与抗PD-L1抗体组合
在另一个实施例中,本发明提供了本发明的抗PVRIG抗体和抗PD-L1抗体的组合。有三种已批准的抗PD-L1抗体阿特珠单抗阿维鲁单抗和度伐单抗(IMFINZITM)以及其他开发中的抗PD-L1抗体,其可与本发明的抗TIGIT抗体组合使用。
因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)与阿特珠单抗;CPA.7518.1.H4(S241P)与阿维鲁单抗;CHA.7.518.1.H4(S241P)与度伐单抗;CHA.7.538.1.2.H4(S241P)与阿特珠单抗;CHA.7.538.1.2.H4(S241P)与阿维鲁单抗以及CHA.7.538.1.2.H4(S241P)与度伐单抗。
d.抗PVRIG抗体与抗LAG-3抗体组合
在另一个实施例中,本发明提供了本发明的抗PVRIG抗体和抗LAG-3抗体的组合。有几种开发中的抗LAG-3抗体,包括BMS-986016(参见国际专利申请第WO2010/019570A2号,通过引用整体并入本文)、GSK2831781(参见美国专利申请第2016/0017037A号,通过引用整体并入本文)和Merck克隆22D2、11C9、4A10和/或19E8(参见WO2016/028672A1,通过引用整体并入本文)和GSK2831781以及开发中的其它抗体,其可与本发明的抗PVRIG抗体组合使用。
因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)与BMS-986016CHA.7.518.1.H4(S241P)与GSK2831781;CHA.7.538.1.2.H4(S241P)与BMS-986016以及CHA.7.538.1.2.H4(S241P)与GSK2831781。
因此,本发明还提供了以下特定组合:CHA.7.518.1.H4(S241P)与Merck克隆22D2、11C9和/或4A10以及CHA.7.538.1.2.H4(S241P)与Merck克隆22D2、11C9和/或4A10。
e.抗PVRIG抗体与抗TIM-3抗体组合
在另一个实施例中,本发明提供了本发明的抗PVRIG抗体和抗TIM-3抗体的组合。存在至少一种开发中的抗TIM-3抗体TSR-022以及其它开发中的抗体,其可与本发明的抗PVRIG抗体组合使用。
因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)与TSR-022以及CHA.7.538.1.2.H4(S241P)与TSR-0226。
f.抗PVRIG抗体与抗BTLA抗体组合
在另一个实施例中,本发明提供本发明的抗PVRIG抗体和抗BTLA抗体的组合,参见WO201I/014438,其全部内容通过引用并入本文,特别是关于其中公开的抗BTLA抗体的CDR和全长序列。因此,本发明提供了以下特定组合:CHA.7.518.1.H4(S241P)与抗BTLA抗体以及CHA.7.538.1.2.H4(S241P)与抗BTLA抗体。
g.PVRIG抗体与抗肿瘤抗体
在一些实施例中,本发明的抗PVRIG抗体与如下抗体共同施用,所述抗体与通常作用于免疫系统以增加患者的天然免疫反应的免疫肿瘤学/检查点抑制剂不同,而是针对特定肿瘤靶抗原(TTA)。存在大量已批准或开发中的抗TTA抗体可与本发明PVRIG抗体组合,包括CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)。目前批准的抗体包括但不限于西妥昔单抗、帕尼单抗、尼妥珠单抗(全部针对EGFR)、利妥昔单抗(CD20)、曲妥珠单抗和帕妥珠单抗(HER2)、阿仑单抗(CD52)、贝伐单抗(VEGF)、奥法木单抗(CD20)、地诺单抗(RANK配体)、贝伦妥单抗(CD30)、达土木单抗(CD38)、替伊莫单抗(CD20)和伊匹单抗(CTLA-4)。可以与本文的抗PVRIG抗体组合的临床试验中的特异性靶肿瘤抗体包括但不限于抗CTLA4mAb,如伊匹单抗、曲美单抗;抗PD-1,如纳武单抗BMS-936558/MDX-1106/ONO-4538、AMP224、CT-011、MK-3475,抗PDL-1拮抗剂,如BMS-936559/MDX-1105、MEDI4736、RG-7446/MPDL3280A;抗LAG-3,如IMP-321)、抗TIM-3、抗BTLA、抗B7-H4、抗B7-H3、抗VISTA;靶向免疫刺激性蛋白质的激动性抗体,包括抗CD40mAb,如CP-870,893、鲁卡木单抗、达西珠单抗;抗CD137mAb,如BMS-663513乌瑞鲁单抗(抗4-1BB;参见例如美国专利第7,288,638号和第8,962,804号,其全部内容通过引用并入本文);PF-05082566优图鲁单抗(参见例如美国专利第8,821,867号;第8,337,850号;和第9,468,678号,以及国际专利申请公开号WO 2012/032433,其全部内容通过引用并入本文);抗OX40mAb,如抗OX40(参见例如WO2006/029879或WO2010096418,其全部内容通过引用并入本文);抗GITR mAb,如TRX518(参见例如美国专利第7,812,135号,其全部内容通过引用并入本文);抗CD27 mAb,如瓦力鲁单抗CDX-1127(参见例如WO2016/145085和美国专利公开号US 201I/0274685和US 2012/0213771,其全部内容通过引用并入本文);抗ICOS mAb(例如MEDI-570、JTX-2011和抗TIM3抗体(参见例如WO 2013/006490或美国专利公开号US 2016/0257758,其全部内容通过引用并入本文)以及针对前列腺癌、卵巢癌、乳腺癌、子宫内膜癌、多发性骨髓瘤、黑素瘤、淋巴瘤、肺癌包括小细胞肺癌、肾癌、结肠直肠癌、胰腺癌、胃癌、脑癌的单克隆抗体(一般参见www.clinicaltrials.gov)。
4.PVRIG和TIGIT组合疗法
存在可用于特定实施例的抗TIGIT和抗PVRIG抗体的特定组合。
在一个实施例中,活组织检查物取自癌症患者的肿瘤,并且如本领域已知的解离用于FACS分析。用针对(1)PVRIG(通常使用例如CHA.7.518.1H4(S241P),尽管可使用WO2016/134333(具体包括结合,即使它们不阻断的任何抗体)或WO2017/041004中概述的任何抗体);(2)TIGIT(例如使用本文所述的任何抗体或本领域的其它抗体,如MBSA43);(3)PVR(例如使用本领域已知的那些,如SKII.4)和(4)PVRL2(例如使用本领域已知的那些,如TX11);和(5)同种型对照抗体的标记抗体对细胞进行染色。进行FACS,并且对于每种受体,计算表达受体的细胞相对于对照抗体的百分比。如果对于所有4种受体,PVRIG、TIGIT、PVR和PVRL2的阳性细胞百分比≥1%,则用针对PVRIG和TIGIT的抗体治疗患者。在这方面,优选的组合是CHA.7.518.1.H4(S241P)和CPA.9.086。
在一个实施例中,将含有来自抗TIGIT抗体CPA.9.086的CDR组的抗体与含有来自抗PVRIG抗体CHA.7.518.1的CDR组的抗体组合。在一个具体实施例中,将含有来自抗TIGIT抗体CPA.9.086的VH和VL序列的抗体与含有来自抗PVRIG抗体CHA.7.518.1的VL和VL的抗体组合。在一个实施例中,将如图53中所示的CPA.9.086.H4(S241P)与如图3中所示的CHA.7.518.1H4(S241P)组合。
在一个实施例中,将含有来自抗TIGIT抗体CPA.9.083的CDR组的抗体与含有来自抗PVRIG抗体CHA.7.518.1的CDR组的抗体组合。在一个具体实施例中,将含有来自抗TIGIT抗体CPA.9.083的VH和VL序列的抗体与含有来自抗PVRIG抗体CHA.7.518.1的VL和VL的抗体组合。在一个实施例中,将CPA.9.086.H4(S241P)与CHA.7.518.1H4(S241P)组合。
在一个实施例中,将含有来自抗TIGIT抗体CPA.9.086的CDR组的抗体与含有来自抗PVRIG抗体CHA.7.538.1.2.H4(S241P)的CDR组的抗体组合。在一个具体实施例中,将含有来自抗TIGIT抗体CPA.9.086的VH和VL序列的抗体与含有来自抗PVRIG抗体CHA.7.538.1.2.H4(S241P)的VL和VL的抗体组合。在一个实施例中,将CPA.9.086.H4(S241P)与CHA.7.538.1.2.H4(S241P)组合。
在一个实施例中,将CHA.518.1.H4(S241P)与序列表中所述的抗TIGIT抗体(参考USSN 62/513,916的图4中列出的所有抗体)组合,特别是CPA.9.018、CPA.9.027、CPA.9.049、CPA.9.057、CPA.9.059、CPA.9.083、CPA.9.086、CPA.9.089、CPA.9.093、CPA.9.101、CPA.9.103、CHA.9.536.1、CHA.9.536.3、CHA.9.536.4、CHA.9.536.5、CHA.9.536.6、CHA.9.536.7、CHA.9.536.8、CHA.9.560.1、CHA.9.560.3、CHA.9.560.4、CHA.9.560.5、CHA.9.560.6、CHA.9.560.7、CHA.9.560.8、CHA.9.546.1、CHA.9.546.1、CHA.9.547.2、CHA.9.547.3、CHA.9.547.4、CHA.9.547.6、CHA.9.547.7、CHA.9.547.8、CHA.9.547.9、CHA.9.547.13、CHA.9.541.1、CHA.9.541.3.CHA.9.541.4.CHA.9.541.5、CHA.9.541.6.CHA.9.541.7和CHA.9.541.8
在一个实施例中,将CPA.9.086与如WO2017/041004所述的抗PVRIG抗体组合,包括但不限于具有a)HC序列SEQ ID NO:5和LC序列SEQ ID NO:3(或其中含有的CDR组);b)HC序列SEQ ID NO:32和LC序列SEQ ID NO:33(或其中含有的CDR组);和c)HC序列SEQ ID NO:32和LC序列SEQ ID NO:40(或其中含有的CDR组)的那些抗体。
在一些实施例中,所述组合包含选自CPA.9.086、CPA.9.083、CHA.9.547.7和CHA.9.547.13的抗TIGIT抗体,并且PVRIG抗体选自CHA7.518.1和CHA.7.538.1.2。在一些实施例中,所述组合包含选自CPA.9.086、CPA.9.083、CHA.9.547.7和CHA.9.547.13的抗TIGIT抗体,并且PVRIG抗体是CHA7.518.1。在一些实施例中,所述组合包含选自CPA.9.086、CPA.9.083、CHA.9.547.7和CHA.9.547.13的抗TIGIT抗体,并且PVRIG抗体是CHA7.538.1.2。在一些实施例中,所述组合包含抗TIGIT抗体CPA.9.086和PVRIG抗体CHA7.518.1。在一些实施例中,所述组合包含抗TIGIT抗体CPA.9.083和PVRIG抗体CHA7.518.1。在一些实施例中,所述组合包含抗TIGIT抗体CHA.9.547.7和PVRIG抗体CHA7.518。在一些实施例中,所述组合包含抗TIGIT抗体CHA.9.547.13和PVRIG抗体CHA7.518.1。在一些实施例中,所述组合包含抗TIGIT抗体CPA.9.086和PVRIG抗体CHA7.538.1.2。在一些实施例中,所述组合包含抗TIGIT抗体CPA.9.083和PVRIG抗体CHA7.538.1.2。在一些实施例中,所述组合包含抗TIGIT抗体CHA.9.547.7和PVRIG抗体CHA7.538.1.2。在一些实施例中,所述组合包含抗TIGIT抗体CHA.9.547.13和PVRIG抗体CHA7.538.1.2。
图20-24提供了PVRIG抗体,如2016年9月27日提交的美国专利申请第15/277,978号中所公开的。本发明的TIGIT抗体可以与这些图中公开的PVRIG抗体,以及本申请全文公开的那些组合使用。
5.治疗评定
通常将本发明的抗体单独或组合(PVRIG与PD-1,TIGIT与PD-1或TIGIT与PVRIG)施用于癌症患者,并且以本文所述的多种方式评定功效。因此,虽然可以进行标准的功效分析,如癌症负荷、肿瘤大小、转移的存在或程度的评估等,但也可以基于免疫状态评估来评定免疫肿瘤学治疗。这可以通过多种方式完成,包括体外和体内分析。例如,可以进行免疫状态变化(例如,ipi治疗后ICOS+CD4+T细胞的存在)的评估以及“老式”测量,例如肿瘤负荷、大小、侵袭性、LN受累、转移等。因此,可以评估以下中的任一个或全部:PVRIG或TIGIT对CD4+T细胞活化或增殖、CD8+T(CTL)细胞活化或增殖、CD8+T细胞介导的细胞毒性活性和/或CTL介导的细胞耗竭、NK细胞活性和NK介导的细胞耗竭的抑制作用;PVRIG或TIGIT对Treg细胞分化和增殖和Treg或骨髓来源的抑制细胞(MDSC)介导的免疫抑制或免疫耐受的增强作用;和/或PVRIG或TIGIT对通过免疫细胞产生的促炎性细胞因子的影响,例如通过T细胞或其它免疫细胞产生的IL-2、IFN-γ或TNF-α。
在一些实施例中,通过使用例如CFSE稀释法、免疫效应细胞的Ki67细胞内染色以及3H-胸苷掺入法评估免疫细胞增殖来评定治疗。
在一些实施例中,通过评估基因表达的增加或活化相关标志物的蛋白质水平的增加来评定治疗,所述标志物包括以下中的一个或多个:CD25、CD69、CD137、ICOS、PD1、GITR、OX40以及通过CD107A的表面表达测量的细胞脱粒。
在一些实施例中,通过在不存在治疗的情况下,例如在施用本发明的抗体之前评定T细胞增殖的量来进行治疗评定。如果在施用后患者的T细胞增殖增加,例如患者T细胞的亚群增殖,则表明T细胞被活化。
类似地,用本发明的抗体治疗的评定可以通过在施用前和施用后测量患者的IFNγ水平来进行,以评定治疗效果。这可以在几小时或几天内完成。
通常,如本领域已知的那样进行基因表达分析。参见例如Goodkind等人,《计算机与化学工程(Computers and Chem.Eng.)》29(3):589(2005),Han等人,《生物信息学与生物学洞察力(Bioinform.Biol.Insights)》11/15/159(增刊1):29-46,Campo等人,《现代病理学(Nod.Pathol.)》2013年1月;26增刊1:S97-S110,其基因表达测量技术通过引用明确并入本文。
通常,蛋白质表达测量也类似地如本领域已知的那样进行,参见例如Wang等人,《基于毛细管电泳的生物标志物发现蛋白质组学技术研究进展(Recent Advances inCapillary Electrophoresis-Based Proteomic Techniques for BiomarkerDiscovery)》,《分子生物学方法(Methods.Mol.Biol.)》2013:984:1-12;Taylor等人,《生物医学研究(BioMed Res.)》2014年卷,文章ID 361590,8页,Becerk等人,《突变研究(Mutat.Res)》2011年6月17日:722(2):171-182,其测量技术通过引用明确地并入本文。
在一些实施例中,通过估计许多细胞参数,例如酶活性(包括蛋白酶活性)、细胞膜渗透性、细胞粘附、ATP产生、辅酶产生和核苷酸摄取活性来评定由靶细胞活力检测测量的细胞毒活性,从而评定治疗。这些分析的具体实例包括但不限于台盼蓝(Trypan Blue)或PI染色、51Cr或35S释放法、LDH活性、MTT和/或WST分析、钙黄绿素-AM分析、基于发光的分析以及其它分析。
在一些实施例中,通过评定由细胞因子产生测量的T细胞活性,使用细胞因子,使用众所周知的技术,细胞内测量培养物上清液来评定治疗,所述细胞因子包括但不限于:IFNγ、TNFα、GM-CSF、IL2、IL6、ILA、IL5、IL10、IL13。
因此,可以使用评估以下中的一个或多个的分析来评定治疗:(i)免疫反应的增加;(ii)αβ和/或γδT细胞活化的增加;(iii)细胞毒性T细胞活性的增加;(iv)NK和/或NKT细胞活性的增加;(v)αβ和/或γδT细胞抑制的缓解;(vi)促炎性细胞因子分泌的增加;(vii)IL-2分泌的增加;(viii)干扰素γ产生的增加;(ix)Th1反应的增加;(x)Th2反应的减少;(xi)减少或消除调节性T细胞(Treg)中的至少一种的细胞数量和/或活性。。
测量功效的分析
在一些实施例中,使用如实例中所述的混合淋巴细胞反应(MLR)分析来评定T细胞活化。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量免疫反应的增加或减少,如例如通过不同因子的磷酸化或去磷酸化或通过测量其它翻译后修饰所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量αβ和/或γδT细胞活化的增加或减少,如例如通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量细胞毒性T细胞活性的增加或减少,如例如通过直接杀伤靶细胞(例如癌细胞)或通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量NK和/或NKT细胞活性的增加或减少,如通过直接杀伤靶细胞(例如癌细胞)或通过细胞因子分泌或通过如例如CD107a等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量αβ和/或γδT细胞抑制的增加或减少,如例如通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量促炎性细胞因子分泌的增加或减少,如例如通过ELISA或通过Luminex或通过基于珠粒的多重方法或通过细胞内染色和FACS分析或通过Alispot等所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量IL-2分泌的增加或减少,如例如通过ELISA或通过Luminex或通过基于珠粒的多重方法或通过细胞内染色和FACS分析或通过Alispot等所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量干扰素γ产生的增加或减少,如例如通过ELISA或通过Luminex或通过基于珠粒的多重方法或通过细胞内染色和FACS分析或通过Alispot等所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量Th1反应的增加或减少,如例如通过细胞因子分泌或通过活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量Th2反应的增加或减少,如例如通过细胞因子分泌或通过活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量调节性T细胞(Treg)中的至少一种的细胞数量和/或活性的增加或减少,如例如通过流式细胞术或通过IHC所测量。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量M2巨噬细胞细胞数量的增加或减少,如例如通过流式细胞术或通过IHC所测量。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量M2巨噬细胞促肿瘤发生活性的增加或减少,如例如通过细胞因子分泌或通过活化标志物的表达变化所测量。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量N2嗜中性粒细胞增量的增加或减少,如例如通过流式细胞术或通过IHC所测量。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量N2嗜中性粒细胞促肿瘤发生活性的增加或减少,如例如通过细胞因子分泌或通过活化标志物的表达变化所测量。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量T细胞活化抑制的增加或减少,如例如通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量CTL活化抑制的增加或减少,如例如通过直接杀伤靶细胞(例如癌细胞)或通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量αβ和/或γδT细胞耗竭的增加或减少,如例如通过活化标志物的表达变化所测。反应减少指示免疫刺活化性。适当的减少与增加相同,如下所述。
在一个实施例中,信号传导途径分析测量αβ和/或γδT细胞反应的增加或减少,如例如通过细胞因子分泌或通过增殖或通过如例如CD137、CD107a、PD1等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量抗原特异性记忆反应的刺激的增加或减少,如例如通过细胞因子分泌或通过增殖或通过如例如CD45RA、CCR7等活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量癌细胞的细胞凋亡或裂解的增加或减少,如例如通过细胞毒性分析(如例如MTT、Cr释放、Calcine AM)或通过基于流式细胞仪的分析(如例如CFSE稀释或碘化丙啶染色等)所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量对癌细胞的细胞毒性或细胞抑制作用的刺激的增加或减少,如例如通过细胞毒性分析(如例如MTT、Cr释放、Calcine AM)或通过基于流式细胞仪的分析(如例如CFSE稀释或碘化丙啶染色等)所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量癌细胞的直接杀伤的增加或减少,如例如通过细胞毒性分析(如例如MTT、Cr释放、Calcine AM)或通过基于流式细胞仪的分析(如例如CFSE稀释或碘化丙啶染色等)所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量Th17活性的增加或减小,如例如通过细胞因子分泌或通过增殖或通过活化标志物的表达变化所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,信号传导途径分析测量补体依赖性细胞毒性和/或抗体依赖性细胞介导的细胞毒性的诱导的增加或减少,如例如通过细胞毒性分析(如例如MTT、Cr释放、Calcine AM)或通过基于流式细胞仪的分析(如例如CFSE稀释或碘化丙啶染色等)所测量。活性增加指示免疫刺活化性。适当的活性增加概述如下。
在一个实施例中,例如通过直接杀伤靶细胞(例如癌细胞)或通过细胞因子分泌或通过增殖或活化标志物(例如CD137,CD107a,PD1等)的表达变化来测量T细胞活化。对于T细胞,增殖、细胞表面活化标志物(例如CD25、CD69、CD137、PD1)、细胞毒性(杀伤靶细胞的能力)和细胞因子产生(例如IL-2、IL-4、IL-6、IFNγ、TNF-a、IL-10、IL-17A)的增加将指示免疫调节,这将符合癌细胞的杀伤增强。
在一个实施例中,例如通过直接杀死靶细胞(例如癌细胞)或通过细胞因子分泌或通过活化标志物(例如CD107a等)的表达变化来测量NK细胞活化。对于NK细胞,增殖、细胞毒性(杀死靶细胞并增加CD107a、颗粒酶和穿孔素表达的能力)、细胞因子产生(例如IFNγ和TNF)和细胞表面受体表达(例如CD25)的增加将指示免疫调节,这将符合癌细胞的杀伤增强。
在一个实施例中,例如通过细胞因子分泌或通过增殖或通过活化标志物的表达变化来测量γδT细胞活化。
在一个实施例中,例如通过细胞因子分泌或通过活化标志物的表达变化来测量Th1细胞活化。
相比参考样品或对照样本例如不含本发明的抗PVRIG抗体的测试样品中的信号,活性或反应的适当增加(或如上所述适当减少)是至少约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或98%至99%的增加。活性的具体增加描绘在图27至34中。例如,关于T细胞增殖的增加,CHA.7.518.1.H4(S241P)显示增加约60%并且CHA.7.538.1.2.H4(S241P)显示增加47%;相关的增加显示在T细胞增殖或IFN-γ中约10-70%,其中约20-60%也有用。
类似地,与参考或对照样品相比,增加至少一倍、两倍、三倍、四倍或五倍显示功效。
XII.实施例列表
1.一种包含与人TIGIT(SEQ ID NO:97)结合的抗原结合结构域的组合物,其包含:
a)包含SEQ ID NO:160的重链可变结构域;和
b)包含SEQ ID NO:165的轻链可变结构域。
2.根据权利要求1所述的组合物其中所述组合物是抗体所述抗体包含:
a)包含VH-CHl-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:160;和
b)包含VL-VC的轻链,其中所述VL包含SEQ ID NO:165并且VC是κ或λ。
3.根据权利要求2所述的组合物,其中所述CH1-铰链-CH2-CH3的序列选自人IgG1、IgG2和IgG4及其变体。
4.根据权利要求2或3所述的组合物,其中所述重链具有SEQ ID NO:164并且所述轻链具有SEQ ID NO:169。
5.根据权利要求2至4中任一项所述的组合物,其还包含与人检查点受体蛋白结合的第二抗体。
6.根据权利要求5所述的组合物,其中所述第二抗体结合人PD-1。
7.根据权利要求5所述的组合物,其中所述第二抗体结合人PVRIG(SEQ ID NO:2)。
8.根据权利要求7所述的组合物,其中所述第二抗体包含抗原结合结构域,所述抗原结合结构域包含有包含SEQ ID NO:5的重链可变结构域和包含SEQ ID NO:10的轻链可变结构域。
9.根据权利要求7所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:9并且所述第二抗体的轻链具有SEQ ID NO:14。
10.一种核酸组合物,其包含:
a)编码包含SEQ ID NO:160的重链可变结构域的第一核酸;和
b)编码包含SEQ ID NO:165的轻链可变结构域的第二核酸。
11.根据权利要求10所述的核酸组合物,其中所述第一核酸编码包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:160;并且所述第二核酸编码包含VL-VC的轻链,其中所述VL包含SEQ ID NO:165并且VC是λ结构域。
12.一种表达载体组合物,其包含有分别包含根据权利要求10或11所述的第一核酸的第一表达载体和包含根据权利要求10或11所述的第二核酸的第二表达载体。
13.一种表达载体组合物,其包含表达载体,所述表达载体包含分别根据权利要求10或11所述的第一核酸和根据权利要求10或11所述的第二核酸。
14.一种宿主细胞,其包含根据权利要求12或13所述的表达载体组合物。
15.一种制造抗TIGIT抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求14所述的宿主细胞;和
b)回收所述抗体。
16.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求1至9中任一项所述的组合物。
17.一种包含与人TIGIT(SEQ ID NO:97)结合的抗原结合结构域的组合物,其包含:
a)包含SEQ ID NO:150的重链可变结构域;和
b)包含SEQ ID NO:155的轻链可变结构域。
18.根据权利要求17所述的组合物,其中所述组合物是抗体,所述抗体包含:
a)包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:150;和
b)包含VL-VC的轻链,其中所述VL包含SEQ ID NO:159并且VC是κ或λ。
19.根据权利要求18所述的组合物,其中所述CH1-铰链-CH2-CH3的序列选自人IgG1、IgG2和IgG4及其变体。
20.根据权利要求17或18所述的组合物,其中所述重链具有SEQ ID NO:154并且所述轻链具有SEQ ID NO:159。
21.根据权利要求17至20中任一项所述的组合物,其还包含与人检查点受体蛋白结合的第二抗体。
22.根据权利要求21所述的组合物,其中所述第二抗体结合人PD-1。
23.根据权利要求21所述的组合物,其中所述第二抗体结合人PVRIG(SEQ ID NO:2)。
24.根据权利要求23所述的组合物,其中所述第二抗体包含抗原结合结构域,所述抗原结合结构域包含有包含SEQ ID NO:5的重链可变结构域和包含SEQ ID NO:10的轻链可变结构域。
25.根据权利要求23所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:9并且所述第二抗体的轻链具有SEQ ID NO:14。
26.一种核酸组合物,其包含:
a)编码包含SEQ ID NO:150的重链可变结构域的第一核酸;和
b)编码包含SEQ ID NO:155的轻链可变结构域的第二核酸。
27.根据权利要求26所述的核酸组合物,其中所述第一核酸编码包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:150;并且所述第二核酸编码包含VL-VC的轻链,其中所述VL包含SEQ ID NO:155并且VC是λ结构域。
28.一种表达载体组合物,其包含有分别包含根据权利要求26或27所述的第一核酸的第一表达载体和包含根据权利要求26或27所述的第二核酸的第二表达载体。
29.一种表达载体组合物,其包含表达载体,所述表达载体包含分别根据权利要求26或27所述的第一核酸和根据权利要求26或27所述的第二核酸。
30.一种宿主细胞其包含根据权利要求27或28所述的表达载体组合物。
31.一种制造抗TIGIT抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求30所述的宿主细胞;和
b)回收所述抗体。
32.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求17至25中任一项所述的组合物。
33.一种抗体,其包含:
a)具有SEQ ID NO:9的重链;和
b)具有SEQ ID NO:14的轻链。
34.根据权利要求33所述的抗体,其还包含与人检查点受体蛋白结合的第二抗体。
35.根据权利要求34所述的组合物,其中所述第二抗体结合人PD-1。
36.根据权利要求34所述的组合物,其中所述第二抗体结合人TIGIT(SEQ ID NO:97)。
37.根据权利要求36所述的组合物,其中所述第二抗体包含抗原结合结构域,所述抗原结合结构域包含有包含SEQ ID NO:160的重链可变结构域和包含SEQ ID NO:165的轻链可变结构域。
38.根据权利要求36所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:164并且所述第二抗体的轻链具有SEQ ID NO:169。
39.一种核酸组合物,其包含:
a)编码SEQ ID NO:9的第一核酸;和
b)编码SEQ ID NO:14的第二核酸。
40.一种表达载体组合物,其包含有包含根据权利要求39所述的第一核酸的第一表达载体和包含根据权利要求39所述的第二核酸的第二表达载体。
41.一种表达载体组合物,其包含表达载体,所述表达载体包含根据权利要求39所述的第一核酸和根据权利要求39所述的第二核酸。
42.一种宿主细胞,其包含根据权利要求41所述的表达载体组合物。
43.一种制造抗PVRIG抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求42所述的宿主细胞;和
b)回收所述抗体。
44.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求33所述的抗体。
45.一种抗体,其包含:
a)具有SEQ ID NO:19的重链;和
b)具有SEQ ID NO:24的轻链。
46.根据权利要求45所述的抗体,其还包含与人检查点受体蛋白结合的第二抗体。
47.根据权利要求46所述的组合物,其中所述第二抗体结合人PD-1。
48.根据权利要求46所述的组合物,其中所述第二抗体结合人TIGIT(SEQ ID NO:97)。
49.根据权利要求48所述的组合物,其中所述第二抗体包含抗原结合结构域,所述抗原结合结构域包含有包含SEQ ID NO:160的重链可变结构域和包含SEQ ID NO:165的轻链可变结构域。
50.根据权利要求49所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:164并且所述第二抗体的轻链具有SEQ ID NO:169。
51.一种核酸组合物,其包含:
a)编码SEQ ID NO:19的第一核酸;和
b)编码SEQ ID NO:24的第二核酸。
52.一种表达载体组合物,其包含有包含根据权利要求51所述的第一核酸的第一表达载体和包含根据权利要求51所述的第二核酸的第二表达载体。
53.一种表达载体组合物,其包含表达载体,所述表达载体包含根据权利要求51所述的第一核酸和根据权利要求51所述的第二核酸。
54.一种宿主细胞,其包含根据权利要求53所述的表达载体组合物。
55.一种制造抗TIGIT抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求54所述的宿主细胞;和
b)回收所述抗体。
56.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求45所述的抗体。
57.一种方法,其包含:
a)从患者的肿瘤样本中提供细胞群体;
b)用标记的抗体对所述群体进行染色,所述抗体结合:
i)TIGIT蛋白;
ii)PVR蛋白;
iii)PD-1蛋白;
iv)PD-L1蛋白;和
v)i)-iv)中所述抗体的相关同种型对照;
c)运行荧光活化细胞分选术(FACS);
d)对于TIGIT、PVR、PD-1和PD-L1中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;
其中如果所有4种受体的阳性细胞百分比>1%,
e)向所述患者施用针对TIGIT和PD-1的抗体。
58.根据权利要求57所述的方法,其中所述TIGIT抗体是CPA.9.086。
59.根据权利要求57或58所述的方法,其中所述PD-1抗体选自派立珠单抗和纳武单抗。
60.一种方法,其包含:
a)从患者的肿瘤样本中提供细胞群体;
b)用标记的抗体对所述群体进行染色,所述抗体结合:
i)PVRIG蛋白;
ii)PVRL2蛋白;
iii)PD-1蛋白;
iv)PD-L1蛋白;和
v)i)-iv)中所述抗体的相关同种型对照;
c)运行荧光活化细胞分选术(FACS);
d)对于PVRIG、PVRL2、PD-1和PD-L1中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;
其中如果所有4种受体的阳性细胞百分比>1%,
e)向所述患者施用针对PVRIG和PD-1的抗体。
61.根据权利要求60所述的方法,其中所述PVRIG抗体是CHA.7.518.1.H4(S241P)。
62.根据权利要求60或61所述的方法,其中所述PD-1抗体选自派立珠单抗和纳武单抗。
63.一种方法,其包含:
a)从患者的肿瘤样本中提供细胞群体;
b)用标记的抗体对所述群体进行染色,所述抗体结合:
i)PVRIG蛋白;
ii)PVRL2蛋白;
iii)TIGIT蛋白;
iv)PVR蛋白;和
v)同种型对照;
c)运行荧光活化细胞分选术(FACS);
d)对于PVRIG、PVRL2、TIGIT和PVR中的每一种,确定所述群体中相对于所述同种型对照抗体表达所述蛋白质的细胞百分比;
其中如果所有4种受体的阳性细胞百分比>1%,
e)向所述患者施用针对PVRIG和TIGIT的抗体。
64.根据权利要求63所述的方法,其中所述PVRIG抗体是CHA.7.518.1.H4(S241P)。
65.根据权利要求63或64所述的方法,其中所述TIGIT抗体是CPA9.086。
66.一种包含与人TIGIT(SEQ ID NO:97)结合的抗原结合结构域的组合物,其包含:
a)包含SEQ ID NO:560的重链可变结构域;和
b)包含SEQ ID NO:565的轻链可变结构域。
67.根据权利要求66所述的组合物,其中所述组合物是抗体,所述抗体包含:
a)包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:560;和
b)包含VL-VC的轻链,其中所述VL包含SEQ ID NO:565并且VC是κ或λ。
68.根据权利要求67所述的组合物,其中所述CH1-铰链-CH2-CH3的序列选自人IgG1、IgG2和IgG4及其变体。
69.根据权利要求67或68所述的组合物,其中所述重链具有SEQ ID NO:564并且所述轻链具有SEQ ID NO:569。
70.根据权利要求67至69中任一项所述的组合物,其还包含与人检查点受体蛋白结合的第二抗体。
71.根据权利要求70所述的组合物,其中所述第二抗体结合人PD-1。
72.根据权利要求70所述的组合物,其中所述第二抗体结合人PVRIG(SEQ ID NO:2)。
73.根据权利要求72所述的组合物,其中所述第二抗体包含抗原结合结构域,所述抗原结合结构域包含有包含SEQ ID NO:5的重链可变结构域和包含SEQ ID NO:10的轻链可变结构域。
74.根据权利要求72所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:9并且所述第二抗体的轻链具有SEQ ID NO:14。
75.一种核酸组合物,其包含:
a)编码包含SEQ ID NO:560的重链可变结构域的第一核酸;和
b)编码包含SEQ ID NO:565的轻链可变结构域的第二核酸。
76.根据权利要求75所述的核酸组合物,其中所述第一核酸编码包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:560;并且所述第二核酸编码包含VL-VC的轻链,其中所述VL包含SEQ ID NO:565并且VC是λ结构域。
77.一种表达载体组合物,其包含有分别包含根据权利要求75或76所述的第一核酸的第一表达载体和包含根据权利要求75或76所述的第二核酸的第二表达载体。
78.一种表达载体组合物,其包含表达载体,所述表达载体包含分别根据权利要求75或76所述的第一核酸和根据权利要求75或76所述的第二核酸。
79.一种宿主细胞,其包含根据权利要求77或78所述的表达载体组合物。
80.一种制造抗TIGIT抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求79所述的宿主细胞;和
b)回收所述抗体。
81.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求66至74中任一项所述的组合物。
XIII.实例
参考2016年2月19日提交的名称为“PVRIG抗体和治疗方法(PVRIG ANTIBODIESAND METHODS OF TREATMENT)”的PCT/US2016/18809,其全部内容通过引用明确并入本文,并且特别是并入实例1-5、7-8、11-13、16-20和26-28以及附图。
A.实例1:结合PVRIG、DNAM和TIGIT的PVR、PVRL2和PVRL3的表面等离子共振研究
材料和方法
使用Proteon XPR36仪器在22℃进行所有实验。
步骤1:使用ProteOn XPR36生物传感器在GLC芯片的所有六个泳道上制备高密度山羊抗人fc多克隆抗体表面(Invitrogen H10500)。抗人fc表面的活化步骤发生在水平流动方向上,而高密度pAb的固定步骤发生在垂直流动方向上。阻断步骤发生在垂直和水平位置,因此水平“间隙”可以用作参考表面。平均每个泳道固定约4400RU的山羊抗人pAb。
步骤2:对于每个循环,三个不同批次的人PVRIG融合蛋白(人fc,GenScript批次451、448、125)、人DNAM-1融合蛋白(人fc,R&D Systems),人TIGIT融合蛋白(人fc,R&DSystems)和对照人IgG(Synagis)各自在不同的垂直泳道上以2μg/ml的浓度捕获2分钟。PVR、两批PVRL2和PVRL3各自在六个不同浓度下以不同的配体捕获循环在所有六个捕获的配体上以水平流动方向注入。注射2分钟,然后以50μL/min的流速解离10分钟。PVR浓度范围为1.4nM-332nM,3倍稀释系列,两批PVRL2均以1.3nM-322nM浓度范围的3倍稀释系列注入,并且PVRL3以1.4nM-334nM浓度范围的3倍稀释系列注入。在运行缓冲液中制备所有蛋白质试剂,所述缓冲液是脱气的PBS缓冲液,其中加入0.05%Tween20和0.01%BSA。在每个循环后,用两次30秒的146mM磷酸脉冲再生抗人fc捕获表面。
步骤3:使用ProteOn Manager3.1.O.6版本处理与每个捕获的配体结合的分析物的传感器数据,并使用间隔参考和与分析物注射相同的预空白注射进行双重参照。
结果
a)PVR:与捕获的DNAM-1和TIGIT弱结合,并且显示不与所有三批次PVRIG和对照IgG结合。没有产生足够的信息来估计PVR与DNAM-1和TIGIT的相互作用的KD(数据未显示)。
b)PVRL2:两批次PVRL2均显示与所有三批次PVRIG和DNAM-1结合,但与TIGIT结合最小或没有结合并且不与对照IgG结合。传感图显示复杂的动力学,因此无法估计结合常数(数据未显示)。
c)PVRL3:显示出与TIGIT的最小结合,并且不与其它蛋白质结合(数据未显示)。
B.实例2:PVRIG敲低(KD)和抗PVRIG抗体对人类黑素瘤特异性TIL功能的影响
这些分析的目的是在与黑素瘤靶细胞共培养时评估PVRIG在人源TIL中的功能能力,如通过活化标志物和细胞因子分泌所测量。
1.实例2(1):
评估抗PVRIG抗体(CPA.7.021)的作用,其已经显示单独或与其它抗体(例如抗TIGIT、抗DNAM1)组合阻断PVRIG和PVRL2的相互作用。PD1用作敲低(siRNA)研究的基准免疫检查点。
材料和方法:TIL:使用来自三名黑素瘤患者的肿瘤浸润性淋巴细胞(TIL)(1)TIL-412-HLA-A2-Martl特异性,(2)TIL-F4-HLA-A2-gp100特异性,和(3)TIL-209-HLA-A2-gp100特异性。TIL在IMDM(BI,01-058-1A)全培养基中解冻,所述培养基补充有10%人血清(Sigma,H3667)+1%Glutamax(Life technologies,35050-038)+1%丙酮酸钠(BiologicalIndustries,03-042-1B)+1%非必需氨基酸(Biological Industries,01-340-1B)+1%Pen-Strep(Biological Industries,03-031-1B)+300U/ml rhIL2(Biolegend,509129)。
肿瘤细胞系:人黑素瘤细胞Mel-624在MHC-I单倍型HLA-A2的背景下表达MART-1和gp-100抗原。将细胞在补充有10%,25mM HEPES缓冲液,1%和1%Pen-Strep的完全DMEM培养基中培养。
敲低TIL:使用100pmol Dharmacon ON-TARGETplus人PVRIG siRNA-SMARTpool(L-032703-02)或人PD1 siRNA-SMARTpool(L-004435)或非靶向siRNA(D-001810-01-05)进行TIL中人PVRIG和人PD1的敲低(KD)。将siRNA电穿孔至TIL(AMAXA,程序X-005)。在解冻后24小时在补充有IL-2的完全IMDM中培养的静息TIL上进行电穿孔。电穿孔后,将TIL接种在96孔TC板中以恢复24小时。24小时后,收获细胞并用活力染料(BD Horizon;目录号562247,BDbiosciences)染色,用PBS洗涤并用抗人PVRIG-CPA.7.021(CPA.7.021 IgG2 A647,7.5ug/ml)或用抗人PD-1(Biolegend,#329910 AF647,5ug/ml)在室温下染色30分钟。使用的同种型对照分别是synagis(IgG2 A647,7.5ug/ml)和小鼠IgG1(Biolegend#400130 A647,5ug/ml)。所有样品在MACSQuant分析仪(Miltenyi)上运行并使用FlowJo软件(v10.0.8)分析数据。
TIL与624黑素瘤细胞共培养:收获siRNA电穿孔的TIL并接种于96TC板5×104个/孔中。还收获Mel-624细胞,并在共培养中以1∶1/1∶3 E:T比例接种。将板在37℃,5%CO2中孵育过夜(18小时)。
为了评估抗PVRIG抗体(CPA.7.021)、抗TIGIT(克隆10A7;来自Genentech美国专利申请号US 2009/0258013)和抗DNAM1(克隆DX11,在Shibuya等人《免疫(Immunity)》第4卷,第6期,1996年6月1日,第573-581页中首先描述;BD Biosciences;小鼠抗人DNAM-1克隆DX11,目录号559787)对黑素瘤特异性TIL活性的影响,在以1∶1效应物:靶标比例加入624黑素瘤靶细胞之前,将TIL(1×105个细胞/孔)与测试的抗体或相关同种型对照在单一处理(10μg/mL)或组合处理(每个最终10μg/ml)中预孵育。将板在37℃,5%CO2中孵育过夜(18小时)。
TIL活化的评定:共培养后16小时,用活力染料(BD Horizon;目录号562247,BDbiosciences)染色细胞,用PBS洗涤并暴露于Fc阻断溶液(目录号309804,Biolegend),然后表面用抗CD8a(目录号301048,Biolegend)和抗CD137(目录号309804,Biolegend)在4℃下染色30分钟。所有样品在MACSQuant分析仪(Miltenyi)上运行,并使用FlowJo软件(v10.0.8)分析数据。收集培养物上清液并通过CBA试剂盒(目录号560484,BD)分析细胞因子分泌。
结果
TIL中的PVRIG敲低:TIL MART-1和TIL F4用IL-2培养24小时。将100pmol的ON-TARGETplus人PVRIG siRNA-SMART pool(L-032703-02)或人PD1 siRNA-SMARTpool(L-004435)或非靶向siRNA(D-001810-01-05)电穿孔至TIL(AMAXA,程序X-005)。在电穿孔后24小时(和共培养之前)进行PVRIG或PD-1的检测。对细胞染色活力染料,然后用抗PVRIG或抗PD-1室温孵育30分钟。KD群体的百分比在USSN 15/048,967的图82中指示,其通过引用并入本文。
使用敲低的TIL的功能分析:用IL2培养24小时的人TIL用编码人PVRIG或PD-1的siRNA或作为对照的杂乱序列进行电穿孔。在电穿孔后24小时测试TIL的PVRIG和PD-1表达。如在USSN 15/048,967(其通过引用并入本文)的图82中所示,与扰乱电穿孔的TIL相比,观察到PVRIG的约80%敲低和PD-1的约50%敲低。
将KD TIL以1∶1或1∶3 E∶T与Mel-624细胞一起培养18小时,并染色CD137的表达。与对照乱序siRNA相比,用PVRIG siRNA电穿孔的TIL MART-1中显示活化标志物CD137的水平升高,类似于用PD-1siRNA电穿孔的TIL(如USSN 15/048,967的图83A所示,通过引用并入本文)。收集共培养物上清液并测试分泌的细胞因子的存在。与对照SCR siRNA相比,用PVRIG siRNA电穿孔的TIL显示IFNγ和TNF水平显著增加。在用PD-1siRNA电穿孔的TIL中显示了类似的效果(如USSN 15/048,967的图83B-C所示通过引用并入本文)。
在TIL F4中观察到相同的活化水平增加趋势。PVRIG siRNA电穿孔TIL F4与Mel-624以1∶3 E∶T共培养导致共培养物上清液中CD137表面表达水平增加以及IFNγ分泌增加,如USSN 15/048,967的图84A和84B所示,通过引用并入本文。在用PD-1siRNA电穿孔的TIL中观察到类似的趋势。
使用阻断Ab的功能分析:
抗PVRIG和抗TIGIT的体外单一疗法和组合疗法:将209TIL与Mel-624细胞以1∶1 E∶T培养18小时。收集共培养物上清液并测试分泌的细胞因子的存在。用抗TIGIT处理不影响IFNγ或TNF分泌水平。然而,当将抗TIGIT和抗PVRIG加入到组合的共培养物中时,观察到IFNγ和TNF水平的增加(图8A-B)。
抗PVRIG和抗TIGIT的体外单一疗法和组合疗法:将209TIL与Mel-624细胞以1∶1 E∶T培养18小时。对TIL进行染色以获得活化标记CD137的表面表达,并且在用抗DNAM-1处理后表现出降低的表达水平。收集共培养物上清液并测试分泌的细胞因子的存在。抗DNAM-1的处理介导了增加分泌细胞因子IFNγ和TNF的趋势。用抗DNAM-1和抗PVRIG组合处理部分逆转了对CD137表达的作用(图9C)并增强了对细胞因子分泌IFNγ和TNF的作用(图9A-B)。将MART-1TIL与Me1-624细胞以1∶1 E∶T培养18小时。收集共培养物上清液并测试分泌的细胞因子的存在。用抗DNAM-1处理降低了TIL上的CD137表面表达以及分泌的细胞因子IFNγ和TNF。用抗DNAM-1和抗PVRIG组合处理部分地逆转了这些作用(图9D-F)。
总结和结论:PD1 KD改善TIL活性,如通过IFNγ和F4和MART-1TIL中的分泌所测量与对照siRNA相比,在MART-1TIL中PVRIG KD观察到IFNγ和TNF分泌增加(约20%)。在与F4TIL上的624黑素瘤细胞共培养时,在CD137表达中观察到相同的趋势。
抗TIGIT的处理不影响与624Mel共培养的TIL中IFNγ或TNF分泌水平,然而,当将抗TIGIT和抗PVRIG(CPA.7.021)组合加入的共培养物时,观察到IFNγ和TNF水平的增加。
抗DNAM-1处理减少TIL-MART-1活化,表现为CD137和细胞因子分泌减少,抗PVRIG(CPA.7.021)可在与DNAM-1Ab的组合处理中部分逆转这种作用。在TIL 209中,用抗DNAM-1使IFNγ和TNF分泌水平略微升高(约10%),并且当将抗DNAM1和抗PVRIG(CPA.7.021)组合加入共培养物中时,观察到IFNγ和TNF水平的增加(分别为约40%和30%)。总之,我们的结果显示PVRIG是PVRL2的新的共抑制受体。
2.实例2(2):
评估了另外的抗PVRIG抗体(CHA.7.518.1.H4(S241P);CHA.7.524;CHA.7.530;CHA.7.538)的作用,其已经显示可阻断PVRIG和PVRL2的相互作用,单独或与其它抗体(例如抗TIGIT、PD1)组合在与624黑素瘤细胞系共培养时对TIL-209、TIL-412和TIL-463-F4活性的影响。
在该分析中使用的功能性抗体是抗hPVRIG杂交瘤Ab(mIgG1骨架)-CHA.7.518.1.H4(S241P);CHA.7.524;CHA.7.530;CHA.7.538(M1批号30816);抗hTIGIT(mIgG1骨架)-克隆10A7(Genescript),抗TIGIT克隆MBSA43(e-biosciences)和mIgG1(目录号400166,MOPC-21克隆,Biolegend)
TIL和624mel的共培养:在共培养之前24小时,如2.1中所述解冻并培养TIL。将测试的抗体以单一处理(10ug/mL)或与抗TIGIT组合(20ug/mL)加入接种的TIL并在37℃,5%CO2中孵育(总共100μL)1小时。收获Mel-624细胞并以1∶3效应物:靶标比例接种在与TIL的共培养物中。将板在37℃,5%C02中孵育过夜(18小时)。
TIL功能能力的评定:基于共培养物上清液中IFNγ的检测来评定T细胞活性。收集培养物上清液并通过CBA试剂盒(目录号560484BD)或通过MAGPIX人IFNγ/TNFα试剂盒测试细胞因子。计算了双尾未配对T检验。P<0.05被称为统计学上显著的。
结果
在抗PVRIG杂交瘤Ab的存在下使用TIL和黑素瘤细胞的功能分析:用IL2培养24小时的人TIL与Mel-624细胞以1∶3 E∶T共培养18小时并测试细胞因子分泌。图31描述了5-6个进行实验中的代表性实验。在抗TIGIT或抗PVRIG Ab(蓝色)或抗TIGIT和抗PVRIG组合(绿色)的存在下,将TIL与黑素瘤细胞624共培养,并测试IFNγ/TNF分泌。在该实验中,所有4种抗PVRIG Ab单一处理在所测试的3种TIL中的2种(TIL-209和TIL463-F4)中增加(20-30%)IFNγ分泌而在与抗TIGIT组合时,与单独的抗TIGIT处理相比,所有抗PVRIG AbCHA.7.518.1.H4(S241P)、CHA.7.530、CHA.7.538均增加IFNγ分泌。
发现Ab CHA.7.518.1.H4(S241P)的作用在TIL 463-F4-gp100的实验中在作为单一和与抗TIGIT组合的5个实验中具有统计学显著性(图9E G)。抗PVRIG AbCHA.7.518.1.H4(S241P)的组合处理作用在TIL 209中也具有统计学显著性(图9C)。发现抗PVRIG Ab CHA.7.538的组合处理作用在TIL 463-F4-gp100中具有统计学显著性(图9F)。
总结和结论:在本文所述的实验系统中,我们观察到抗PVRIG对响应靶黑素瘤细胞的TIL的作用,如IFNγ分泌的变化所示。与相关的同种型对照相比,测试的抗PVRIG杂交瘤Ab介导IFNγ分泌的增加。Ab CHA.7.518.1.H4(S241P)似乎在作为单一处理介导IFNγ分泌增加的方面具有优势,并且与其它测试的aPVRIG Ab相比,但是这种作用的大小在不同TIL之间变化。与抗TIGIT处理组合可以增强这种作用。
3.实例2(3):
目的是在与稳定共表达HLA-A2、b2微球蛋白(B2M)和PVRL2的肽脉冲的CHO-S细胞共培养时评估抗人PVRIG抗体(CHA.7.518.1.H4(S241P);CHA.7.544;或CHA.7.538)对人TIL活性的功能活性。
使用来自三名黑素瘤患者的切除转移的TIL:TIL-412-HLA-A2-Martl(26-35)特异性、TIL-463-F4-HLA-A2-gp100(209-217)特异性、TIL-463-F5-HLA-A2-gp100(209-217)特异性和TIL-209-HLA-A2-gp100(209-217)特异性。
将TIL在补充有10%人血清+1%Glutamax+1%丙酮酸钠+1%非必需氨基酸+1%Pen-Strep+300U/ml rhIL2(Biolegend,589106)的IMDM全培养基中解冻。
用表达HLA-A2/B2M的慢病毒(慢病毒载体目录号CD515B-1-SBI,systembiosciences)稳定转导CHO-S细胞(靶细胞),并在补充有8mM GlutaMax 1%和1%Pen/Strep的CD CHO培养基(目录号10743-011)中,在600ug/ml潮霉素B选择下生长。然后通过有限稀释克隆表达HLA-A2/B2M的细胞。然后用表达人PVRL2的慢病毒(慢病毒载体目录号CD510B-1-SBI,system biosciences)转导具有高HLA-A2和B2M表达的3E8克隆,并在6ug/ml嘌呤霉素选择下生长。
在本文所述的实验系统中(如图35所示),内源性表达TIGIT、DNAM-1和PVRIG的gp100或MART-1反应性TIL图37)与肽脉冲的CHO-SHLA-A2/B2M/PVRL2细胞共培养。
在该分析中使用的功能性抗体是抗人PVRIG;Ab 461(Aldeveron)-在该实例中称为544,抗人PVRIG嵌合Ab(hIgG4骨骼)-CHA.7.538;CHA.7.518(在该实例中称为c538和c518,意指来自7.538和7.518的可变重链和轻链区与人IgG4恒定区融合,抗人TIGIT(mIgG1骨架)克隆MBSA43(e-biosciences),mIgG1(biolegend)和hIgG4(biolegend)。
在与靶细胞共培养之前,如本文所述将TIL解冻并培养24小时。将测试的抗体以单一处理(10ug/mL)或与抗TIGIT组合(总共20ug/mL)添加至接种的TIL并在37℃,5% CO2中孵育(总共100μL)30分钟。收获CHO-S细胞并用0.1或0.5ug/ml的gp-100(gp100209-217)或20ug/ml的MART-126-35肽,在37℃下在Opti-MEMTM还原血清培养基中脉冲1小时。在用Opti-MEMTM还原血清培养基洗涤三次后,将肽脉冲的靶细胞与TIL以1∶3的效应物:靶标比例(33k∶100k)共培养过夜(18小时)。
TIL功能能力的评定:使用组合珠阵列(CBA)试剂盒(目录号560484,BD)测量来自过夜共培养物上清液的细胞因子分泌,评估抗PVRIG抗体(10ug/ml)作为单一处理或作为与抗TIGIT的组合处理对TIL活性的影响。所有样品均在MACSQuant分析仪(Miltenyi)中获得,并使用FlowJo软件(v10.0.8)分析数据。
抗PVRIG抗体的剂量反应:抗体PVRIG抗体c518、c538(或hIgG4同种型对照)剂量反应的效果在所述分析中测试,抗体浓度为30、10、3、1、0.3、0.1和0.03ug/ml。计算了双尾未配对T检验。P<0.05被称为统计学上显著的。
结果
抗PVRIG抗体对表达PVRL2的CHO-S HLA-A2/B2M细胞共培养后TIL活性的影响:来自两个不同实验的三种抗PVRIG抗体(544、c538和c518)对四种不同TIL活性的影响(412、463、462和209)的影响总结在图37中。Ab用作非阻断Ab对照。实验的详细结果如图39所示。与用同种型抗体处理相比,用544、c538和c518抗体处理增加了TIL的IFN分泌水平(平均分别为6%、28%和23%)。与非阻断剂对照544相比,在用c538或c518处理的TIL中检测到增加的IFN分泌。在用c538与c518Ab处理之间未发现显著差异。与同种型相比,用抗TIGIT处理增加了TIL的IFN分泌(平均为49%)。c518和c538与抗TIGIT的组合处理诱导了来自TIL的IFN分泌的累加效应,但与用TIGIT单一处理的处理相比,组合效应不是统计学显著的。
抗PVRIG抗体剂量反应对TIL功能能力的影响:评估在剂量反应中添加抗PVRIG抗体(c538和c518)对TIL F4和209活性的影响(图80)。与同种型对照相比,c518和c538抗体的EC50为个位数nM,如通过TIL的TNFα分泌的影响所测量。
总结和结论:在本文所述的实验系统中,我们观察到抗PVRIG抗体对TIL活性的影响,其响应于与肽脉冲的过表达PVRL2的CHO-S HLA-A2/B2M靶细胞的共培养。与相关的同种型对照相比,测试的抗PVRIG抗体介导了来自TIL的IFN和TNF的分泌增加。与PVRIG的非阻断抗体544相比(基于在PVRIG表达细胞上进行的竞争实验),抗体c518和c538对TIL活性具有统计学显著优势(分别为p-0.0063和p-0.0034),如IFN分泌所显现。c518和c538抗体均具有抗TIGIT抗体的累加效应(无统计学显著性)。
4.实例2(4)
该实例的目的是评估PVRIG在人源TIL中的功能能力,如通过与黑素瘤靶细胞共培养时的细胞因子分泌所测量。评估抗PVRIG抗体(CHA.7.518.1.H4(S241P);CHA.7.524;CHA.7.530;CHA.7.538)的作用,其已显示单独或与其它抗体(例如抗TIGIT、PD1)组合阻断PVRIG和PVRL2的相互作用。
使用Rossetesep人T细胞富集混合液试剂盒(Stem cell technologies)在血沉棕黄层血液样品上获得纯化的CD3+T细胞。将细胞解冻并用CFSE(Moleculare probes)标记以能够跟踪共培养中的增殖。
CHO-S-OKT3细胞:用CD710B-1中的CD5L-OKT3-scFv-CD14(SBI,目录号CS965A-1,批号151014-005,1.40x108ifus/ml)转导CHO-S细胞。在CD CHO(Gibco,life technologies目录号10743-011)存在下培养细胞,加入8mM GlutaMax和6μg/ml嘌呤霉素。使用1:200稀释的PE-山羊抗小鼠IgG F(ab)′2(Jackson Immunoresearch,目录号115-116-146),通过流式细胞术评估表面OKT3水平。然后根据制造商的说明书,使用Amaxa电穿孔系统(Lonza,Walkersville,MD,USA),用人PVRL2(δ同种型)或空载体瞬时转染CHO-S-OKT3细胞。使用IngenioTM电穿孔溶液(Mirus,目录号MC-MIR-50115)中每2×106个细胞5ug pcDNA3.1质粒(空载体或hPVRL2)和脉冲程序U-024。使用抗PVRL2Ab(目录号337412,Biolegend)通过流式细胞术评估PVRL2在转染的CHOS-S-OKT3细胞上的表达。
在该分析中使用的功能性抗体是抗hPVRIG杂交瘤Ab(mIgG1骨架)-CHA.7.518.1.H4(S241P);CHA.7.524;CHA.7.530;CHA.7.538,抗TIGIT克隆MBSA43(e-biosciences)和mIgG1(目录号400166,MOPC-21克隆,Biolegend)。
CD3T细胞和CHO-OKT3细胞的共培养:解冻CD3+T细胞并立即用CFSE标记。同时收获CHO-S-OKT3-PVRL2细胞并用丝裂霉素C在37℃下处理1小时,洗涤并以1∶5 E∶T(1×105个T细胞和2×104个CHO-OKT3-PVRL2或模拟物)加入与T细胞的共培养物中。在单一处理(10ug/mL)中或与抗TIGIT(10ug/mL)组合加入Ab,并将共培养板在37℃,5%CO2下孵育5天。5天后,收获细胞并通过FACS门控CD4和CD8亚群分析T细胞增殖。
抗PVRIG抗体在CHOS-OKT3共培养分析中的作用:用刺激细胞(表达膜结合的抗CD3mAb片段的CHO细胞)刺激CFSE标记的T细胞表达人PVRL2的CHOS刺激细胞和对照刺激细胞(空载体)用丝裂霉素C(50μg/ml处理1小时)处理,然后以1∶5的比例与CFSE标记的人T细胞共培养。在37℃和5.0%CO2下5天后,评定抗PVRIG抗体(10ug/ml)对培养物上清液中T细胞增殖(CFSE稀释)和细胞因子分泌(ELISA或TH1/2/17CBA试剂盒)的影响。所有样品均在MACSQuant分析仪(Miltenyi)中获得并使用FlowJo软件(v10.0.8)分析数据。收集培养物上清液并通过CBA试剂盒(目录号560484,BD)分析细胞因子分泌。
结果
抗PVRIG抗体对CHOS-OKT3分析中PVRL2过表达的影响:过表达PVRL2的CHOS-OKT3或模拟物(空载体)细胞与CD3+细胞共培养并且测试抗PVRIG抗体作为单一处理或与抗TIGIT组合对T细胞增殖和细胞因子分泌的影响(图40)。5天后,收获细胞并分析CFSE稀释度。收集平行共培养物上清液并测试细胞因子分泌。图41显示了抗PVRIG抗体在反应者与非反应者供体中的作用。评估了各种抗PVRIG Ab作为单一治疗与抗TIGIT组合对T细胞增殖的影响。虽然一些抗PVRIG Ab增强T细胞增殖,但在该系统中未观察到与抗TIGIT抗体的累加效应(图42)。当在CD3+细胞与模拟(空载体转染的)CHO-S细胞的共培养物中测试Ab时,未观察到这些效应(数据未显示)。
共测试了10名供体,10名供体中有5名对抗PVRIG Ab有反应。Ab CHA.7.518.1.H4(S241P)的处理始终导致在所测试的5名反应者供体中增强的IFNγ分泌在20-50%之间,而用其它Ab处理未显示出明显的趋势(图43)。在CD8+细胞增殖中观察到类似的效果。Ab处理的效果总结在图44中。
C.实例3:抗PVRIG抗体对与抗TIGIT和抗PD1抗体组合对人黑素瘤特异性TIL功能的影响
1.实例3(1):
材料和方法
TIL:使用来自三名黑素瘤患者的肿瘤浸润性淋巴细胞(TIL):(1)TIL-412-HLA-A2-Mart1特异性,(2)TIL-F4-HLA-A2-gp100特异性和(3)TIL-209-HLA-A2-gp100特异性。
TIL在IMDM(BI,01-058-1A)全培养基中解冻,所述培养基补充有10%人血清(Sigma,H3667)+1%Glutamax(Life technologies,35050-038)+1%丙酮酸钠(BiologicalIndustries,03-042-1B)+1%非必需氨基酸(Biological Industries,01-340-1B)+1%Pen-Strep(Biological Industries,03-031-1B)+300U/ml rhIL2(Biolegend,509129)。
肿瘤细胞系人黑素瘤细胞Mel-624在MHC-I单倍型HLA-A2的背景下表达MART-1和gp-100抗原。细胞在完全DMEM培养基(Biological Industries,01-055-1A)中培养,所述培养基补充有10%FBS(BI, 04-127-1A)、25mM HEPES缓冲液(BI,03-025-1B)、1%Glutamax(Life technologies,35050-038)和1%Pen-Strep(Biological Industries,03-031-1B)。
TIL与624黑素瘤细胞在抗PVRIG、抗TIGIT和PD1阻断抗体的存在下的共培养:为了评定抗PVRIG抗体(CPA.7.021)、抗TIGIT(克隆10A7)和抗PD1(mAb 1B8,Merck)对黑素瘤特异性TIL活性的影响,将TIL(3×104个细胞/孔)与单独处理(10μg/mL)或组合处理(最终各10μg/mL)的测试抗体或相关同种型对照预孵育,随后以1∶3效应物:靶标比例加入624黑素瘤靶细胞。将板在37℃,5%CO2中孵育过夜(18小时)。
TIL活化的评定:收集培养物上清液并通过CBA试剂盒(目录号560484,BD)分析细胞因子分泌。
体外单一疗法抗PVRIG和与抗TIGIT和PD1阻断抗体的组合疗法:将F4TIL(gp100特异性)与Mel-624细胞以1∶3 E∶T培养18小时。收集共培养物上清液并测试分泌的细胞因子的存在。抗TIGIT或抗PD1的处理不影响IFNγ或TNF分泌水平。然而,当将抗TIGIT或抗PD1与抗PVRIG组合加入到组合的共培养物中时,观察到IFNγ和TNF水平的升高(图10A-B)。
单独使用抗PVRIG、抗TIGIT和PD1处理不影响TIL与624Mel共培养的IFNγ或TNF分泌水平,然而当抗TIGIT或抗PD1抗体与抗PVRIG(CPA.7.021)组合加入时,观察到IFNγ和TNF水平的升高。所提供的数据表明,与抗TIGIT或抗PD1抗体的组合疗法存在协同效应。
2.实例3(2):
再次,评定了抗PVRIG抗体在初级体外基于细胞的分析中与抗TIGIT抗体组合增强CD4+和CD8+T细胞功能的能力。
CHO-S OKT3分析:CHO-S OKT3分析用于确定人源化PVRIG抗体CHA.7.518.1.H4(S241P)和市售抗TIGIT抗体的组合是否可以增加T细胞增殖,以及使细胞因子分泌大于单一的抗PVRIG或抗TIGIT抗体处理。在共培养分析中使用的靶细胞是稳定过表达抗人CD3抗体克隆OKT3(缩写为OKT3)的单链可变片段和人PVRL2(缩写为hPVRL2)的中国仓鼠卵巢细胞系CHO-S(ATCC)。CHO-S OKT3亲本细胞在补充有40mM glutamax、青霉素/链霉素和6μg/ml嘌呤霉素的无血清CD-CHO培养基中生长。CHO-S OKT3hPVRL2细胞在补充有40mM glutamax、青霉素/链霉素、6μg/ml嘌呤霉素和600μg/ml潮霉素B的无血清CD-CHO培养基中生长。
分别使用RosetteSepTM人CD3+T细胞富集混合液(Stemcell Technologies)和人CD8+微珠(Miltenyi Biotec)从健康人供体分离原代CD3+和CD8+T细胞,并在液氮中冷冻。在共培养分析当天,将CD3+或CD8+T细胞解冻,计数,并用1μMCFSE(Life Technologies)在37℃标记10分钟。在该孵育后,洗涤T细胞并重悬于含有RPMI的完全培养基中,所述培养基补充有10%热灭活的FBS、glutamax、青霉素/链霉素、非必需氨基酸、丙酮酸钠和-巯基乙醇。从培养物中收获CHO-S OKT3 hPVRL2细胞,并在37℃下用丝裂霉素C处理1小时,同时定期混合。孵育后,将靶细胞彻底洗涤,计数,并重悬于完全RPMI培养基中。用5∶1比例的T细胞(100,000)与靶细胞(20,000)建立分析。将靶细胞、T细胞和10μg/ml每种抗体处理剂一起加入96孔U形底板(Costar)中,并在37℃下孵育3天(CD8+T细胞)或5天(CD4+T细胞)。抗体处理剂包括单独的人CHA.7.518.1.H4(S241P)IgG4,与小鼠抗人TIGIT(克隆MBSA43,eBioscience)组合的人IgG4同种型对照以及CHA.7.518.1.H4(S241P)和抗TIGIT(克隆MBSA43)的组合。此外,还评定了小鼠抗人DNAM-1 IgG1(克隆DX1 1,BioLegend)、小鼠IgG1同种型对照(克隆MOPC21,BioLegend)和人IgG4同种型对照的活性。
在3或5天孵育期后,用细胞计数珠阵列(CBA)人Th1/Th2/Th17细胞因子试剂盒(BDBiosciences),或用LEGENDplexTM人Th细胞因子试剂盒(Biolegend)分析共培养物上清液中分泌的细胞因子,包括IL-2、IL-4、IL-5、IL-6、IL-9、IL-10、IL-13、IL-17A、IL-17F、IL-21、IL-22、TNFα和IFNγ。通过用LIVE/DEAD可固定的水性死细胞染色试剂盒(ThermoFisherScientific)、抗CD4抗体(克隆RPA-T4,BioLegend)和抗CD8抗体(克隆HIT8a, BioLegend)染色CD4+或CD8+T细胞,并且对活CFSE低增殖CD4+或CD8+T细胞的百分比进行门控来测量T细胞增殖。使用FACS Canto II(BD Biosciences)获取数据,并使用FlowJo(Treestar)和Prism(Graphpad)软件分析。
结果:与单抗体处理相比,CHA.7.518.1.H4(S241P)和抗TIGIT抗体的组合增强了CD4+T细胞增殖:CHA.7.518.1.H4(S241P)人源化杂交瘤衍生的PVRIG抗体当与抗TIGIT抗体组合时体外增强初级CD4+T细胞增殖的能力用CHO-SOKT3分析评定。
图33A和B显示响应于与CHO-S OKT3hPVRL2靶细胞共培养并且用抗PVRIG和抗TIGIT抗体单独或组合处理而来自两个不同供体的增殖CD4+T细胞的百分比。在这两个代表性的人CD3+T细胞供体中,CHA.7.518.1.H4(S241P)和抗TIGIT抗体的组合与单独的CHA.7.518.1.H4(S241P)或IgG4同种型和抗TIGIT抗体的组合相比增加了CD4+T细胞增殖。与两种供体中的IgG1同种型对照相比,抗DNAM-1抗体降低CD4+T细胞增殖。
CHA.7.518.1.H4(S241P)和抗TIGIT抗体增强CD8+T细胞增殖和IFN-g分泌图34A说明人源化PVRIG抗体CHA.7.518.1.H4(S241P)在CHO-S OKT3分析中与抗TIGIT抗体组合增加CD8+T细胞增殖的能力。在代表性人CD8+T细胞供体中,当T细胞与CHO-S OKT3hPVRL2细胞共培养时,CHA.7.518.1.H4(S241P)和抗TIGIT抗体的组合增加CD8+T细胞增殖。抗PVRIG和抗TIGIT抗体的组合比单独的CHA.7.518.1.H4(S241P)或hIgG4同种型加抗TIGIT抗体处理增加增殖图34B显示在如上所述的相同代表性人CD8+T细胞供体中,人源化PVRIG抗体CHA.7.518.1.H4(S241P)与抗TIGIT抗体组合也增强CHO-S OKT3分析中的IFNγ分泌。抗PVRIG和抗TIGIT抗体的组合增加IFNγ分泌大于单独的CHA.7.518.1.H4(S241P),或hIgG4同种型加抗TIGIT抗体处理。与IgG1同种型对照抗体相比,抗DNAM-1抗体降低CD8+T细胞增殖和IFNγ产生。
总结和结论
总之,人源化PVRIG抗体CHA.7.518.1.H4(S241P)和抗TIGIT抗体在基于原代细胞的CHO-S OKT3分析中具有体外功能活性。与用CHA.7.518.1.H4(S241P)或抗TIGIT抗体单独处理相比,CHA.7.518.1.H4(S241P)和抗TIGIT抗体的组合导致CD4+和CD8+T细胞增殖以及CD8+T细胞的IFNγ分泌增加。总之,这些数据表明,与单受体阻断相比,两种检查点受体PVRIG和TIGIT的共同阻断增加了T细胞功能。
应注意,TIGIT不与CD112(PVRL2;参见Zhu等人,《实验医学杂志》(2016):1-10的图4E和4F)相互作用;相反,它与PVR(一种不同的配体)相互作用。PVR在Zhu等人的CHO/CD112系统中表达。因此,我们对aCD112R(抗PVRIG抗体)和抗TIGIT的组合作用的解释是aCD112R/aPVRIG阻断人CD112R与人CD112的相互作用,但抗TIGIT抗体阻断人TIGIT与人或仓鼠PVR(在T细胞或CHO细胞上)的相互作用,Zhu等人并未真正给出关于为什么在CDO CD112分析中发生抗CD112R/抗TIGIT组合作用的假设。也就是说,组合作用不仅仅是通过PVRL2/CD112配体。
D.实例4:基于食蟹猴交叉反应性的抗人PVRIG抗体的表位作图
理由和目标
该研究的目的是鉴定PVRIG蛋白上的表位,其确定抗人PVRIG抗体与食蟹猴(食蟹猴)直向同源物的交叉反应性。尽管许多这些抗体属于相同的表位分箱,但许多针对人PVRIG靶标的抗体显示出不同程度的食蟹猴交叉反应性。为了阐明人/食蟹猴交叉反应(或缺乏其)的分子基础,设计、表达和纯化了PVRIG重组蛋白的几种食蟹猴-人突变,并在ELISA中测试了与一组抗人PVRIG抗体的结合。
方法
食蟹猴-人PVRIG变体的设计:人和PVRIG ECD的序列比对显示出人和食蟹猴直向同源物之间90%的序列同一性和93%的序列同源性。基于突变的性质(保守与非保守)和突变区域的二级结构预测(卷绕与延伸),设计了三种食蟹猴PVRIG的定点突变体以探测食蟹猴交叉反应性聚焦表位作图。这些突变体包括H61R、P67S和L95R/T97I食蟹猴PVRIG。还产生野生型食蟹猴和人PVRIG。
食蟹猴、人和杂合PVRIG变体的表达和纯化:所有PVRIG变体在哺乳动物细胞中表达为具有C端6XHis标签的ECD融合体。通过亲和纯化、离子交换色谱和尺寸排阻色谱纯化蛋白质。将纯化的蛋白质缓冲液交换到PBS缓冲液(pH 7.4)中并在4℃下储存。
用于确定PVRIG-抗体相互作用的ELISA:功能性ELISA如下进行:将食蟹猴、人和食蟹猴/人杂交PVRIG(带His-标签的)重组蛋白在4℃下吸附在IA板上过夜。用PBS冲洗涂覆的板孔两次,并在室温(RT)下用300μL阻断缓冲液(5%脱脂奶粉在PBS pH 7.4中)孵育1小时。除去阻断缓冲液,用PBS冲洗平板两次。将平板结合的PVRIG变体与抗人PVRIG mAb(人IgG1同种型)在溶液中(线性范围为0.1μg/ml至8μg/ml,50μL/孔体积)在室温下孵育1小时。将板用PBS-T(PBS 7.40.05%Tween20)洗涤三次,然后用PBS洗涤三次,并加入50μL/孔的HRP缀合的二抗(人IgG Fc结构域特异性,Jackson ImmunoResearch)。将其在室温下孵育1小时,再次洗涤平板。通过添加50μLSureblue TMB底物(KPL Inc)并孵育5-20分钟在所有孔中生成ELISA信号。通过添加50μL 2N H2SO4(VWR)终止HRP反应,并在SpectraMax(MolecularDevices)或EnVision(PerkinElmer)分光光度计上读取450nm处的吸光度信号。将数据导出至Excel(Microsoft)并绘制在GraphPad Prism(GraphPad Software,Inc.)中。
结果
S67、R95和I97残基作为食蟹猴交叉反应性的决定因素:图18中显示的结合数据清楚地显示S67、R95和I97残基影响各种抗体的食蟹猴交叉反应性。虽然P67S食蟹猴-人突变对CPA.7.002和CPA.7.041的结合产生负面影响,但L95R/T97I食蟹猴-人突变显著改善了CPA.7.002、CPA.7.021、CPA.7.028和CPA.7.041的结合另一方面,H61R食蟹猴-人突变不影响任何测试抗体的结合。
与食蟹猴-人变体的相对结合表明三个表位组:抗体与食蟹猴、人和杂合PVRIG变体的相对结合表明3个不同的表位组:第1组与R95/I97残基结合(CPA.7.021和CPA.7.028)。第2组与S67和R95/I97残基结合(CPA.7.002和CPA.7.041)。第3组不与S67或R95/I97残基结合(CPA.7.024和CPA.7.050)。表位组与这些抗体的食蟹猴交叉反应性程度显示出强烈的相关性(图19)。
总结和结论:基于PVRIG ECD中的食蟹猴-人变异的限制性表位作图鉴定了S67、R95和I97残基作为抗人PVRIG抗体的食蟹猴交叉反应性的决定因素。CPA.7.021和CPA.7.028抗体与L95R/T97I食蟹猴PVRIG结合的完全恢复和CPA.7.002与该突变体的结合的改善强烈表明R95和I97残基是这些抗体的关键人PVRIG表位。这些发现还提出了一种可能的方法来基于一级氨基酸序列预测与非人灵长类动物PVRIG直向同源物的交叉反应性。
E.实例5:人源化抗体:人源化抗PVRIG杂交瘤衍生抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的结合和受体-配体阻断分析
进行该实验以表征CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)与细胞系和原代白细胞上的人和食蟹猴PVRIG蛋白的结合,以表征CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)阻断PVRIG和PVRL2之间的相互作用的能力并通过评定与Jurkat细胞上表达的PVRIG抗原结合的竞争表征CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)相对于彼此的表位空间。
hPVRIG过表达细胞的FACS分析:以下细胞系用于评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的特异性HEK亲本和HEK hPVRIG过表达细胞。将这些细胞在DMEM(Gibco)+10%胎牛血清(Gibco)+glutamax(Gibco)中培养。对于HEK hPVRIG过表达细胞,还将0.5ug/ml嘌呤霉素(Gibco)加入培养基中用于阳性选择。对于FACS分析,以对数期生长收获所有细胞系,并将每孔50,000-100,000个细胞接种在96孔板中。未缀合的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(hIgG4)及其各自的对照的结合在冰上以10ug/ml开始的8点滴定系列中评定30分钟-1小时。滴定系列以3倍连续稀释进行。用抗人Fc Alexa 647缀合的抗体(JacksonLaboratories)检测未缀合的一抗。使用FACS CantoII(BD Biosciences),FACSLSR Fortessa X-20(BD Biosciences)或IntelliCyt(IntelliCyt Corporation)获取数据,并使用FlowJo(Treestar)和Prism(Graphpad)软件分析。
hPVRIG的人细胞系的FACS分析:以下细胞系用于评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的表达和特异性:Jurkat和HepG2。Jurkat细胞在RPMI培养基+10%胎牛血清、glutamax、非必需氨基酸(Gibco)、丙酮酸钠(Gibco)和青霉素/链霉素(Gibco)中培养。HepG2细胞在DMEM+10%胎牛血清+glutamax中培养。对于FACS分析,以对数期生长收获所有细胞系,并将每孔50,000-100,000个细胞接种在96孔板中。未缀合的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(hIgG4)及其各自的对照的结合在冰上以10ug/ml开始的8点滴定系列中评定30分钟-1小时。用抗人Fc Alexa 647缀合的抗体检测未缀合的一抗。滴定系列以3倍连续稀释进行。使用FACS Canto II或IntelliCyte获取数据,并使用FlowJo和Prism软件分析。
CMV扩增的CD8T细胞上PVRIG的FACS分析:CMV反应性供体购白CellularTechnology Limited(CTL)。用10uM CMV肽494-503(NLVPMVATV,Anaspec)脉冲供应的PBMC2小时。随后将PBMC洗涤三次,之后将它们接种在24孔板中的RPMI+10%人AB血清(Sigma)、glutamax、青霉素/链霉素和由2ng/ml IL-2(R&D systems)和10ng/ml IL-7(R&D systems)组成的细胞因子生长混合液中9天。9天后,收获非贴壁细胞,表型为CD8T细胞富集,并在液氮中存放。
为了评定CMV扩增的CD8T细胞的表达,在冰上以666nM开始的8点滴定系列中评定未缀合的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(hIgG4)及其各自对照的结合30分钟-1小时。滴定系列以4倍连续稀释系列进行。用抗人Fc Alexa 647缀合的抗体检测未缀合的一抗。使用FlowJo和Prism软件分析数据并在BD LSR Fortessa X-20上收集。
食蟹猴PVRIG工程过表达细胞的FACS分析:以下细胞系用于评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)与食蟹猴PVRIG(cPVRIG)的交叉反应性:expi亲本和expi cPVRIG过表达细胞。将这些细胞在DMEM+10%胎牛血清+glutamax中培养。通过使用Neon转染系统将cPVRIG DNA电穿孔到亲本expi细胞中来产生expi cPVRIG瞬时过表达细胞。对于FACS分析,在转染后1-3天之间使用expi cPVRIG细胞。从对数生长期收获亲本expi细胞。将每种类型的50,000-100,000个细胞接种在96孔板中。未缀合的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(hIgG4)及其各自的对照的结合在冰上以10ug/ml开始的8点滴定系列中评定30分钟-1小时。滴定系列以3倍稀释系列进行。用抗人Fc Alexa647缀合的抗体检测未缀合的一抗。使用FACS Canto II或IntelliCyte获取数据,并使用FlowJo和Prism软件分析。
基于细胞的受体-配体阻断分析:在以两个方向进行的细胞竞争分析中评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抑制PVRIG与其配体PVRL2相互作用的能力。
在第一个方向,PVRL2在未操纵的HEK细胞上内源表达,并且测量CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)阻断可溶性生物素化PVRIG Fc与HEK细胞结合的能力。更具体地,将生物素化的PVRIG Fc蛋白(33nM)和CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(1.03-198nM,hIgG4)同时添加到100,000个HEK细胞中并在冰上孵育1小时。随后通过在冰上加入链霉抗生物素蛋白Alexa 647(Jackson Laboratories)20-30分钟来检测生物素化的PVRIG Fc结合的程度。将细胞在PBS中洗涤两次以使用FACSCanto II获得。使用FlowJo、Excel(Microsoft)和Prism分析数据。
在第二个方向,HEK细胞被设计为表达人PVRIG(HEK hPVRIG)并且评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(hIgG4)抑制可溶性人PVRL2Fc的能力。更具体地,将HEK hPVRIG细胞与CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)(0.66-66nM)在冰上预孵育30分钟,之后加入PVRL2mFc(人PVRL2与小鼠Fc)(在冰上1小时)并测量其结合HEK hPVRIG的能力。通过随后在冰上加入山羊抗小鼠Fc A647(JacksonLaboratories)20-30分钟来检测PVRL2mFc结合的程度。将细胞在PBS中洗涤两次以使用FACS Canto II获得。使用FlowJo、Excel和Prism分析数据。
基于细胞的表位空间分析:评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的表位空间与另一个竞争结合Jurkat细胞的能力。简言之,在对数生长期收获Jurkat细胞,在冰上用微克/毫升未标记的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)染色30分钟。随后将Jurkat细胞离心,洗涤,并用Alexa 647标记的CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)在冰上复染30分钟。通过流式细胞术通过Alexa 647信号的大小来评定标记抗体与Jurkat细胞上的未标记抗体的PVRIG结合的竞争。使用FACS Canto II获取数据并使用FlowJo、Excel和Prism进行分析。
结果
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)识别过表达细胞Jurkat细胞和人T细胞上的PVRIG:使用过表达人PVRIG的HEK细胞、Jurkat细胞和原代T细胞评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)人源化杂交瘤衍生的PVRIG抗体结合人PVRIG的能力。图20说明了CHA.7.518.1.H4(S241P)(A)和CHA.7.538.1.2.H4(S241P)(B)的特异性。两种抗体均与HEK hPVRIG细胞高度特异性结合,并且不与HEK亲代细胞结合。
结合亲和力:CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也显示出以高亲和力与HEK hPVRIG细胞结合,及其与HEK hPVRIG细胞结合的相关Kd值:CHA.7.518.1.H4(S241P)为0.29nM,CHA7.538.1.2为0.86nM。
图21说明了CHA.7.518.1.H4(S241P)(A)和CHA.7.538.1.2.H4(S241P)(B)结合内源性表达PVRIG的Jurkat细胞的能力。两者都能够以与HEK hPVRIG细胞相当的亲和力结合Jurkat细胞。
这些抗体对Jurkat细胞的亲和力为CHA.7.518.1.H4(S241P)的0.15nM,CHA.7.538.1.2.H4(S241P)的0.59nM。
图22说明了CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)结合CD8T细胞的能力,这些细胞通过暴露于CMV肽(494-503,NLVPMVATV)而扩增并内源性表达PVRIG。
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)检测在expi细胞上表达的食蟹猴PVRIG(cPVRIG):使用过表达cPVRIG的expi细胞评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)与cPVRIG结合的能力。图23说明了CHA.7.518.1.H4(S241P)(A)和CHA.7.538.1.2.H4(S241P)(B)的特异性。两种抗体均与expi cPVRIG细胞高度特异性结合,并且不与expi亲本细胞结合。CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也显示以高亲和力与expi cPVRIG细胞结合,其相关的Kd值为CHA.7.518.1.H4(S241P)的0.24nM和CHA7.538.1.2的0.58nM。
基于细胞的受体-配体阻断分析:以两个方向评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抑制PVRIG与PVRL2相互作用的能力,如方案部分所述。在第一种排列中,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)都能够完全抑制PVRIG Fc与HEK细胞的结合(图24A)。与该阻断能力相关的IC50值对于CHA.7.518.1.H4(S241P)为15nM对于CHA.7.538.1.2.H4(S241P)为16.1nM。重要的是,并非所有来自确认与PVRIG结合的杂交瘤活动的抗体都能够阻断PVRIG Fc与HEK细胞的结合。如图24B所示,命名为CHA.7.544的抗体克隆不能阻断PVRIG Fc与HEK细胞的结合。
在第二种排列中,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也能够完全抑制PVRL2Fc与HEK hPVRIG细胞的结合(图25A)。与该抑制相关的IC50值对于CHA.7.518.1.H4(S241P)为1.8nM,对于CHA.7.538.1.2.H4(S241P)为2.53nM。尽管CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的能力能够完全抑制PVRL2Fc在该排列中的结合,与它们在第一种排列中抑制PVRIGFc结合的能力一致,但其它抗体没有表现出同样的趋势。更具体地,能够完全抑制PVRIG Fc与HEK细胞的结合的另一种人源化杂交瘤衍生抗体CHA.7.530.3(第一种排列,数据未显示)不能完全抑制PVRL2Fc结合HEKhPVRIG细胞的结合(图25A)。总的来说,该数据表明,与第一种排列相比,基于细胞的受体配体阻断分析的第二种排列能够以更高的灵敏度区分受体-配体阻断抗体的效力。重要的是,CHA.7.544显示不能阻断PVRL2Fc与HEKhPVRIG细胞的结合(图25B),这与其不能阻断PVRIG Fc与HEK细胞的结合一致。
基于细胞的表位空间分析:如方案部分所述,通过评定竞争结合PVRIG的能力,对CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的表位空间进行了分析。图26显示了未缀合形式的抗体抑制相同抗体的Alexa 647(A647)缀合形式结合的能力。图26中的数据描述了A647缀合的抗体相对于它们在没有竞争时产生的最大信号的结合百分比。CHA.7.518.1.H4(S241P)A647和CHA.7.538.1.2.H4(S241P)A647产生的信号不受Jurkat细胞用同种型对照预孵育的影响(数据未显示)。如所预期的,当与其自身未缀合形式竞争时,CHA.7.518.1.H4(S241P)A647和CHA.7.538.1.2.H4(S241P)A647产生的信号显著降低(数据未显示)。有趣的是,在与未缀合形式的相反抗体预孵育的背景下分析来自CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的A647信号时,也存在显著减少。这表明CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)可以在内源表达的PVRIG上共享相似的表位空间。
总结和结论:命名为CHA.7.518和CHA.7.538的小鼠版本的抗PVRIG抗体成功人源化为人IgG4同种型(CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)),其保留了对人PVRIG抗原的结合特性。使用工程化的过表达细胞Jurkat和CMV扩增的原代CD8T细胞,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)显示出对内源性人PVRIG高度特异并且以高亲和力结合。此外,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也显示出对食蟹猴PVRIG抗原的反应性并且以高亲和力结合过表达细胞。功能上,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)能够在基于FACS的分析中抑制PVRIG与PVRL2的相互作用。最后,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)显示可能共享内源性人PVRIG上的表位空间,因为它们能够相互竞争结合Jurkat细胞。
F.实例6:人源化抗体:人源化抗体的功能分析
验证了本发明的几种人源化抗体的功能活性。
CHO-S OKT3分析:CHO-S OKT3分析用于确定人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)是否可以增强CD4+和CD8+T细胞增殖和细胞因子分泌。在共培养分析中使用的靶细胞是中国仓鼠卵巢细胞系CHO-S(ATCC),其稳定过表达抗人CD3抗体克隆OKT3(缩写为OKT3)的单链可变片段,或稳定地过表达OKT3和人PVRL2(缩写为hPVRL2)。CHO-S OKT3亲本细胞在补充有40mM glutamax(Gibco)、青霉素/链霉素(Gibco)和6μg/ml嘌呤霉素(Gibco)的无血清CD-CHO培养基(Gibco)中生长。CHO-S OKT3hPVRL2细胞在与亲代细胞相同的CD-CHO培养基中生长,但也补充有600μg/ml潮霉素B(Gibco)。
分别使用RosetteSepTM人CD4+T细胞富集混合液(Stemcell Technologies)和人CD8+微珠(Miltenyi Biotec)从健康人供体分离原代CD4+和CD8+T细胞,并在液氮中冷冻。在共培养分析当天,将CD4+或CD8+T细胞解冻,计数,并用1μM CFSE(Life Technologies)在37℃标记10分钟。在该孵育后,洗涤T细胞并重悬于含有RPMI(Gibco)的完全培养基中,所述培养基补充有10%热灭活的FBS、glutamax、青霉素/链霉素、非必需氨基酸(Gibco)、丙酮酸钠(Gibco)和50μM β-巯基乙醇(Gibco)。从培养物中收获CHO-S OKT3和CHO-S OKT3hPVRL2细胞,并用丝裂霉素C(Sigma-Aldrich)在37℃下处理1小时并定期混合。孵育后,将靶细胞彻底洗涤,计数,并重悬于完全RPMI培养基中。用5∶1比例的T细胞(100,000)与靶细胞(20,000)建立分析。将靶细胞、T细胞和10μg/ml每种抗体处理剂一起加入96孔U形底板(Costar)中,并在37℃下孵育3天(CD8+T细胞)或5天(CD4+T细胞)。PVRIG抗体处理剂包括人CHA.7.518.1.H4(S241P)IgG4、人CHA.7.538.1.2.H4(S241P)IgG4、人CHA.7.530.3IgG4(部分受体/配体阻断抗体)和小鼠CHA.7.544 IgG1(非受体/配体阻断抗体)。除了PVRIG抗体之外,还评定了小鼠抗人DNAM-1 IgG1(克隆DX11,BioLegend)、小鼠IgG1同种型对照(克隆MOPC21,BioLegend)和人IgG4同种型对照的活性。对于抗体剂量滴定,使用从66nM至0.264nM的PVRIG抗体和相应的同种型对照抗体的3倍稀释液。
在3或5天孵育期后,用细胞计数珠阵列(CBA)人Th1/Th2/Th17细胞因子试剂盒(BDBiosciences),或用LEGENDplexTM人Th细胞因子试剂盒(Biolegend)分析共培养物上清液中分泌的细胞因子,包括IL-2、IL-4、IL-5、IL-6、IL-9、IL-10、IL-13、IL-17A、IL-17F、IL-21、IL-22、TNFα和IFNγ。通过用LIVE/DEAD可固定的水性死细胞染色试剂盒(ThermoFisherScientific)、抗CD4抗体(克隆RPA-T4,BioLegend)和抗CD8抗体(克隆HIT8a,BioLegend)染色CD4+或CD8+T细胞,并且对活CFSE低增殖CD4+或CD8+T细胞的百分比进行门控来测量T细胞增殖。使用FACS Canto II(BD Biosciences)获取数据,并使用FlowJo(Treestar)和Prism(Graphpad)软件分析。
结果
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)以hPVRL2依赖性方式增强 CD4+T细胞增殖:用CHO-S OKT3分析评定CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)人源化杂交瘤衍生的PVRIG抗体在体外增强初级CD4+T细胞增殖的能力。图27A显示响应于与CHO-S OKT3 hPVRL2靶细胞和不同PVRIG抗体的共培养,来自代表性供体的增殖CD4+T细胞的百分比。在该供体中,与人IgG4同种型对照(虚线)相比,人源化CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体增加CD4+T细胞增殖。部分受体/配体阻断抗体人CHA.7.530.3 IgG4仅弱增强T细胞增殖,而非受体/配体阻断抗体小鼠CHA.7.544 IgG1与同种型对照抗体相比没有效果。抗DNAM-1抗体降低CD4+T细胞增殖。图27B表明人源化CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)PVRIG抗体和抗DNAM-1抗体的作用依赖于hPVRL2在靶细胞上的过表达在CHA.7.518.1.H4(S241P)和CHA.7.538.1.1抗体处理后,当CD4+T细胞与CHO-S OKT3hPVRL2细胞共培养时,相较于与CHO-S OKT3亲代细胞共培养,观察到CD4+T细胞增殖的更大增加。类似地,当T细胞与表达hPVRL2的CHO-S OKT3细胞共培养时,抗DNAM-1抗体仅降低CD4+T细胞增殖。
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增强CD8+T细胞增殖和IFN-g分泌:图28A-B说明人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)增加CHO-S OKT3分析中的CD8+T细胞增殖的能力。在两种不同的人CD8+T细胞供体中,在T细胞与CHO-S OKT3 hPVRL2细胞共培养时,与人IgG4同种型对照相比,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体增加CD8+T细胞增殖。然而,小鼠CHA.7.544IgG1几乎没有效果。如用CD4+T细胞观察到的,抗DNAM-1抗体降低CD8+T细胞增殖。图28C显示人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也在CHO-S OKT3分析中增强IFNγ分泌。在三种不同的人CD8+T细胞供体中,与人IgG4同种型对照(虚线)相比,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体增加IFNγ产生。在CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体处理后也观察到IL-10、IL22和TNFα的增加(数据未显示)。
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)持续增强多个人供体的CD4+T细胞增殖:接下来,为了证明CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体可以可重复地增强T细胞功能,在CHO-S OKT3分析中检测了11种不同供体的人源化PVRIG抗体对CD4+T细胞增殖的影响。图29表明,当T细胞与CHO-S OKT3hPVRL2细胞共培养时,与人IgG4同种型对照抗体相比,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)在大多数受试供体中均一致地增加CD4+T细胞增殖。此外,部分受体/配体阻断抗体CHA.7.530.3和非受体/配体阻断抗体CHA.7.544不能始终如一地增强相同供体的CD4+T细胞增殖。
CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)对CD4+和CD8+T细胞增殖具有剂量依赖性作用:最后,在CHO-S OKT3分析中测量人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)的剂量依赖性作用。当T细胞与CHO-S OKT3hPVRL2细胞共培养时,降低CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体的剂量可降低CD4+T细胞(图30A)和CD8+T细胞(图30B)增殖的百分比。用CHA.7.544抗体和IgG4同种型对照未观察到对T细胞增殖的这种剂量依赖性作用。此外,未观察到剂量滴定的双相效应,表明人源化PVRIG抗体缺乏激动剂活性。
总结和结论
人源化PVRIG抗体CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)在基于原代细胞的CHO-S OKT3分析中具有体外功能活性。CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)均以剂量依赖性方式增加CD4+和CD8+T细胞增殖。CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)也能够增强CHO-S OKT3分析中的IFNγ分泌。结果表明,CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)抗体的活性依赖于hPVRL2在靶细胞上的过表达。CHA.7.518.1.H4(S241P)和CHA.7.538.1.2.H4(S241P)在多个人供体中持续增强T细胞活性,而非阻断CHA.7.544抗体几乎没有效果。
G.实例7:用于小鼠PVRIG的大鼠单克隆抗体的开发
在Aldevron Freiburg(德国)进行大鼠单克隆抗体(mAb)的开发。通过使用DNA免疫技术培养针对小鼠PVRIG蛋白的抗体。表达小鼠PVRIG的免疫载体导入宿主生物(大鼠)。表达小鼠PVRIG,并产生免疫反应。在瞬时表达小鼠PVRIG的细胞上分析阳性抗血清鉴定和杂交瘤筛选。
大鼠抗小鼠PVRIG pAb生成
开发针对小鼠PVRIG蛋白的大鼠多克隆抗体包括将小鼠PVRIG细胞外结构域克隆到Aldevron专有免疫载体中,并将全长和细胞外结构域克隆到Aldevron专有筛选载体中。用于免疫和筛选的各种表达载体通过FACS证实在细胞上瞬时表达小鼠PVRIG。然后用免疫载体免疫3只大鼠。采集免疫血清,并使用用筛选载体瞬时转染的细胞通过FACS测试稀释的血清。收集每只大鼠的取血,并使用蛋白-A进行纯化。
大鼠抗小鼠PVRIG mAb生成
进行大鼠淋巴细胞的融合和使用Aldevron测试系统的选择。这包括:融合20×96孔板,然后通过基于细胞的ELISA(cELISA)对用小鼠PVRIG ECD(细胞外结构域)或FL(全长)瞬时转染细胞进行初步筛选。将108个阳性克隆(与表达小鼠PVRIG ECD\FL的细胞结合)进一步繁殖并重新测试。将30个阳性克隆繁殖到T-25烧瓶中,并在基于细胞的ELISA中测试上清液。选择23个杂交瘤克隆用于进一步亚克隆。通过cELISA和FACS测试无血清上清液。产生总共21个克隆并在过表达小鼠PVRIG蛋白的细胞上确认结合。
Ab表征
使用过表达小鼠PVRIG的稳定HEK293细胞,通过流式细胞术分析大鼠抗小鼠PVRIG测试血液、纯化的pAb、克隆前和克隆上清液以及纯化的mAb的结合。还测试了抗体与内源表达小鼠PVRIG的D10.G4.1细胞的结合。确认了小鼠PVRIG的特异性细胞表面表达。细胞(1-2×105)用在PBS中1∶1000稀释的可固定活力染色剂在室温下染色10分钟,然后用PBS洗涤细胞。然后将Ab加入细胞(在FACS缓冲液中稀释),然后用山羊抗大鼠-PE(在FACS缓冲液中1∶100稀释)染色。
通过siRNA测试mAb特异性,用于PVRIG转染内源性表达小鼠PVRIG的D10.G4.1细胞系。在小鼠PVRIG敲低后观察到细胞表面中的减少。
还通过FACS测试了与NK细胞结合的mAb。
进行分箱分析以证明mAb多样性。
纯化的mAb的亲和力(Kd)通过在过表达小鼠PVRIG的稳定细胞与空载体转导细胞上和在D10.G4.1细胞系上的FACS滴定来确定。细胞(1×105)用在PBS中1∶1000稀释的可固定活力染色剂在室温下染色10分钟,然后用PBS洗涤细胞。然后将Ab加入细胞中(8个浓度-1∶3系列稀释液,在FACS缓冲液中稀释的10-0.01μg/ml),然后用山羊抗大鼠-PE(在FACS缓冲液中1∶100稀释)染色。
mAb表征-总结表
表7(第1-10列)总结了为表征抗小鼠PVRIG抗体而产生的数据。
·第1列代表Ab代码ID
·第2列代表Aldevron提供的Ab名称
·第3列代表在10μl/ml mAb浓度下呈稳定过表达细胞相对于空载体转导细胞的MFI比率形式的FACS数据
·第4列代表过表达HEK细胞的亲和力(nM)
·第5列代表在10ug/ml mAb浓度下与NK细胞的结合
·第6列代表D10.G4.1细胞系相对于同种型对照的结合的MFI比率
·第7列代表对D10.G4.1细胞系的亲和力(nM)
·第8列代表表位分箱分析中的各种分箱
·第9列代表%受体-配体阻断分析(小鼠PVRIG-Fc融合蛋白与小鼠PVRL2过表达细胞的结合)和IC50(nM)
·第10列代表%受体-配体阻断分析(小鼠PVRL2-Fc融合蛋白与小鼠PVRIG过表达细胞的结合)和IC50(nM)
在两种受体-配体结合分析中证明阻断活性的AB-406和AB-407具有相对高的亲和力,与NK和D10.G4.1细胞结合。
选择这些Ab用于TME表达和体内研究。
表7.抗小鼠PVRIG单克隆Ab表征。
H.实例8:与另外的免疫检查点抑制剂的组合测试
背景
尽管CTLA4和PD1途径的抗体阻断已成为癌症的有效治疗方式,但大多数患者并未获得长期益处,这表明需要针对其它免疫检查点。利用我们独特的计算算法来定义B7/CD28家族的新成员,我们确定了PVRIG,它由T细胞和NK细胞的多个亚群表达。我们在此报告其靶向该分子的阻断抗体的表达模式、功能表征和抗肿瘤活性。
方法
利用Predictive Discovery平台,PVRIG被鉴定为潜在的新型免疫检查点,之后使用逆转录病毒细胞筛选文库来鉴定其同源结合对应物。使用原代和肿瘤衍生的T细胞分析,利用靶标过表达、敲低和拮抗剂抗体方法评定靶标对T细胞调节的影响。筛选针对人蛋白质的抗体在体外增强T细胞活化的能力,同时在体内评定靶向小鼠直向同源物的抗体对同基因模型中肿瘤生长抑制的影响。
结果
发现PVRIG-Fc融合蛋白结合PVRL2,通过ELISA和流式细胞术分析证实结合特异性。PVRIG在T细胞活化后表现出独特的表达动力学,检测记忆T细胞以及NK细胞和γδT细胞上的靶标。产生一组具有阻断PVRIG与PVRL2相互作用的高亲和力人抗体,其在体外测试时显示通过PVRL2依赖性机制增强原代CD4+和肿瘤衍生的CD8+T细胞的活化。
由于CHA.7.518.1.H4(S241P)不是小鼠交叉反应性,因此用替代阻断抗小鼠PVRIG抗体进行体内研究。当与抗PDL-1阻断组合时,抗小鼠PVRIG抑制CT26和MC38结肠直肠癌模型中已建立的肿瘤的生长。正在进行与其它免疫检查点抑制剂以及在PVRIG敲除小鼠中的组合测试
结论
高亲和力拮抗性抗体能够增强人T细胞活化,并且具有相似特征的替代抗体在多个同基因模型中显示出与PD-L1在体内的协同作用。总体而言,我们的数据证明了靶向除了其它B7家族检查点之外的PVRIG用于治疗癌症的效用
I.实例9:体内POC研究:抗MPVRIG MAB在CT26肿瘤模型中的功效
该实例描述了抗mPVRIg mAb处理作为单一疗法或与抗PDL-1处理组合在CT26小鼠结肠癌模型中的功效。
材料和方法
肿瘤挑战实验:
CT26结肠癌购自ATCC(CRL-2638)。细胞在含有10%FBS(Biological Industries,04-127-1A)和100μg/ml青霉素/链霉素(Biological Industries,03-031-1B)的RPMI 1640(Biological Industries,01-100-1A)中培养。对于肿瘤植入,收获细胞并洗涤,计数并在冷RPMI 1640中悬浮至107个细胞/毫升并置于冰中。通过腹膜内注射10%氯胺酮(Clorketam;SAGARPA Q-7090-053)和10%甲苯噻嗪(Sedaxylan;BE-V254834)混合物麻醉BALB/c小鼠((雌性,8周)Envigo)。接下来,将小鼠的背部剃毛并用70%乙醇溶液消毒。将肿瘤细胞作为50μl的5×105个CT26细胞皮下注射到小鼠的右后侧腹。当肿瘤体积为30-50mm3(单一处理)或达到60-90mm3(组合处理)的体积时,在肿瘤接种后第4天(单一处理)或第7天(组合处理)开始施用mAb;腹膜内(ip)给予最终200u1体积/注射,持续3周,总共6次施用。每2-3天用电子卡尺测量肿瘤生长,并以0.5×W2×L mm3的形式报告。小鼠在研究终止或以下任何临床端点用CO2处死:肿瘤体积≥2250mm3,肿瘤溃疡,体重减轻≥20%,或垂死的外观
抗体:
本研究中使用的嵌合抗小鼠PVRIg抗体(mAb 406和mAb 407)被工程改造为大鼠IgG2b同种型单克隆抗体(mAb),其显示与表达mPVRIg的293HEK转染子结合并阻断mPVRL2与这些细胞的结合。在该研究中使用的mIgG1抗小鼠PDL-1抑制剂是mAb YW243.55.S70。YW243.55.S70抗体是WO2010/077634中描述的抗PD-L1(重链和轻链可变区序列分别显示在WO2010/077634的SEQ ID No.20和21中),并且具有其中公开的序列。
所有mAb均配制在无菌PBS中,内毒素含量低(<0.05EU/mg)。
表8.测试的mAb。
研究设计
单一处理
从Envigo购买8周龄BALB/c雌性小鼠,并在开始实验之前在SPF动物设施中维持1周。将小鼠麻醉,剃毛并皮下接种50μl 5×105个CT26肿瘤细胞。在肿瘤接种后第4天,将小鼠随机分配到n=10的处理组中(如下所述)。在接种后第4、7、11、14、18和21天注射mAb(如下详述)处理小鼠。每2-3天用卡尺测量肿瘤生长。
表9.处理组。
组合处理
关于抗mPVRIg和抗mPDL-1mAb处理的组合。如单一处理中所述处理小鼠。在肿瘤接种后第7天,将小鼠随机分配到n=10的处理组中,如下所述。在肿瘤接种后第7、11、14、18、21和25天注射mAb(如下详述)处理小鼠。
表10.处理剂量。
统计分析:
具有重复测量的双向ANOVA,随后是使用JUMP(Statistical Discoveries TM)软件对所选择的组对的重复测量的双向ANOVA。通过比较在所有研究动物存活的最后一天测量的肿瘤体积来进行肿瘤生长测量的分析。通过Log Rank Mantel-Cox检验确定无肿瘤小鼠百分比的统计学差异。P<0.05的值被认为是显著的。
*p<0.05;**p<0.01;***p<0.001。对于每个实验,在相应的图例中描述了所进行的重复次数和每组动物的数量(图47-48)。
结果
同基因CT26肿瘤模型中抗mPVRIg和抗mPDL-1的单一疗法活性
我们开始在小鼠同基因CT26肿瘤模型中进行抗mPVRIg和抗mPDL-1单一疗法的临床前评定。我们用mIgG1同种型抗PDL-1抗体(YW243.55.S70)或用rIgG2b同种型抗mPVRIg(mAb 406和407)处理小鼠。
在CT26结肠癌的半治疗性处理模型中,抗PDL-1单一疗法显著有效(P<0.0001),与对照mIgG1同种型相比,引起70%的TGI,肿瘤排斥率更高并且在大多数小鼠中观察到快速肿瘤排斥和持久的抗肿瘤免疫(图63A+B)。
用抗mPVRIg mAb 406和抗mPVRIg mAb 407处理组表现出相似的肿瘤生长速率,无TGI超过rIgG2b同种型(图63A+B)。因此,抗PDL-1mIgG1处理延长小鼠的存活时间(P<0.01,图63C),10只个体中有5只展示完整的肿瘤清除(图63B)。没有观察到抗mPVRIg mAb对存活率的影响。
同基因小鼠肿瘤模型中抗PVRIg和抗PDL-1组合的活性
接下来,我们评定了抗PVRIg和抗PDL-1组合处理在小鼠同基因肿瘤模型中的活性。
在CT26结肠癌的治疗性处理模型中,在接种后第7天开始施用抗PDL-1与对照rIgG2b同种型处理是无效的,而抗PFRIg mAb 407与抗PDL-1的组合引起显著的TGI(56%,P=0.0005),肿瘤排斥率较高,10只个体中有4只表现出完全肿瘤清除(图64A+B)并且促进了更好的抗肿瘤活性,检测到持久的抗肿瘤免疫力(P<0.01,图64C)。抗PVRIg mAb 406与抗PDL-1的组合是部分有效的,产生33%的TGI,然而,记录的抗肿瘤反应是短暂的,并且未观察到对存活率的影响。
结论
预测mPVRIg作为新型B7样分子发挥作用,因此作为基于抗体的癌症免疫疗法的潜在靶标。几种人体外实验系统已证明对mPVRIg具有免疫调节作用。在本报告中提供的研究中,我们评估了针对mPVRIg的mAb的体内抗癌作用。在我们的研究中,用10mg/kg(200ug/小鼠)的抗mPVRIg作为单一疗法在最小的疾病设置中进行处理,即在第4天开始处理(肿瘤平均值为40mm3),不会产生TGI或生存优势,而阳性对照抗PDL-1 mAb表现出显著的TGI并使得存活期延长。
还测试了抗mPVRIg mAb与抗PDL-1处理的组合。在第7天开始用10mg/kg(200ug/小鼠)处理,此时肿瘤的平均大小为75mm3。抗mPVRIg mAb 407与抗PDL-1在治疗性CT26模型中的组合疗法显示肿瘤生长抑制和延长的处理小鼠存活。对肿瘤生长的影响在个体小鼠之间变化,其中一些个体表现出完全的肿瘤清除,而其它个体表现出部分反应(瞬时TGI)并且一些个体没有反应。在MC38和B16-Db/GP100肿瘤模型也显示出抗mPVRIg和抗MPDL-1组合处理的体内效果(数据未显示)。
计划进行额外的体内研究以评定其它同基因模型中的剂量依赖性和功效,或与其它治疗化合物或方案组合。
J.实例10:通过噬菌体展示发现TIGIT治疗性抗体
1.简介
使用重组人TIGIT细胞外结构域作为靶抗原,进行噬菌体展示抗体发现活动以从幼稚人fab文库中分离人TIGIT结合物。分离出45种新型人TIGIT特异性抗体并作为人IgG4产生,包括如本文所述的铰链区中的任选S241P。筛选所得抗体阻断TIGIT-PVR相互作用的能力以及通过流式细胞术筛选与细胞表达的食蟹猴TIGIT的交叉反应性。针对更高的人和食蟹猴TIGIT结合亲和力进一步优化这些抗体中的两种。
2.方案
通过噬菌体展示发现抗体的抗原:在噬菌体展示中使用两种形式的人TIGIT蛋白作为抗原。第一种由人TIGIT ECD(Met22-Pro141)与C端多组氨酸标签融合而成(hTIGIT-HIS),可在内部生成或从Sino Biological Inc.商业采购。第二种抗原形式由人TIGIT ECD在C端与人IgG1 Fc结构域融合而成(hTIGIT-hFc),并且可以在内部生成或从R&D Systems商业采购。
抗原的功能性QC:用于生物淘选的重组TIGIT抗原通过其结合人PVR(人TIGIT的配体)的能力在功能上得到验证。通过ELISA或流式细胞术测试生物素化的抗原的PVR结合。生物素化的hTIGIT-HIS通过ELISA验证其结合hPVR-hFc(Sino Biological Inc.)的能力。生物素化的hTIGIT-hFc通过流式细胞术验证其结合在Expi293细胞上内源表面表达的PVR的能力。
人抗体文库的噬菌体淘选:使用人TIGIT-HIS(活动1)或人TIGIT-hFc(活动2)作为抗原进行两个噬菌体活动。使用链霉抗生物素蛋白包被的磁珠在溶液中进行淘选反应以展示生物素化的TIGIT抗原。两个活动都使用人类fab抗体噬菌体展示文库进行初步发现。使用相应的人TIGIT抗原进行三轮淘选,在每轮连续淘选中洗涤严格性更高并且抗原浓度更低。通过L-CDR3的饱和诱变产生噬菌体文库并淘选所得到的针对人TIGIT-HIS的文库(活动3),在活动1中产生的抗体CPA.9.002被优化用于改善人TIGIT结合。分别在活动2和3中产生的两种抗体CPA.9.059和CPA.9.027也被优化用于改善人TIGIT亲和力和食蟹猴TIGIT交叉反应性(活动4)。对于每种抗体,通过两个CDR(H-CDR1、H-CDR2、H-CDR3、L-CDR1或L-CDR3的任何组合)的饱和诱变产生噬菌体文库。将得到的噬菌体文库在交替轮次的淘选中针对人TIGIT-HIS和C端带HIS标签的食蟹猴TIGIT ECD重组蛋白进行四轮淘选。使用的淘选抗原如下:第1轮中1nM人TIGIT-HIS,第2轮中1nM食蟹猴TIGIT-HIS,第3轮中0.1nM人TIGIT-HIS和第4轮中0.1nM食蟹猴TIGIT-HIS。
使用表达为fab片段的抗体的结合筛选:噬菌粒构建体含有琥珀终止密码子,其允许其作为fab表达载体起作用。将这些载体转化到大肠杆菌中并用异丙基β-D-1-硫代吡喃半乳糖苷(IPTG)诱导导致可溶性fab分子的周质表达。通过渗透压休克提取分泌到大肠杆菌周质中的Fab蛋白用于结合筛选。
通过ELISA的初步筛选:通过ELISA测试fab PPE提取物与淘选抗原hTIGIT-HIS或hTIGIT-hFc的结合。使用重链和轻链特异性引物对来自ELISA筛选的阳性命中进行测序。组装和分析序列。如果在重链CDR3中存在多于一个非保守差异,则认为克隆是序列独特的。
通过流式细胞术的二次筛选:选择序列独特的ELISA阳性fab克隆并通过流式细胞术分析它们结合人TIGIT过表达Expi293细胞的能力。亲本Expi293细胞用作每个fab样品的阴性对照。
将fab命中重新格式化并作为人IgG4分子生产:将潜在的人TIGIT结合fab转化为全长人IgG4(包括S241P铰链突变体,参见Aalberse等人,《免疫学》202 105:9-19,在此通过引用整体并入,特别是关于S241P的讨论和其中引用的参考文献1、2和3)用于进一步表征。通过可变重链和轻链序列的PCR扩增衍生蛋白质表达构建体,将其亚克隆到pUNO3载体(Invivogen)中。
3.结果
人TIGIT重组蛋白的功能性QC:内部产生或来源于商业的hTIGIT-HIS和hTIGIT-hFc重组蛋白,通过其结合人PVR的能力在功能上得到验证。人PVR(Fc缀合的)在ELISA中显示出与生物素化的hTIGIT-HIS的剂量依赖性结合(数据未显示)。在反向方向上观察到类似的结合,其中PVR固定在ELISA板上并且hTIGIT-HIS在溶液中(数据未显示)。
通过在流式细胞术分析中与PVR结合而在功能上验证hTIGIT-hFc蛋白。在该分析中,针对内源性表达人PVR的Expi293细胞滴定hTIGIT-hFc蛋白。使用与AF647荧光标记缀合的抗hFc二抗检测相互作用。使用不相关的Fc蛋白作为对照(数据未显示)。
如下文实例中所述,对许多候选物进行功能分析。
使用表达为fab片段的抗体的亲和力成熟结合筛选:分析八个96孔板的周质提取的fab克隆用于从头活动(1和2)。使用hTIGIT-HIS蛋白作为靶抗原,在活动1中鉴定了73个独特的克隆。通过流式细胞术对73个ELISA阳性克隆进行二次筛选,鉴定出21个与人TIGIT过表达Expi293细胞的结合呈阳性。通过流式细胞术,活动2类似的筛选(hTIGIT-hFC作为靶抗原)得到37个ELISA阳性克隆,其中24个与人TIGIT过表达Expi293细胞的结合也是阳性(图52)。
筛选两个96孔板的fab克隆(作为PPE)用于优化/亲和力成熟活动(3和4)。在流式细胞术中筛选ELISA阳性独特变体与人和/或食蟹猴TIGIT过表达Expi293细胞的结合。还通过表面等离子共振(SPR)评估顶部克隆与hTIGIT-HIS蛋白的结合亲和力。CPA.9.002抗体的第一个亲和力成熟循环产生5种新抗体,CPA.9.021、CPA.9.027、CPA.9.044、CPA.9.048和CPA.9.049,在L-CDR3中具有突变并且至少3倍改善对重组人TIGIT的结合亲和力。CPA.9.027抗体的第二个优化循环产生4种新抗体,其与重组人TIGIT的结合提高至少25倍。新变体显示H-CDR2和L-CDR3中的突变(CPA.9.083和CPA.9.086),另外在L-FR4中显示CPA.9.089和CPA.9.093的突变。CPA.9.059的优化产生两种新抗体CPA.9.101和CPA.9.103,其与食蟹猴TIGIT的结合显著改善,并且CPA.9.103与人TIGIT的结合显著改善。对于两种新变体,在H-CDR3和L-CDR1中观察到突变。此外,对于CPA.9.101,观察到L-FRI的微小变化。
将ELISA和FACS阳性fab重新格式化为hIgG4:将ELISA和流式细胞术人TIGIT结合阳性的45个独特fab重新格式化以便作为人IgG4分子(包括如本文所讨论的任选的S241P铰链变体)表达。此外,还将11种亲和力优化的变体重新格式化为IgG4。选定的噬菌体衍生抗体的序列显示在图53中。2种基准抗体,BM26(WO2016/028656,克隆31C6)和BM29(US2016/0176963,克隆22G2)的序列也示于图53用于比较。评估重新格式化的抗体与人TIGIT过表达Expi293细胞的结合,并产生结合曲线以计算平衡结合常数(KD)。还评估了这些抗体与食蟹猴TIGIT过表达Expi293细胞的结合以及它们在基于细胞的分析中阻断人TIGIT和人PVR之间相互作用的能力。基于这些表征,选择这些抗体的子集用于体外功能分析,如下文更全面描述。
K.实例11:通过杂交瘤的TIGIT治疗抗体发现
1.理由和目标
使用本领域已知和标准方法的杂交瘤技术用于产生以高亲和力结合人TIGIT,与非人灵长类动物(食蟹猴(cynomolgus macaque,Macaca fascicularis),称为食蟹猴)TIGIT交叉反应,并阻断TIGIT与其配体PVR(CD155)的相互作用的鼠抗体。
2.概要
用重组形式的人和食蟹猴TIGIT细胞外结构域蛋白免疫接种Balb/c小鼠。将从免疫小鼠的脾和淋巴结分离的细胞与Sp2/0骨髓瘤细胞系融合,以产生分泌鼠抗体的杂交瘤。使用标准SPR方法针对与过表达人和食蟹猴TIGIT的Expi293细胞的结合以及对人和食蟹猴TIGIT重组蛋白的结合亲和力筛选来自多克隆和亚克隆的单克隆杂交瘤的上清液。来自所选杂交瘤的鼠抗体被纯化并在结合和功能分析中被广泛表征。将五种功能性和食蟹猴交叉反应性鼠抗体人源化以含有hIgG4框架(包括本文所述的任选铰链变体)和同种型。序列显示在图53中。
L.实例12:噬菌体和杂交瘤衍生的抗体与过表达人和食蟹猴TIGIT的细胞结合的FACS KD测量
1.方案
制备以下细胞系以估计人噬菌体和小鼠抗TIGIT抗体的结合亲和力:Expi293亲本、Expi293人TIGIT过表达和Expi293食蟹猴TIGIT过表达。以下杂交瘤和噬菌体抗体各自以11点2倍连续稀释系列制备结合位点浓度范围为195pM-200nM:
噬菌体产生的抗体:CPA.9.027、CPA.9.049、CPA.9.059。
杂交瘤产生的抗体(人源化前):CHA.9.536、CHA.9.541、CHA.9.543、CHA.9.546、CHA.9.547和CHA.9.560。包括两种不同的基准抗体BM26(WO2016/028656A1,克隆31C6作为小鼠IgG1)和BM29(US2016/0176963A1,克隆22G2作为小鼠IgG1)。
每次滴定的第12个孔仅包含缓冲液作为背景。将每种细胞类型与抗人TIGIT mAb在4℃孵育60分钟。洗涤后,将带AF647标签的山羊抗人F(ab′)(Jackson Immunoresearch)和带AF647标签的山羊抗小鼠IgG-Fc(Southern Biotech#1030-30)加入分别用人和小鼠mAb孵育的细胞中。然后,FACS Canto II HTS仪器记录每个孔的5000-10,000个事件的几何平均荧光强度(gMFI)。使用Graphpad Prism的“一个位点特异性结合”模型拟合gMFI作为人PVR分子浓度的函数的图,以估计每个非线性拟合的KD和95%置信区间。
2.结果
针对每种mAb测量的两个独立的FACS KD平均差异不超过2倍。图54和图55中分别列出了人和食蟹猴过表达细胞的每种mAb的KD的单一代表性测量值以及结合等温线拟合的95%置信区间。CPA.9.059未显示与食蟹猴过表达细胞的结合。应注意的是,所有mAb的结合位点浓度(分子浓度的2倍)用于非线性曲线拟合,这意味着假设这种FACS KD方法测量结合位点常数(kD)而不是分子或化学计量结合常数。
M.实例13:抑制PVR-FC与TIGIT结合的噬菌体和杂交瘤衍生的抗人TIGIT MAB的FACS阻断分析
1.简介
该分析的目的是表征噬菌体和杂交瘤衍生的抗人TIGIT抗体抑制人PVR与细胞表面上过表达的人TIGIT结合的能力。首先,通过FACS确定人TIGIT-人PVR结合亲和力。结合等温线显示用于阻断分析的人PVR的饱和浓度。接下来,用噬菌体和杂交瘤产生的抗TIGITmAb滴定过表达人TIGIT细胞的细胞,然后加入饱和浓度的人PVR。然后使用FACS测量过表达细胞上的抗人TIGIT抗体结合。
2.方案
FACS KD分析:通过FACS测试各种人PVR-Fc同种型以获得最佳结合,并且确定人PVR-hlFc(Sino Biological#10109-H20H)和人PVR-m2aFc(Compugen)显示出与人TIGIT过表达细胞的最高结合水平。两种PVR同种型分别在11点滴定系列中连续稀释2倍,最终分子浓度范围为98pM-100nM。每次滴定的第12个孔仅包含缓冲液作为背景。将每种细胞类型与mAb在4℃下孵育60分钟。洗涤后,将带AF647标签的F(ab′)2片段山羊抗人Fc(JacksonImmunoresearch#109-606-098)和带AF647标签的山羊抗小鼠IgG(SouthemBiotech#1033-31)加入分别用人和小鼠抗TIGIT mAb滴定的孔中。然后,FACS Canto II HTS仪器记录每个孔的5000-10,000个事件的几何平均荧光强度(gMFI)。使用Graphpad Prism的“一个位点特异性结合”模型拟合gMFI作为人PVR分子浓度的函数的图,以估计每个非线性拟合的KD和95%置信区间。人PVR-m2aFc和人PVR-hlFc的结果分别显示在图57A和B中。
噬菌体MAb阻断分析:以下噬菌体衍生的hIgG4抗体和基准mAb各自以三点5倍连续稀释系列制备,结合位点浓度范围为267pM-6.7nM:CPA.9.027、CPA.9.049和CPA.9.059,以及BM26(WO2016/028656A1,克隆31C6作为hIgG4)和Synagis hIgG4(阴性同种型对照)。
每次滴定的第4个孔仅包含缓冲液作为背景。将细胞与mAb在4℃孵育15分钟。然后将人PVR-m2aFc(Compugen)在4℃孵育1小时。洗涤后,加入带AF647标签的山羊抗小鼠IgG(SouthernBiotech#1033-31)。然后,FACS Canto II HTS仪器记录每个孔的5000-10,000个事件的几何平均荧光强度(gMFI)。将用mAb预孵育的细胞的结合人PVR的gMFI值与用阻断基准mAb和非阻断对照mAb预孵育的细胞的gMFI值进行比较。如果噬菌体抗体与来自用已知的非阻断性mAb滴定的信号相比降低了人PVR-m2aFc结合信号,则所述抗体被表征为在该噬菌体mAb浓度下阻断PVR结合。噬菌体mAb的阻断趋势与BM26基准的PVR阻断相似(图58)。
杂交瘤MAb阻断分析:以14pM-133nM的结合位点浓度范围,以11点2.5倍稀释系列制备以下杂交瘤抗体:CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547、CHA.9.560、BM26(WO2016/028656A1,克隆31C6作为小鼠IgG1)和BM29(US2016/0176963A1,克隆22G2作为小鼠IgG1)。
每次滴定的第12个孔仅包含缓冲液作为背景。将细胞与mAb在4℃孵育15分钟。然后加入人PVR-hlFc(Sino Biological#10109-H20H),然后将细胞在4℃孵育1小时。洗涤后,加入带AF647标签的F(ab′)2片段山羊抗人Fc(Jackson Immunoresearch)。然后,FACSCanto II HTS仪器记录每个孔的5000-10,000个事件的几何平均荧光强度(gMFI)。使用Graphpad Prism的“log(抑制剂)对反应-可变斜率(四个参数)”模型非线性拟合gMFI作为mAb结合位点浓度的函数的图,以估计每个非线性拟合的IC50。该实验在两天内重复两次。
3.结果
图58和59表明噬菌体和杂交瘤抗体都有效地阻断人PVR-Fc与Expi293细胞的细胞 表面上过表达的人TIGIT的结合。噬菌体和杂交瘤抗体的阻断活性与测试的两种基准抗体BM26和BM29相当。
N.实例14:与人、食蟹猴和小鼠TIGIT结合的九种噬菌体和杂交瘤衍生的MAB的表面等离子共振(SPR)动力学研究
1.方案
所有实验均使用ProteOn XPR 36仪器在22℃下进行。首先,分别用山羊抗人Fc多克隆抗体(Thermo#H10500)和兔抗小鼠抗体(GE Healthcare#BR100838)制备高密度捕获表面,使用标准胺偶联将其固定在各个GLC芯片上的所有垂直捕获泳道和水平间隔上。每种GLC芯片的抗人捕获pAb和抗小鼠捕获抗体的典型固定水平为约5000RU。人TIGIT获自SinoBiologicals,而小鼠TIGIT单体和食蟹猴TIGIT单体均在内部制备。研究用于结合人、小鼠和食蟹猴TIGIT的纯化mAb如下:
噬菌体抗体:CPA.9.027、CPA.9.049和CPA.9.059
杂交瘤抗体:CHA.9.536、CHA.9.541、CHA.9.543、CHA.9.546、CHA.9.547和CHA.9.560
基准比较:BM26(WO2016/028656A1,克隆31C6作为hIgG4)和BM29(US2016/0176963A1,克隆22G2作为hIgG4)。
将每种mAb在运行缓冲液中稀释至约0.5μg/mL,所述运行缓冲液为1×PBST,加入过滤的BSA至最终浓度为100μg/mL。对于ProteOn仪器上的每个“单次动力学”循环,在六个独特的垂直捕获泳道之一上捕获不同的mAb约1.5-2.5分钟。在将ProteOn的缓冲液流切换成水平方向后,捕获表面稳定约15-20分钟。注射6个浓度的3倍稀释系列的人TIGIT(346pM-84.1nM)、食蟹猴TIGIT(371pM-90.2nM)或小鼠TIGIT(382pM-92.9nM)2分钟,然后解离20分钟,流速为50μL/min。在每个注射抗原系列之前进行相同的缓冲液注射以进行双重参照。用两个30秒脉冲的146mM磷酸再生抗人抗体表面,并用两个30秒脉冲的10mM甘氨酸(pH 1.7)再生抗小鼠抗体捕获表面。使用ProteOn版本的Scrubber处理在捕获的mAb上注射的TIGIT抗原的传感图,并将其拟合于包括质量转运项的1∶1动力学结合模型。
图56显示了所得的动力学速率常数和平衡解离常数,其中数据足够可靠以估计结合常数(传感图数据未显示)。星号表示必须保持恒定在1.00×10-5/秒的kd值。在如克隆CHA.9.560与人TIGIT结合的情况下,动力学模型能够估计Kd,但是考虑到仪器的灵敏度,在20分钟的解离数据后,实际上不可能准确地以1×10-6/秒的数量级估计Kd。
O.实例15:抗TIGIT抗体的功能分析
1.理由和目标
为在功能上表征抗人TIGIT抗体抑制TIGIT和其配体的PVR的相互作用的能力,并因此作为单一疗法或与抗人PVRIG抗体CHA.7.518.1.H4(S241P)组合增强人T细胞活化。
2.方案
人TIGIT/CD155 Jurkat IL-2荧光素酶报告分析:人TIGIT/PVR Jurkat IL-2荧光素酶报告生物分析试剂盒(Promega)用于评定抗人TIGIT抗体处理对T细胞活化的影响。用重组人TIGIT和由IL-2反应元件(IL-2-RE)驱动的荧光素酶报告基因稳定转染Jurkat T细胞。刺激细胞是表达重组人PVR的人工APC(aAPC)CHO-K1细胞,以及设计用于以抗原非依赖性方式活化TCR介导的信号传导的工程细胞表面蛋白。在共培养这些细胞后,人TIGIT/人PVR相互作用抑制TCR信号传导和IL-2-RE介导的发光。加入阻断人TIGIT/人PVR相互作用的抗人TIGIT抗体释放抑制信号,导致T细胞活化和IL-2-RE介导的发光。根据制造商的说明进行分析。简而言之,将aAPC CHO-K1人PVR细胞在37℃水浴中解冻,并在补充有10%FBS(Promega)的F-12培养基中稀释。将25,000个细胞/孔接种在白色平底组织培养物处理的96孔板(Costar)上。然后将板在37℃下孵育过夜。第二天,以10μg/ml的单剂量,或者以20μg/ml开始的10点,2倍稀释系列加入杂交瘤和噬菌体衍生的抗人TIGIT抗体、小鼠IgG1(mIgG1)和hIgG4同种型对照抗体或基准(BM)抗人TIGIT抗体。将Jurkat IL-2-RE荧光素酶人TIGIT细胞在37℃水浴中解冻,并在补充有10%FBS(Promega)的RPMI培养基中稀释。每孔加入125,000个Jurkat细胞。然后将板在37℃,5%CO2下孵育6小时。孵育后,从孵育箱中取出平板并使其平衡至室温30分钟。向每个孔中加入80μl Bio-Glo荧光素酶底物(Promega),使混合物在室温下避光平衡10分钟。在具有超灵敏发光检测器的EnVision多标记读取器(Perkin Elmer)上定量发光。以相对光单位(RLU)报告发光信号。
人CMV特异性CD8+T细胞扩增:解冻人CMV反应性外周血单核细胞(PBMC)(CTL),以2×106个细胞/毫升重悬浮,并在37℃下,在补充2ng/ml重组人IL-2(R&D systems)和10ng/ml重组人IL-7(R&D systems)的完全RPMI培养基中用1μg/ml CMVpp65肽(Anaspec)刺激。9天后,将细胞以1∶2分开并用低剂量人IL-2(100IU/ml)静置。用CMV pp65/HLA-A2四聚体(MBL)测定CMV特异性CD8+T细胞的频率。在CMV肽刺激后第12天和第16天之间的分析中使用65-98%四聚体阳性的CMV特异性CD8+T细胞。
人CMV特异性CD8+T细胞与表达人PVR的黑素瘤细胞系的共培养分析:与人CMV特异性CD8+T细胞的体外共培养分析用于评定抗人TIGIT抗体对抗原特异性细胞因子分泌的作用。用于分析的靶细胞系是用含有人PVR DNA的慢病毒(System Biosciences)稳定转导的HLA-A2+黑素瘤细胞系Mel624。将稳定的Mel624人PVR过表达细胞库用CMV pp65肽以0.0033μg/ml或0.001μg/ml在37℃脉冲1小时。然后洗涤细胞并以50,000个细胞/孔铺板。以10μg/ml的浓度添加杂交瘤和噬菌体衍生的抗人TIGIT抗体、对照mIgG1或hIgG4同种型抗体或BM抗人TIGIT抗体。根据上述方案扩增来自三个不同供体的人CMV特异性CD8+T细胞所述供体指定为供体2、供体4和供体210。每孔加入50,000个人CD8+T细胞。将共培养物在37℃,5%CO2下孵育24小时。孵育后,将板以1200rpm离心1分钟,收集上清液。使用细胞计数珠分析(BD)通过流式细胞术测量共培养物上清液中人干扰素γ(IFNγ)的量。
人CMV特异性CD8+T细胞与表达人PVR和人类PVRL2(CD112)的黑素瘤细胞系的共培 养分析:与上述分析类似,通过与人CMV特异性CD8+T细胞的体外共培养分析评定抗人TIGIT抗体和CHA.7.518.1.H4(S241P)(一种抗人PVRIG抗体)对抗原特异性细胞因子分泌的组合作用。在分析中使用的靶细胞系是HLA-A2+黑素瘤细胞系Mel624,其分别通过慢病毒转导(System Biosciences)稳定表达人PVR和人PVRL2,即TIGIT和PVRIG的配体。过表达人PVR和人PVRL2的Mel624细胞用CMV pp65肽以0.0033μg/ml或0.001μg/ml在37℃脉冲1小时。然后洗涤细胞并以50,000个细胞/孔铺板。将杂交瘤和噬菌体衍生的抗人TIGIT抗体或BM抗人TIGIT抗体与10μg/ml CHA.7.518.1.H4(S241P)或对照hIgG4同种型抗体组合添加至培养物中。根据上述方案,扩增来自三个不同供体的人CMV特异性CD8+T细胞,所述供体指定为供体4、供体25和供体210。每孔加入50,000个人CD8+T细胞。将共培养物在37℃下孵育24小时。孵育后,将板以1200rpm离心1分钟,收集上清液。使用细胞计数珠分析(BD)通过流式细胞术测量共培养物上清液中人干扰素γ(IFNγ)的量。
3.结果
抗人TIGIT抗体增强IL-2信号传导:用人TIGIT/人PVR Jurkat荧光素酶报告基因分析评定杂交瘤和噬菌体衍生的抗人TIGIT抗体增强IL-2信号传导的能力。图60和图62分别显示了10μg/ml噬菌体或杂交瘤衍生的抗人TIGIT抗体对IL-2信号传导的影响。与hIgG4同种型对照相比,三种噬菌体衍生抗体CPA.9.027、CPA.9.049和CPA.9.059强有力地增强IL-2信号传导。此外,与BM抗人TIGIT抗体BM26和BM29相比,所有三种噬菌体抗体均诱导更多的IL-2信号传导。与mIgG1同种型对照相比,五种杂交瘤衍生的抗体CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547和CHA.9.560也诱导IL-2信号传导。值得注意的是,与BM26和BM29相比,五种杂交瘤抗体诱导了相似的IL-2信号传导。抗人TIGIT非阻断抗体CHA.9.543未显著增加IL-2信号传导。为了确定抗TIGIT抗体的作用是否是剂量依赖性的,对于每种抗体,以20μg/ml开始用10点,2倍稀释系列进行分析(图61和63)。IL-2信号传导以剂量依赖性方式与所有八种抗人TIGIT抗体以及BM26和BM29一起降低。
抗人TIGIT抗体增加人CMV特异性CD8+T细胞的IFNγ分泌:用CMV特异性T细胞/Me1624共培养分析评定杂交瘤和噬菌体衍生的抗人TIGIT抗体调节IFNγ分泌的能力。图64显示了抗人TIGIT抗体对IFNγ分泌的作用。与单独的培养基和hIgG4同种型对照抗体相比,三种噬菌体衍生抗体CPA.9.027、CPA.9.049和CPA.9.059增强IFNγ分泌。另外,与mIgG1同种型对照抗体相比,五种杂交瘤衍生抗体CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547和CHA.9.560也增加IFNγ产生。噬菌体和杂交瘤衍生的TIGIT抗体以与BM26和BM29类似的方式诱导IFNγ。如所预期的,抗人TIGIT非阻断抗体CHA.9.543不显著影响IFNγ分泌。
图65显示了抗人TIGIT抗体和CHA.7.518.1.H4(S241P)对IFNγ分泌的组合作用。三种噬菌体衍生抗体CPA.9.027、CPA.9.049和CPA.9.059,以及五种杂交瘤衍生抗体CHA.9.536、CHA.9.541、CHA.9.546、CHA.9.547和CHA.9.560,包括BM26,当单独或与CHA.7.518.1.H4(S241P)组合处理时,与其相应同种型对照抗体相比均增强IFNγ分泌。与其它抗人TIGIT抗体相比,抗人TIGIT非阻断抗体CHA.9.543导致较少的IFNγ分泌。相对于各自的同种型对照抗体,每种抗体中IFNγ分泌的增加百分比总结在图66中。在抗人TIGIT抗体和CHA.7.518.1.H4(S241P)的组合治疗中观察到了协同效应。
4.总结和结论
向人TIGIT/人PVR Jurkat报告基因分析中添加抗人TIGIT抗体诱导了IL-2信号传导的强烈的剂量依赖性增加。另外,当与Me1624人PVR细胞共培养时,抗人TIGIT抗体增加人CMV特异性CD8+T细胞的IFNγ分泌。抗人TIGIT抗体与抗人PVRIG抗体组合进一步增加IFNγ的分泌。总之,这些数据表明抗人TIGIT抗体可以阻断TIGIT介导的对人T细胞活化的抑制,并且通过TIGIT和PVRIG的共同阻断增强T细胞活化。
P.实例16:抗TIGIT抗体的分箱分析
1.方案
实验由Wasatch Microfluidics Inc.(美国盐湖城)使用连续流微型测位仪(CFM)和IBIS MX96SPR成像仪(MX96SPRi)进行。将以下抗人TIGIT mAb和人PVR-Fc变体各自在10mM乙酸钠(pH 5.0)中稀释至约10μg/mL,并使用标准胺偶联在Xantec 200M生物传感器棱镜芯片的独立点上共价固定,以便使用CFM进行7分钟循环:
BM8-H4和BM9-H4分别指(US2015/0216970A1,克隆10A7和重新格式化为hIgG4的1F4)。MBSA43-M1是来自eBioscience的小鼠抗人TIGIT IgG1。然后用1×PBST冲洗棱镜芯片3分钟,然后直接加载到MX96 SPRi成像仪中,其中用5分钟注射1M乙醇胺淬灭过量的NHS酯。初步实验包括在所有固定的mAb上注射100nM单体人TIGIT(Sino Biologicals,目录号10917-H08H)4分钟,然后再生的几个循环,以测试抗体的结合活性并通过评定TIGIT结合的可重复性最佳地确定再生条件。这些初步实验表明,可重复再生大多数固定化mAb的最佳试剂是1/500磷酸的30秒脉冲。然而,固定的PVR不保持活性因此它们的阻断模式仅在溶液中产生和“分箱”为分析物。在这些初步实验和下面描述的分箱实验中,所有蛋白质样品都在运行缓冲液中制备,所述缓冲液是脱气的HBST。进行“夹心”表位分箱方案,其中每个mAb和PVR注射到预先复合到每个固定的mAb的TIGIT上,以确定固定的mAb是否阻断溶液中的mAb与TIGIT的结合。对于每个循环,首先将100nM TIGIT注射到所有固定的mAb上4分钟,然后立即注射274nM(结合位点浓度)的竞争剂mAb或配体4分钟。用每种mAb和PVR作为竞争分析物重复这一过程。在每12个循环后进行用运行缓冲液代替竞争蛋白的对照循环以进行双重参照。每次循环后,用1/500磷酸的30秒脉冲再生所有表面。使用Wasatch的专有软件处理和参考Sensorgram数据。如果在预先复合到固定化mAb的TIGIT上注射竞争剂没有观察到结合,则将抗体对分类为具有共有的TIGIT结合表位。如果竞争剂mAb的注射显示与预复合的TIGIT结合,则抗体对被分类为与TIGIT上的不同表位结合或“夹心”。竞争剂的低或最小结合被归类为“中间”阻断剂。使用Wasatch的专有软件对每种mAb和配体的成对TIGIT阻断模式进行分层聚类。
2.结果
PVR-Fc蛋白和13种mAb都失去活性或不能作为配体再生因此它们的阻断模式仅被确定为溶液中的分析物。MAb CPA.9.014-H4未被分箱,因为它没有显示与TIGIT的结合。图67显示了基于每种mAb和两种PVR蛋白的成对阻断模式的树状图聚类。纵轴表示阻断模式中的统计相似性因子。WasatchMicroflluidics应用截止因子5来聚集mAb,如图67中的线所示。对于表位“分箱”的最严格定义,其中仅显示相同阻断模式的那些mAb(和PVR)分箱在一起,总共有12个离散分箱。如果将仅显示最小差异的阻断模式聚集在一起,则存在四个密切相关的mAb和PVR“群落”。这些“群落”在图67的底部用不同的阴影块表示。图68将mAb和PVR组合在一起,这些mAb和PVR填充每个离散的独特箱每个箱由黑框表示。灰框围绕着构成相关阻断模式的每个“群落”的所有独特箱。图68中的mAb和PVR与数字键一起列出,代表图67中树状图中的每种蛋白质。
Q.实例17:向TIGIT敲除小鼠施用抗PVRIG抗体
理由和目标
检查TIGIT缺失与小鼠PVRIG阻断组合是否可以增强同基因小鼠肿瘤模型中的肿瘤生长抑制和存活。
方案
动物
在Ozgene Pty LTD(澳大利亚)产生TIGIT敲除(KO)小鼠。C57BL/6野生型(WT)小鼠(Ozgene)充当对照。使用8至11周龄的雌性TIGIT KO和C57BL/6小鼠。所有研究均由特拉维夫大学(以色列特拉维夫)的机构动物护理和使用委员会批准。
体内肿瘤模型
将1×105个B16/Db-hmgp100黑素瘤细胞皮下(s.c.)接种到C57BL/6WT或TIGIT KO小鼠的右胁腹中。在肿瘤接种(第0天)的同一天开始抗体处理,每个处理组7-10只小鼠。使用的抗体是小鼠IgG1同种型对照(克隆MOPC-21BioXcell)和小鼠IgG1抗小鼠PVRIG(克隆407,Compugen LTD)。通过腹膜内注射以10mg/kg施用抗体,每周两次,持续3周。每2-3天用电子卡尺测量肿瘤生长,并以0.5×W2×L mm3的形式报告(L是肿瘤的长度,W是宽度)。将达到2250mm3肿瘤大小的动物麻醉。
统计分析
使用JUMP软件(Statistical Discoveries TM)进行重复测量的双向ANOVA,随后进行针对所选择的组对的重复测量的双向ANOVA。通过比较在所有研究动物存活的最后一天测量的肿瘤体积来进行肿瘤生长测量的分析。通过Log Rank Mantel-Cox检验确定无肿瘤小鼠百分比的统计学差异。P<0.05的值被认为是显著的。*p<0.05;**p<0.01;***p<0.001。
结果
在TIGIT KO小鼠中用抗小鼠PVRIG阻断抗体处理后的体内肿瘤生长抑制
我们在同基因小鼠B16/Db-hmgp100皮下黑素瘤肿瘤模型中测试了TIGIT缺失与小鼠PVRIG阻断组合的体内功效。与同种型处理相比,用抗小鼠PVRIG阻断抗体治疗荷瘤的C57BL/6WT小鼠对肿瘤生长抑制(TGI)具有较小影响(第11天为17%TGI,端点第18天为8%TGI)。与C57BL/6WT对照组相比,TIGIT缺失对肿瘤生长的影响较小(第11天为17%TGI,端点为13%TGI)。然而,当TIGIT缺失与抗小鼠PVRIG抗体(克隆407)处理组合时,显著的TGI是明显的(第11天为63%,端点为49%TGI)(图80A和80B)。根据TGI,与C57BL/6WT对照组相比,用抗小鼠PVRIG抗体(克隆407)处理的TIGITKO小鼠表现出增加的存活率,然而,未达到统计学显著性(图80C)。
总结和结论
TIGIT缺失和PVRIG阻断的组合显著减少了体内肿瘤生长,表明TIGIT和PVRIG在该黑素瘤肿瘤模型中起抑制作用。这些数据表明共同靶向TIGIT和PVRIG可能是另一种显著增强抗肿瘤反应的组合疗法。
R.实例18:PVRIG拮抗作用增强T细胞效应功能并减少肿瘤生长
摘要
尽管最近取得了进展,但大多数患者并未从检查点抑制剂中获得长期益处。PVRIG是DNAM/TIGIT家族的新型免疫抑制受体,我们在此证明了PVRIG在调节抗肿瘤反应中的作用。与来自正常组织的淋巴细胞相比,PVRIG与PVRL2结合并且在肿瘤浸润性淋巴细胞上显示出显著增强的表达。PVRIG拮抗作用增强人T细胞活化,PVRIG与PD-1或TIGIT抑制剂的组合进一步协同增加淋巴细胞功能。我们接下来讨论了PVRIG在临床前肿瘤模型中的作用。PVRIG-/-小鼠在体外显示出显著增加的T细胞活化和由CD8效应功能增加介导的MC38肿瘤生长减少。拮抗性抗PVRIG抗体与抗PD-L1组合或在TIGIT-/-小鼠中测试时显著降低肿瘤生长。总之,我们证明PVRIG-PVRL2途径在人类癌症中被诱导,并且拮抗PVRIG-PVRL2相互作用导致T细胞功能增加和肿瘤生长减少。
意义状态
这些数据表明,PVRIG是治疗癌症的有前景的靶标,并提供了测试PVRIG抑制剂CHA.7.518.1.H4(S241P)作为一种新型癌症免疫治疗剂作为单一疗法或与TIGIT或PD1阻断组合的理论基础。
简介
越来越多的证据表明,内源性免疫反应在塑造癌症的发生、发展和抑制方面至关重要(1)(2)。患者的免疫状态以及肿瘤浸润性白细胞(TIL)在肿瘤微环境(TME)内的含量不仅是癌症存活率的关键预后指标,也是患者对疗法的反应的关键预后指标(3)(4)。T细胞是TIL的关键组分,可以引发抗肿瘤反应,并且大多数抗肿瘤免疫反应最终依赖于效应淋巴细胞的功能。患者肿瘤TME中CD8T细胞的富集,以及使免疫反应偏向有效CD8T细胞反应的其它因素,如突变负荷和Th1极化TME,都是有利的抗肿瘤免疫反应的关键预后指标(5)(6)。
在许多实体肿瘤中的一个关键的发现是,效应T细胞在TME内具有活化或‘耗竭’表型(7)。这表明虽然TME内的T细胞最初已经发现同源抗原,被活化并被运输至肿瘤,但它们随后不能引发有效的抗肿瘤反应。预活化或耗竭的T细胞定义为共抑制受体如PD-1和CTLA-4的表面表达增加(8)。用抑制与其同源配体相互作用的抗体治疗靶向这些共抑制受体已经在患有多种晚期癌症的患者中显示出显著的临床疗效(9)。从机制上讲,已经证明靶向这些共抑制受体导致预先存在于TME中的已具肿瘤反应性的T细胞的扩增和具有加宽的T细胞受体多样性的T细胞池的产生(10)(11)(12)。虽然目前临床上的检查点抑制剂已经彻底改变了癌症治疗并证明了免疫系统对抗癌症的能力,但许多患者仍然复发和/或对治疗没有反应。因此,增加对癌症中免疫反应的理解并针对其它基于免疫的途径将产生额外的治疗性治疗。
在这些新途径中,目前正在研究nectin和nectin样家族中的一组受体和配体作为潜在的新型癌症免疫疗法。此家族内的受体包括DNAM-1(CD226)、CD96(TACTILE)、TIGIT以及最近的PVRIG(CD112R)(13)(14)(15)。在这些分子中,DNAM是该亚家族内的活化受体,与2个配体PVR(CD155)和PVRL2(CD112)结合,向淋巴细胞递送活化信号(16)。该家族中的两个受体已经被证明能够抑制人体淋巴细胞功能即TIGIT以及最近的PVRIG(17)(18)。据报道,TIGIT与PVR具有高亲和力相互作用,对PVRL2的亲和力弱得多,并且已经显示通过其ITSM基序向淋巴细胞递送抑制信号来抑制T细胞和NK细胞反应(19)(20)。最近,PVRIG显示出以高亲和力结合PVRL2并通过其ITIM基序递送抑制信号(15)。在这两种情况下,TIGIT对PVR和PVRIG对PVRL2的亲和力高于DNAM对PVR或PVRL2的亲和力,表明TIGIT和PVRIG可以从DNAM中胜过PVR和PVRL2,提供了TIGIT和PVRIG可以减少T细胞功能的间接机制。在该家族中,PVR也是CD96的配体。据报道CD96的功能对小鼠淋巴细胞具有抑制作用(21)但对人淋巴细胞有活化作用(22)。基于这些数据,我们假设在人淋巴细胞上,2种受体TIGIT和PVRIG分别以高亲和力结合PVR和PVRL2,以提供抑制信号以减弱T细胞功能。
尽管人PVRIG在最近的一份报告中已被证明可抑制T细胞反应,但PVRIG和PVRL2在癌症免疫监视中的作用尚不清楚。特别地,尚未报道该途径在癌症中的表达谱和PVRIG在调节CD8T细胞抗肿瘤反应中的作用。此外,尚未报道小鼠PVRIG基因的功能表征和破坏体内PVRIG-PVRL2相互作用在临床前肿瘤模型中的作用。在此,我们通过报告癌症中的PVRIG和PVRL2表达谱以及PVRIG拮抗作用在肿瘤细胞共培养分析和临床前肿瘤模型中的作用阐明了PVRIG在癌症环境中的作用。我们证明,与TIGIT或CD96相比,PVRIG在T细胞亚群上具有分化的表达谱,并且与正常邻近组织相比,PVRIG和PVRL2表达在癌症中被诱导。在多种人体外分析系统中,高亲和力PVRIG拮抗性单克隆抗体(CHA.7.518.1.H4(S241P))增强T细胞功能,特别是当与抗TIGIT或抗PD1抗体组合时。此外,我们使用拮抗性抗体或PVRIG缺陷小鼠报告了小鼠PVRIG的新表征,并证明PVRIG-PVRL2相互作用的抑制减少了肿瘤生长,与PD-1抑制或TIGIT遗传缺陷组合时效果最显著。总之,该数据显示PVRIG是调节T细胞抗肿瘤反应的关键抑制性受体,并支持CHA.7.518.1.H4(S241P)的开发,用于癌症患者的临床测试。
材料和方法
人体外周血和肿瘤表达研究
根据赫尔辛基宣言(the Declaration of Helsinki),从斯坦福大学获得健康的供体人PBMC。人体组织由国家癌症研究所支持的资源合作人体组织网络提供。根据制造商的方案(Miltenyi Biotec)将人癌组织和匹配的正常邻近组织解离成单细胞。通过流式细胞术分析解离的细胞,以在不同细胞亚群上表达各种靶标。对于个别细胞亚群上的每个靶表达,通过将靶的MFI值除以同种型对照的MFI值来计算倍数表达值。其他研究者可能已收到这些相同组织标本的样本。基于回顾每个样品的病理学报告确定肿瘤类型。对于IHC研究,使用抗PVRL2抗体(HPA-012759,Sigma)和PD-L1(Sp142,SpringBio)使用补充方法中描述的条件对肿瘤微阵列(Biochain institute)进行染色。由2个独立评价者对来自相同肿瘤的一式两份核心进行评分。
PVRIG抗体生成和表征
如补充方法中详述的,生成抗人PVRIG和抗小鼠PVRIG抗体。简而言之,通过选择性结合PVRIG工程细胞来评定抗体结合特异性和亲和力,而对不表达该基因的细胞没有可检测的结合。使用基于ELISA和FACS的分析测定这些抗PVRIG抗体的拮抗活性,其中PVRIG与PVRL2的相互作用被破坏。为了在基于细胞的分析中表征,在几种T细胞-靶细胞共培养分析系统中测试抗体,所述系统由在培养物中表达PVRL2的靶细胞与PBMC或肿瘤衍生的T细胞组成。如前所述,gp100特异性T细胞系从黑素瘤肿瘤扩增(23)。用CMVpp65(495-503)、IL-2和IL-7从健康供体PBMC(CTL免疫斑点)扩增CMVpp65反应性T细胞10天。对于组合研究,使用10μg/ml针对PD-1、TIGIT和PVRIG的抗体。使用细胞计数珠阵列(CBA)测定条件培养基中的细胞因子浓度,并如补充方法中所述进行FACS染色。
小鼠PVRIG表达和功能的表征
使用重组PVRIG、PVRL2和PVR蛋白通过SPR和ELISA,并使用异位工程改造的PVRIG和PVRL2过表达细胞系或PVR或PVRL2siRNA转染的细胞系通过FACS评定小鼠PVRIG与mPVRL2和mPVR的结合相互作用。如在补充方法中所述产生PVRIG和TIGIT缺陷小鼠。进行表达分析以检查各种细胞亚群中脾、淋巴结和肿瘤中PVRIG的表达。使用WT和PVRIG-/-T细胞和PVRL2Fc或PVRL2异位表达的靶细胞建立证明小鼠PVRIG的T细胞调节活性的细胞功能分析,如补充材料和方法中详述。如补充方法中所述进行CT26、MC38和B16/Db-hmgp100肿瘤模型。所有研究均由特拉维夫大学(以色列特拉维夫)或约翰霍普金斯大学(美国巴尔的摩)的机构动物护理和使用委员会批准。
结果
PVRIG表达在外周血和肿瘤的效应T细胞上最高
Ig超家族(IgSF)由数百种蛋白质组成,但其中只有少数是T细胞抑制性受体。IgSF的蛋白质倾向于快速进化(24),因此这些蛋白质之间的序列相似性通常较低,并且不是鉴定新型免疫受体的最佳选择。为了鉴定新型免疫检查点,我们基于已知免疫检查点之间共享的基因组和蛋白质组学特征,如基因结构、蛋白质结构域、预测的细胞定位和表达模式开发了生物信息学算法。使用这些算法,PVRIG被鉴定为新型免疫受体。最近的一份报告还证明,人PVRIG(CD112R)与PVRL2结合并抑制T细胞功能(15)。然而,尚未报道该途径在调节肿瘤免疫监视中的相关性。在这里,我们已经阐明了PVRIG和PVRL2在人类癌症和临床前肿瘤模型中的表达和功能。在来自健康供体的外周血中,PVRIG仅在淋巴细胞上表达,在CD8T细胞和NK细胞上表达最高(图83A)。T细胞的进一步亚群分析显示与Treg亚群相比,CD8或CD4记忆/效应T细胞亚群上的PVRIG表达最高(图83B,图90A)。主要记忆T细胞表达模式将PVRIG与家族中的其它受体(TIGIT、CD96)区分开来,所述其它受体倾向于在Treg上具有与记忆/效应T细胞相比相同或更高的表达。我们进一步比较了2种分析系统中PVRIG和TIGIT T细胞活化后的表达动力学(CMV回忆反应图83C,DC-MLR图83D,图90B),并显示PVRIG与TIGIT相比延迟诱导的动力学并在后期时间点更持久的表达。与TIGIT相比,PVRIG在记忆/效应细胞上的优先表达表明PVRIG在调节T细胞反应中的独特作用。
活化后T细胞上PVRIG表达的延迟和持续诱导表明它可以在肿瘤微环境中表达。接下来,我们通过FACS直接离体分析了PVRIG在来自解离的人肿瘤的白细胞上的表达。在来自多种肿瘤类型的CD8T细胞、CD4T细胞和NK细胞上检测到PVRIG的表达(图83E-G,图90C)。PVRIG与PD-1和TIGIT在CD4和CD8T细胞上共表达(图83F)。平均而言,与膀胱、结肠直肠和前列腺相比,在来自乳腺、子宫内膜、头颈部、肺、肾和卵巢肿瘤的CD4+和CD8+TIL上检测到更高的表达。在PVRIG表达低/不离体存在的肿瘤样本中,用抗CD3和抗CD28的活化增强了PVRIG的表达,表明PVRIG的TIL表达可以在再活化时进一步诱导(图90D)。对于结肠、肺、肾、子宫内膜和卵巢肿瘤,我们能够从同一患者获得正常的邻近组织,并对从肿瘤与正常组织分离的淋巴细胞进行PVRIG表达的比较。与从匹配正常邻近组织(NAT)分离的细胞相比,TILS显示CD4和CD8T细胞上PVRIG的显著诱导(图90E)。与PBMC一样,我们进一步比较了来自肺、子宫内膜和肾肿瘤的Treg与CD8T细胞上的PVRIG、TIGIT和PD1表达。在TILS上,与CD8T细胞相比,TIGIT表达在Treg上更高,而对于PVRIG和PD1,与Treg相比,在CD8T细胞上观察到相似或更高的表达(图83H)。接下来,我们通过离体TILS表达量或肿瘤与NAT之间表达倍数变化幅度的相关性分析,检测了PVRIG、TIGIT和PD-1对T细胞群的共调节。在两种分析中,CD4和CD8T细胞在PVRIG和PD1或TIGIT之间显示出正的并且显著的相关性(图90F)。总之,这些数据表明PVRIG在来自多种人类癌症的T细胞和NK细胞上表达将PVRIG作为新型抑制性受体靶标可能在调节肿瘤中的T细胞功能中起关键作用。
与正常邻近组织相比,PVRL2在肿瘤组织中的表达增强
由于PD-L1表达已被证明有助于预测对PD-1抑制剂的反应,我们检测了PVRL2的表达是否与人类癌症组织中其同源受体PVRIG的表达相伴。使用我们验证的用于染色FFPE样品的抗PVRL2抗体(图91A),我们染色由肺癌、结肠癌、皮肤癌、乳腺癌、卵巢癌/子宫内膜癌和肾癌组织构成的肿瘤微阵列(TMA),并基于PVRL2表达的盛行率和强度对每个核心进行评分。PVRL2表达在来自这些器官的大多数正常组织样品中不存在或最低程度地表达。在肿瘤组织中,在约50-70%的肺癌、结肠癌、乳腺癌和卵巢癌/子宫内膜癌中检测到PVRL2在肿瘤细胞上的表达(图84A,84F)。肾癌样本中的表达范围为20-40%,而黑素瘤中的表达最低(约10%)(图84A,84F)。在侵袭前沿的肿瘤细胞和免疫细胞上检测到PVRL2表达(图84B)。为了确定表达PVRL2的特异性免疫细胞亚群,我们对新解离的肿瘤进行了流式细胞术。从多种肿瘤类型的CD45+免疫细胞,尤其是骨髓细胞(例如CD14+肿瘤相关巨噬细胞(TAM)和骨髓DC)和CD45-非免疫细胞上检测到PVRL2的表达(图84C,D)。在淋巴细胞上未检测到PVRL2的表达(数据未显示)。CD45-细胞和从结肠、肺、肾、子宫内膜和卵巢肿瘤分离的TAM上PVRL2表达的比较显示与从相同供体的匹配NAT分离的细胞相比,显著诱导从肿瘤分离的细胞上的PVRL2(图92)。对于我们获得PVRIG和PVRL2表达的样本,我们检查了PVRIG在淋巴细胞上的表达与PVRL2在骨髓和来自多种肿瘤类型的CD45-细胞上的表达相比。在所检查的癌症类型中,子宫内膜癌、肺癌和肾癌具有最高的PVRIGhi淋巴细胞和PVRL2hi TAM或CD45-非免疫细胞盛行率(图842E,图93)。综合TMA和解离的肿瘤研究的数据,我们证明乳腺、子宫内膜、肺、头颈部、肾、和卵巢肿瘤可能代表PVRIG拮抗作用的反应性肿瘤类型。
与PD-L1相比,PVRL2表达受到差异调节并存在于PD-L1-肿瘤中
由于PVRIG和PD-1可在肿瘤浸润性淋巴细胞(TIL)上共表达,我们还通过染色相同的TMA的连续切片检查在相同的肿瘤上PVRL2和PD-L1的共表达。在PD-L1-肿瘤样本(通过肿瘤细胞或免疫细胞上无膜性PD-L1染色所定义)中以与PD-L1+样本相比类似的频率和平均得分清楚地检测到肿瘤细胞上的PVRL2表达。(图85A,图84F)。在免疫细胞上,在免疫细胞上检测到PVRL2表达的5个肿瘤中的3个也表达PD-L1(数据未显示),但是少量样本使得难以得出PD-L1和PVRL2的免疫细胞共表达的结论。PD-L1阴性肿瘤中肿瘤细胞上PVRL2的表达表明,PVRL2表达在一些肿瘤类型中比PD-L1更盛行并且靶向这一途径在PD-L1-肿瘤中可以是特别有效的。虽然PD-L1主要由诱导作为适应性抗性机制(28),但PVRL2受基因组应激、DNA损伤和肿瘤抑制基因调节(29,30)。为了进一步理解PD-L1和PVR/PVRL2的独特调节,我们接下来通过暴露于各种炎性刺激评定肿瘤细胞系和单核细胞衍生的DC中PVR、PVRL2和PD-L1表达的调节(图85D)。用促炎信号处理DC通常导致PVR、PVRL2和PD-L1表达的增加,证明PVR、PVRL2和PD-L1表达在DC成熟后增加。与此相反,用处理上皮细胞增加PD-L1的表达,但对PVRL2的高基线表达没有作用(图85E),证实PVRL2表达与PD-L1相比通过的差异调节。总之,这些发现表明PD-L1和PVRL2可以在抗原呈递细胞(APC)如DC上共同调节,但可以在上皮细胞上进行差异调节。PVRL2在PD-L1阴性肿瘤中的存在表明靶向这一途径可能在对PD-1抑制剂无反应或进展的患者中具有潜在益处。
CHA.7.518.1.H4(S241P)是一种针对PVRIG的高亲和力人源化单克隆抗体,可破坏PVRIG与PVRL2的相互作用
为了检查拮抗人PVRIG-PVRL2相互作用的功能性结果,我们生成了高亲和力、拮抗性抗PVRIG抗体CHA.7.518.1.H4(S241P),其阻断PVRIG和PVRL2的相互作用。该抗体选择性结合异位表达人PVRIG或食蟹猕猴PVRIG的HEK293细胞,并且还以亚纳摩尔亲和力结合内源性表达PVRIG的Jurkat细胞(图86A)。在生物化学分析中,CHA.7.518.1.H4(S241P)阻断PVRIG Fc与PVRL2+HEK293细胞的相互作用(图86B),并且还阻断PVRL2Fc与PVRIG+HEK293细胞的结合(图86C)。使用该抗体,我们在几种T细胞分析中观察到拮抗性抗PVRIG的功能性作用。生成异位表达细胞表面抗CD3抗体和人PVRL2的人工抗原呈递细胞(aAPC)并在抗PVRIG(CHA.7.518.1.H4(S241P))或同种型对照存在下,与原代人CD4T细胞共培养。在与CHO抗CD3aAPC共培养后,在增殖的CD4T细胞上诱导PVRIG表达(图94A)。用CHA.7.518.1.H4(S241P)拮抗PVRIG增强了来自多个供体的CD4T细胞的增殖(图86D)。我们还测试了抗PVRIG对源自黑素瘤肿瘤的2种人gp100反应性CD8T细胞系的影响。在同种型对照IgG或抗PVRIG抗体的存在下,将这些T细胞系分别与表达HLA-A2和PVRL2的aAPC共培养(图94B)。如在两个系中观察到的,抗PVRIG使IFN-γ和TNF-α产生增加约20-50%。在剂量反应评定中,CHA.7.518.1.H4(S241P)在多个分析中显示个位数纳米摩尔EC50值(图94C,D)。这些数据共同证明,用CHA.7.518.1.H4(S241P)拮抗PVRIG-PVRL2相互作用导致T细胞活化增加。
CHA.7.518.1.H4(S241P)与TIGIT或PD-1抑制剂组合导致T细胞功能的协同增强。
PVRIG和TIGIT阻断的组合协同增加T细胞-树突状细胞共培养分析中的CD4T细胞功能(15),表明该途径在调节T细胞-APC相互作用中的作用。尚未报道PVRIG和TIGIT阻断对肿瘤细胞共培养环境中的CD8T细胞的影响。由于我们的肿瘤表达谱证明PVRL2在CD45-免疫细胞上的表达,因此我们进一步使用2个T细胞分析系统探索靶向该途径在T细胞-肿瘤细胞共培养物的效果。我们首先在抗PVRIG、抗TIGIT或同种型对照抗体的存在下,单独或组合地进行2个gp100肿瘤抗原特异性CD8 T细胞系与黑素瘤细胞系MEL624的共培养MEL624细胞表达PVR和PVLR2,TIL-209和TIL-463均表达PVRIG、TIGIT和PD-1(图86F)。在TIL-209上,我们观察到仅抗PVRIG或抗TIGIT不增加IFN-γ,并且抗PVRIG和抗TIGIT的组合协同增加IFN-γ产生(图86G)。在TIL-463上,我们观察到抗PVRIG或抗TIGIT适度地增加IFN-γ产生,并且抗PVRIG和抗TIGIT的组合相加地增加IFN-γ(图86G)。在另外的分析系统中,我们利用CMVpp65反应性CD8T细胞作为模型系统来研究人T细胞反应。在CMVpp65(495-503)存在下扩增HLA-A2+CMVpp65 CD8 T细胞,并在第10天观察到PVRIG、TIGIT和PD-1的表达(图86F)。PVRIG在CMVpp65特异性CD8T细胞上表达,其量级与在人癌症样品中观察到的相似(图83)。作为靶细胞,我们鉴定了PD-L1hi(Panc05.04)和PD-L1lo(Colo205)HLA-A2+癌细胞系,它们均表达相似量的PVR和PVRL2(图86F)。我们接下来在存在对PVRIG、TIGIT和/或PD-1的阻断抗体的情况下进行CMVpp65反应性T细胞与用pp65(495-503)肽脉冲的HLA-A2+肿瘤细胞系的共培养。我们观察到抗PVRIG Ab在与Panc05.04细胞的共培养中使IFN-γ增加约50%,并且在与Colo205的共培养中最小化(图86I)。抗TIGIT与抗PVRIG Ab的组合协同增加了两种靶细胞系上的IFN-γ产生,与仅PD-1抗体相比导致IFN-γ的更大增加(图86H)。与单个抗体相比,抗PVRIG和抗PD-1的组合还导致IFN-γ产生的协同增加(图86I)。总之,这些数据表明组合PVRIG和TIGIT或PVRIG和PD1阻断在与肿瘤细胞相互作用时增加人CD8T细胞活化的有效协同作用。
PVRIG缺乏导致T细胞增殖增加和肿瘤生长减少
尽管已报道了小鼠PVRIG的序列及其与小鼠PVRL2的相互作用,但小鼠PVRIG的表达谱和免疫调节活性尚不清楚。我们首先分析了NK、NKT和T细胞中的mPVRIG RNA表达和转录物(图87A)。活化的小鼠CD8T细胞具有升高的PVRIG转录物,其与TIGIT相比具有延迟的诱导动力学(图87B)。我们通过表面等离子共振(SPR)和在几种分析方向中进行的ELISA证实重组mPVRIG结合mPVRL2蛋白(图95A-D)。我们还观察到mPVRIG和mPVR之间的相互作用,尽管亲和力比与mPVRL2的相互作用小约10倍(图95E)。为确定PVR或PVRL2是否是mPVRIG的主要配体,我们测试了小鼠PVRIG Fc与表达PVR和PVRL2的B16F10细胞的结合(数据未显示)。PVRIG Fc显示出与B16F10细胞的剂量依赖性结合,其在B16F10细胞中PVRL2siRNA敲低后完全消除(图95F)。相比之下,PVR敲低后PVRIG Fc融合蛋白的结合略微但一致地降低(图95F),表明在mPVRIG和mPVR之间发生非常弱的相互作用。总之,这些结果证明,在小鼠中,PVRL2是PVRIG的主要配体,如在人的情况下。
为了描述PVRIG在免疫反应中的作用,我们生成了PVRIG缺陷型(-/-)小鼠(图96)。PVRIG-/-小鼠以预期的孟德尔比率出生,直至10月龄也没有表现出明显的表型,并且当与野生型小鼠相比时,8周龄时具有相似的白细胞细胞性(外周和淋巴组织)(图97)。野生型(WT)CD8T细胞和NK细胞表达PVRIG,并且在PVRIG-/-细胞上未检测到PVRIG的表达(图87C)。为了检查PVRIG在调节小鼠T细胞反应中的作用,我们在2个分析系统中检测了WT和PVRIG-/-T细胞的增殖。在可溶性PVRL2Fc或对照Fc蛋白的存在下,用固定化的抗CD3活化WT或PVRIG-/-T细胞。可溶性PVRL2Fc显著抑制WT CD4+T细胞增殖但不抑制PVRIG-/-CD4+T细胞增殖(图87D),表明PVRIG-/-细胞缺乏抑制信号。为了评估小鼠PVRIG在CD8+T细胞与肿瘤细胞相互作用中的作用,将PVRIG-/-小鼠培育成pmel TCR转基因小鼠,其表达特异于gp10025-33的转基因TCR(28)。将活化的PVRIG-/-或WT Pmel CD8+T细胞与内源性表达PVRL2的B16-Db/gp100黑素瘤肿瘤细胞共培养(数据未显示)并评估活化和效应功能。与WT细胞相比,PVRIG-/-pmel CD8+T细胞显示增强的脱粒和效应细胞因子(IFN-γ和TNF-α)的产生(图87E)。这些数据表明小鼠PVRIG在与PVRL2+肿瘤靶细胞共培养时抑制肿瘤特异性T细胞的活化和效应功能。
我们接下来研究了PVRIG缺陷对MC38同基因模型中肿瘤生长的影响。与WT小鼠相比,PVRIG-/-小鼠显示出显著减少的肿瘤生长(p<0.05;图88A-B)。此外,与抗PD-L1处理的WT小鼠相比,在第14天开始的PD-L1阻断进一步扩增了PVRIG-/-小鼠的抗肿瘤反应并减少了肿瘤生长(p=0.052)(图88C-D)。为了评定PD-L1阻断对PVRIG-/-和WT肿瘤微环境的功能影响,我们在第18天从四个实验组中的每一个收集肿瘤和肿瘤引流淋巴结,当时各组已经接受2剂量的同种型或抗PD-L1但未观察到肿瘤体积的差异,并对免疫亚组成和细胞内细胞因子进行流式细胞术。免疫细胞(CD45+)向PVRIG-/-肿瘤中的运输被适度增加(相对于WT肿瘤增加88%),CD8+T细胞(与WT肿瘤相比增加92%)和产生IFN-γ的CD8+T细胞(相对于WT肿瘤增加110%;图88E)也一样。与PD-L1阻断组合,PVRIG-/-肿瘤中CD45+细胞的浸润显著增加(相对于来自抗PD-L1处理的WT小鼠的肿瘤增加160%;p=0.032;图88F)。与抗PD-L1处理的WT肿瘤相比,抗PD-L1处理的PVRIG-/-肿瘤也具有每一肿瘤重量肿瘤重量总CD8+T细胞(增加252%)和产生IFN-γ的CD8+T细胞(增加297%)(图88F)。我们还观察到PVRIG-/-小鼠的效应肿瘤浸润性CD4+T细胞和Foxp3+Treg数量未改变,与PD-L1阻断无关(数据未显示)。PVRIG-/-肿瘤中免疫功能障碍的挽救,特别是在PD-L1阻断后,反映在效应CD8+T细胞频率相对于抗PD-L1处理的WT小鼠增加的肿瘤引流淋巴结中(图88G-H)。总之,这些数据表明PVRIG消融导致与增加的抗肿瘤免疫反应相关的肿瘤生长减少,特别是当与抗PD-L1抗体治疗组合时。
抗mPVRIG抗体与PD-1抗体或TIGIT缺乏组合抑制肿瘤生长
在证明PVRIG的遗传缺陷导致肿瘤生长减少后,我们接下来的目的是证明抗体介导的PVRIG-PVRL2相互作用的抑制,特别是与PD1或TIGIT抑制剂组合,可以提高抗肿瘤免疫力,如我们的人体外数据已经证明的。为了评定这一点,我们生成了一种高亲和力、拮抗性抗mPVRIG抗体。通过FACS测定的抗mPVRIG mAb的亲和力评定显示亚纳摩尔Kd(在HEK293mPVRIG上0.33nM,在D10.G4.1细胞上0.39nM),类似于CHA.7.518.1.H4(S241P)(图95G-H)。进一步证实了该抗体的特异性,因为在mPVRIG敲低后大部分与D10.G4.1细胞的结合被消除(图95I)。通过抑制mPVRIG Fc与B16F10的结合以及mPVRL2Fc与过表达mPVRIG的HEK293细胞的结合,测试抗mPVRIG破坏mPVRIG-mPVRL2相互作用(图89A)。在两种分析形式中均观察到抗mPVRIG抗体完全阻断PVRIG-PVRL2相互作用(图89A,图95J),证明了拮抗性抗mPVRIG抗体。接下来,我们在同基因CT26皮下结肠肿瘤模型中测试mPVRIG阻断的体内功效。与相应的脾脏或引流淋巴结亚群相比,PVRIG表达在肿瘤微环境中的NK和T细胞上升高(图89B)。用抗mPVRIG阻断mAb作为单一疗法治疗荷瘤小鼠未能减少肿瘤生长(数据未显示)。然而,抗PVRIG和抗PD-L1mAb的组合有效地延迟了CT26肿瘤生长(图89C)并且显著增加了处理小鼠的存活率,具有40%的完全应答者率(图89D)。与我们的人T细胞分析数据一致,这些数据表明PD-1和PVRIG抑制剂的组合可以减少肿瘤生长。
我们还测试了消除PVRIG和TIGIT信号传导在调节抗肿瘤反应中的作用。对于这些研究,我们测试了抗mPVRIG抗体在接种B16F10/Db-hmgp100黑素瘤细胞的WT或TIGIT-/-小鼠中的功效。与同种型处理相比,用抗mPVRIG阻断mAb处理荷瘤WT小鼠具有较小的作用(第11天为17%TGI,端点第18天为8%TGI)。与WT对照组相比,TIGIT缺失对肿瘤生长的影响也很小(第11天为17%TGI,端点为13%TGI)。然而,当TIGIT缺失与抗PVRIG mAb处理组合时,观察到显著的肿瘤生长抑制(第11天为63%,端点为49%TGI(图89E,F)。根据肿瘤生长抑制,与WT对照组相比,用抗PVRIG mAb 407处理的TIGIT-/-小鼠表现出增加的存活率,然而,在这种侵袭性快速生长的肿瘤模型中未实现统计学显著性(数据未显示)。总之,这些数据证明了PVRIG抑制剂与PD1或TIGIT抑制剂的协同活性,并且符合我们的人类功能数据,提供了用PD1或TIGIT抑制剂临床测试CHA.7.518.1.H4(S241P)的基本原理。
讨论
尽管靶向免疫T细胞检查点(如CTLA4和PD-1)的抗体已经增加了癌症患者的存活率,但是大多数癌症患者仍然没有显示出临床益处。对此的一个可能原因是存在抑制T细胞抗肿瘤免疫力的额外T细胞调节剂。在这里,我们阐明了PVRIG在调节效应T细胞功能中的作用,并证明PVRIG拮抗作用增加T细胞抗肿瘤反应并减少肿瘤生长。
PVRIG是nectin和nectin样家族的新成员,属于家族中几种已知的免疫调节受体理解该家族内受体的相互作用对于理解PVRIG的相关性和作用机制至关重要。在这些受体中,DNAM、TIGIT和CD96在共享相同配体PVR和PVRL2方面与PVRIG最密切相关。DNAM与PVR和PVRL2结合,向淋巴细胞递送共刺激信号。据报道,TIGIT与PVR结合,与PVRL2结合较弱。我们无法使用ELISA或SPR检测TIGIT和PVRL2之间的相互作用(数据未显示),表明PVR是TIGIT的主要配体。使用类似的方法,我们和最近的报告检测到PVRL2和PVRIG之间的高亲和力相互作用,表明PVRIG是PVRL2的主要抑制性受体。这些数据表明TIGIT和PVRIG在该轴上包含双信号传导节点,并且需要阻断两者以最大限度地增加该家族内的T细胞活化。除了与不同配体相互作用外,我们观察到PVRIG在效应或记忆T细胞上具有最高表达,类似于PD-1,而TIGIT在调节性T细胞上具有最高表达。此外,我们观察到与TIGIT相比,PVRIG在T细胞活化后显示晚期诱导。这些数据表明PVRIG在该家族中具有独特的作用,以高亲和力与PVRL2相互作用,并且在记忆细胞上具有分化表达,并且具有对TIGIT的晚期诱导特征。
这里报道的是PVRIG在使用PVRIG缺陷小鼠和拮抗性抗PVRIG抗体调节抗肿瘤T细胞反应中的新作用。这里证明小鼠PVRIG在T细胞和NK细胞上表达,在淋巴细胞活化时诱导,并且与外周相比在TME中最高。此外,我们显示PVRIG缺乏导致体外T细胞功能增加和体内肿瘤生长减少。当与抗PD-L1或TIGIT的遗传缺陷组合时,PVRIG的拮抗性抗体减少肿瘤生长,证明PVRIG在调节T细胞反应中的必要作用。这些新颖的数据使用临床前肿瘤模型提供体内概念证据,靶向PVRIG与PD1或TIGIT拮抗作用组合是用于治疗癌症的潜在新疗法。
这里报道了一种高亲和力的抗人PVRIG抗体,它破坏了我们在临床试验中进行测试的PVRIG和PVRL2的相互作用。为了确定可能为临床试验中的患者选择提供信息的潜在癌症适应症,我们通过FACS和IHC检查了该轴在人类癌症中的表达谱。对于PVRIG,我们通过FACS观察到PVRIG在CD4和CD8T细胞上的平均表达在子宫内膜癌、肺癌、肾癌和卵巢癌中最高,尽管这种差异没有达到与其它癌症类型的统计学差异,如通过ANOVA与当前样本数量的图基多重比较检验所测定。由于PVRIG在T细胞活化时被诱导并且假设大多数肿瘤浸润性T细胞是抗原经历的,因此中值PVRIG表达在肿瘤样品和癌症类型中相似可能并不令人惊讶。我们观察到PVRIG表达与PD-1和TIGIT表达相关,表明这3种抑制性受体的相互作用在调节抗肿瘤反应中是重要的。在本报告中,我们观察到当CD8T细胞肿瘤细胞共培养物中PVRIG抗体与TIGIT抗体组合时T细胞功能的协同增加,优于PD-1与PVRIG或TIGIT抑制剂的组合。这些数据以及先前的研究证明了PVRIG和TIGIT在调节DC-T细胞相互作用中的作用,表明该途径可能参与调节T细胞-APC和T细胞-肿瘤细胞相互作用,并提供靶向PVRIG可以增加抗肿瘤免疫反应的多种机制。
由于PD-L1的表达与PD-1抑制剂的临床反应相关,我们还通过FACS和IHC分析了肿瘤中PVRL2的表达,以评定某些癌症类型是否具有更高的表达。评定解离的肿瘤细胞,我们观察到当与其它肿瘤类型相比时,来自子宫内膜、头颈部、肾、肺和卵巢样本的巨噬细胞上的平均PVRL2表达更高。与其它癌症相比,CD45-非免疫细胞上的平均PVRL2表达在乳腺癌、结肠直肠癌、子宫内膜癌、肺癌、卵巢癌和前列腺癌中的表达更高。基于PVRIG和PVRL2的表达,我们确定在具有高PVRIG和PVRL2表达的肿瘤中,子宫内膜癌、头颈癌、肺癌、肾癌和卵巢癌的发病率较高,并且这些癌症是可能对这种途径的抑制剂产生反应的潜在癌症。
在此观察到PVRL2表达可以通过炎症介质在体外在抗原产生细胞上调节,而癌细胞上的PVRL2表达没有改变。这些数据表明PVRL2在抗原呈递细胞上的表达可以通过炎症调节并且可以是发炎的肿瘤的指示物。实际上,我们确实观察到所有PD-L1+肿瘤也在肿瘤细胞和免疫区室中表达PVRL2。PVRL2在骨髓细胞上的表达可以帮助预测在与PD-1或TIGIT的组合设置中对PVRIG抑制剂的反应,以进一步增强抗肿瘤效果。有趣的是,一部分PD-L1阴性肿瘤也表达PVRL2,主要是在肿瘤细胞上,而不是在免疫细胞上。据报道,PVR和PVRL2在上皮细胞上的表达在肿瘤发生中以及对应激和DNA损伤的反应中被诱导。这些数据与体外发现一致,即PVRL2在肿瘤细胞上的表达调节不依赖于IFN-g。由于PD-L1在响应IFN-g的适应性抗性设置中被诱导并且与炎症反应相关,PVRL2在不存在PD-L1的情况下的表达表明PVRL2表达比PD-L1更普遍,并且PVRL2在非发炎的肿瘤中表达。基于以上所述,PVR和PVRL2的存在可能有助于抑制独立于PD-L1的免疫反应,并且PVRIG和TIGIT的抑制剂对于作为PD-L1阴性或无反应者/PD-1抑制剂的进展者的患者尤其重要。
总之,本报告提供了PVRIG生物学的几个新见解,包括表征该轴在人类癌症中的表达,证明PVRIG/TIGIT在调节CD8-肿瘤细胞相互作用中的突出作用,并显示PVRIG拮抗作用与PD-1抑制或TIGIT缺乏组合导致肿瘤生长的协同减少。这些数据扩展了我们目前对PVRIG生物学的理解,并为CHA.7.518.1.H4(S241P)(一种高亲和力抗PVRIG抗体)在癌症患者中的临床测试提供了理论基础。
参考文献
1.Hanahan D,Weinberg RA.《癌症的标志(The hallmarks ofcancer)》.《细胞(Cell)》2000;100(1):57-70。
2.Hanahan D,Weinberg RA.《癌症的标志:下一代(Hallmarks of cancer:thenext generation)》.《细胞》2011;144(5):646-74doi 10.1016/j.cell.2011.02.013。
3.Galon J,Mlecnik B,Bindea G,Angell HK,Berger A,Lagorce C等人,《在恶性肿瘤的分类中引入‘免疫评分’(Towards the introduction of the′Immunoscore′in theclassification of malignant tumours)》.《病理学杂志(J Pathol)》2014;232(2):199-209doi 10.1002/path.4287。
4.Zitvogel L,Galluzzi L,Smyth MJ,Kroemer G.《常规和靶向抗癌疗法的作用机制:恢复免疫监视(Mechanism of action of conventional and targeted anticancertherapies:reinstating immunosurveillance)》.《免疫力(Immunity)》2013;39(1):74-88doi 10.1016/j.immuni.2013.06.014。
5.Danilova L,Wang H,Sunshine J,Kaunitz GJ,Cottrell TR,Xu H等人,《PD-1/PD-L轴表达与黑素瘤和其它实体瘤中的溶细胞活性,突变负荷和预后的关联(Associationof PD-1/PD-L axis expression with cytolytic activity,mutational load,andprognosis in melanoma and other solid tumors)》.《美国国家科学院院刊》2016;113(48):E7769-E77doi 10.1073/pnas.1607836113。
6.Topalian SL,Taube JM,Anders RA,Pardoll DM.《机制驱动的生物标志物指导癌症疗法中的免疫检查点阻断(Mechanism-driven biomarkers to guide immunecheckpoint blockade in cancer therapy)》.《自然综述癌症(Nat Rev Cancer)》2016;16(5):275-87doi10.1038/nrc.2016.36。
7.Zarour HM.《逆转癌症中的T细胞功能障碍和耗竭(Reversing T-cellDysfunction and Exhaustion in Cancer)》.《临床癌症研究(Clin Cancer Res)》2016;22(8):1856-64doi10.1158/1078-0432.CCR-15-1849。
8.Pardoll DM.《阻断癌症免疫疗法中的免疫检查点(The blockade of immunecheckpoints in cancer immunotherapy)》.《自然综述癌症》2012;12(4):252-64doi10.1038/nrc3239。
9.Sharma P,Allison JP.《癌症疗法中的免疫检查点目标:针对具有治愈潜力的组合策略(Immune checkpoint targeting in cancer therapy:toward combinationstrategies with curative potential)》.《细胞》2015;161(2):205-14 doi10.1016/j.cell.2015.03.030。
10.Cha E,Klinger M,Hou Y,Cummings C,Ribas A,Faham M等人,《在癌症患者中抗CTLA-4治疗后,T细胞克隆型稳定性的存活率提高(Improved survival with T cellclonotype stability after anti-CTLA-4treatment in cancer patients)》.《科学转化医学(Sci Transl Med)》2014;6(238):238ra70 doi10.1126/scitranslmed.3008211。
11.Robert L,Tsoi J,Wang X,Emerson R,Homet B,Chodon T等人,《CTLA4阻断拓宽外周T细胞受体库(CTLA4blockade broadens the peripheral T-cell receptorrepertoire).《临床癌症研究》2014;20(9):2424-32doi10.1158/1078-0432.CCR-13-2648。
12.Tumeh PC,Harview CL,Yearley JH,Shintaku IP,Taylor EJ,Robert L等人,《PD-1阻断通过抑制适应性免疫抗性诱导反应(PD-1blockade induces responses byinhibiting adaptive immune resistance)》.《自然》2014;515(7528):568-71doi10.1038/nature13954。
13.Chan CJ,Andrews DM,Smyth MJ.《在免疫监视和癌症免疫疗法中与nectin和nectin样蛋白相互作用的受体(Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer)》.《免疫学当前观点(Curr Opin Immunol)》2012;24(2):246-51 doi10.1016/j.coi.2012.01.009。
14.Martinet L,Smyth MJ.《通过配对受体平衡自然杀伤细胞的活化(Balancingnatural killer cell activation through paired receptors)》.《自然综述免疫学(NatRev Immunol)》2015;15(4):243-54doi 10.1038/nri3799。
15.Zhu Y,Paniccia A,Schulick AC,Chen W,Koenig MR,Byers JT等人,《鉴定CD112R作为人T细胞的新检查点(Identification of CD112R as a novel checkpointfor human T cells)》.《实验医学杂志(J Exp Med)》2016;213(2):167-76doi 10.1084/jem.20150785。
16.Bottino C,Castriconi R,Pende D,RiveraP,Nanni M,Carnemolla B等人,《鉴定PVR(CD155)和Nectin-2(CD112)作为人DNAM-1(CD226)活化分子的细胞表面配体(Identification of PVR(CD155)and Nectin-2(CD112)as cell surface ligands forthe human DNAM-1(CD226)activating molecule)》.《实验医学杂志》2003;198(4):557-67doi 10.1084/jem.20030788。
17.Yu X,Harden K,Gonzalez LC,Francesco M,Chiang E,Irving B等人,《表面蛋白TIGIT通过促进成熟免疫调节树突状细胞的产生来抑制T细胞活化(The surfaceprotein TIGIT suppresses T cell activation by promoting the generation ofmature immunoregulatory dendritic cells)》.《自然-免疫学(Nat Immunol)》2009;10(1):48-57doi 10.1038/ni.1674。
18.Stanietsky N,Simic H,Arapovic J,Toporik A,Levy O,Novik A等人,《TIGIT与PVR和PVRL2的相互作用抑制人NK细胞的细胞毒性(The interaction of TIGITwith PVR and PVRL2inhibits human NK cell cytotoxicity)》.《美国国家科学院院刊》2009;106(42):17858-63doi 10.1073/pnas.0903474106。
19.Johnston RJ,Comps-Agrar L,Hackney J,Yu X,Huseni M,Yang Y等人,《免疫受体TIGIT调节抗肿瘤和抗病毒CD8(+)T细胞效应功能(The immunoreceptor TIGITregulates antitumor and antiviral CD8(+)T cell effector functtion)》.《癌细胞(Cancer Cell)》2014;26(6):923-37 doi10.1016/j.ccell.2014.10.018。
20.Zhang B,Zhao W,Li H,Chen Y,Tian H,Li L等人,《免疫受体TIGIT通过与CD155相互作用抑制人细胞因子诱导的杀伤细胞的细胞毒性(Immunoreceptor TIGITinhibits the cytotoxicity of human cytokine-induced killer cells byinteracting with CD155)》.《癌症免疫与免疫疗法(Cancer Immunol Immunother)》2016;65(3):305-14doi 10.1007/s00262-016-1799-4。
21.Chan CJ,Martinet L,Gilfillan S,Souza-Fonseca-Guimaraes F,Chow MT,Town L等人,《受体CD96和CD226在调节自然杀伤细胞功能方面彼此相对(The receptorsCD96and CD226oppose each other in the regulation of natural killer cellfunctions)》.《自然-免疫学》2014;15(5):431-8 doi 10.1038/ni.2850。
22.Fuchs A,Cella M,Giurisato E,Shaw AS,Colonna M.《前沿:CD96(tactile)通过与脊髓灰质炎病毒受体(CD155)相互作用促进NK细胞-靶细胞粘附(Cutting edge:CD96(tactile)promotes NK cell-target cell adhesion by interacting with thepoliovirus receptor(CD155))》.《免疫学杂志(J Immunol)》2004;172(7):3994-8。
23.Machlenkin A,Uzana R,Frankenburg S,Eisenberg G,Eisenbach L,Pitcovski J等人,《通过细胞吞噬作用捕获肿瘤细胞膜有助于检测和分离肿瘤特异性功能性CTL(Capture of tumor cell membranes by trogocytosis facilitates detectionand isolation of tumor-specific functional CTLs)》.《癌症研究》2008;68(6):2006-13doi 10.1158/0008-5472.CAN-07-3119。
24.Ohtani H,Nakajima T,Akari H,Ishida T,Kimura A.《灵长类动物免疫球蛋白超家族基因的分子进化(Molecular evolution of immunoglobulin superfamilygenes in primates)》.《免疫遗传学(Immunogenetics)》2011;63(7):417-28doi10.1007/s00251-011-0519-7。
25.Taube JM,Anders RA,Young GD,Xu H,Sharma R,McMiller TL等人,《在人黑素细胞病变中炎症反应与B7-h1表达的共定位支持免疫逃逸的适应性抗性机制(Colocalization of inflammatory response with B7-h1 expression in humanmelanocytic lesions supports an adaptive resistance mechanism of immuneescape)》.《科学转化医学》2012;4(127):127ra37 doi10.1126/scitranslmed.3003689。
26.Cerboni C,Fionda C,Soriani A,Zingoni A,Doria M,Cippitelli M等人,《DNA损伤反应:正常、感染和癌细胞中NKG2D和DNAM-1配体表达调控的常见途径(The DNADamage Response:A Common Pathway in the Regulation of NKG2D and DNAM-1LigandExpression in Normal,Infected,and Cancer Cells)》.《免疫学前沿(Front Immunol)》2014;4:508doi 10.3389/fimmu.2013.00508。
27.de Andrade LF,Smyth MJ,Martinet L.《DNAM-1控制自然杀伤细胞通过nectin和nectin样蛋白起作用(DNAM-1control of natural killer cells functionsthrough nectin and nectin-1ike proteins)》.《免疫学和细胞生物学(Immunol CellBiol)》2014;92(3):237-44doi10.1038/icb.2013.95。
28.Overwijk WW,Tsung A,Irvine KR,Parkhurst MR,Goletz TJ,Tsung K等人,《gp100/pmel17是鼠肿瘤排斥抗原:使用高亲和力,改变的肽配体诱导“自身”反应性的杀肿瘤T细胞(gp100/pmel 17 is a murine tumor rejection antigen:induction of″self′-reactive,tumoricidal T cells using high-affinity,altered peptide ligand)》.《实验医学杂志》1998;188(2):277-86.
S.实例19:肿瘤细胞杀伤分析
通过与人CMV特异性CD8+T细胞的体外共培养分析评定抗人TIGIT抗体和CHA.7.518.1.H4(S241P)单独或组合对肿瘤细胞杀伤的作用。所述分析中使用的HLA-A2+靶细胞系是黑素瘤细胞系Mel624,其稳定表达人PVR和PVRL2;以及胰腺癌细胞系Panc05.04,其表达内源水平的人PVR和PVRL2。通过慢病毒转导(System Biosciences)用荧光素酶报告基因稳定转导两种肿瘤细胞系。将Me1624和Panc05.04细胞分别用0.0033μg/ml或0.01μg/ml的CMV pp65肽在37℃脉冲1小时。然后洗涤细胞并以20,000个细胞/孔铺板。将基准抗人TIGIT抗体和CHA.7.518.1.H4(S241P)组合或与10μg/ml的对照hIgG4同种型抗体一起加入培养物中。来自三个不同供体(指定为供体4、供体72和供体234)的人CMV特异性CD8+T细胞以100,000个细胞/孔添加。将共培养物在37℃下孵育16小时。孵育后,从孵育箱中取出平板并使其平衡至室温30分钟。将Bio-Glo荧光素酶底物(Promega)加入每个孔中,并将混合物在室温下避光平衡10分钟。在具有超灵敏发光检测器的EnVision多标记读取器(PerkinElmer)上定量发光或相对光单位(RLU)。通过[(治疗抗体的RLU-仅培养基的RLU)/仅培养基的RLU]×100计算特异性杀伤百分比。
结果
图99A和B分别显示抗TIGIT抗体和CHA.7.518.1.H4(S241P)处理对Me1624和Panc05.04细胞杀伤的效果。当单独添加到共培养物中时,与同种型对照抗体相比,抗TIGIT抗体和CHA.7.518.1.H4(S241P)均诱导肿瘤细胞系的显著T细胞杀伤。对于抗TIGIT抗体,在测试的3个不同CMV反应性供体中,Mel624细胞的特异性杀伤百分比范围为19-41%,Panc05.04细胞的特异性杀伤百分比范围为3-44%。对于CHA.7.518.1.H4(S241P),Mel624细胞的特异性杀伤百分比范围为16-20%,Panc05.04细胞的特异性杀伤百分比范围为0.21-29%。在一些情况下,在抗TIGIT抗体和CHA.7.518.1.H4(S241P)的组合治疗中观察到对肿瘤细胞杀伤的累加作用。
为了确定抗TIGIT抗体和CHA.7.518.1.H4(S241P)对肿瘤细胞杀伤的作用是否是剂量依赖性的,每种抗体用10点、2倍稀释系列进行分析,抗TIGIT抗体以0.5μg/ml开始,而CHA.7.518.1.H4(S241P)以10μg/ml开始(图100)。当抗TIGIT抗体BM26或CPA.9.086与CHA.7.518.1.H4(S241P)组合时,Mel624杀伤以剂量依赖性方式降低。相比BM26和CHA.7.518.1.H4(S241P)组合的EC50为2.6±1.7nM,CPA.9.086和CHA.7.518.1.H4(S241P)组合观察到更有效的杀伤,EC50为0.40±0.49nM。
T.实例20:KD的生物物理测量
使用KinExA 3200仪器(Sapidyne Instruments,Boise,ID,USA)在22℃下进行KinExA平衡实验。重组的带His标签的人TIGIT获自Sino Biologicals(中国北京)并重构于1×PBS中。在脱气的PBST缓冲液(含0.05%tween 20的PBS)和100μg/mL过滤的BSA和0.02%叠氮化钠中制备用于KinExA分析的所有抗原和抗体样品。使用的二级检测抗体是AlexaFlour 647标记的山羊抗人IgG(H+L)(Jackson ImmunoResearch Laboratories),其在上述PBST缓冲液(含有BSA和叠氮化物)中由1×PBS中的0.5mg/mL储备液(pH 7.4)稀释400至700倍。对于每个KinExA实验,将约20μg人TIGIT稀释到1mL 50mM碳酸钠(pH 9.2)中,将其直接加入50mg二氢唑酮珠(Ultralink Support,Thermo Scientific,Rockford,IL,USA)中并在4℃下摇动过夜。摇动后,用含有10mg/mL BSA的1M Tris缓冲液(pH8.5)冲洗珠粒一次,并在室温下在相同缓冲液中摇动一小时。将偶联的珠粒加入KinExA仪器中的珠粒储库中,并用含有0.02%叠氮化钠的1×HBS-N(0.01M Hepes,0.15M NaCl,GE Healthcare)稀释至约30mL,含有0.02%叠氮化钠的1×HBS-N也是KinExA仪器的运行缓冲液。制备后立即使用所有抗原偶联的珠粒。
对于CPA.9.086的KD的两次重复测量(表1),范围介于957aM-212pM的14个浓度的TIGIT在室温下用2.5pM CPA.9.086和1.8pM CPA.9.086结合位点平衡约72小时。对于CPA.9.083,范围介于478aM-196pM的14个浓度的TIGIT用1.8pM CPA.9.083结合位点平衡约72小时。对于基准抗体BM26hIgG4的一式两份测量,范围介于9.6fM-3.53nM的14个浓度的TIGIT用20pM BM26结合位点和8.0pM BM26结合位点平衡约72小时。对于CHA.9.547.13,范围介于10.5fM-2.2nM的14个浓度的TIGIT用8pM mAb CHA.9.547.13结合位点平衡约72小时。对于所有实验,流过珠粒包的每个平衡样品的体积范围为4mL至11mL,流速为0.25mL/min。使用KinExA Pro软件(版本4.2.10;Sapidyne Instruments)将数据与1∶1“标准平衡”结合模型拟合以估计KD并产生曲线拟合的95%置信区间(CI)。
结果
CPA.9.083和CPA.9.086都以飞摩尔结合亲和力与人TIGIT结合,而CHA.9.547.13和BM26以皮摩尔亲和力结合。因此,CPA.9.083和CPA.9.086以所测试的四种不同抗体的最高亲和力与人TIGIT结合。
表1:由KinExA测定的抗人TIGIT hIgG4抗体的KD测量值
U.实例21:靶向免疫检查点的新型治疗抗体CPA.9.086的开发和功能表征
背景:TIGIT是一种在淋巴细胞上高表达的共抑制受体,包括效应和调节CD4+T细胞(Treg)、效应CD8+T细胞和NK细胞,可渗入不同类型的肿瘤。TIGIT与其报道的配体脊髓灰质炎病毒受体(PVR)和PVR样蛋白(PVRL2和PVRL3)的结合直接抑制淋巴细胞活化。PVR也在肿瘤中广泛表达,表明TIGIT-PVR信号轴可能是癌症的主要免疫逃逸机制。我们在此报告靶向TIGIT的治疗抗体CPA.9.086的生物物理和功能表征。我们还证明了TIGIT的共同阻断和新的检查点抑制剂PVRIG增强T细胞反应。
材料和方法:进行人噬菌体展示和小鼠杂交瘤抗体发现活动以产生治疗性抗TIGIT抗体。评估所得抗体以高亲和力结合重组和细胞表面表达的人TIGIT的能力。还检查了抗体与食蟹猕猴和小鼠TIGIT的交叉反应性。以高亲和力与人TIGIT结合并与食蟹猴TIGIT交叉反应的抗体子集进一步表征其阻断TIGIT和PVR之间相互作用的能力。筛选阻断抗体在体外单独或与抗PVRIG抗体CHA.7.518.1.H4(S241P)组合增强抗原特异性T细胞活化的能力。
结果:鉴定出以高飞摩尔亲和力与人TIGIT结合的先导抗体CPA.9.086。该抗体以比测试的基准抗体更高的亲和力与人CD8+T细胞内源性表达的TIGIT结合,并且还与食蟹猴和小鼠TIGIT交叉反应。当测试体外活性时,CPA.9.086通过CMV特异性CD8+T细胞增强细胞因子分泌和肿瘤细胞杀伤,其具有相较于测试的基准抗体优异或相当的效力。CPA.9.086与抗PD1抗体或CHA.7.518.1.H4(S241P)的组合导致增强的CMV特异性CD8+T细胞活性。此外,我们证明与外周血相比,TIGIT主要在来自实体瘤的Treg和效应CD8+T细胞上表达,表明这些群体可能优先被CPA.9.086靶向。
结论:描述了目前处于临床前开发的极高亲和力的拮抗性TIGIT抗体CPA.9.086的开发。我们假设CPA.9.086的飞摩尔亲和力可使得患者的给药降低和频率降低。CPA.9.086可单独或与其它检查点抗体组合增强人T细胞活化。因此,该数据证明了靶向TIGIT、PD1和PVRIG用于治疗癌症的效用。

Claims (16)

1.一种包含与人TIGIT(SEQ ID NO:97)结合的抗原结合结构域的组合物,其包含:
a)包含SEQ ID NO:160的重链可变结构域;和
b)包含SEQ ID NO:165的轻链可变结构域。
2.根据权利要求1所述的组合物,其中所述组合物是抗体,所述抗体包含:
a)包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:160;和
b)包含VL-VC的轻链,其中所述VL包含SEQ ID NO:165并且VC是κ或λ。
3.根据权利要求2所述的组合物,其中所述CH1-铰链-CH2-CH3的序列选自人IgG1、IgG2和IgG4及其变体。
4.根据权利要求2或3所述的组合物,其中所述重链具有SEQ ID NO:164并且所述轻链具有SEQ ID NO:169。
5.根据权利要求2至4中任一项所述的组合物,其还包含与人检查点受体蛋白结合的第二抗体。
6.根据权利要求5所述的组合物,其中所述第二抗体结合人PD-1。
7.根据权利要求5所述的组合物,其中所述第二抗体结合人PVRIG(SEQ ID NO:2)。
8.根据权利要求7所述的组合物,其中所述第二抗体包含抗原结合结构域,其包含有包含SEQ ID NO:5的重链可变结构域和包含SEQ ID NO:10的轻链可变结构域。
9.根据权利要求7所述的组合物,其中所述第二抗体的重链具有SEQ ID NO:9并且所述第二抗体的轻链具有SEQ ID NO:14。
10.一种核酸组合物,其包含:
a)编码包含SEQ ID NO:160的重链可变结构域的第一核酸;和
b)编码包含SEQ ID NO:165的轻链可变结构域的第二核酸。
11.根据权利要求10所述的核酸组合物,其中所述第一核酸编码包含VH-CH1-铰链-CH2-CH3的重链,其中所述VH包含SEQ ID NO:160;并且所述第二核酸编码包含VL-VC的轻链,其中所述VL包含SEQ ID NO:165并且VC是λ结构域。
12.一种表达载体组合物,其包含有分别包含根据权利要求10或11所述的第一核酸的第一表达载体和包含根据权利要求10或11所述的第二核酸的第二表达载体。
13.一种表达载体组合物,其包含表达载体,所述表达载体包含分别根据权利要求10或11所述的第一核酸和根据权利要求10或11所述的第二核酸。
14.一种宿主细胞,其包含根据权利要求12或13所述的表达载体组合物。
15.一种制造抗TIGIT抗体的方法,其包含:
a)在表达所述抗体的条件下培养根据权利要求14所述的宿主细胞;和
b)回收所述抗体。
16.一种通过活化T细胞治疗癌症的方法,其包含施用根据权利要求1至9中任一项所述的组合物。
CN201780050131.2A 2016-08-17 2017-08-17 抗tigit抗体,抗pvrig抗体及其组合 Active CN110088132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011070171.3A CN112274637A (zh) 2016-08-17 2017-08-17 抗tigit抗体、抗pvrig抗体及其组合

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US201662376335P 2016-08-17 2016-08-17
US201662376334P 2016-08-17 2016-08-17
US62/376,335 2016-08-17
US62/376,334 2016-08-17
US201662417217P 2016-11-03 2016-11-03
US62/417,217 2016-11-03
US201762477974P 2017-03-28 2017-03-28
US62/477,974 2017-03-28
US201762513775P 2017-06-01 2017-06-01
US201762513771P 2017-06-01 2017-06-01
US201762513916P 2017-06-01 2017-06-01
US62/513,775 2017-06-01
US62/513,916 2017-06-01
US62/513,771 2017-06-01
US201762538561P 2017-07-28 2017-07-28
US62/538,561 2017-07-28
PCT/IB2017/001256 WO2018033798A1 (en) 2016-08-17 2017-08-17 Anti-tigit antibodies, anti-pvrig antibodies and combinations thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011070171.3A Division CN112274637A (zh) 2016-08-17 2017-08-17 抗tigit抗体、抗pvrig抗体及其组合

Publications (2)

Publication Number Publication Date
CN110088132A true CN110088132A (zh) 2019-08-02
CN110088132B CN110088132B (zh) 2020-10-27

Family

ID=60302413

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011070171.3A Pending CN112274637A (zh) 2016-08-17 2017-08-17 抗tigit抗体、抗pvrig抗体及其组合
CN201780050131.2A Active CN110088132B (zh) 2016-08-17 2017-08-17 抗tigit抗体,抗pvrig抗体及其组合

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011070171.3A Pending CN112274637A (zh) 2016-08-17 2017-08-17 抗tigit抗体、抗pvrig抗体及其组合

Country Status (25)

Country Link
US (6) US10751415B2 (zh)
EP (2) EP3347379B9 (zh)
JP (3) JP7068275B2 (zh)
KR (3) KR102450208B1 (zh)
CN (2) CN112274637A (zh)
AU (2) AU2017313405B2 (zh)
BR (1) BR112019003129A2 (zh)
CA (1) CA3032331A1 (zh)
CL (1) CL2019000424A1 (zh)
CO (1) CO2019001980A2 (zh)
CY (1) CY1122653T1 (zh)
DK (1) DK3347379T5 (zh)
ES (1) ES2774320T3 (zh)
HR (1) HRP20200189T1 (zh)
HU (1) HUE048313T2 (zh)
IL (2) IL301682A (zh)
LT (1) LT3347379T (zh)
MX (3) MX2019001878A (zh)
MY (1) MY194032A (zh)
PL (1) PL3347379T3 (zh)
PT (1) PT3347379T (zh)
SG (1) SG11201901077RA (zh)
SI (1) SI3347379T1 (zh)
UA (1) UA126802C2 (zh)
WO (1) WO2018033798A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433055A (zh) * 2020-11-04 2021-03-02 上海药明生物技术有限公司 一种基于报告基因方法检测pvrig抗体的生物学活性的方法
WO2021180205A1 (zh) * 2020-03-13 2021-09-16 江苏恒瑞医药股份有限公司 Pvrig结合蛋白及其医药用途
WO2022111612A1 (zh) * 2020-11-26 2022-06-02 信达生物制药(苏州)有限公司 包含抗tigit/pd-1双特异性抗体的制剂及其制备方法和用途
CN114644711A (zh) * 2022-03-07 2022-06-21 南京诺艾新生物技术有限公司 重组抗人pvrig抗体及应用
WO2022188721A1 (zh) * 2021-03-08 2022-09-15 合肥天港免疫药物有限公司 抗pvrig蛋白抗体或抗体片段及其用途
WO2023006040A1 (zh) * 2021-07-30 2023-02-02 江苏先声药业有限公司 抗pvrig/抗tigit双特异性抗体和应用
WO2023040940A1 (zh) * 2021-09-15 2023-03-23 江苏恒瑞医药股份有限公司 Pvrig/tigit结合蛋白联合免疫检查点抑制剂用于治疗癌症

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3295951T3 (pl) 2015-02-19 2020-10-05 Compugen Ltd. Przeciwciała anty-pvrig i sposoby ich zastosowania
WO2016134335A2 (en) 2015-02-19 2016-08-25 Compugen Ltd. Pvrig polypeptides and methods of treatment
EP3297672B1 (en) 2015-05-21 2021-09-01 Harpoon Therapeutics, Inc. Trispecific binding proteins and methods of use
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
DK3347379T5 (da) * 2016-08-17 2020-06-15 Compugen Ltd Anti-tigit-antistoffer, anti-pvrig-antistoffer og kombinationer deraf
TWI805582B (zh) 2017-05-01 2023-06-21 美商艾吉納斯公司 抗tigit抗體類和使用彼等之方法
CA3063359A1 (en) 2017-05-12 2018-11-15 Harpoon Therapeutics, Inc. Mesothelin binding proteins
EP3630180A1 (en) * 2017-06-01 2020-04-08 Compugen Ltd. Triple combination antibody therapies
TWI803523B (zh) 2017-09-29 2023-06-01 大陸商江蘇恆瑞醫藥股份有限公司 Tigit抗體、其抗原結合片段及醫藥用途
JP7066837B2 (ja) 2017-10-13 2022-05-13 ハープーン セラピューティクス,インク. B細胞成熟抗原結合タンパク質
EP3697435A1 (en) * 2017-10-20 2020-08-26 Fred Hutchinson Cancer Research Center Compositions and methods of immunotherapy targeting tigit and/or cd112r or comprising cd226 overexpression
JP2021519298A (ja) 2018-03-27 2021-08-10 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 紫外線シグナルを使用した力価のリアルタイムモニタリング
US20190382477A1 (en) * 2018-06-01 2019-12-19 Compugen Ltd. Anti-pvrig/anti-tigit bispecific antibodies and methods of use
KR20210032488A (ko) * 2018-07-20 2021-03-24 서피스 온콜로지, 인크. 항-cd112r 조성물 및 방법
CN108948182A (zh) * 2018-07-25 2018-12-07 中国人民解放军第四军医大学 Tigit-ecd重组蛋白抗同种异体免疫排斥反应的应用
CN112638944A (zh) 2018-08-23 2021-04-09 西进公司 抗tigit抗体
WO2020069028A1 (en) 2018-09-25 2020-04-02 Harpoon Therapeutics, Inc. Dll3 binding proteins and methods of use
CN113614109A (zh) 2018-12-21 2021-11-05 Ose免疫疗法公司 双功能抗pd-1/il-7分子
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
WO2020172658A1 (en) 2019-02-24 2020-08-27 Bristol-Myers Squibb Company Methods of isolating a protein
JP2022532930A (ja) 2019-05-23 2022-07-20 ブリストル-マイヤーズ スクイブ カンパニー 細胞培養培地をモニターする方法
TWI760751B (zh) 2019-05-29 2022-04-11 美商美國禮來大藥廠 Tigit及pd-1/tigit-結合分子
EP3976832A1 (en) * 2019-05-30 2022-04-06 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
JP2022537053A (ja) * 2019-06-21 2022-08-23 シングル セル テクノロジー, インコーポレイテッド 抗tigit抗体
AU2020314129A1 (en) * 2019-07-15 2022-02-24 Shanghai Junshi Biosciences Co., Ltd. Anti-tigit antibodies and application thereof
CN114615993A (zh) * 2019-07-29 2022-06-10 康姆普根有限公司 抗pvrig抗体制剂及其用途
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
CN112625130B (zh) 2019-09-24 2023-08-29 财团法人工业技术研究院 抗-tigit抗体及使用之方法
US20230057899A1 (en) 2019-12-05 2023-02-23 Compugen Ltd. Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
WO2021122866A1 (en) 2019-12-17 2021-06-24 Ose Immunotherapeutics Bifunctional molecules comprising an il-7 variant
CN113563470B (zh) * 2020-04-29 2023-02-10 广州昂科免疫生物技术有限公司 结合tigit抗原的抗体及其制备方法与应用
EP4147053A1 (en) 2020-05-07 2023-03-15 Institut Curie Antxr1 as a biomarker of immunosuppressive fibroblast populations and its use for predicting response to immunotherapy
US11820824B2 (en) 2020-06-02 2023-11-21 Arcus Biosciences, Inc. Antibodies to TIGIT
TW202200616A (zh) 2020-06-18 2022-01-01 美商建南德克公司 使用抗tigit抗體及pd-1軸結合拮抗劑之治療
MX2023000197A (es) 2020-07-07 2023-02-22 BioNTech SE Arn terapeutico para el cancer positivo para vph.
TW202216778A (zh) * 2020-07-15 2022-05-01 美商安進公司 Tigit及cd112r阻斷
WO2022047309A1 (en) * 2020-08-28 2022-03-03 Maxim Biomedical, Inc. Devices and methods for detecting viral infection
KR20230080460A (ko) 2020-10-05 2023-06-07 브리스톨-마이어스 스큅 컴퍼니 단백질을 농축시키는 방법
WO2022112198A1 (en) 2020-11-24 2022-06-02 Worldwide Innovative Network Method to select the optimal immune checkpoint therapies
TW202245808A (zh) 2020-12-21 2022-12-01 德商拜恩迪克公司 用於治療癌症之治療性rna
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022148781A1 (en) 2021-01-05 2022-07-14 Institut Curie Combination of mcoln activators and immune checkpoint inhibitors
EP4284516A1 (en) 2021-01-28 2023-12-06 Compugen Ltd. Anti-pvrig antibodies formulations and uses thereof
WO2022165275A2 (en) 2021-01-28 2022-08-04 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1-antibodies
AU2022219332A1 (en) * 2021-02-09 2023-09-21 Shanghai Junshi Biosciences Co., Ltd. Anti-cd112r antibody and use thereof
CN114984227A (zh) * 2021-03-02 2022-09-02 百奥泰生物制药股份有限公司 抗tigit抗体在联合用药中的应用
CN114989300A (zh) * 2021-03-02 2022-09-02 百奥泰生物制药股份有限公司 抗tigit抗体在治疗肿瘤或癌症中的应用
WO2022214652A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains
AU2022253351A1 (en) 2021-04-09 2023-10-12 Ose Immunotherapeutics New scaffold for bifunctional molecules with improved properties
AR125488A1 (es) * 2021-04-30 2023-07-19 Medimmune Llc Proteínas de unión biespecíficas de pd-1 y de tigit, y usos de las mismas
AR125753A1 (es) 2021-05-04 2023-08-09 Agenus Inc Anticuerpos anti-tigit, anticuerpos anti-cd96 y métodos de uso de estos
WO2022242663A1 (en) * 2021-05-18 2022-11-24 Suzhou Kanova Biopharmaceutical Co., Ltd. Anti-tigit antibodies and their use
WO2022258049A1 (en) * 2021-06-10 2022-12-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric pvrig
CN115466327A (zh) * 2021-06-10 2022-12-13 北京天广实生物技术股份有限公司 结合tigit的抗体及其用途
CN117980328A (zh) * 2021-07-02 2024-05-03 来凯医药科技(上海)有限公司 活化的肝星状细胞(hsc)的消耗及其用途
KR20240046323A (ko) 2021-07-13 2024-04-08 비온테크 에스이 암에 대한 병용 요법에 있어서 cd40 및 cd137에 대한 다중특이 결합제
JP2024527049A (ja) 2021-07-28 2024-07-19 ジェネンテック, インコーポレイテッド がんを治療するための方法及び組成物
TWI842044B (zh) * 2021-08-06 2024-05-11 大陸商山東先聲生物製藥有限公司 抗pvrig/抗tigit雙特異性抗體和應用
CA3228504A1 (en) * 2021-08-09 2023-02-16 Tianhang ZHAI Anti-tigit antibody and use thereof
WO2023040935A1 (zh) * 2021-09-15 2023-03-23 江苏恒瑞医药股份有限公司 一种含抗pvrig/tigit双特异性抗体的药物组合物
CA3231320A1 (en) 2021-09-15 2023-03-23 Zhiliang CAO Protein specifically binding to pd-1 and pharmaceutical use thereof
CN115838424A (zh) * 2021-09-22 2023-03-24 上海康岱生物医药技术股份有限公司 靶向tigit的单克隆抗体
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
TW202333802A (zh) 2021-10-11 2023-09-01 德商拜恩迪克公司 用於肺癌之治療性rna(二)
CN116355095A (zh) * 2021-12-27 2023-06-30 上海健信生物医药科技有限公司 靶向tigit的抗体和双特异性抗体及其应用
WO2023137161A1 (en) * 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
WO2023149978A1 (en) * 2022-02-04 2023-08-10 Mereo Biopharma 5, Inc. Cancer biomarkers and cancer treatments
WO2023161448A1 (en) * 2022-02-24 2023-08-31 Abnomx Bv Human-like target-binding proteins
WO2023173011A1 (en) 2022-03-09 2023-09-14 Bristol-Myers Squibb Company Transient expression of therapeutic proteins
TW202409083A (zh) 2022-05-02 2024-03-01 美商阿克思生物科學有限公司 抗-tigit抗體及其用途
WO2023230532A1 (en) * 2022-05-26 2023-11-30 Compugen Ltd. Anti-tigit antibody formulation
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023236980A1 (zh) * 2022-06-08 2023-12-14 山东先声生物制药有限公司 一种pvrig/tigit双特异性抗体药物组合物及其用途
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
WO2024028386A1 (en) 2022-08-02 2024-02-08 Ose Immunotherapeutics Multifunctional molecule directed against cd28
WO2024032700A1 (en) * 2022-08-10 2024-02-15 Beigene, Ltd. Anti-pvrig antibodies and methods of use
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024153182A1 (zh) * 2023-01-19 2024-07-25 山东先声生物制药有限公司 抗pvrig/抗tigit双特异性抗体在治疗恶性肿瘤中的用途
WO2024200826A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof
WO2024200823A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof
CN117964762A (zh) * 2023-12-22 2024-05-03 华润生物医药有限公司 抗pvrig抗体及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073644A (zh) * 2012-12-31 2013-05-01 中国科学技术大学 特异性抗小鼠tigit的单克隆抗体及其制备方法、鉴定及应用
WO2016028656A1 (en) * 2014-08-19 2016-02-25 Merck Sharp & Dohme Corp. Anti-tigit antibodies
CN105492025A (zh) * 2013-07-16 2016-04-13 豪夫迈·罗氏有限公司 使用pd-1轴结合拮抗剂和tigit抑制剂治疗癌症的方法
WO2016106302A1 (en) * 2014-12-23 2016-06-30 Bristol-Myers Squibb Company Antibodies to tigit

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1992022653A1 (en) 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US7368531B2 (en) 1997-03-07 2008-05-06 Human Genome Sciences, Inc. Human secreted proteins
EP0915987A2 (en) 1997-04-21 1999-05-19 Donlar Corporation POLY-($g(a)-L-ASPARTIC ACID), POLY-($g(a)-L-GLUTAMIC ACID) AND COPOLYMERS OF L-ASP AND L-GLU, METHOD FOR THEIR PRODUCTION AND THEIR USE
KR20060067983A (ko) 1999-01-15 2006-06-20 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
AU3393900A (en) 1999-03-05 2000-09-21 Incyte Pharmaceuticals, Inc. Human secretory proteins
US20030224379A1 (en) 2000-01-21 2003-12-04 Tang Y. Tom Novel nucleic acids and polypeptides
US7449443B2 (en) 2000-03-23 2008-11-11 California Institute Of Technology Method for stabilization of proteins using non-natural amino acids
US6586207B2 (en) 2000-05-26 2003-07-01 California Institute Of Technology Overexpression of aminoacyl-tRNA synthetases for efficient production of engineered proteins containing amino acid analogues
AU2002337935B2 (en) 2001-10-25 2008-05-01 Genentech, Inc. Glycoprotein compositions
EP1490677A4 (en) 2002-02-27 2006-01-18 California Inst Of Techn COMPUTER METHOD FOR DESIGNING ENZYMES FOR THE INCORPORATION OF AMINO ACID ANALOGUES INTO PROTEINS
WO2003085107A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
DE60335552D1 (de) 2002-09-11 2011-02-10 Genentech Inc Neue zusammensetzung und verfahren zur behandlung von immunerkrankungen
AU2003295328A1 (en) 2002-10-02 2004-04-23 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2004058805A2 (en) 2002-12-26 2004-07-15 Asahi Kasei Pharma Corporation T cell activating gene
WO2005019258A2 (en) 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
SG176455A1 (en) 2003-10-09 2011-12-29 Ambrx Inc Polymer derivatives
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
US8906676B2 (en) 2004-02-02 2014-12-09 Ambrx, Inc. Modified human four helical bundle polypeptides and their uses
TWI380996B (zh) 2004-09-17 2013-01-01 Hoffmann La Roche 抗ox40l抗體
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
DK1866339T3 (da) 2005-03-25 2013-09-02 Gitr Inc GTR-bindende molekyler og anvendelser heraf
EP3683230A1 (en) 2005-05-12 2020-07-22 ZymoGenetics, Inc. Compositions and methods for modulating immune responses
EP2004682A2 (en) 2006-04-13 2008-12-24 Zymogenetics, Inc. Tetramerizing polypeptides and methods of use
EP2007806A2 (en) 2006-04-13 2008-12-31 ZymoGenetics, Inc. Tetramerizing polypeptides and methods of use
AU2007284651B2 (en) 2006-08-09 2014-03-20 Institute For Systems Biology Organ-specific proteins and methods of their use
WO2008044754A1 (fr) 2006-10-06 2008-04-17 Takeda Pharmaceutical Company Limited Agent prophylactique ou thérapeutique pour le cancer
SG10201402815VA (en) 2008-04-09 2014-09-26 Genentech Inc Novel compositions and methods for the treatment of immune related diseases
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
CN102308212A (zh) 2008-12-04 2012-01-04 加利福尼亚大学董事会 用于确定前列腺癌诊断和预后的材料和方法
CN108997498A (zh) 2008-12-09 2018-12-14 霍夫曼-拉罗奇有限公司 抗-pd-l1抗体及它们用于增强t细胞功能的用途
BRPI1008692B8 (pt) 2009-02-17 2021-05-25 Ucb Biopharma Sprl anticorpo antagonista tendo especificidade para ox40 humano, sequência de dna isolado, vetor de clonagem ou de expressão, célula hospedeira, processo para a produção do referido anticorpo, composição farmacêutica, uso do 5 referido anticorpo e proteína de fusão
KR20120090037A (ko) 2009-07-31 2012-08-16 메다렉스, 인코포레이티드 Btla에 대한 완전 인간 항체
US20110217297A1 (en) 2010-03-03 2011-09-08 Koo Foundation Sun Yat-Sen Cancer Center Methods for classifying and treating breast cancers
US20120213771A1 (en) 2010-04-13 2012-08-23 Celldex Therapeutics Inc. Antibodies that bind human cd27 and uses thereof
WO2011130434A2 (en) 2010-04-13 2011-10-20 Celldex Therapeutics Inc. Antibodies that bind human cd27 and uses thereof
US20140045915A1 (en) 2010-08-31 2014-02-13 The General Hospital Corporation Cancer-related biological materials in microvesicles
DK2614082T3 (en) 2010-09-09 2018-11-26 Pfizer 4-1BB BINDING MOLECULES
US8962804B2 (en) 2010-10-08 2015-02-24 City Of Hope Meditopes and meditope-binding antibodies and uses thereof
WO2012129488A2 (en) 2011-03-23 2012-09-27 Virginia Commonwealth University Gene signatures associated with rejection or recurrence of cancer
WO2012156515A1 (en) 2011-05-18 2012-11-22 Rheinische Friedrich-Wilhelms-Universität Bonn Molecular analysis of acute myeloid leukemia
WO2012178128A1 (en) 2011-06-22 2012-12-27 Oncocyte Corporation Methods and compositions for the treatment and diagnosis of cancer
US8841418B2 (en) 2011-07-01 2014-09-23 Cellerant Therapeutics, Inc. Antibodies that specifically bind to TIM3
JP2015520192A (ja) 2012-06-06 2015-07-16 オンコメッド ファーマシューティカルズ インコーポレイテッド Hippo経路を調節する結合剤およびその使用
KR101763352B1 (ko) 2013-03-15 2017-07-31 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 항­lag­3 결합 단백질
CA2946513C (en) 2014-07-23 2018-11-20 Ihi Corporation Method of manufacturing ni alloy part
JO3663B1 (ar) 2014-08-19 2020-08-27 Merck Sharp & Dohme الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين
CN107250157B (zh) 2014-11-21 2021-06-29 百时美施贵宝公司 包含修饰的重链恒定区的抗体
PL3295951T3 (pl) 2015-02-19 2020-10-05 Compugen Ltd. Przeciwciała anty-pvrig i sposoby ich zastosowania
WO2016134335A2 (en) * 2015-02-19 2016-08-25 Compugen Ltd. Pvrig polypeptides and methods of treatment
CN107922484A (zh) 2015-03-06 2018-04-17 索伦托治疗有限公司 结合tim3的抗体治疗剂
EP3268037B1 (en) 2015-03-09 2022-08-31 Celldex Therapeutics, Inc. Cd27 agonists
TWI715587B (zh) * 2015-05-28 2021-01-11 美商安可美德藥物股份有限公司 Tigit結合劑和彼之用途
US11078278B2 (en) 2015-05-29 2021-08-03 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
JO3620B1 (ar) 2015-08-05 2020-08-27 Amgen Res Munich Gmbh مثبطات نقطة فحص مناعية للاستخدام في علاج سرطانات محمولة عبر الدم
EP3344657A1 (en) 2015-09-02 2018-07-11 The Regents of the University of Colorado, A Body Corporate Compositions and methods for modulating t-cell mediated immune response
TWI811892B (zh) 2015-09-25 2023-08-11 美商建南德克公司 抗tigit抗體及使用方法
RU2020124191A (ru) 2015-10-01 2020-08-27 Потенза Терапевтикс, Инк. Анти-tigit антиген-связывающие белки и способы их применения
WO2018017864A2 (en) 2016-07-20 2018-01-25 Oncomed Pharmaceuticals, Inc. Pvrig-binding agents and uses thereof
DK3347379T5 (da) * 2016-08-17 2020-06-15 Compugen Ltd Anti-tigit-antistoffer, anti-pvrig-antistoffer og kombinationer deraf
EP3630180A1 (en) * 2017-06-01 2020-04-08 Compugen Ltd. Triple combination antibody therapies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073644A (zh) * 2012-12-31 2013-05-01 中国科学技术大学 特异性抗小鼠tigit的单克隆抗体及其制备方法、鉴定及应用
CN105492025A (zh) * 2013-07-16 2016-04-13 豪夫迈·罗氏有限公司 使用pd-1轴结合拮抗剂和tigit抑制剂治疗癌症的方法
WO2016028656A1 (en) * 2014-08-19 2016-02-25 Merck Sharp & Dohme Corp. Anti-tigit antibodies
WO2016106302A1 (en) * 2014-12-23 2016-06-30 Bristol-Myers Squibb Company Antibodies to tigit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOA STANIETSKY等: "The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity", 《PNAS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180205A1 (zh) * 2020-03-13 2021-09-16 江苏恒瑞医药股份有限公司 Pvrig结合蛋白及其医药用途
CN112433055A (zh) * 2020-11-04 2021-03-02 上海药明生物技术有限公司 一种基于报告基因方法检测pvrig抗体的生物学活性的方法
WO2022111612A1 (zh) * 2020-11-26 2022-06-02 信达生物制药(苏州)有限公司 包含抗tigit/pd-1双特异性抗体的制剂及其制备方法和用途
WO2022188721A1 (zh) * 2021-03-08 2022-09-15 合肥天港免疫药物有限公司 抗pvrig蛋白抗体或抗体片段及其用途
WO2023006040A1 (zh) * 2021-07-30 2023-02-02 江苏先声药业有限公司 抗pvrig/抗tigit双特异性抗体和应用
WO2023040940A1 (zh) * 2021-09-15 2023-03-23 江苏恒瑞医药股份有限公司 Pvrig/tigit结合蛋白联合免疫检查点抑制剂用于治疗癌症
CN114644711A (zh) * 2022-03-07 2022-06-21 南京诺艾新生物技术有限公司 重组抗人pvrig抗体及应用

Also Published As

Publication number Publication date
EP3617232A1 (en) 2020-03-04
IL264654B2 (en) 2023-09-01
US10124061B2 (en) 2018-11-13
BR112019003129A2 (pt) 2019-07-09
AU2017313405B2 (en) 2024-09-26
AU2024219621A1 (en) 2024-10-03
HUE048313T2 (hu) 2020-07-28
US20180305456A1 (en) 2018-10-25
JP7068275B2 (ja) 2022-05-16
US10213505B2 (en) 2019-02-26
US20240139318A1 (en) 2024-05-02
KR102450208B1 (ko) 2022-10-05
KR102585976B1 (ko) 2023-10-05
WO2018033798A1 (en) 2018-02-22
IL301682A (en) 2023-05-01
CO2019001980A2 (es) 2019-03-08
MX2021006237A (es) 2021-08-11
SG11201901077RA (en) 2019-03-28
JP2019533984A (ja) 2019-11-28
US11701424B2 (en) 2023-07-18
CL2019000424A1 (es) 2019-07-05
CN110088132B (zh) 2020-10-27
JP2022115922A (ja) 2022-08-09
CY1122653T1 (el) 2021-05-05
US20180280506A1 (en) 2018-10-04
MX2019001878A (es) 2019-07-01
HRP20200189T1 (hr) 2020-05-01
PL3347379T3 (pl) 2020-05-18
IL264654A (zh) 2019-03-31
KR20190039421A (ko) 2019-04-11
SI3347379T1 (sl) 2020-04-30
EP3347379B9 (en) 2020-03-25
MY194032A (en) 2022-11-09
DK3347379T3 (da) 2020-02-17
IL264654B1 (en) 2023-05-01
EP3347379B1 (en) 2019-11-06
CN112274637A (zh) 2021-01-29
PT3347379T (pt) 2020-02-18
JP2024099553A (ja) 2024-07-25
US20240075137A1 (en) 2024-03-07
MX2021006235A (es) 2021-08-11
CA3032331A1 (en) 2018-02-22
US20210000952A1 (en) 2021-01-07
ES2774320T9 (es) 2020-07-21
UA126802C2 (uk) 2023-02-08
KR20230145510A (ko) 2023-10-17
ES2774320T3 (es) 2020-07-20
KR20220041246A (ko) 2022-03-31
US10751415B2 (en) 2020-08-25
US20180169238A1 (en) 2018-06-21
AU2017313405A1 (en) 2019-02-28
EP3347379A1 (en) 2018-07-18
LT3347379T (lt) 2020-05-11
DK3347379T5 (da) 2020-06-15

Similar Documents

Publication Publication Date Title
US11701424B2 (en) Anti-TIGIT antibodies, anti-PVRIG antibodies and combinations thereof
US20190382477A1 (en) Anti-pvrig/anti-tigit bispecific antibodies and methods of use
CN111263769B (zh) Siglec-9中和性抗体
CN110799213A (zh) 三联组合抗体疗法
US20230057899A1 (en) Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
EP4180457A1 (en) Anti-cldn-18.2 antibody and use thereof
EA040773B1 (ru) Анти-tigit антитела, анти-pvrig антитела и их комбинации
JP2024150470A (ja) 抗pvrig/抗tigit二重特異性抗体および使用方法
EA044486B1 (ru) Трехкомпонентные комбинированные препараты антител

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40011075

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant