CN109972082A - 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法 - Google Patents

采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法 Download PDF

Info

Publication number
CN109972082A
CN109972082A CN201910304526.1A CN201910304526A CN109972082A CN 109972082 A CN109972082 A CN 109972082A CN 201910304526 A CN201910304526 A CN 201910304526A CN 109972082 A CN109972082 A CN 109972082A
Authority
CN
China
Prior art keywords
carbon
target
plural layers
sputtering
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910304526.1A
Other languages
English (en)
Inventor
李红轩
王伟奇
吉利
刘晓红
周惠娣
陈建敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Kekailu lubrication and Protection Technology Co. Ltd.
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201910304526.1A priority Critical patent/CN109972082A/zh
Publication of CN109972082A publication Critical patent/CN109972082A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种采用闭合场‑磁控溅射沉积技术制备碳基纳米多层薄膜的方法,是以石墨靶、金属靶为溅射靶材,以氩气,碳氢气体为反应气源,通过气相沉积系统在基底上原位自形成金属或金属碳化物层与碳层交替排列的多层结构。本发明将金属或碳化物晶体掺杂到碳基薄膜中形成多层结构,大大简化碳基薄膜多层结构的制备过程,有效节约成本和生产能耗,环保经济,且制得的多层薄膜具有良好的机械性能及电学性能;通过靶材类型的选择和样品台周期旋转,使得碳基薄膜的多层结构可控,成膜均匀、重复性好,特别适用于工业生产中连续、大面积制备电子器件,推进了碳基薄膜的工业化应用。

Description

采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法
技术领域
本发明涉及一种碳基纳米多层薄膜的制备方法,尤其涉及一种采用闭合场-磁控溅射沉积技术制备碳基纳米多层结构薄膜的方法,属于纳米薄膜制备技术领域。
背景技术
碳基薄膜具有良好的机械、摩擦、生物等性能。近年来,在碳基薄膜中原位自形成纳米多层结构可显著改善薄膜的韧性及机械强度,其广泛的潜在应用价值成为碳基纳米多层薄膜成为国内外的研究热点。一方面:在机械和摩擦学领域,将具有良好机械强度的金属或碳化物晶体掺杂到碳基薄膜中形成多层结构可以很好地增强薄膜的强度和韧性同时保持较好的摩擦学性能;另一方面:金属或半导体元素作为良好的电学材料,将其掺杂入碳基薄膜可以显著增强碳基薄膜的电学性能,降低电阻、增大电流。但是,目前制备的碳基多层薄膜具有以下不足亟待改善:①多层薄膜制备过程十分复杂,需要频繁周期性启/停溅射电源、反应气源等沉积参数,从而使沉积过程不易控制且步骤较多;②频繁人为启/停制备得到的碳基多层薄膜的单层厚度均匀性、稳定性和机械性能较差,限制了其工业应用;③制得的碳基多层薄膜机械强度差,导致在进行电学性能测试时稳定性较差。
发明内容
本发明的目的是针对现有技术制备碳基纳米多层薄膜存在的问题,提供一种工艺简单可控,性能稳定的多层碳基薄膜的制备方法。
一、碳基纳米多层薄膜的制备
(1)基底表面光洁化:将基底依次放入丙酮和无水乙醇中各超声清洗10~15分钟,用N2吹干基底表面后转移至闭合场-磁控溅射沉积真空腔体内部,固定在样品架上;
基底可以为硅片、玻璃、不锈钢或其他金属材料。基底表面与溅射靶表面平行,且基底表面与溅射靶的间距保持在5cm~20cm。基底以2~10°/s的旋转速度在腔体内按一定的周期旋转:旋转周期可根据碳基纳米多层结构的设计而设计。
真空腔体内部安置的溅射靶包括至少一个石墨靶和至少一个金属靶,且石墨靶和金属靶以对称方式置于腔体内部(参见图1)。金属靶的材料为金属镍、铁、钛、铜、铬、钼、钨等材料。
(2)基底表面活化:将腔体抽真空直到小于5.0×10-3Pa;再通入高纯氩气,使沉积气压稳定在0.4~2.0Pa;然后在直流偏压400~600V的条件下进行等离子体活化清洗,去除基底表面残留的杂质和污染物;
(3)沉积多层薄膜:通入溅射气源,使腔体沉积压力为0.4~1.5Pa,在直流偏压100~300V的条件下,溅射功率为200~800W下进行沉积镀膜;溅射沉积镀膜时间为10~180分钟。
溅射气源为纯Ar、Ar/CH4、Ar/C2H2混合气体。不同气源分别对应于制备类石墨薄膜、类金刚石薄膜。如溅射气源为纯Ar,制备的薄膜为类石墨薄膜;溅射气源为Ar/CH4、Ar/C2H2混合气体,则制备的薄膜为类金刚石薄膜。
二、多层碳基薄膜的结构
图2为本发明制备的多层碳基薄膜结构的透射电子形貌图(a、b)及多层碳基薄膜结构的选择电子区域衍射图(c)。有图a、b可以看出,所获得的薄膜具有碳化物原位自形成、且镶嵌在碳基薄膜中的多层结构特性,即薄膜主要是由层厚均一、平行排列的金属(金属碳化物)层和碳层周期性交替排列所构成。图c也进一步说明该薄膜为金属/碳化物层与碳层周期性层层交替排列的多层结构。
三、多层碳基薄膜的性能
本发明制备的多层碳基薄膜的主要性能指标见表1:
综上所述,本发明相对于现有技术具有以下优点:
1、采用闭合场-磁控溅射沉积技术,以石墨靶、金属靶为溅射靶材、以氩气、碳氢气体为反应气源,通过气相沉积系统将金属或碳化物晶体掺杂到碳基薄膜中形成多层结构,大大简化碳基薄膜多层结构的制备过程,有效节约成本和生产能耗,环保经济,且制得的多层薄膜具有良好的机械性能及电学性能;
2、通过靶材类型的选择和样品台周期旋转,使得碳基薄膜的多层结构可控,成膜均匀、重复性好,特别适用于工业生产中连续、大面积制备电子器件,推进了碳基薄膜的工业化应用。
附图说明
图1为本发明多层碳基薄膜沉积系统的示意图。
图2为本发明制备的多层碳基薄膜结构的透射电子形貌图(a、b)及多层碳基薄膜结构的选择电子区域衍射图(c)。
图3为多层碳基薄膜的硬度、弹性模量(a)、多层碳基薄膜的内应力(b)、多层碳基薄膜的I-V曲线(c)及多层碳基薄膜的电阻率(d)。
具体实施方式
为了更好的理解本发明,下面通过具体实施例对本发明多层碳基薄膜的制备及性能做进一步说明。
实施例1
首先选择2个钛和2个石墨靶,将4个溅射靶材彼此之间成90°夹角对称置于沉积腔体内。选择表面光洁的硅片5片和尺寸为3×5cm的2块不锈钢片,将其依次放入丙酮和无水乙醇中分别超声清洗15分钟,取出硅片和不锈钢,用氮气吹干基底表面残留乙醇后,迅速放入物理气相沉积设备的真空腔体内,放置在基底托上,开始抽真空。待真空度抽到小于5.0×10-3Pa时,通入氩气,调整气压为2.0Pa,在直流电压为600V的偏压下,进行等离子体清洗30分钟。清洗完成后,通入氩气使沉积压力为0.4Pa,调节样品台转速为2°/s,打开电源,调节石墨靶溅射功率为800W、钛靶溅射功率为200W条件下沉积薄膜,沉积时间为20分钟。多层碳基薄膜的主要性能指标见表2:
实施例2
首先选择1个铁和1个石墨靶,将2个溅射靶材彼此之间成180°夹角对称置于沉积腔体内。选择表面光洁的硅片5片和尺寸为3×5cm的2块玻璃片,将其依次放入丙酮和无水乙醇中分别超声清洗15分钟,取出硅片和玻璃片,用氮气吹干基底表面残留乙醇后,迅速放入物理气相沉积设备的真空腔体内,放置在基底托上,开始抽真空。待真空度抽到小于5.0×10- 3Pa时,通入氩气,调整气压为1.2Pa,在直流电压为500V的偏压下,进行等离子体清洗30分钟。清洗完成后,通入Ar/CH4 (2:1)使沉积压力为0.7Pa,调节样品台转速为5°/s,打开电源,调节石墨靶溅射功率为400W、镍靶溅射功率为400W条件下沉积薄膜,沉积时间为180分钟。多层碳基薄膜的主要性能指标见表3:
实施例3
首先选择3个铜和3个石墨靶,将6个溅射靶材彼此之间成60°夹角对称置于沉积腔体内。选择表面光洁的硅片5片和尺寸为5×5cm的2块轴承钢,将其依次放入丙酮和无水乙醇中分别超声清洗15分钟,取出硅片和轴承钢,用氮气吹干基底表面残留乙醇后,迅速放入物理气相沉积设备的真空腔体内,放置在基底托上,开始抽真空。待真空度抽到小于5.0×10- 3Pa时,通入氩气,调整气压为0.4Pa,在直流电压为400V的偏压下,进行等离子体清洗30分钟。清洗完成后,通入Ar/C2H2 (2:1)使沉积压力为1.0 Pa,调节样品台转速为8°/s,打开电源,调节石墨靶溅射功率为800W、铜靶溅射功率为200W条件下沉积薄膜,沉积时间为10分钟。多层碳基薄膜的主要性能指标见表4:
实施例4
首先选择1个铬和3个石墨靶,将4个溅射靶材彼此之间成90°夹角对称置于沉积腔体内。选择表面光洁的硅片5片和尺寸为5×5cm的2块不锈钢片,将其依次放入丙酮和无水乙醇中分别超声清洗15分钟,取出硅片和不锈钢,用氮气吹干基底表面残留乙醇后,迅速放入物理气相沉积设备的真空腔体内,放置在基底托上,开始抽真空。待真空度抽到小于5.0×10-3Pa时,通入氩气,调整气压为0.4Pa,在直流电压为400V的偏压下,进行等离子体清洗30分钟。清洗完成后,通入氩气使沉积压力为1.5Pa,调节样品台转速为10°/s,打开电源,调节石墨靶溅射功率为200W、铬靶溅射功率为600W条件下沉积薄膜,沉积时间为90分钟。多层碳基薄膜的主要性能指标见表5:

Claims (5)

1.采用闭合场-磁控溅射沉积技术制备碳基纳米多层薄膜的方法,包括以下步骤:
(1)基底表面光洁化:将基底依次放入丙酮和无水乙醇中各超声清洗10~15分钟,用N2吹干基底表面后转移至闭合场-磁控溅射沉积真空腔体内部,固定在样品架上;基底以2~10°/s的旋转速度在腔体内按一定的周期旋转;真空腔体内部安置的溅射靶包括至少一个石墨靶和至少一个金属靶,且石墨靶和金属靶以对称方式置于腔体内部;
(2)基底表面活化:将腔体抽真空直到小于5.0×10-3Pa;再通入高纯氩气,使沉积气压稳定在0.4~2.0Pa;然后在直流偏压400~600V的条件下进行等离子体活化清洗,去除基底表面残留的杂质和污染物;
(3)沉积多层薄膜:通入溅射气源,使腔体沉积压力为0.4~1.5Pa;在直流偏压100~300V的条件下,溅射功率为200~800W下进行沉积镀膜10~180分钟。
2.如权利要求1所述采用闭合场-磁控溅射沉积技术制备碳基纳米多层薄膜的方法,其特征在于:步骤(1)中,基底为硅片、玻璃、不锈钢或其他金属材料。
3.如权利要求1所述采用闭合场-磁控溅射沉积技术制备碳基纳米多层薄膜的方法,其特征在于:步骤(1)中,基底表面与溅射靶表面平行,且基底表面与溅射靶的间距保持在5cm~20cm。
4.如权利要求1所述采用闭合场-磁控溅射沉积技术制备碳基纳米多层薄膜的方法,其特征在于:步骤(1)中,金属靶的材料为金属镍、铁、钛、铜、铬、钼、钨。
5.如权利要求1所述采用闭合场-磁控溅射沉积技术制备碳基纳米多层薄膜的方法,其特征在于:步骤(3)中,溅射气源为纯Ar、Ar/CH4、Ar/C2H2混合气体。
CN201910304526.1A 2019-04-16 2019-04-16 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法 Pending CN109972082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910304526.1A CN109972082A (zh) 2019-04-16 2019-04-16 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910304526.1A CN109972082A (zh) 2019-04-16 2019-04-16 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法

Publications (1)

Publication Number Publication Date
CN109972082A true CN109972082A (zh) 2019-07-05

Family

ID=67084839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910304526.1A Pending CN109972082A (zh) 2019-04-16 2019-04-16 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法

Country Status (1)

Country Link
CN (1) CN109972082A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455315A (zh) * 2020-05-14 2020-07-28 中国科学院兰州化学物理研究所 一种富勒烯/非晶碳氢复合薄膜的制备及在真空低温环境中的应用
CN111780653A (zh) * 2020-06-09 2020-10-16 中国电子科技集团公司第四十九研究所 基于碳膜纳米导电材料的电阻体及其制备方法
CN111826610A (zh) * 2020-06-30 2020-10-27 太原理工大学 一种利用非晶碳低温制备石墨烯的方法
CN111850498A (zh) * 2020-07-29 2020-10-30 吉林大学 一种碳纳米纤维增强镍基复合涂层及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453858A (zh) * 2010-10-29 2012-05-16 中国科学院兰州化学物理研究所 轻质软金属表面碳基薄膜材料的制备方法
CN103147040A (zh) * 2013-03-12 2013-06-12 浙江大学 一种碳钛复合涂层及其制备方法
CN108611613A (zh) * 2018-06-09 2018-10-02 中国科学院兰州化学物理研究所 一种纳米多层结构碳基薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453858A (zh) * 2010-10-29 2012-05-16 中国科学院兰州化学物理研究所 轻质软金属表面碳基薄膜材料的制备方法
CN103147040A (zh) * 2013-03-12 2013-06-12 浙江大学 一种碳钛复合涂层及其制备方法
CN108611613A (zh) * 2018-06-09 2018-10-02 中国科学院兰州化学物理研究所 一种纳米多层结构碳基薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANMIN CHEN ET.AL.: "Microstructure, Morphology and Properties of Titanium Containing Graphite-Like Carbon Films Deposited by Unbalanced Magnetron Sputtering", 《TRIBOLOGY LETTERS》 *
WEIQI WANG ET.AL.: "Influence of rotational speed on structure, mechanical and electrical properties of TiC/GLC composite films", 《DIAMOND&RELATED MATERIALS》 *
王伟奇等: "多元碳基薄膜中自形成纳米多层结构的研究进展", 《材料导报A:综述篇》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455315A (zh) * 2020-05-14 2020-07-28 中国科学院兰州化学物理研究所 一种富勒烯/非晶碳氢复合薄膜的制备及在真空低温环境中的应用
CN111780653A (zh) * 2020-06-09 2020-10-16 中国电子科技集团公司第四十九研究所 基于碳膜纳米导电材料的电阻体及其制备方法
CN111780653B (zh) * 2020-06-09 2022-01-07 中国电子科技集团公司第四十九研究所 基于碳膜纳米导电材料的电阻体及其制备方法
CN111826610A (zh) * 2020-06-30 2020-10-27 太原理工大学 一种利用非晶碳低温制备石墨烯的方法
CN111826610B (zh) * 2020-06-30 2022-11-15 太原理工大学 一种利用非晶碳低温制备石墨烯的方法
CN111850498A (zh) * 2020-07-29 2020-10-30 吉林大学 一种碳纳米纤维增强镍基复合涂层及其制备方法
CN111850498B (zh) * 2020-07-29 2021-11-02 吉林大学 一种碳纳米纤维增强镍基复合涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN109972082A (zh) 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法
CN107022761B (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN103382548B (zh) 一种基体表面纳米复合Me-Si-N超硬涂层的制备方法
CN111074223A (zh) 成分均匀可控的高熵合金薄膜的物理气相沉积制备方法
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN107620033A (zh) 一种高纯强致密max相涂层的制备方法
CN207313693U (zh) 基于类金刚石薄膜的复合厚膜
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
AU2020101087A4 (en) A Method of Preparing Nanometer Aluminum Film by Radio Frequency Magnetron Sputtering
Sønderby et al. Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes
CN108611613B (zh) 一种纳米多层结构碳基薄膜的制备方法
CN102817008B (zh) Ag、Ti共掺杂DLC薄膜的制备方法
CN104141109A (zh) 钛金属表面原位合成TiC-DLC复合涂层的方法
CN115044867A (zh) 一种TiAlWN涂层及其制备方法与应用
JP3603112B2 (ja) アルミナ結晶質薄膜の低温製法
CN105002467B (zh) 一种Cu‑Ti非晶合金薄膜及其制备方法
Kusano et al. Preparation of TiC films by alternate deposition of Ti and C layers using a dual magnetron sputtering source
CN107012424B (zh) 一种TiZrB2硬质涂层及其制备方法和应用
CN110484881B (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN102747337B (zh) 一种制备大面积高质量非晶碳薄膜的方法
KR101695590B1 (ko) 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법
CN111826610B (zh) 一种利用非晶碳低温制备石墨烯的方法
KR20150076467A (ko) 조직제어가 가능한 알루미늄 코팅층 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200121

Address after: 730000 No. 18 Tianshui Middle Road, Chengguan District, Gansu, Lanzhou

Applicant after: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

Applicant after: Lanzhou Kekailu lubrication and Protection Technology Co. Ltd.

Address before: 730000 No. 18 Tianshui Middle Road, Chengguan District, Gansu, Lanzhou

Applicant before: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

TA01 Transfer of patent application right
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190705

WD01 Invention patent application deemed withdrawn after publication