CN109640962A - 编码松弛素的多核苷酸 - Google Patents

编码松弛素的多核苷酸 Download PDF

Info

Publication number
CN109640962A
CN109640962A CN201780044882.3A CN201780044882A CN109640962A CN 109640962 A CN109640962 A CN 109640962A CN 201780044882 A CN201780044882 A CN 201780044882A CN 109640962 A CN109640962 A CN 109640962A
Authority
CN
China
Prior art keywords
mir
pharmaceutical composition
group
relaxain
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780044882.3A
Other languages
English (en)
Other versions
CN109640962B (zh
Inventor
夏志南
B.蒂乔
N.布里安孔-埃里斯
A.杜西斯
S.德皮西奥托
V.普雷辛亚克
S.霍奇
I.麦克费迪恩
K.贝内纳托
E.S.库马拉辛赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modern Natters Co Ltd
Original Assignee
Modern Natters Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modern Natters Co Ltd filed Critical Modern Natters Co Ltd
Priority to CN202210756560.4A priority Critical patent/CN115837014A/zh
Publication of CN109640962A publication Critical patent/CN109640962A/zh
Application granted granted Critical
Publication of CN109640962B publication Critical patent/CN109640962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/64Relaxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1796Receptors; Cell surface antigens; Cell surface determinants for hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2221Relaxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin

Abstract

本发明涉及用于治疗纤维化和/或心血管疾病的mRNA疗法。当体内给予时,在本发明中使用的mRNA编码人松弛素、其同种型、其功能片段和包含松弛素的融合蛋白。本发明的mRNA优选地被包封在脂质纳米粒子(LNP)中,以在向受试者给予时实现有效递送至受试者的细胞和/或组织。本发明的mRNA疗法增加和/或恢复受试者中松弛素表达和/或活性的缺陷水平。本发明的mRNA疗法进一步降低了受试者中与缺乏松弛素活性相关的毒性代谢物的水平。

Description

编码松弛素的多核苷酸
相关申请的交叉引用
本申请根据35U.S.C.§119(e)要求2016年5月18日提交的美国临时申请62/338,470的权益,将其通过引用以其全部内容并入本文。
背景技术
急性心力衰竭(AHF)是一种突然下降,在心脏无法泵出足够的血液来满足身体的心脏需求时产生。体征和症状可包括呼吸困难、水肿和疲劳,这可导致急性呼吸窘迫和死亡。AHF以及其他心血管疾病可由循环松弛素缺乏引起。
松弛素是一种6000Da异二聚体多肽内分泌和自分泌/旁分泌激素,属于胰岛素基因超家族。松弛素促进血管生成并有助于血管内皮的修复。它通过将其受体结合在不同组织中而发挥其对肌肉骨骼和其他系统的作用,一个由不同信号传导途径介导的过程。存在七种已知的松弛素家族肽,包括松弛素(RLN)1、RLN2、RLN3和胰岛素样肽(INSL)3、INSL4、INSL5、INSL6。RLN1和RLN2参与成纤维细胞中的胶原调控和代谢,而RLN3对脑有特异性。RLN1和RLN2也参与妊娠期间发生的血液动力学变化,包括心输出量、肾血流量和动脉顺应性。此外,RLN2通过磷酸化级联增加一氧化氮的产生来介导血管舒张。松弛素也是一种心脏兴奋剂,并且它可以通过抑制血管紧张素II和内皮素(两种有效的血管收缩剂)引起血管舒张。还显示该激素增加心肌肌丝的钙敏感性,并通过蛋白激酶C增加肌丝的磷酸化。肌丝产生的力增加,而心肌细胞的能量消耗没有增加。在肾脏中,松弛素增加肌酐清除率并增加肾血流量。
松弛素是一种血管活性肽,保护血管系统免于过度劳累,增加肾功能,促进细胞生长和存活,并维持良好的血管结构。向受试者给予松弛素具有治疗益处,如治疗和预防纤维化(例如,肾纤维化、心脏纤维化或肺纤维化)和心血管疾病(例如,急性心力衰竭、冠状动脉疾病、微血管疾病、伴有心脏功能障碍的急性冠状动脉综合征或缺血再灌注)。
许多与松弛素缺乏有关的障碍的护理治疗标准包括β阻断剂、肼苯哒嗪/二硝酸异山梨酯(isorbide dinitrate)、洋地黄、利尿剂、血管紧张素转换酶(ACE)抑制剂、血管紧张素受体阻滞剂(ARB)、地高辛、抗凝剂、醛固酮拮抗剂和控制共病(包括但不限于高胆固醇、高血压、心房颤动和糖尿病)的药物治疗。通常还建议改变生活方式,包括饮食和运动。
尽管松弛素提供显著的治疗益处,但重组野生型松弛素具有短的半衰期,这使得在体内达到治疗水平成为挑战。被称为Serelaxin并由诺华公司(Novartis)销售的重组形式的松弛素已经被证明具有低毒性,然而,其功效是有问题的,因为它在血流中如此快速地降解。Serelaxin在血清中的半衰期为约15分钟,并且在连续48小时的输注期间为7-8小时。
发明内容
本发明提供了用于治疗纤维化和/或心血管疾病的mRNA治疗剂。本发明的mRNA治疗剂特别适用于治疗纤维化和/或心血管疾病,因为该技术提供了编码松弛素(RXN)的mRNA的细胞内递送,随后在靶细胞内从头合成功能性RXN蛋白。本发明的特征在于在治疗性mRNA内掺入经修饰的核苷酸,以(1)最小化不想要的免疫活化(例如,与体外引入外源核酸相关的先天免疫应答)和(2)优化mRNA至蛋白质的翻译效率。本发明的示例性方面的特征在于用以减少先天免疫应答的核苷酸修饰和用以增强蛋白质表达的序列优化(特别是在编码RXN的治疗性mRNA的开放阅读框(ORF)内)的组合。
本发明的mRNA治疗剂技术的特征还在于通过脂质纳米粒子(LNP)递送系统来递送编码RXN的mRNA。本发明的特征在于新型可电离的基于脂质的LNP,其在体内给予时具有改善的性质,例如细胞摄取、细胞内转运和/或内体释放或内体逃逸。本发明的LNP还表现出与体内给予LNP相关的降低的免疫原性。
在某些方面,本发明涉及包含编码治疗性松弛素蛋白的多核苷酸(例如核糖核酸(RNA),例如信使RNA(mRNA))的组合物和递送配制品以及用于通过给予这些组合物和递送配制品来治疗有需要的受试者的心力衰竭和/或其他障碍的方法。
本发明的多个方面涉及包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸。可以修饰松弛素多肽以促进半衰期延长。例如,该松弛素多肽可以是融合蛋白的一部分。
这些组合物可以配制在可电离脂质纳米粒子中,其中该可电离脂质纳米粒子具有约20%-60%摩尔比的可电离脂质:约5%-25%摩尔比的非阳离子脂质:约25%-55%摩尔比的甾醇;和约0.5%-15%摩尔比的PEG修饰的脂质。本发明的一些方面涉及配制在可电离脂质纳米粒子中的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸。
本发明的其他方面涉及配制在可电离脂质纳米粒子中的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,其中该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大10%。
在一些方面,本发明是配制在可电离脂质纳米粒子中的具有编码至少一种松弛素蛋白的开放阅读框的RNA多核苷酸的组合物,其中该可电离脂质纳米粒子具有约20%-60%摩尔比的可电离脂质:约5%-25%摩尔比的非阳离子脂质:约25%-55%摩尔比的甾醇;和约0.5%-15%摩尔比的PEG修饰的脂质。
在其他方面,本发明是包含具有编码至少一种松弛素融合蛋白的开放阅读框的RNA多核苷酸的核酸。
在又其他方面,本发明是多肽,其包含松弛素-VL融合蛋白,其中松弛素与可变轻链片段融合。
在一些实施例中,该松弛素多肽具有与SEQ ID NO.2有至少80%序列同一性的氨基酸序列。在其他实施例中,该多肽具有与SEQ ID NO.2有至少90%序列同一性的氨基酸序列。
在一些实施例中,该松弛素蛋白是松弛素融合蛋白。该松弛素融合蛋白可以是免疫球蛋白(Ig)片段。在一些实施例中,该Ig片段是可变链片段。在其他实施例中,该Ig片段是恒定链片段。在一些实施例中,该Ig片段是可变轻链片段。在一些实施例中,该可变轻链片段是VLκIgG区。在一些实施例中,该松弛素通过接头与VLκIgG区连接。
该松弛素蛋白是融合蛋白,并且在一些实施例中具有与SEQ ID NO.1的序列81%-100%相同的核苷酸序列。在其他实施例中,该松弛素蛋白是融合蛋白,并且具有与SEQ IDNO.1的序列85%-99%相同的核苷酸序列。
在其他方面,提供了治疗有需要的受试者的与松弛素相关的障碍的方法。该方法涉及向该受试者给予治疗有效量的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,以治疗与松弛素相关的障碍。
在一些实施例中,治疗与松弛素相关的障碍的方法涉及单次给予该RNA多核苷酸。在一些实施例中,治疗与松弛素相关的障碍的方法进一步包括给予每周一剂。
在实施例中,与松弛素相关的障碍选自下组,该组由以下组成:伴有心脏功能障碍的急性冠状动脉综合征,与实体器官如肺、肾脏、肝脏、心脏的移植相关的缺血再灌注,包括肾的心肺旁路器官保护,和角膜愈合,慢性心力衰竭,糖尿病性肾病,NASH,心房颤动,心脏纤维化,糖尿病伤口愈合和肝硬化。
在其他方面,本发明是治疗有需要的受试者的心力衰竭的方法,该方法包括向该受试者给予治疗有效量的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,以治疗心力衰竭。
在一些实施例中,该方法涉及单次给予该RNA多核苷酸。在其他实施例中,该方法进一步包括给予每周一剂、每两周一剂、每三周一剂、每月一剂或每两个月一剂。
在一些实施例中,相对于不存在可电离脂质的情况下单独的RNA多核苷酸的治疗指数,与可电离脂质一起给予RNA多核苷酸增加了该组合物中RNA多核苷酸的治疗指数。在其他实施例中,该组合物中RNA多核苷酸的治疗指数大于10:1或50:1。
在一些实施例中,在向该受试者给药后,该RNA多核苷酸处于展现药代动力学(PK)曲线的剂型,该药代动力学(PK)曲线包括:a)给药后约30至约240分钟时的Tmax;以及b)持续时间为约60至约240分钟的至少50%Cmax的血浆药物(由RNA多核苷酸产生的松弛素多肽)浓度平稳期。在其他实施例中,在向该受试者给药后,实现相对于基线水平的至少25%或50%的循环松弛素增加。重组野生型松弛素具有短的半衰期;例如,Serelaxin是一种重组形式的松弛素,在血清中的半衰期仅为15分钟。然而,如实例14和15中所证明的,体内模型已经证明本披露的实施例具有显著更长的半衰期,使得它们在治疗上更有效。
在又其他实施例中,达到循环松弛素水平持续2小时长达7天、长达5天或长达3天。
在一些实施例中,在向该受试者给药后,该剂型展现PK曲线,其中在血浆药物浓度平稳期的约5至7天内从血浆中清除至少约90%的药物。
在其他实施例中,该RNA包含至少一处化学修饰。在一些实施例中,该化学修饰选自假尿苷、N1-甲基假尿苷、2-硫代尿苷、4'-硫代尿苷、5-甲基胞嘧啶、2-硫代-1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-假尿苷、2-硫代-5-氮杂-尿苷、2-硫代-二氢假尿苷、2-硫代-二氢尿苷、2-硫代-假尿苷、4-甲氧基-2-硫代-假尿苷、4-甲氧基-假尿苷、4-硫代-1-甲基-假尿苷、4-硫代-假尿苷、5-氮杂-尿苷、二氢假尿苷、5-甲基尿苷、5-甲氧基尿苷以及2'-O-甲基尿苷。
在一些实施例中,配制在该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大60%。在一些实施例中,配制在该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大10%。
在其他实施例中,该可电离脂质是具有化学式(I)的脂质:
或其盐或异构体,其中:
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自碳环、杂环、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-N(R)2、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和-C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13。
在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中当R4是-(CH2)nQ、-(CH2)nCHQR、-CHQR或-CQ(R)2时,则(i)Q不是-N(R)2,当n是1、2、3、4或5时;或者(ii)Q不是5元、6元或7元杂环烷基,当n是1或2时。在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自C3-6碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-CRN(R)2C(O)OR、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和被一个或多个选自氧代(=O)、OH、氨基、单烷基氨基或二烷基氨基和C1-3烷基的取代基取代的具有一个或多个选自N、O和S的杂原子的5元至14元杂环烷基,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或异构体。
在其他实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自C3-6碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂环、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-CRN(R)2C(O)OR、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和-C(=NR9)N(R)2,并且每个n独立地选自1、2、3、4和5;并且当Q是5元至14元杂环,并且(i)R4是-(CH2)nQ,其中n是1或2,或者(ii)R4是-(CH2)nCHQR,其中n是1,或者(iii)R4是-CHQR和-CQ(R)2时,则Q是5元至14元杂芳基或8元至14元杂环烷基;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或异构体。
在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自C3-6碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-CRN(R)2C(O)OR、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和-C(=NR9)N(R)2,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或异构体。
在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C2-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4是-(CH2)nQ或-(CH2)nCHQR,其中Q是-N(R)2,并且n选自3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C1-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或异构体。
在其他实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:-(CH2)nQ、-(CH2)nCHQR、-CHQR和-CQ(R)2,其中Q是-N(R)2,并且n选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C1-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或异构体。
在一些实施例中,具有化学式(I)的化合物的子集包括具有化学式(IA)的那些:
或其盐或异构体,其中l选自1、2、3、4和5;m选自5、6、7、8和9;M1是键或M';R4是未取代的C1-3烷基或-(CH2)nQ,其中Q是OH、-NHC(S)N(R)2、-NHC(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)R8、-NHC(=NR9)N(R)2、-NHC(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、杂芳基或杂环烷基;M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-P(O)(OR')O-、-S-S-、芳基基团和杂芳基基团;并且R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基和C2-14烯基。
在一些实施例中,该纳米粒子具有小于0.4的多分散性值。在一些实施例中,该纳米粒子在中性pH下具有净中性电荷。
在一些实施例中,该开放阅读框中80%的尿嘧啶具有化学修饰。在一些实施例中,该开放阅读框中100%的尿嘧啶具有化学修饰。在一些实施例中,该化学修饰位于尿嘧啶的5-位。在一些实施例中,该化学修饰是N1-甲基假尿苷。在其他实施例中,该RNA多核苷酸的尿嘧啶和胸腺嘧啶含量比野生型松弛素多核苷酸的尿嘧啶和胸腺嘧啶含量高100%-150%。
本发明的多个方面涉及增加包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸的治疗指数的方法,该方法包括将该RNA多核苷酸与可电离脂质缔合以产生组合物,从而相对于单独的RNA多核苷酸的治疗指数增加该组合物中RNA多核苷酸的治疗指数。
在一些实施例中,该组合物中RNA多核苷酸的治疗指数大于10:1。在其他实施例中,该组合物中RNA多核苷酸的治疗指数大于50:1。
本发明的其他方面涉及用于治疗受试者的方法,该方法包括向有需要的受试者给予有效量的组合物以治疗该受试者。
本发明的多个方面涉及治疗有需要的受试者的心力衰竭和/或其他障碍的方法,该方法包括向该受试者给予治疗有效量的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,其中给予该RNA多核苷酸导致该受试者的缺陷蛋白质增加至生理水平。
在一些实施例中,治疗心力衰竭和/或其他障碍的方法涉及单次给予该RNA多核苷酸。在一些实施例中,治疗心力衰竭和/或其他障碍的方法进一步包括给予每周一剂。在其他实施例中,该RNA多核苷酸配制在可电离脂质纳米粒子中。
在一些实施例中,该RNA多核苷酸处于如前所述的组合物中。在一些实施例中,在向该受试者给药后,该剂型展现药代动力学(PK)曲线,该药代动力学(PK)曲线包括:a)给药后约30至约240分钟时的Tmax;以及b)持续时间为约90至约240分钟的至少50%Cmax的血浆药物(由RNA多核苷酸产生的松弛素多肽)浓度平稳期。
在一些实施例中,在向该受试者给药后,实现相对于基线水平的至少25%的松弛素蛋白水平增加。在其他实施例中,在向该受试者给药后,实现相对于基线水平的至少50%的松弛素蛋白水平增加。
在一些实施例中,在向该受试者给药后,实现相对于基线水平的至少60%的松弛素蛋白水平增加。在其他实施例中,实现该松弛素蛋白水平增加持续长达3天。在其他实施例中,实现该松弛素蛋白水平增加持续长达5天。
在一些实施例中,实现松弛素蛋白水平增加持续长达7天。在一些实施例中,在给予该受试者1小时内实现松弛素蛋白水平增加。在其他实施例中,在给予该受试者3小时内实现松弛素蛋白水平增加。
在一些实施例中,该RNA多核苷酸每周给予1次,持续3周至1年。在一些实施例中,通过静脉内给予将该RNA多核苷酸给予该受试者。在一些实施例中,通过皮下给予将该RNA多核苷酸给予该受试者。
一些实施例进一步包括向该受试者给予用于心力衰竭的护理治疗标准。在其他实施例中,该护理治疗标准选自下组,该组由以下组成:β阻断剂、肼苯哒嗪/二硝酸异山梨酯、洋地黄、利尿剂、血管紧张素转换酶(ACE)抑制剂、血管紧张素受体阻滞剂(ARB)、地高辛、抗凝剂、醛固酮拮抗剂和控制共病(包括但不限于高胆固醇、高血压、心房颤动和糖尿病)的药物治疗。
在一些实施例中,该RNA多核苷酸以25和100微克之间的剂量存在。在其他实施例中,该方法包括向该受试者给予0.001mg/kg和0.005mg/kg之间的单剂量的该RNA多核苷酸。
本发明的多个方面涉及治疗有需要的受试者的心力衰竭和/或障碍的方法,该方法包括向该受试者给予包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸和用于心力衰竭和/或其他障碍的护理治疗标准,其中该RNA多核苷酸和护理治疗标准的组合给予导致该受试者的松弛素蛋白水平增加至生理水平。
本披露提供了包含编码松弛素多肽的开放阅读框(ORF)的多核苷酸,其中该ORF的尿嘧啶或胸腺嘧啶含量在编码该松弛素多肽的核苷酸序列的理论最小尿嘧啶或胸腺嘧啶含量(分别为%UTM或%TTM)的100%和约150%之间。在一些实施例中,该ORF中的尿嘧啶或胸腺嘧啶含量在%UTM或%TTM的约105%和约145%之间、约105%和约140%之间、约110%和约145%之间、约110%和约140%之间、约115%和约145%之间、约115%和约140%之间、约120%和约145%之间、约120%和约140%之间、约125%和约145%之间或约125%和约140%之间。在一些实施例中,该ORF中的尿嘧啶或胸腺嘧啶含量在%UTM或%TTM的(i)115%、116%、117%、118%、119%、120%、121%、122%、123%、124%或125%和(ii)139%、140%、141%、142%、143%、144%或145%之间。
在一些实施例中,该ORF进一步包含至少一个低频密码子。
在一些实施例中,该ORF与选自表5中序列的序列具有至少80%、至少81%、至少82%、至少83%、至少84%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%序列同一性。在一些实施例中,该松弛素多肽包含与野生型松弛素蛋白的多肽序列(表5)至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或约100%相同的氨基酸序列,并且其中该松弛素多肽具有治疗活性。在一些实施例中,该松弛素多肽是具有治疗活性的变体、衍生物或突变体。在一些实施例中,该多核苷酸序列进一步包含编码转运肽的核苷酸序列。
在一些实施例中,该多核苷酸进一步包含miRNA结合位点。在一些实施例中,该miRNA结合位点包含选自表4的一个或多个核苷酸序列。在一些实施例中,该miRNA结合位点结合miR-142。在一些实施例中,该miRNA结合位点结合miR-142-3p或miR-142-5p。在一些实施例中,该miR142包含SEQ ID NO:539。
在一些实施例中,该多核苷酸进一步包含5'UTR。在一些实施例中,该5'UTR包含与选自下组的序列至少90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或约100%相同的核酸序列,该组由以下组成:SEQ ID NO:545-569或其任何组合。在一些实施例中,该多核苷酸进一步包含3'UTR。在一些实施例中,该3'UTR包含与选自下组的序列至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或约100%相同的核酸序列,该组由以下组成:SEQ ID NO:493-505和570-587或其任何组合。在一些实施例中,该miRNA结合位点位于3'UTR内。
在一些实施例中,该多核苷酸进一步包含5'末端帽。在一些实施例中,该5'末端帽包含帽0、帽1、ARCA、肌苷、N1-甲基-鸟苷、2'-氟-鸟苷、7-脱氮-鸟苷、8-氧代-鸟苷、2-氨基-鸟苷、LNA-鸟苷、2-叠氮基鸟苷、帽2、帽4、5'甲基G帽或其类似物。在一些实施例中,该多核苷酸进一步包含聚-A区。在一些实施例中,该聚-A区的长度为至少约10、至少约20、至少约30、至少约40、至少约50、至少约60、至少约70、至少约80或至少约90个核苷酸。在一些实施例中,该聚-A区的长度为约10至约200、约20至约180、约50至约160、约70至约140、约80至约120个核苷酸。
在一些实施例中,在给予受试者后,该多核苷酸具有:(i)更长的血浆半衰期;(ii)由该ORF编码的松弛素多肽的增加的表达;(iii)更低频率的产生表达片段的停滞翻译;(iv)更大的结构稳定性;或(v)其任何组合,相对于包含野生型松弛素多核苷酸的相应多核苷酸。
在一些实施例中,该多核苷酸包含:(i)5'-末端帽;(ii)5'-UTR;(iii)编码松弛素多肽的ORF;(iv)3'-UTR;以及(v)聚-A区。在一些实施例中,该3'-UTR包含miRNA结合位点。
本披露还提供了产生本文所述的多核苷酸的方法,该方法包括通过用腺嘌呤、鸟嘌呤或胞嘧啶核碱基取代至少一个尿嘧啶核碱基,或通过用尿嘧啶核碱基取代至少一个腺嘌呤、鸟嘌呤或胞嘧啶核碱基来修饰编码松弛素多肽的ORF,其中所有取代都是同义取代。在一些实施例中,该方法进一步包括用5-甲氧基尿嘧啶替代至少约90%、至少约95%、至少约99%或约100%的尿嘧啶。
在某些实施例中,具有化学式(I)的化合物的子集包括具有化学式(IIa)、(IIb)、(IIc)或(IIe)的那些:
或其盐或异构体,其中R4是如本文所述的。
在一些实施例中,R4是如本文所述的。
在一些实施例中,该化合物具有化学式(IId),
或其盐或立体异构体,
其中R2和R3独立地选自下组,该组由以下组成:C5-14烷基和C5-14烯基,n选自2、3和4,并且R'、R”、R5、R6和m是如权利要求16中所定义的。
在一些实施例中,R2是C8烷基。在一些实施例中,R3是C5烷基、C6烷基、C7烷基、C8烷基或C9烷基。在一些实施例中,m是5、7或9。在一些实施例中,每个R5是H。在一些实施例中,每个R6是H。
在另一方面,本披露的特征在于纳米粒子组合物,其包含含有如本文所述的化合物(例如,根据化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物)的脂质组分。
在又另一方面,本披露的特征在于药物组合物,其包含根据前述方面的纳米粒子组合物和药学上可接受的载体。例如,将该药物组合物冷藏或冷冻用于储存和/或运输(例如,在4℃或更低的温度下储存,如在约-150℃和约0℃之间或在约-80℃和约-20℃之间(例如,约-5℃、-10℃、-15℃、-20℃、-25℃、-30℃、-40℃、-50℃、-60℃、-70℃、-80℃、-90℃、-130℃或-150℃)的温度下储存)。例如,该药物组合物是在例如约-20℃、-30℃、-40℃、-50℃、-60℃、-70℃或-80℃下冷藏用于储存和/或运输的溶液。
在另一方面,本披露提供了将治疗剂和/或预防剂(例如,mRNA)递送至细胞(例如,哺乳动物细胞)的方法。此方法包括向受试者(例如,哺乳动物,如人)给予纳米粒子组合物的步骤,该纳米粒子组合物包含(i)脂质组分,包括磷脂(如多不饱和脂质)、PEG脂质、结构脂质和具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物,以及(ii)治疗剂和/或预防剂,其中给药涉及使该细胞与该纳米粒子组合物接触,由此将该治疗剂和/或预防剂递送至该细胞。
在另一方面,本披露提供了在细胞(例如,哺乳动物细胞)中产生感兴趣的多肽的方法。该方法包括使该细胞与纳米粒子组合物接触的步骤,该纳米粒子组合物包含(i)脂质组分,包括磷脂(如多不饱和脂质)、PEG脂质、结构脂质和具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物,以及(ii)编码感兴趣的多肽的mRNA,由此该mRNA能够在该细胞中翻译而产生该多肽。
在另一方面,本披露提供了治疗有需要的哺乳动物(例如,人)的疾病或障碍的方法。该方法包括向该哺乳动物给予治疗有效量的纳米粒子组合物的步骤,该纳米粒子组合物包含(i)脂质组分,包括磷脂(如多不饱和脂质)、PEG脂质、结构脂质和具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物,以及(ii)治疗剂和/或预防剂(例如,mRNA)。在一些实施例中,该疾病或障碍的特征在于功能失调的或异常的蛋白质或多肽活性。
在另一方面,本披露提供了向哺乳动物器官(例如,肝脏、脾脏、肺或股骨)递送(例如,特异性递送)治疗剂和/或预防剂的方法。此方法包括向受试者(例如,哺乳动物)给予纳米粒子组合物的步骤,该纳米粒子组合物包含(i)脂质组分,包括磷脂、PEG脂质、结构脂质和具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物,以及(ii)治疗剂和/或预防剂(例如,mRNA),其中给药涉及使该细胞与该纳米粒子组合物接触,由此将该治疗剂和/或预防剂递送至该靶器官(例如,肝脏、脾脏、肺或股骨)。
在另一方面,本披露的特征在于用于将治疗剂和/或预防剂(例如,mRNA)增强递送至靶组织(例如,肝脏、脾脏、肺、肌肉或股骨)的方法。此方法包括向受试者(例如,哺乳动物)给予纳米粒子组合物,该组合物包含(i)脂质组分,包括具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的化合物、磷脂、结构脂质和PEG脂质;以及(ii)治疗剂和/或预防剂,给药包括使该靶组织与该纳米粒子组合物接触,由此将该治疗剂和/或预防剂递送至该靶组织。
在一些实施例中,本文披露的组合物是纳米粒子组合物。在一些实施例中,该递送剂进一步包含磷脂。在一些实施例中,该磷脂选自下组,该组由以下组成:1,2-二亚油酰基-sn-甘油基-3-磷酸胆碱(DLPC)、1,2-二肉豆蔻酰基-sn-甘油基-磷酸胆碱(DMPC)、1,2-二油酰基-sn-甘油基-3-磷酸胆碱(DOPC)、1,2-二棕榈酰基-sn-甘油基-3-磷酸胆碱(DPPC)、1,2-二硬脂酰基-sn-甘油基-3-磷酸胆碱(DSPC)、1,2-二十一烷酰基-sn-甘油基-磷酸胆碱(DUPC)、1-棕榈酰基-2-油酰基-sn-甘油基-3-磷酸胆碱(POPC)、1,2-二-O-十八烯基-sn-甘油基-3-磷酸胆碱(18:0二醚PC)、1-油酰基-2-胆甾醇基半琥珀酰基-sn-甘油基-3-磷酸胆碱(OChemsPC)、1-十六烷基-sn-甘油基-3-磷酸胆碱(C16 Lyso PC)、1,2-二亚麻酰基-sn-甘油基-3-磷酸胆碱、1,2-二花生四烯酰基-sn-甘油基-3-磷酸胆碱、1,2-二二十二碳六烯酰基-sn-甘油基-3-磷酸胆碱、1,2-二油酰基-sn-甘油基-3-磷酸乙醇胺(DOPE)、1,2-二植烷酰基-sn-甘油基-3-磷酸乙醇胺(ME 16:0PE)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二亚油酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二亚麻酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二花生四烯酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二二十二碳六烯酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二油酰基-sn-甘油基-3-磷酸基-外消旋-(1-甘油)钠盐(DOPG)、鞘磷脂、及其任何混合物。
在一些实施例中,该递送剂进一步包含结构脂质。在一些实施例中,该结构脂质选自下组,该组由以下组成:胆甾醇、粪甾醇、谷甾醇、麦角甾醇、菜油甾醇、豆甾醇、菜籽甾醇、番茄碱、熊果酸、α-生育酚、及其任何混合物。
在一些实施例中,该递送剂进一步包含PEG脂质。在一些实施例中,该PEG脂质选自下组,该组由以下组成:PEG修饰的磷脂酰乙醇胺、PEG修饰的磷脂酸、PEG修饰的神经酰胺、PEG修饰的二烷基胺、PEG修饰的二酰基甘油、PEG修饰的二烷基甘油、及其任何混合物。
在一些实施例中,该递送剂进一步包含选自下组的可电离脂质,该组由以下组成:3-(二十二烷基氨基)-N1,N1,4-三十二烷基-1-哌嗪乙胺(KL10)、N1-[2-(二十二烷基氨基)乙基]-N1,N4,N4-三十二烷基-1,4-哌嗪二乙胺(KL22)、14,25-二十三烷基-15,18,21,24-四氮杂-三十八烷(KL25)、1,2-二亚油烯基氧基-N,N-二甲基氨基丙烷(DLin-DMA)、2,2-二亚油烯基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)、三十七烷-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯(DLin-MC3-DMA)、2,2-二亚油烯基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLin-KC2-DMA)、1,2-二油烯基氧基-N,N-二甲基氨基丙烷(DODMA)、2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA)、(2R)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2R))和(2S)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2S))。
在一些实施例中,该递送剂进一步包含磷脂、结构脂质、PEG脂质或其任何组合。
在一些实施例中,该组合物被配制用于体内递送。在一些实施例中,该组合物被配制用于肌肉内、皮下或皮内递送。
本发明的各限制可以涵盖本发明的各个实施例。因此,预期本发明的涉及任何一种元素或元素组合的各限制可包括在本发明的各方面中。本发明的应用不限于以下描述中阐述的或附图中示出的构造细节和部件布置。本发明能够具有其他实施例并且能够以各种方式实践或实施。此外,本文使用的措辞和术语是为了描述的目的,而不应被认为是限制性的。本文中“包括”、“包含”、或“具有”、“含有”、“涉及”及其变体的使用意在涵盖其后列出的项目及其等同物连同附加项目。
附图说明
前述和其他目的、特征和优点从本发明的特定实施例的以下描述中将是显而易见的,如附图中所示的,其中相同的附图标记在不同视图中指代相同的部分。附图不一定按比例绘制,而是将重点放在说明本发明的各个实施例的原理上。
图1是描绘野生型松弛素和“VLk”-hRLN2融合蛋白的示意图。(G4S)3序列对应于SEQID NO:589。
图2是显示VLk-RLN2融合蛋白mRNA在体外活性证明测定中产生功能性蛋白质的一系列图。
图3A和3B是显示在静脉内注射的自发性高血压大鼠中VLk-RLN2融合蛋白mRNA产生具有持续活性的功能性蛋白质的图。图3A显示了大鼠的心率,并且图3B显示了舒张动脉压。数据根据日间和夜间时段进行平均(均值+/-SD),除去动物的操作时间(每组N=8只大鼠)。
图4显示了自发性高血压大鼠的循环蛋白质数据。
图5显示在静脉内注射的食蟹猴中松弛素VLk-RLN2融合蛋白mRNA产生高于靶浓度的循环蛋白质水平持续长达6天。
图6显示了体内耻骨间韧带伸长(ILE)测定的结果,证明VLk-RLN2融合蛋白mRNA产生功能性蛋白质。
图7显示了VLk-RLN2融合蛋白mRNA表达的体内筛选,证明在注射了mRNA的大鼠中循环松弛素蛋白水平超过靶浓度持续长达6天。
图8显示在静脉内注射的小鼠中VLk-RLN2融合蛋白mRNA表达松弛素浓度超过靶浓度持续长达8天。
图9显示了来自食蟹猴的再给药研究的数据(参见实例14)。
图10显示了来自食蟹猴的再给药研究的数据(参见实例14)。
图11显示了每次给药后(三个剂量)食蟹猴中松弛素-VLk的循环mRNA水平。
具体实施方式
本发明提供了用于治疗纤维化和/或心血管疾病的mRNA治疗剂。纤维化和心血管疾病均可由循环松弛素缺乏引起。mRNA治疗剂特别适用于治疗心血管疾病、纤维化和其他与松弛素缺乏相关的障碍,因为该技术提供了编码松弛素的mRNA的细胞内递送,随后在靶细胞内从头合成功能性松弛素蛋白。在将mRNA递送至靶细胞后,所希望的松弛素蛋白由细胞自身的翻译机器表达,并且因此,完全功能的松弛素蛋白替代有缺陷或缺失的蛋白质。
与在体内递送基于核酸的治疗剂(例如,mRNA治疗剂)相关的一个挑战源于当身体的免疫系统遇到外源核酸时可能发生的先天免疫应答。外源mRNA可通过toll样受体(TLR,特别是TLR7/8)识别来活化免疫系统,这是由单链RNA(ssRNA)来活化。在非免疫细胞中,外源mRNA的识别可以通过视黄酸诱导基因I(RIG-I)发生。外源mRNA的免疫识别可导致不想要的细胞因子作用,包括白细胞介素-1β(IL-1β)产生、肿瘤坏死因子-α(TNF-α)分布和强I型干扰素(I型IFN)反应。本发明的特征在于在治疗性mRNA内掺入不同的经修饰核苷酸以使免疫活化最小化并优化mRNA至蛋白质的翻译效率。本发明的特定方面的特征在于用以减少先天免疫应答的核苷酸修饰和用以增强蛋白质表达的序列优化(特别是在编码松弛素的治疗性mRNA的开放阅读框(ORF)内)的组合。
本发明的mRNA治疗剂技术的特征还在于通过脂质纳米粒子(LNP)递送系统来递送编码松弛素的mRNA。脂质纳米粒子(LNP)是将mRNA安全有效递送至靶细胞的理想平台。LNP具有通过涉及细胞摄取、细胞内转运和内体释放或内体逃逸的机制递送核酸的独特能力。本发明的特征在于新型基于可电离脂质的LNP,其在体内给予时具有改善的性质。不受理论束缚,据信本发明的新型基于可电离脂质的的LNP具有改善的性质,例如细胞摄取、细胞内转运和/或内体释放或内体逃逸。通过全身途径(例如,静脉内(IV)给予)给予的LNP(例如,在第一次给予中)可以加速随后注射的LNP(例如,在进一步的给予中)的清除。这种现象被称为加速血液清除(ABC),并且是特别是在治疗环境中替代缺陷型激素(例如,松弛素)时的关键挑战。这是因为在大多数情况下重复给予mRNA治疗剂对于在受试者(例如,患有急性心力衰竭的受试者)的靶组织中维持必需水平的酶是必需的。可以在多个层面上解决重复给药挑战。通过LNP进行的mRNA工程化和/或有效递送可导致在第一剂给药后表达的蛋白质(例如,松弛素)水平增加和或持续时间增加,这反过来可以延长第一剂量和随后给药之间的时间。已知事实上ABC现象至少部分地是短暂的,作为ABC的基础的免疫应答在全身给药后足够的时间后消退。因此,在一方面,在全身递送本发明的mRNA治疗剂后增加蛋白质表达和/或活性的持续时间对抗ABC现象。此外,可以工程化LNP以避免免疫感测和/或识别,并因此可以在随后或重复给药时进一步避免ABC。本发明的示例性方面的特征在于新型LNP,其已被工程化为具有减少的ABC。
松弛素
野生型松弛素是一种6000Da异二聚体多肽内分泌和自分泌/旁分泌激素,属于胰岛素基因超家族。它含有由两个链间二硫键连接的A链和B链以及一个A链内二硫键。松弛素促进血管生成并有助于血管内皮的修复。它通过将其受体结合在不同组织中而发挥其对肌肉骨骼和其他系统的作用,一个由不同信号传导途径介导的过程。存在七种已知的松弛素家族肽,包括松弛素(RLN)1、RLN2、RLN3和胰岛素样肽(INSL)3、INSL4、INSL5、INSL6。RLN1和RLN2参与成纤维细胞中的胶原调控和代谢,而RLN3对脑有特异性。RLN1和RLN2也参与妊娠期间发生的血液动力学变化,包括心输出量、肾血流量和动脉顺应性。此外,RLN2通过磷酸化级联增加一氧化氮的产生来介导血管舒张。松弛素也是一种心脏兴奋剂,并且它可以通过抑制血管紧张素II和内皮素(两种有效的血管收缩剂)引起血管舒张。还显示该激素增加心肌肌丝的钙敏感性,并通过蛋白激酶C增加肌丝的磷酸化。肌丝产生的力增加,而心肌细胞的能量消耗没有增加。在肾脏中,松弛素增加肌酐清除率并增加肾血流量。
在人类中,H2松弛素(松弛素-2)是主要的循环形式。H2松弛素的功能主要通过松弛素家族肽1(RXFP1)受体介导,尽管它也能以低效力活化RXFP2受体。如本文所用,术语“松弛素”是指能够活化RXFP1和/或RXFP2的异二聚体多肽。
在一些实施例中,松弛素是与SEQ ID NO.1或3具有至少70%序列同一性的多肽或其片段,或者是由与SEQ ID NO.2或4具有至少70%序列同一性的多核苷酸或其片段编码的。在其他实施例中,松弛素是与SEQ ID NO.1或3具有至少75%、80%、85%、90%、95%、97%、98%、99%或100%序列同一性的多肽或其片段,或者是由与SEQ ID NO.2或4具有至少75%、80%、85%、90%、95%、97%、98%、99%或100%序列同一性的多核苷酸或其片段编码的。
在一些方面,本发明是编码松弛素蛋白的mRNA。松弛素是一种血管活性肽,保护血管系统免于过度劳累,增加肾功能,促进细胞生长和存活,并维持良好的血管结构。向受试者给予松弛素具有治疗益处,如治疗和预防纤维化(例如,肾纤维化、心脏纤维化或肺纤维化)和心血管疾病(例如,急性心力衰竭、冠状动脉疾病、微血管疾病、伴有心脏功能障碍的急性冠状动脉综合征或缺血再灌注)。
尽管松弛素提供显著的治疗益处,但重组野生型松弛素具有短的半衰期,这使得在体内达到治疗水平成为挑战。被称为Serelaxin并由诺华公司销售的重组形式的松弛素已经被证明具有低毒性,然而,其功效是有问题的,因为它在血流中如此快速地降解。Serelaxin在血清中的半衰期为约15分钟,并且在连续48小时的输注期间为7-8小时。
在一些方面,本发明是治疗性松弛素,如编码野生型或稳定化松弛素蛋白的mRNA,如松弛素-免疫球蛋白融合蛋白,其具有大大增强的半衰期,并且因此可以更有效地治疗疾病。在其他方面,该治疗性松弛素是松弛素融合蛋白。另外,本文所述的稳定化松弛素治疗剂的较长半衰期可使得在两个剂量之间较少的患者剂量与较多的时间。虽然PEG化形式的松弛素已被证明比野生型松弛素更稳定,但血清稳定性相对于Serelaxin的增加似乎仅为13.5%左右。本发明的稳定的融合蛋白显著更稳定。例如,VLk区在松弛素A链之后融合的融合蛋白相对于Serelaxin具有1-2周的增加的血清半衰期。
活化RXFP1和/或RXFP2的能力是指相对于不存在松弛素治疗剂的情况下的活化水平活化的增加。例如,可以使用体外或体内测定(如本文所述的测定)来评估活化能力。
如本文所用,松弛素融合蛋白是由与稳定蛋白质连接的松弛素组成的蛋白质。在一些实施例中,该稳定蛋白质是免疫球蛋白蛋白质。在其他实施例中,该稳定蛋白质是VLk蛋白。
如本文所用,松弛素核酸或松弛素mRNA是编码野生型松弛素、其变体或其片段(称为野生型松弛素)的RNA或者编码松弛素融合蛋白(即与稳定蛋白质连接的松弛素)(称为稳定化松弛素融合蛋白)的RNA。在一些实施例中,该稳定蛋白质是免疫球蛋白蛋白质。在其他实施例中,该稳定蛋白质是VLk蛋白。
本发明的松弛素治疗剂可用于治疗多种障碍。例如,这些松弛素治疗剂可用于治疗心力衰竭(急性或慢性)以及急性给药适应症和慢性给药适应症。急性给药适应症包括但不限于急性心力衰竭(非缺血性),伴有心脏功能障碍的急性冠状动脉综合征,与实体器官如肺、肾脏、肝脏、心脏的移植相关的缺血再灌注,心肺旁路器官保护(例如肾)和角膜愈合(即通过眼部给药)。慢性给药适应症包括但不限于慢性心力衰竭、糖尿病性肾病、NASH、心房颤动、心脏纤维化、糖尿病伤口愈合和肝硬化。
心力衰竭(HF)涉及左心室无法填充或排出血液,从而降低了将含氧血液递送到身体其他部位的能力。它比癌症更常见,更费钱,并且更致命。心力衰竭是一种复杂疾病,具有许多潜在病因和各种共病。HF的一些主要病因包括:冠状动脉疾病、心脏病发作、高血压、异常心脏瓣膜、心肌病、心肌炎、先天性心脏缺损、糖尿病、肥胖症、肺病和睡眠呼吸暂停。为了应对心力衰竭,身体试图适应并递送必要的血液,这可能导致心脏扩大、心肌质量增加、心率增加、血管狭窄以及从其他器官转移血液。由于该疾病的异质性,治疗决策通常基于患者进行。
有两种类型的HF:急性(大约10%的HF病例),其发展迅速并需要住院治疗;以及慢性(大约90%的HF病例),其逐渐发展并需要长期治疗。在这两种类型中,有四类心力衰竭:I类(无症状,40%的HF患者),II类(中度用力时有HF症状,30%的HF患者),III类(最少用力时有HF症状,20%的HF患者)和IV类(静止状态时有HF症状,10%的HF患者)。患有心力衰竭的受试者的死亡率如下:住院(6%),出院后30天(11%)、一年(30%)和五年(50%)。
可以使用射血分数(EF)对心力衰竭进行分级量化,射血分数是心脏泵血到身体的情况的量度。EF将心脏中的血液量与泵出的血液量进行比较。它被计算为泵出的血液量除以腔室中的血液量。
在一些实施例中,本披露的松弛素mRNA用于治疗住院和随访给药期的急性HF。在进一步的实施例中,松弛素mRNA用于缓解HF症状,预防疾病进展和死亡率,和/或减少HF住院治疗。在其他实施例中,本披露的松弛素mRNA用于治疗疾病如伴有心脏功能障碍的急性冠状动脉综合征、与实体器官(例如肺、肾脏、肝脏和/或心脏)移植相关的缺血再灌注、心肺转流术(例如,用以保护肾功能)、角膜愈合、糖尿病性肾病、非酒精性脂肪性肝炎(NASH)、心房颤动(心脏纤维化)、糖尿病伤口愈合和肝硬化。
技术人员将理解,可以通过测量从受试者(例如,从临床前测试受试者(啮齿动物、灵长类动物等)或从临床受试者(人))取的一个样品或多个样品中的编码蛋白质的表达水平来表征或确定本发明的药物或治疗的治疗效果。同样,可以通过测量从受试者(例如,从临床前测试受试者(啮齿动物、灵长类动物等)或从临床受试者(人))取的一个样品或多个样品中的编码蛋白质的活性水平来表征或确定本发明的药物或治疗的治疗效果。此外,可以通过测量从受试者取的一个或多个样品中的适当生物标志物的水平来表征或确定本发明的药物或治疗的治疗效果。蛋白质和/或生物标志物的水平可以在用单剂量的本发明的mRNA治疗剂给药后测定,或者可以在用单剂量给药后的几个时间点测定和/或监测,或者可以在整个治疗过程(例如,多剂量治疗)中测定和/或监测。
松弛素蛋白表达水平
本发明的某些方面的特征在于受试者中例如动物(例如,啮齿动物、灵长类动物等)或人类受试者中松弛素蛋白的表达水平的测量、测定和/或监测。动物包括正常、健康或野生型动物以及用于理解心血管疾病及其治疗的动物模型。示例性动物模型包括啮齿动物模型,例如松弛素缺陷型小鼠,也称为心血管疾病小鼠。松弛素蛋白表达水平可以通过任何本领域公认的用于测定生物样品(例如,血清或血浆样品)中蛋白质水平的方法来测量或测定。如本文所用,术语“水平”或“蛋白质水平”优选意指样品或受试者内蛋白质的重量、质量或浓度。技术人员将理解,在某些实施例中,该样品可以经受例如以下任何一项:纯化、沉淀、分离(例如,离心)和/或HPLC,并且然后经受蛋白质水平测定,例如使用质量和/或光谱分析。在示例性实施例中,酶联免疫吸附测定(ELISA)可用于测定蛋白质表达水平。在其他示例性实施例中,蛋白质纯化、分离和LC-MS可用作测定根据本发明的蛋白质的水平的手段。在一些实施例中,在给予单剂量的mRNA疗法后的至少6小时、至少12小时、至少24小时、至少36小时、至少48小时、至少60小时、至少72小时、至少84小时、至少96小时、至少108小时、至少122小时,本发明的mRNA疗法(例如,单次静脉内剂量)导致受试者的血浆或血清中松弛素蛋白表达水平增加(例如,2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍或10倍增加,和/或增加到至少50%、至少60%、至少70%、至少75%、80%、至少85%、至少90%、至少95%或至少100%正常水平)。
松弛素蛋白活性
在心血管疾病患者中,松弛素活性降低,例如降低至正常值的约25%、30%、40%或50%。本发明的其他方面的特征在于受试者中例如动物(例如,啮齿动物、灵长类动物等)或人类受试者中松弛素蛋白的一个或多个活性水平的测量、测定和/或监测。活性水平可以通过任何本领域公认的用于测定生物样品中活性水平的方法来测量或测定。如本文所用,术语“活性水平”优选意指每体积、质量或重量样品的蛋白质活性或样品内总蛋白质的活性。
在示例性实施例中,本发明的mRNA疗法的特征在于药物组合物,其包含有效于在给药后6和12小时之间或12和24小时之间、24和48小时之间或48和72小时之间(例如,在给药后48或72小时)在组织(例如,血浆)中产生至少5U/mg、至少10U/mg、至少20U/mg、至少30U/mg、至少40U/mg、至少50U/mg、至少60U/mg、至少70U/mg、至少80U/mg、至少90U/mg、至少100U/mg或至少150U/mg的松弛素活性的剂量的mRNA。在示例性实施例中,本发明的mRNA疗法的特征在于药物组合物,其包含有效于在给药后6和12小时之间或12和24小时之间、24和48小时之间或48和72小时之间(例如,在给药后48或72小时)在血浆中产生至少50U/mg、至少100U/mg、至少200U/mg、至少300U/mg、至少400U/mg、至少500U/mg、至少600U/mg、至少700U/mg、至少800U/mg、至少900U/mg、至少1,000U/mg或至少1,500U/mg的松弛素活性的剂量的mRNA。
在示例性实施例中,本发明的mRNA疗法的特征在于包含产生上述活性水平的单次静脉内剂量的mRNA的药物组合物。在另一个实施例中,本发明的mRNA疗法的特征在于能以维持上述活性水平的多个单次单位静脉内剂量的mRNA给予的药物组合物。
松弛素生物标志物
本发明的其他方面的特征在于测定在样品中测定的生物标志物(例如,B型利尿钠肽(BNP)、胱抑素C、BNP的N-末端激素原(NT-proBNP))的水平(或多个水平),与另一样品(例如来自同一患者、来自另一患者、来自对照和/或来自相同或不同时间点)中相同或另一种生物标志物的水平(例如,参考水平)和/或生理水平和/或升高的水平和/或超生理水平和/或对照的水平相比。技术人员将熟悉生物标志物的生理水平,例如正常或野生型动物、正常或健康受试者等中的水平,特别是健康和/或功能正常的受试者中特有的一个或多个水平。如本文所用,短语“升高的水平”意指大于通常在正常或野生型临床前动物中或者在正常或健康受试者(例如,人类受试者)中发现的量。如本文所用,术语“超生理”意指大于通常在正常或野生型临床前动物中或者在正常或健康受试者(例如,人类受试者)中发现的量,任选地产生显著增强的生理反应。如本文所用,术语“比较”或“与......相比”优选意指两个或更多个值(例如,一种或多种生物标志物的水平)的数学比较。因此,如果将这些值中的至少两个相互比较,则技术人员将容易明白其中一个值是否高于、低于或等于另一个值或另一组值。在上下文中比较或与......相比可以是例如与对照值比较,例如与在给药之前所述受试者中(例如,在患有心血管疾病的人中)或者正常或健康的受试者中的参考血清NT-proBNP、参考血清胱抑素C和/或参考血清BNP水平相比。在上下文中比较或与......相比也可以是例如与对照值比较,例如与在给药之前所述受试者中(例如,在患有心血管疾病的人中)或者正常或健康的受试者中的参考尿NT-proBNP排泄水平或血清BNP、胱抑素C、NT-proBNP水平相比。
如本文所用,“对照”优选是来自受试者的样品,其中所述受试者的心血管疾病状态是已知的。在一个实施例中,对照是健康患者的样品。在另一个实施例中,该对照是来自至少一名具有已知心血管疾病状态(例如,严重、轻度或健康的心血管疾病状态)的受试者(例如,对照患者)的样品。在另一个实施例中,该对照是来自未正在治疗心血管疾病的受试者的样品。在仍进一步的实施例中,该对照是来自单名受试者的样品或来自不同受试者的样品库和/或在不同时间点从一名或多名受试者取的样品。
如本文所用,术语“水平”或“生物标志物水平”优选意指样品或受试者内本发明的生物标志物的质量、重量或浓度。本发明的生物标志物包括例如BNP、胱抑素C、NT-proBNP。技术人员将理解,在某些实施例中,该样品可以经受例如以下一项或多项:物质纯化、沉淀、分离(例如,离心)和/或HPLC,并且然后经受生物标志物水平测定,例如使用质谱分析。在示例性实施例中,LC-MS可用作测定根据本发明的生物标志物的水平的手段。
如本文所用,术语“测定生物标志物的水平”可意指如下方法,这些方法包括量化来自受试者的样品(例如,来自该受试者的体液(例如,血清、血浆、尿液、血液、淋巴液、粪便等))中或该受试者的组织(例如,肝脏、心脏、脾脏、肾脏等)中至少一种物质的量。
如本文所用,术语“参考水平”可以指在给予本发明的mRNA疗法之前受试者(例如,患有心血管疾病的人)或者正常或健康受试者中的水平(例如,生物标志物的水平)。
如本文所用,术语“正常受试者”或“健康受试者”是指未患有与心血管疾病相关的症状的受试者。此外,如果没有导致松弛素或其活性减少或缺乏从而导致与心血管疾病相关的症状的松弛素名称(松弛素)基因的功能部分或结构域突变和/或松弛素基因突变,则认为受试者是正常的(或健康的)。如果来自该受试者的样品经受此类松弛素突变的遗传测试,则将检测所述突变。在本发明的示例性实施例中,来自健康受试者的样品用作对照样品,或者来自健康或正常受试者的样品的生物标志物的水平的已知或标准化值用作对照。
在一些实施例中,将来自需要治疗心血管疾病的受试者或正在治疗心血管疾病的受试者的样品中的生物标志物的水平与该生物标志物的对照水平进行比较包括将来自该受试者(需要治疗或正在治疗心血管疾病)的样品中的生物标志物的水平与基线或参考水平比较,其中如果来自该受试者(需要治疗或正在治疗心血管疾病)的样品中的生物标志物水平与基线或参考水平相比升高、增加或更高,则指示该受试者患有心血管疾病和/或需要治疗;和/或其中如果来自该受试者(需要治疗或正在治疗心血管疾病)的样品中的生物标志物的水平与基线水平相比降低或更低,则指示该受试者未患有心血管疾病,成功治疗心血管疾病,或者不需要治疗心血管疾病。在某个时间段内,例如在6小时内、在12小时、24小时、36小时、48小时、60小时或72小时内,和/或持续某个持续时间,例如48小时、72小时、96小时、120小时、144小时、1周、2周、3周、4周、1个月、2个月、3个月、4个月、5个月、6个月、7个月、8个月、9个月、10个月、11个月、12个月、18个月、24个月等,生物标志物(例如,BNP、胱抑素C、NT-proBNP)的水平减少越多(例如,至少2倍、至少3倍、至少4倍、至少5倍、至少6倍、至少7倍、至少8倍、至少10倍减少和/或至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%或至少100%减少),疗法如例如本发明的mRNA疗法(例如,单剂量或多剂量方案)越成功。
在给药后1、2、3、4、5、6或更多天内,特别是在受试者的体液(例如,血浆、尿液,例如尿沉渣)或一个或多个组织(例如,肝脏、心脏、脾脏、肾脏、脑或肺)中的生物标志物(例如BNP、胱抑素C、NT-proBNP)的水平减少至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少100%或更多指示适合于成功治疗心血管疾病的剂量,其中如本文所用,减少优选意指将在特定时间段结束时(例如,给药后,例如单次静脉内剂量的给药后)测定的生物标志物的水平与在所述时间段开始时(例如,所述剂量的给药前)测定的相同生物标志物的水平进行比较。示例性的时间段包括给药后12、24、48、72、96、120或144小时,特别是给药后24、48、72或96小时。
底物(例如,BNP、胱抑素C、NT-proBNP)水平的持续减少特别指示成功治疗心血管疾病的mRNA治疗给药和/或给药方案。这种持续减少在本文中可称为效果的“持续时间”。在示例性实施例中,在给药后4、5、6、7、8或更多天内,特别是在受试者的体液(例如,血浆、尿液,例如尿沉渣)或一个或多个组织(例如,肝脏、心脏、脾脏、肾脏、脑或肺)中,生物标志物(例如BNP、胱抑素C、NT-proBNP)水平的至少约40%、至少约50%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%或至少约95%或更多的减少指示成功的治疗方法。在示例性实施例中,一个或多个样品(例如,流体和/或组织)中底物(例如,生物标志物)水平的持续减少是优选的。例如,导致BNP、胱抑素C、NT-proBNP的持续减少(如本文所定义)任选地与至少一个组织(优选两个、三个、四个、五个或更多个组织)中所述生物标志物的持续减少组合的mRNA疗法指示成功的治疗。
在一些实施例中,本发明的mRNA疗法的单剂量为约0.2至约0.8mpk、约0.3至约0.7mpk、约0.4至约0.8mpk或约0.5mpk。在另一个实施例中,本发明的mRNA疗法的单剂量小于1.5mpk、小于1.25mpk、小于1mpk或小于0.75mpk。
可用于本发明的RNA多核苷酸包括编码一种或多种松弛素蛋白的RNA。
在一些实施例中,配制在可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大10%。在其他实施例中,配制在该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大20%、30%、40%、50%、60%、70%、80%或90%。治疗指数(TI)(也称为治疗比率)是引起治疗效果的治疗剂的量与引起毒性的量的比较。
本发明涉及用于增加松弛素蛋白的稳定性或循环时间的方法。在一些实施例中,该组合物的循环半衰期大于20分钟。在一些实施例中,该组合物的循环半衰期为20-500分钟、30-500分钟、50-500分钟、30-300分钟、30-200分钟、30-100分钟、50-500分钟、50-400分钟、50-300分钟、50-200分钟、50-100分钟、100-500分钟、100-400分钟、100-300分钟、100-200分钟或100-150分钟。在其他实施例中,相对于野生型松弛素循环半衰期水平,该松弛素融合蛋白的循环半衰期增加至少25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%。
本发明方法的另一个优点是在给予受试者后迅速实现松弛素蛋白水平增加。例如,可以在给予受试者的1、2、3或4小时内达到治疗或最大治疗水平。术语Cmax是指在给予药物之后和给予第二剂量之前该药物在指定的身体隔室或测试区域中达到的最大(或峰值)血清浓度。Tmax是指给药后达到最大血浆浓度、吸收率等于消除率时的时间。
在NCBI参考序列数据库(RefSeq)中以登录号NM_134441.2和NM_005059.3(分别为“智人松弛素2(RLN2),转录物变体1”(SEQ ID NO:325)和“智人松弛素2(RLN2),转录物变体2”(SEQ ID NO:326))描述了野生型松弛素的同种型1和2的序列。在RefSeq数据库中以登录号AAI26416.1(“松弛素2[智人]”)(SEQ ID NO.1)描述了野生型松弛素经典蛋白质序列。
在某些方面,本发明提供了包含编码松弛素多肽的核苷酸序列(例如,开放阅读框(ORF))的多核苷酸(例如,核糖核酸(RNA),例如信使RNA(mRNA))。在一些实施例中,本发明的松弛素多肽是野生型松弛素或变体松弛素蛋白。在一些实施例中,本发明的松弛素多肽是相对于野生型松弛素蛋白序列含有取代、插入和/或添加、缺失和/或共价修饰的变体、肽或多肽。在一些实施例中,序列标签或氨基酸可以添加到由本发明的多核苷酸编码的序列中(例如,在N-末端或C-末端),例如用于定位。在一些实施例中,可任选地缺失位于本发明多肽的羧基、氨基末端或内部区域的氨基酸残基,从而提供片段。
在一些实施例中,包含本发明的核苷酸序列(例如,ORF)的多核苷酸(例如,RNA,例如mRNA)编码野生型松弛素蛋白序列的取代变体,其可包含一个、两个、三个或多于三个取代。在一些实施例中,该取代变体可包含一个或多个保守氨基酸取代。在其他实施例中,该变体是插入变体。在其他实施例中,该变体是缺失变体。
如本领域技术人员所认识到的,野生型或变体松弛素蛋白片段、功能蛋白结构域、变体和同源蛋白(直向同源物)也被认为在本发明的松弛素多肽的范围内。
本披露中呈现的某些组合物和方法是指野生型或变体松弛素蛋白的蛋白质或多核苷酸序列。本领域技术人员将理解,此类披露同样适用于本领域已知的任何其他松弛素蛋白同种型。
多核苷酸和开放阅读框(ORF)
在某些方面,本发明提供了包含编码一种或多种松弛素多肽的核苷酸序列(例如,ORF)的多核苷酸(例如,RNA,例如mRNA)。在一些实施例中,本发明的编码的治疗性多肽可以选自:
全长松弛素多肽(例如,与野生型松弛素多肽具有相同或基本相同的长度);
变体,如本文所述的任何野生型松弛素蛋白的功能片段(例如,比野生型松弛素蛋白之一短的截短的(例如,羧基、氨基末端或内部区域缺失)序列;但仍保留该蛋白质的功能活性);
变体,如全长或截短的野生型松弛素蛋白,其中一个或多个氨基酸已被替代,例如相对于参考同种型(例如,任何天然的变体或本领域已知的人工变体)保留该多肽的全部或大部分松弛素活性的变体;或
融合蛋白,其包含(i)全长野生型松弛素蛋白、变体松弛素蛋白、其功能片段或变体,和(ii)异源蛋白。
在某些实施例中,该编码的松弛素多肽是哺乳动物松弛素多肽(如人松弛素多肽)、其功能片段或变体。
在一些实施方案中,当在那些细胞中引入时,本发明的多核苷酸(例如,RNA,例如mRNA)与给予本发明的多核苷酸之前细胞中的松弛素蛋白表达水平相比将这些细胞中的松弛素蛋白表达水平增加例如至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至少100%,松弛素蛋白表达水平可根据本领域已知的方法测量。在一些实施例中,将该多核苷酸在体外引入这些细胞中。在一些实施例中,将该多核苷酸在体内引入这些细胞中。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含密码子优化的核酸序列,其中该密码子优化的核酸序列的开放阅读框(ORF)衍生自松弛素蛋白序列。例如,对于本发明的包含编码特定松弛素蛋白的序列优化的ORF的多核苷酸,相应的野生型序列是天然松弛素蛋白。类似地,对于编码松弛素蛋白功能片段的序列优化的mRNA,相应的野生型序列是来自野生型松弛素蛋白的相应片段。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码野生型松弛素蛋白的核苷酸序列,其具有野生型人松弛素蛋白的全长序列(即,包括引发剂甲硫氨酸)。在成熟的野生型松弛素蛋白中,可以除去引发剂甲硫氨酸以产生“成熟松弛素蛋白”,其包含翻译产物的2至剩余氨基酸的氨基酸残基。本披露的针对人松弛素蛋白的全序列的传授内容也适用于缺少引发剂甲硫氨酸的成熟形式的人松弛素蛋白。因此,在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码野生型松弛素蛋白的核苷酸序列,其具有野生型人松弛素蛋白的成熟序列(即,缺少引发剂甲硫氨酸)。在一些实施例中,本发明的包含编码具有人野生型松弛素蛋白的全长或成熟序列的野生型松弛素蛋白的核苷酸序列的多核苷酸(例如,RNA,例如mRNA)是序列优化的。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码突变型松弛素多肽的核苷酸序列(例如,ORF)。在一些实施例中,本发明的多核苷酸包含编码松弛素多肽的ORF,该松弛素多肽在松弛素蛋白序列中包含至少一个点突变并保留松弛素蛋白活性。在一些实施例中,该突变型松弛素多肽的松弛素活性是相应的野生型松弛素蛋白(即,没有这一个或多个突变的相同野生型松弛素蛋白)的松弛素活性的至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至少100%。在一些实施例中,本发明的包含编码突变型松弛素多肽的ORF的多核苷酸(例如,RNA,例如mRNA)是序列优化的。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽的核苷酸序列(例如,ORF),该松弛素多肽具有不改变松弛素蛋白活性的突变。此类突变型松弛素多肽可称为功能中性的。在一些实施例中,该多核苷酸包含编码突变型松弛素多肽的ORF,该突变型松弛素多肽包含一个或多个功能中性点突变。
在一些实施例中,该突变型松弛素多肽具有比相应的野生型松弛素蛋白更高的松弛素蛋白活性。在一些实施例中,该突变型松弛素多肽的松弛素活性比相应的野生型松弛素蛋白(即,没有这一个或多个突变的相同野生型松弛素蛋白)的活性高至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至少100%。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码功能性松弛素蛋白片段的核苷酸序列(例如,ORF),例如,其中一个或多个片段对应于野生型松弛素多肽的多肽子序列并保留松弛素蛋白活性。在一些实施例中,该松弛素蛋白片段的活性为相应的全长松弛素蛋白的松弛素蛋白活性的至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至少100%。在一些实施例中,本发明的包含编码功能性松弛素蛋白片段的ORF的多核苷酸(例如,RNA,例如mRNA)是序列优化的。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素蛋白片段的核苷酸序列(例如,ORF),该松弛素蛋白片段具有比相应的全长松弛素蛋白更高的松弛素蛋白活性。因此,在一些实施例中,该松弛素蛋白片段的松弛素活性比相应的全长松弛素蛋白的松弛素活性高至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%。至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至少100%。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素蛋白片段的核苷酸序列(例如,ORF),该松弛素蛋白片段比野生型松弛素蛋白短至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%或25%。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含约1,200至约100,000个(例如,1,200至1,500个、1,200至1,600个、1,200至1,700个、1,200至1,800个、1,200至1,900个、1,200至2,000个、1,300至1,500个、1,300至1,600个、1,300至1,700个、1,300至1,800个、1,300至1,900个、1,300至2,000个、1,425至1,500个、1,425至1,600个、1,425至1,700个、1,425至1,800个、1,425至1,900个、1,425至2,000个、1,425至3,000个、1,425至5,000个、1,425至7,000个、1,425至10,000个、1,425至25,000个、1,425至50,000个、1,425至70,000个或1,425至100,000个)核苷酸。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽(例如,野生型序列、其功能片段或变体)的核苷酸序列(例如,ORF),其中该核苷酸序列(例如,ORF)的长度是至少500个核苷酸长(例如,至少或大于约500个、600个、700个、80个、900个、1,000个、1,100个、1,200个、1,300个、1,400个、1,425个、1450个、1,500个、1,600个、1,700个、1,800个、1,900个、2,000个、2,100个、2,200个、2,300个、2,400个、2,500个、2,600个、2,700个、2,800个、2,900个、3,000个、3,100个、3,200个、3,300个、3,400个、3,500个、3,600个、3,700个、3,800个、3,900个、4,000个、4,100个、4,200个、4,300个、4,400个、4,500个、4,600个、4,700个、4,800个、4,900个、5,000个、5,100个、5,200个、5,300个、5,400个、5,500个、5,600个、5,700个、5,800个、5,900个、6,000个、7,000个、8,000个、9,000个、10,000个、20,000个、30,000个、40,000个、50,000个、60,000个、70,000个、80,000个、90,000个或高达并包括100,000个核苷酸)。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽(例如,野生型序列、其功能片段或变体)的核苷酸序列(例如,ORF),进一步包含至少一个非编码的核酸序列,例如miRNA结合位点。
在一些实施例中,本发明的包含编码松弛素多肽(例如,野生型序列、其功能片段或变体)的核苷酸序列(例如,ORF)的多核苷酸是RNA。在一些实施例中,本发明的多核苷酸为或充当信使RNA(mRNA)。在一些实施例中,该mRNA包含编码至少一种松弛素多肽的核苷酸序列(例如,ORF),并且能够在体外、体内、原位或离体翻译以产生编码的松弛素多肽。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽(例如,野生型序列、其功能片段或变体)的序列优化的核苷酸序列(例如,ORF),其中该多核苷酸包含至少一个经化学修饰的核碱基,例如5-甲氧基尿嘧啶。在一些实施例中,该多核苷酸进一步包含miRNA结合位点,例如结合miR-142的miRNA结合位点。在一些实施例中,本文披露的多核苷酸与递送剂(例如,可电离脂质纳米粒子,其包含例如具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的脂质,例如化合物1-232中的任何一种)一起配制。
信号序列
本发明的多核苷酸(例如,RNA,例如mRNA)还可以包含编码有助于将编码的多肽运输到治疗相关位点的其他特征的核苷酸序列。有助于蛋白质运输的一个这样的特征是信号序列或靶向序列。由这些信号序列编码的肽通过多种名称已知,包括靶向肽、转运肽和信号肽。在一些实施例中,该多核苷酸(例如,RNA,例如mRNA)包含编码信号肽的核苷酸序列(例如,ORF),其有效地连接编码本文所述的松弛素多肽的核苷酸序列。
在一些实施例中,“信号序列”或“信号肽”分别是多核苷酸或多肽,其长度为约9至200个核苷酸(3-70个氨基酸),任选地分别在编码区或多肽的5'(或N-末端)处掺入。添加这些序列使得通过一种或多种靶向途径将编码的多肽运输到所希望的位点,如内质网或线粒体。在将蛋白质转运至所希望的位点后,一些信号肽被从该蛋白质上切割下来,例如通过信号肽酶切割。
在一些实施例中,本发明的多核苷酸包含编码野生型松弛素多肽的核苷酸序列,其中该核苷酸序列进一步包含编码天然信号肽的5'核酸序列。在另一个实施例中,本发明的多核苷酸包含编码野生型松弛素多肽的核苷酸序列,其中该核苷酸序列缺少编码天然信号肽的核酸序列。
在一些实施例中,本发明的多核苷酸包含编码松弛素多肽的核苷酸序列,其中该核苷酸序列进一步包含编码异源信号肽的5'核酸序列。
融合蛋白
在一些实施例中,该松弛素治疗剂是包含多于一个编码感兴趣的多肽的核酸序列(例如,ORF)的多肽或多核苷酸(例如,RNA,例如mRNA)。在一些实施例中,本发明的多核苷酸包含编码松弛素多肽、其功能片段或变体的单个ORF。然而,在一些实施例中,本发明的多核苷酸可包含多于一个ORF,例如,编码松弛素多肽(第一种感兴趣的多肽)、其功能片段或变体的第一ORF,以及表达第二多肽(如稳定序列)的第二ORF。在一些实施例中,两种或更多种感兴趣的多肽可以是遗传上融合的,即两种或更多种多肽可以由相同的ORF编码。在一些实施例中,该多核苷酸可包含编码两种或更多种感兴趣的多肽之间的接头(例如,G4S肽接头(SEQ ID NO:588)或本领域已知的另一种接头)的核酸序列。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)可包含两个、三个、四个或更多个ORF,每个ORF表达一种多肽。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)可包含编码松弛素多肽的第一核酸序列(例如,第一ORF)和编码第二种多肽(如稳定序列)的第二核酸序列(例如,第二ORF)。
如本文所用,稳定序列是赋予融合蛋白稳定性的肽序列。在一些实施例中,该稳定序列可以是免疫球蛋白(Ig)或其片段。在人类中,免疫球蛋白包括四个IgG亚类(IgG1、2、3和4),按其在血清中的丰度顺序命名。IgG同种型由两条轻链和两条重链组成,其中每条重链含有三个恒定重链结构域(CH1、CH2、CH3)。IgG的两条重链通过二硫键彼此连接并各自与轻链连接。IgG的抗原结合位点位于片段抗原结合区(Fab区),其含有可变轻链(VL)和可变重链(VH)结构域以及恒定轻链(CL)和恒定重链(CH1)结构域。IgG的片段可结晶区域(Fc区)是含有CH2和CH3结构域的重链的一部分,其结合在某些细胞表面上发现的Fc受体,包括新生儿Fc受体(FcRn)。IgG的重链还具有CH1和CH2结构域之间的铰链区(铰链),其将Fab区与Fc区分开并参与通过二硫键将两条重链连接在一起。
在一些实施例中,该Ig片段是衍生自Ig分子的恒定重链区(CH)或可变重链区(VH)的一部分。该Ig片段可包含恒定重链区或可变重链区的任何部分,包括一个或多个恒定重链或可变重链结构域、铰链区、Fc区和/或其组合。
在一些实施例中,该Ig片段是衍生自Ig分子的恒定轻链区(CL)或可变轻链区(VL)的一部分。该Ig片段可包含恒定轻链区或可变轻链区的任何部分,包括一个或多个恒定轻链或可变轻链结构域、铰链区、Fc区和/或其组合。
在某些实施例中,该融合蛋白的Ig片段包含单链Fc(sFc或scFc),即一种不能形成二聚体的单体。在一些实施例中,该融合蛋白包含对应于免疫球蛋白铰链区的序列。在各个实施例中,该铰链区含有防止该融合蛋白与另一种融合蛋白或另一种免疫球蛋白分子形成二硫键的修饰。在一些实施例中,通过使一个或多个半胱氨酸氨基酸突变和/或缺失来修饰铰链区,以防止形成二硫键。
在一些实施例中,该Ig片段是κ轻链可变区(VLk)序列。
该融合蛋白可具有与该Ig片段的N-末端连接的松弛素。可替代地,该融合蛋白可具有与该Ig片段的C-末端连接的松弛素。在具体的实施例中,该融合蛋白包含在其N-末端与VLk连接的松弛素。在其他实施例中,该融合蛋白包含在其C-末端与VLk连接的松弛素。
该连接可以是共价键,并且优选肽键。该融合蛋白可任选地包含至少一个接头。因此,该松弛素可不与该Ig片段直接连接。该接头可介于该松弛素和该Ig片段之间。该接头可以连接到该Ig片段的N-末端或该Ig片段的C-末端。在一个实施例中,该接头包含氨基酸。该接头可包含1-5个氨基酸。
编码松弛素多肽的核苷酸序列的序列优化
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)是序列优化的。在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽的核苷酸序列(例如,ORF)、编码另一种感兴趣的多肽的核苷酸序列(例如,ORF)、5'-UTR、3'-UTR、miRNA、编码接头的核苷酸序列或其任何组合,其是序列优化的。
编码松弛素多肽的序列优化的核苷酸序列(例如,密码子优化的mRNA序列)是相对于参考序列(例如,编码松弛素多肽的野生型核苷酸序列)包含至少一个同义核碱基取代的序列。
序列优化的核苷酸序列可以在序列上与参考序列部分或完全不同。例如,编码由TCT密码子统一编码的聚丝氨酸的参考序列可以通过使其100%的核碱基被取代来进行序列优化(对于每个密码子,位置1中的T被A替代,位置2中的C被G替代,并且位置3中的T被C替代)以产生编码由AGC密码子统一编码的聚丝氨酸的序列。从参考聚丝氨酸核酸序列和序列优化的聚丝氨酸核酸序列之间的全局成对比对获得的序列同一性百分比将为0%。然而,来自两个序列的蛋白质产物将是100%相同的。
一些序列优化(有时也称为密码子优化)方法是本领域已知的,并且可用于实现一种或多种所希望的结果。这些结果可包括例如匹配某些组织靶标和/或宿主生物中的密码子频率以确保正确折叠;偏向G/C含量以增加mRNA稳定性或减少二级结构;最小化可能损害基因构建或表达的串联重复序列密码子或碱基运行;定制转录和翻译控制区;插入或除去蛋白质运输序列;在编码的蛋白质中除去/添加翻译后修饰位点(例如,糖基化位点);添加、除去或改组蛋白质结构域;插入或缺失限制性位点;修饰核糖体结合位点和mRNA降解位点;调整翻译速率以使该蛋白质的各个结构域正确折叠;和/或减少或消除该多核苷酸内的问题二级结构。序列优化工具、算法和服务是本领域已知的,非限制性实例包括来自GeneArt(生命技术公司(Life Technologies))、DNA2.0(加州门洛帕克公司(Menlo Park CA))和/或专有方法的服务。
每种氨基酸的密码子选项在下表1中给出。
表1.密码子选项
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含编码松弛素多肽、其功能片段或变体的序列优化的核苷酸序列(例如,ORF),其中由该序列优化的核苷酸序列编码的松弛素多肽、其功能片段或变体具有改善的性质(例如,与由未序列优化的参考核苷酸序列编码的松弛素多肽、其功能片段或变体相比),例如改善的与体内给药后的表达功效相关的性质。这些性质包括但不限于改善核酸稳定性(例如,mRNA稳定性),增加靶组织中的翻译效力,减少表达的截短蛋白质的数量,改善表达的蛋白质的折叠或防止其错误折叠,降低表达的产物的毒性,减少由表达的产物引起的细胞死亡,增加和/或减少蛋白质聚集。
在一些实施例中,该序列优化的核苷酸序列经密码子优化以在人类受试者中表达,具有避免本领域中一个或多个问题的结构和/或化学特征,例如可用于优化基于核酸的治疗剂的配制和递送同时保持结构和功能完整性的特征;克服表达的阈值;改善表达率;半衰期和/或蛋白质浓度;优化蛋白质定位;并避免有害的生物反应,如免疫应答和/或降解途径。
在一些实施例中,本发明的多核苷酸包含根据以下方法进行序列优化的核苷酸序列(例如,编码松弛素多肽的核苷酸序列(例如,ORF)、编码另一种感兴趣的多肽的核苷酸序列(例如,ORF)、5'-UTR、3'-UTR、微RNA、编码接头的核酸序列或其任何组合),该方法包括:(i)用替代密码子取代参考核苷酸序列(例如,编码松弛素多肽的ORF)中的至少一个密码子以增加或降低尿苷含量,以产生尿苷修饰的序列;(ii)用同义密码子集中具有较高密码子频率的替代密码子取代参考核苷酸序列(例如,编码松弛素多肽的ORF)中的至少一个密码子;(iii)用替代密码子取代参考核苷酸序列(例如,编码松弛素多肽的ORF)中的至少一个密码子以增加G/C含量;或(iv)其组合。
在一些实施例中,该序列优化的核苷酸序列(例如,编码松弛素多肽的ORF)相对于该参考核苷酸序列具有至少一种改善的性质。
在一些实施例中,该序列优化方法是多参数的并且包括本文披露的一种、两种、三种、四种或更多种方法和/或本领域已知的其他优化方法。
在本发明的一些实施例中可被认为是有益的特征可由该多核苷酸编码或在该多核苷酸的区域内部,并且此类区域可在编码该松弛素多肽的区域的上游(5')、下游(3')或其内部。这些区域可以在蛋白质编码区或开放阅读框(ORF)的序列优化之前和/或之后掺入该多核苷酸中。此类特征的实例包括但不限于非翻译区(UTR)、微RNA序列、Kozak序列、寡聚(dT)序列、聚-A尾和可检测标签,并且可以包括可具有XbaI识别的多个克隆位点。
在一些实施例中,本发明的多核苷酸包含5'UTR、3'UTR和/或miRNA。在一些实施例中,该多核苷酸包含两个或更多个5'UTR和/或3'UTR,其可以是相同的或不同的序列。在一些实施例中,该多核苷酸包含两个或更多个miRNA,其可以是相同的或不同的序列。在序列优化之前和/或之后,5'UTR、3'UTR和/或miRNA的任何部分(包括没有一个)可以是序列优化的并且可以独立地含有一种或多种不同的结构或化学修饰。
在一些实施例中,在优化后,重构该多核苷酸并转化到载体中,如但不限于质粒、病毒、粘粒和人工染色体。例如,可以重构该优化的多核苷酸并转化到化学感受态大肠杆菌、酵母、脉孢菌、玉米、果蝇等中,其中通过本文所述的方法产生高拷贝质粒样或染色体结构。
编码松弛素多肽的序列优化的核苷酸序列
在一些实施例中,本发明的多核苷酸包含编码本文披露的松弛素多肽的序列优化的核苷酸序列。在一些实施例中,本发明的多核苷酸包含编码松弛素多肽的开放阅读框(ORF),其中该ORF已经序列优化。
本文披露的序列优化的核苷酸序列不同于相应的野生型核苷酸序列和其他已知的序列优化的核苷酸序列,例如,这些序列优化的核酸具有独特的组成特征。
在一些实施例中,序列优化的核苷酸序列(例如,编码松弛素多肽、其功能片段或变体)中尿嘧啶或胸腺嘧啶核碱基的百分比相对于参考野生型核苷酸序列中尿嘧啶或胸腺嘧啶核碱基的百分比是经修饰的(例如,降低)。这种序列被称为尿嘧啶修饰的或胸腺嘧啶修饰的序列。核苷酸序列中尿嘧啶或胸腺嘧啶含量的百分比可以通过将序列中的尿嘧啶或胸腺嘧啶的数量除以核苷酸的总数并乘以100来确定。在一些实施例中,该序列优化的核苷酸序列具有比参考野生型序列中的尿嘧啶或胸腺嘧啶含量低的尿嘧啶或胸腺嘧啶含量。在一些实施例中,本发明的序列优化的核苷酸序列中的尿嘧啶或胸腺嘧啶含量大于参考野生型序列中的尿嘧啶或胸腺嘧啶含量,并且仍然维持有益效果,例如与参考野生型序列相比时增加的表达和/或减少的Toll样受体(TLR)反应。
本文披露的序列的尿嘧啶或胸腺嘧啶含量(即其总尿嘧啶或胸腺嘧啶含量)在本文中缩写为%UTL或%TTL
编码本发明的松弛素多肽的尿嘧啶或胸腺嘧啶修饰的序列也可以根据其相对于相应的野生型核酸序列中的尿嘧啶或胸腺嘧啶含量的尿嘧啶或胸腺嘧啶含量(%UWT或%TWT)来描述,或者根据其相对于编码野生型蛋白质序列的核酸的理论最小尿嘧啶或胸腺嘧啶含量的尿嘧啶或胸腺嘧啶含量(%UTM或%TTM)来描述。
短语“相对于野生型核酸序列中的尿嘧啶或胸腺嘧啶含量的尿嘧啶或胸腺嘧啶含量”是指通过将序列优化的核酸中的尿嘧啶或胸腺嘧啶的数量除以相应的野生型核酸序列中的尿嘧啶或胸腺嘧啶的总数并乘以100确定的参数。此参数在本文中缩写为%UWT或%TWT
相对于尿嘧啶或胸腺嘧啶理论最小值的尿嘧啶或胸腺嘧啶含量是指通过将序列优化的核苷酸序列中的尿嘧啶或胸腺嘧啶的数量除以假设核苷酸序列(其中假设序列中的所有密码子被具有最低可能尿嘧啶或胸腺嘧啶含量的同义密码子替代)中的尿嘧啶或胸腺嘧啶的总数并乘以100确定的参数。此参数在本文中缩写为%UTM或%TTM
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰序列的%UTM低于300%、低于295%、低于290%、低于285%、低于280%、低于275%、低于270%、低于265%、低于260%、低于255%、低于250%、低于245%、低于240%、低于235%、低于230%、低于225%、低于220%、低于215%、低于200%、低于195%、低于190%、低于185%、低于180%、低于175%、低于170%、低于165%、低于160%、低于155%、低于150%、低于145%、低于140%、低于139%、低于138%、低于137%、低于136%、低于135%、低于134%、低于133%、低于132%、低于131%、低于130%、低于129%、低于128%、低于127%、低于126%、低于125%、低于124%、低于123%、低于122%、低于121%、低于120%、低于119%、低于118%、低于117%、低于116%或低于115%。
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列的%UTM高于100%、高于101%、高于102%、高于103%、高于104%、高于105%、高于106%、高于107%、高于108%、高于109%、高于110%、高于111%、高于112%、高于113%、高于114%、高于115%、高于116%、高于117%、高于118%、高于119%、高于120%、高于121%、高于122%、高于123%、高于124%、高于125%或高于126%、高于127%、高于128%、高于129%或高于130%、高于131%、高于132%、高于133%、高于134%、高于135%、高于136%、高于137%或高于138%。
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列的%UTM在131%和133%之间、130%和134%之间、129%和135%之间、128%和136%之间、127%和137%之间、126%和138%之间、125%和139%之间、124%和140%之间、123%和141%之间、122%和142%之间、121%和143%之间、120%和144%之间或119%和145%之间。
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列的%UTM在约125%和约139%之间,例如125%和138%之间。
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列相对于相应的野生型核酸序列具有减少数量的连续尿嘧啶。例如,两个连续亮氨酸可以由序列CUUUUG编码,其包括四尿嘧啶簇。这样的子序列可以例如被CUGCUC取代,其除去了该尿嘧啶簇。
苯丙氨酸可由UUC或UUU编码。因此,即使由UUU编码的苯丙氨酸被UUC替代,该同义密码子仍含有尿嘧啶对(UU)。因此,序列中的苯丙氨酸的数量确立了在不改变编码的多肽中苯丙氨酸的数量的情况下不能被消除的尿嘧啶对(UU)的最小数量。例如,如果该多肽(例如,野生型松弛素蛋白)具有例如12、13、14、15、16、17、18、19、20、21、22或23个苯丙氨酸,那么编码该多肽(例如,野生型松弛素蛋白)的尿嘧啶修饰的序列可以含有的尿嘧啶对(UU)的绝对最小数量分别为12、13、14、15、16、17、18、19、20、21、22或23。
在一些实施例中,编码松弛素多肽的尿嘧啶修饰的序列相对于野生型核酸序列中的尿嘧啶对(UU)的数量具有减少数量的尿嘧啶对(UU)。在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列具有许多尿嘧啶对(UU),其对应于野生型核酸序列中最小可能数量的尿嘧啶对(UU)。
在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列比野生型核酸序列中尿嘧啶对(UU)的数量少至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17个尿嘧啶对(UU)。在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列具有13个和29个之间的尿嘧啶对(UU)。
短语“相对于野生型核酸序列中的尿嘧啶对(UU)的尿嘧啶对(UU)”是指通过将序列优化的核苷酸序列中的尿嘧啶对(UU)的数量除以相应的野生型核苷酸序列中的尿嘧啶对(UU)的总数并乘以100确定的参数。此参数在本文中缩写为%UUwt
在一些实施例中,本发明的多核苷酸包含编码本文披露的松弛素多肽的尿嘧啶修饰的序列。在一些实施例中,编码松弛素多肽的尿嘧啶修饰的序列包含至少一个经化学修饰的核碱基,例如5-甲氧基尿嘧啶。在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列中至少95%的核碱基(例如,尿嘧啶)是经修饰的核碱基。在一些实施例中,编码松弛素多肽的尿嘧啶修饰的序列中至少95%的尿嘧啶是5-甲氧基尿嘧啶。在一些实施例中,包含尿嘧啶修饰的序列的多核苷酸进一步包含miRNA结合位点,例如结合miR-142的miRNA结合位点。在一些实施例中,包含尿嘧啶修饰的序列的多核苷酸与递送剂(例如,LNP,其包含例如具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的脂质,例如化合物1-232中的任何一种)一起配制。
在一些实施例中,本发明的多核苷酸包含编码松弛素多肽的开放阅读框(ORF),其中该ORF已进行序列优化,并且其中%UTL、%UWT、%UTM、%GTL、%GWT、%GTMX、%CTL、%CWT、%CTMX、%G/CTL、%G/CWT或%G/CTMX中的每一个(单独或以其组合)的范围在(i)对应于参数最大值(MAX)加约0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5或10个标准偏差(STD DEV)的最大值和(ii)对应于参数最小值(MIN)减0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5或10个标准偏差(STD DEV)的最小值之间。
在一些实施例中,编码松弛素蛋白的参考核酸序列中至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%或至少约75%的密码子被替代密码子取代,每个替代密码子的密码子频率高于同义密码子集中被取代密码子的密码子频率。
在一些实施例中,具有较高密码子频率的至少一个替代密码子在同义密码子集中具有最高的密码子频率。在其他实施例中,具有较高密码子频率的所有替代密码子在同义密码子集中具有最高的密码子频率。
在一些实施例中,具有较低密码子频率的至少一个替代密码子在同义密码子集中具有最低的密码子频率。在一些实施例中,具有较高密码子频率的所有替代密码子在同义密码子集中具有最高的密码子频率。
在一些具体实施例中,至少一个替代密码子在同义密码子集中具有第二高、第三高、第四高、第五高或第六高的频率。在一些具体实施例中,至少一个替代密码子在同义密码子集中具有第二低、第三低、第四低、第五低或第六低的频率。
基于密码子频率的优化可以如上所述全局应用,或局部应用于编码松弛素多肽的参考核酸序列。在一些实施例中,当局部应用时,可以基于密码子频率修饰参考核酸序列的区域,用其各自的同义密码子集中具有较高或较低频率的密码子取代特定子序列中的全部或某一百分比的密码子。因此,在一些实施例中,参考核酸序列的子序列中至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约99%或100%的密码子被替代密码子取代,每个替代密码子的密码子频率高于同义密码子集中被取代密码子的密码子频率。
在一些实施例中,编码松弛素多肽的参考核酸序列的子序列中的至少一个密码子被密码子频率高于同义密码子集中被取代密码子的密码子频率的替代密码子取代,并且该参考核酸序列的子序列中的至少一个密码子被密码子频率低于同义密码子集中被取代密码子的密码子频率的替代密码子取代。
在一些实施例中,编码松弛素多肽的参考核酸序列的子序列中至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%或至少约75%的密码子被替代密码子取代,每个替代密码子的密码子频率高于同义密码子集中被取代密码子的密码子频率。
在一些实施例中,在编码松弛素多肽的参考核酸序列的子序列中被取代并具有较高密码子频率的至少一个替代密码子在同义密码子集中具有最高的密码子频率。在其他实施例中,在参考核酸序列的子序列中被取代并具有较低密码子频率的所有替代密码子在同义密码子集中具有最低的密码子频率。
在一些实施例中,在编码松弛素多肽的参考核酸序列的子序列中被取代并具有较低密码子频率的至少一个替代密码子在同义密码子集中具有最低的密码子频率。在一些实施例中,在参考核酸序列的子序列中被取代并具有较高密码子频率的所有替代密码子在同义密码子集中具有最高的密码子频率。
在具体实施例中,编码松弛素多肽的序列优化的核酸可以在特定位置处包含总密码子频率高于或低于参考核酸序列的相应子序列中总密码子频率的子序列,例如在序列优化的核酸的5'端或3'端,或在距那些区域的预定距离内(例如,距序列优化的核酸的5'端或3'端至少1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95或100个密码子)。
在一些实施例中,编码松弛素多肽的序列优化的核酸可包含多于一个子序列,其总密码子频率高于或低于参考核酸序列的相应子序列中的总密码子频率。技术人员将理解,具有总体更高或更低的总密码子频率的子序列能以无数模式组织,这取决于总密码子频率是高还是低、子序列的长度、子序列之间的距离、子序列的位置等。
编码松弛素多肽的经修饰的核苷酸序列
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含经化学修饰的核碱基。本发明包括包含本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的经修饰的多核苷酸。可以对经修饰的多核苷酸进行化学修饰和/或结构修饰。当对本发明的多核苷酸进行化学和/或结构修饰时,这些多核苷酸可称为“经修饰的多核苷酸”。
本披露提供了编码松弛素多肽的多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)的经修饰的核苷和核苷酸。“核苷”是指含有与有机碱(例如,嘌呤或嘧啶)或其衍生物(在本文中也称为“核碱基”)组合的糖分子(例如,戊糖或核糖)或其衍生物的化合物。“核苷酸”是指包含磷酸基团的核苷。经修饰的核苷酸可以通过任何有用的方法合成,如例如化学地、酶促地或重组地,以包含一个或多个经修饰的或非天然的核苷。多核苷酸可包含连接的核苷的一个或多个区域。此类区域可具有可变的主链连接。这些连接可以是标准磷酸二酯键,在这种情况下,这些多核苷酸将包含多个核苷酸区域。
本文披露的经修饰的多核苷酸可包含各种不同的修饰。在一些实施例中,经修饰的多核苷酸含有一种、两种或更多种(任选地不同的)核苷或核苷酸修饰。在一些实施例中,与未经修饰的多核苷酸相比,引入细胞的经修饰的多核苷酸可展现一种或多种理想的性质,例如改善的蛋白质表达、降低的免疫原性或降低的细胞降解。
在一些实施例中,对本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)进行结构修饰。如本文所用,“结构”修饰是这样的修饰,其中在多核苷酸中两个或更多个连接核苷被插入、缺失、复制、倒置或随机化而不对核苷酸本身进行显著化学修饰。因为化学键必须被破坏并重新形成以实现结构修饰,所以结构修饰具有化学性质,并且因此是化学修饰。然而,结构修饰将产生不同的核苷酸序列。例如,多核苷酸“ATCG”可以被化学修饰为“AT-5meC-G”。相同的多核苷酸可以从“ATCG”结构修饰为“ATCCCG”。此处,已插入二核苷酸“CC”,导致对多核苷酸的结构修饰。
在一些实施例中,本发明的多核苷酸是经化学修饰的。如本文所用,关于多核苷酸,术语“化学修饰”或适当时“经化学修饰的”是指对腺苷(A)、鸟苷(G)、尿苷(U)或胞苷(C)核糖核苷或脱氧核糖核苷的位置、模式、百分比或群体中一种或多种的修饰。通常,在本文中,这些术语不意在指天然存在的5'-末端mRNA帽部分中的核糖核苷酸修饰。
在一些实施例中,本发明的多核苷酸可以具有所有或任何相同核苷类型的统一化学修饰或仅通过向下滴定所有或任何相同核苷类型中的相同起始修饰而产生的修饰群,或者所有任何相同核苷类型的化学修饰但随机掺入的测量百分比,如所有尿苷被尿苷类似物(例如,假尿苷或5-甲氧基尿苷)替代的情况。在另一个实施例中,这些多核苷酸可以在整个多核苷酸中具有两个、三个或四个相同核苷类型的统一化学修饰(如所有尿嘧啶和所有胞嘧啶等以相同方式修饰)。
经修饰的核苷酸碱基配对不仅涵盖标准的腺苷-胸腺嘧啶、腺苷-尿嘧啶或鸟苷-胞嘧啶碱基对,还涵盖在核苷酸和/或包含非标准或经修饰碱基的经修饰的核苷酸之间形成的碱基对,其中氢键供体和氢键受体的排列允许非标准碱基和标准碱基之间或两个互补的非标准碱基结构之间的氢键键合。这种非标准碱基配对的一个实例是经修饰的核苷酸肌苷和腺嘌呤、胞嘧啶或尿嘧啶之间的碱基配对。可以在本披露的多核苷酸中掺入碱/糖或接头的任何组合。
技术人员将理解,除非另有说明,否则本申请中所述的多核苷酸序列将在代表性DNA序列中列举“T”,但是当序列代表RNA时,“T”将被“U”取代。
可用于本披露的组合物、方法和合成工艺中的多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)的修饰包括但不限于以下核苷酸、核苷和核碱基:2-甲硫基-N6-(顺式-羟基异戊烯基)腺苷;2-甲硫基-N6-甲基腺苷;2-甲硫基-N6-苏氨酰基氨基甲酰基腺苷;N6-甘氨酰基氨基甲酰基腺苷;N6-异戊烯基腺苷;N6-甲基腺苷;N6-苏氨酰基氨基甲酰基腺苷;1,2'-O-二甲基腺苷;1-甲基腺苷;2'-O-甲基腺苷;2'-O-核糖基腺苷(磷酸盐);2-甲基腺苷;2-甲硫基-N6异戊烯基腺苷;2-甲硫基-N6-羟基正缬氨酰基氨基甲酰基腺苷;2'-O-甲基腺苷;2'-O-核糖基腺苷(磷酸盐);异戊烯基腺苷;N6-(顺式-羟基异戊烯基)腺苷;N6,2'-O-二甲基腺苷;N6,2'-O-二甲基腺苷;N6,N6,2'-O-三甲基腺苷;N6,N6-二甲基腺苷;N6-乙酰基腺苷;N6-羟基正缬氨酰基氨基甲酰基腺苷;N6-甲基-N6-苏氨酰基氨基甲酰基腺苷;2-甲基腺苷;2-甲硫基-N6-异戊烯基腺苷;7-脱氮-腺苷;N1-甲基-腺苷;N6,N6(二甲基)腺嘌呤;N6-顺式-羟基-异戊烯基-腺苷;α-硫代-腺苷;2(氨基)腺嘌呤;2(氨基丙基)腺嘌呤;2(甲硫基)N6(异戊烯基)腺嘌呤;2-(烷基)腺嘌呤;2-(氨基烷基)腺嘌呤;2-(氨基丙基)腺嘌呤;2-(卤代)腺嘌呤;2-(卤代)腺嘌呤;2-(丙基)腺嘌呤;2'-氨基-2'-脱氧-ATP;2'-叠氮基-2'-脱氧-ATP;2'-脱氧-2'-a-氨基腺苷TP;2'-脱氧-2'-a-叠氮基腺苷TP;6(烷基)腺嘌呤;6(甲基)腺嘌呤;6-(烷基)腺嘌呤;6-(甲基)腺嘌呤;7(脱氮)腺嘌呤;8(烯基)腺嘌呤;8(炔基)腺嘌呤;8(氨基)腺嘌呤;8(硫代烷基)腺嘌呤;8-(烯基)腺嘌呤;8-(烷基)腺嘌呤;8-(炔基)腺嘌呤;8-(氨基)腺嘌呤;8-(卤代)腺嘌呤;8-(羟基)腺嘌呤;8-(硫代烷基)腺嘌呤;8-(硫醇)腺嘌呤;8-叠氮基-腺苷;氮杂腺嘌呤;脱氮腺嘌呤;N6(甲基)腺嘌呤;N6-(异戊基)腺嘌呤;7-脱氮-8-氮杂-腺苷;7-甲基腺嘌呤;1-脱氮腺苷TP;2'氟-N6-Bz-脱氧腺苷TP;2'-OMe-2-氨基-ATP;2'O-甲基-N6-Bz-脱氧腺苷TP;2'-a-乙炔基腺苷TP;2-氨基腺嘌呤;2-氨基腺苷TP;2-氨基-ATP;2'-a-三氟甲基腺苷TP;2-叠氮基腺苷TP;2'-b-乙炔基腺苷TP;2-溴腺苷TP;2'-b-三氟甲基腺苷TP;2-氯腺苷TP;2'-脱氧-2',2'-二氟腺苷TP;2'-脱氧-2'-a-巯基腺苷TP;2'-脱氧-2'-a-硫代甲氧基腺苷TP;2'-脱氧-2'-b-氨基腺苷TP;2'-脱氧-2'-b-叠氮基腺苷TP;2'-脱氧-2'-b-溴腺苷TP;2'-脱氧-2'-b-氯腺苷TP;2'-脱氧-2'-b-氟腺苷TP;2'-脱氧-2'-b-碘腺苷TP;2'-脱氧-2'-b-巯基腺苷TP;2'-脱氧-2'-b-硫代甲氧基腺苷TP;2-氟腺苷TP;2-碘腺苷TP;2-巯基腺苷TP;2-甲氧基-腺嘌呤;2-甲硫基-腺嘌呤;2-三氟甲基腺苷TP;3-脱氮-3-溴腺苷TP;3-脱氮-3-氯腺苷TP;3-脱氮-3-氟腺苷TP;3-脱氮-3-碘腺苷TP;3-脱氮腺苷TP;4'-叠氮基腺苷TP;4'-碳环腺苷TP;4'-乙炔基腺苷TP;5'-高-腺苷TP;8-氮杂-ATP;8-溴-腺苷TP;8-三氟甲基腺苷TP;9-脱氮腺苷TP;2-氨基嘌呤;7-脱氮-2,6-二氨基嘌呤;7-脱氮-8-氮杂-2,6-二氨基嘌呤;7-脱氮-8-氮杂-2-氨基嘌呤;2,6-二氨基嘌呤;7-脱氮-8-氮杂腺嘌呤、7-脱氮-2-氨基嘌呤;2-硫代胞苷;3-甲基胞苷;5-甲酰基胞苷;5-羟基甲基胞苷;5-甲基胞苷;N4-乙酰基胞苷;2'-O-甲基胞苷;2'-O-甲基胞苷;5,2'-O-二甲基胞苷;5-甲酰基-2'-O-甲基胞苷;赖胞苷;N4,2'-O-二甲基胞苷;N4-乙酰基-2'-O-甲基胞苷;N4-甲基胞苷;N4,N4-二甲基-2'-OMe-胞苷TP;4-甲基胞苷;5-氮杂-胞苷;假-异胞苷;吡咯并-胞苷;α-硫代-胞苷;2-(硫代)胞嘧啶;2'-氨基-2'-脱氧-CTP;2'-叠氮基-2'-脱氧-CTP;2'-脱氧-2'-a-氨基胞苷TP;2'-脱氧-2'-a-叠氮基胞苷TP;3(脱氮)5(氮杂)胞嘧啶;3(甲基)胞嘧啶;3-(烷基)胞嘧啶;3-(脱氮)5(氮杂)胞嘧啶;3-(甲基)胞苷;4,2'-O-二甲基胞苷;5(卤代)胞嘧啶;5(甲基)胞嘧啶;5(丙炔基)胞嘧啶;5(三氟甲基)胞嘧啶;5-(烷基)胞嘧啶;5-(炔基)胞嘧啶;5-(卤代)胞嘧啶;5-(丙炔基)胞嘧啶;5-(三氟甲基)胞嘧啶;5-溴-胞苷;5-碘-胞苷;5-丙炔基胞嘧啶;6-(偶氮)胞嘧啶;6-氮杂-胞苷;氮杂胞嘧啶;脱氮胞嘧啶;N4(乙酰基)胞嘧啶;1-甲基-1-脱氮-假异胞苷;1-甲基-假异胞苷;2-甲氧基-5-甲基-胞苷;2-甲氧基-胞苷;2-硫代-5-甲基-胞苷;4-甲氧基-1-甲基-假异胞苷;4-甲氧基-假异胞苷;4-硫代-1-甲基-1-脱氮-假异胞苷;4-硫代-1-甲基-假异胞苷;4-硫代-假异胞苷;5-氮杂-折布拉林(zebularine);5-甲基-折布拉林;吡咯并-假异胞苷;折布拉林;(E)-5-(2-溴-乙烯基)胞苷TP;2,2'-脱水-胞苷TP盐酸盐;2'氟-N4-Bz-胞苷TP;2'氟-N4-乙酰基-胞苷TP;2'-O-甲基-N4-乙酰基-胞苷TP;2'O-甲基-N4-Bz-胞苷TP;2'-a-乙炔基胞苷TP;2'-a-三氟甲基胞苷TP;2'-b-乙炔基胞苷TP;2'-b-三氟甲基胞苷TP;2'-脱氧-2',2'-二氟胞苷TP;2'-脱氧-2'-a-巯基胞苷TP;2'-脱氧-2'-a-硫代甲氧基胞苷TP;2'-脱氧-2'-b-氨基胞苷TP;2'-脱氧-2'-b-叠氮基胞苷TP;2'-脱氧-2'-b-溴胞苷TP;2'-脱氧-2'-b-氯胞苷TP;2'-脱氧-2'-b-氟胞苷TP;2'-脱氧-2'-b-碘胞苷TP;2'-脱氧-2'-b-巯基胞苷TP;2'-脱氧-2'-b-硫代甲氧基胞苷TP;2'-O-甲基-5-(1-丙炔基)胞苷TP;3'-乙炔基胞苷TP;4'-叠氮基胞苷TP;4'-碳环胞苷TP;4'-乙炔基胞苷TP;5-(1-丙炔基)阿糖-胞苷TP;5-(2-氯-苯基)-2-硫代胞苷TP;5-(4-氨基-苯基)-2-硫代胞苷TP;5-氨基烯丙基-CTP;5-氰基胞苷TP;5-乙炔基阿糖-胞苷TP;5-乙炔基胞苷TP;5'-高-胞苷TP;5-甲氧基胞苷TP;5-三氟甲基-胞苷TP;N4-氨基-胞苷TP;N4-苯甲酰基-胞苷TP;假异胞苷;7-甲基鸟苷;N2,2'-O-二甲基鸟苷;N2-甲基鸟苷;怀俄苷;1,2'-O-二甲基鸟苷;1-甲基鸟苷;2'-O-甲基鸟苷;2'-O-核糖基鸟苷(磷酸盐);2'-O-甲基鸟苷;2'-O-核糖基鸟苷(磷酸盐);7-氨基甲基-7-脱氮鸟苷;7-氰基-7-脱氮鸟苷;古嘌苷;甲基怀俄苷;N2,7-二甲基鸟苷;N2,N2,2'-O-三甲基鸟苷;N2,N2,7-三甲基鸟苷;N2,N2-二甲基鸟苷;N2,7,2'-O-三甲基鸟苷;6-硫代-鸟苷;7-脱氮-鸟苷;8-氧代-鸟苷;N1-甲基-鸟苷;α-硫代-鸟苷;2(丙基)鸟嘌呤;2-(烷基)鸟嘌呤;2'-氨基-2'-脱氧-GTP;2'-叠氮基-2'-脱氧-GTP;2'-脱氧-2'-a-氨基鸟苷TP;2'-脱氧-2'-a-叠氮基鸟苷TP;6(甲基)鸟嘌呤;6-(烷基)鸟嘌呤;6-(甲基)鸟嘌呤;6-甲基-鸟苷;7(烷基)鸟嘌呤;7(脱氮)鸟嘌呤;7(甲基)鸟嘌呤;7-(烷基)鸟嘌呤;7-(脱氮)鸟嘌呤;7-(甲基)鸟嘌呤;8(烷基)鸟嘌呤;8(炔基)鸟嘌呤;8(卤代)鸟嘌呤;8(硫代烷基)鸟嘌呤;8-(烯基)鸟嘌呤;8-(烷基)鸟嘌呤;8-(炔基)鸟嘌呤;8-(氨基)鸟嘌呤;8-(卤代)鸟嘌呤;8-(羟基)鸟嘌呤;8-(硫代烷基)鸟嘌呤;8-(硫醇)鸟嘌呤;氮杂鸟嘌呤;脱氮鸟嘌呤;N(甲基)鸟嘌呤;N-(甲基)鸟嘌呤;1-甲基-6-硫代-鸟苷;6-甲氧基-鸟苷;6-硫代-7-脱氮-8-氮杂-鸟苷;6-硫代-7-脱氮-鸟苷;6-硫代-7-甲基-鸟苷;7-脱氮-8-氮杂-鸟苷;7-甲基-8-氧代-鸟苷;N2,N2-二甲基-6-硫代-鸟苷;N2-甲基-6-硫代-鸟苷;1-Me-GTP;2'氟-N2-异丁基-鸟苷TP;2'O-甲基-N2-异丁基-鸟苷TP;2'-a-乙炔基鸟苷TP;2'-a-三氟甲基鸟苷TP;2'-b-乙炔基鸟苷TP;2'-b-三氟甲基鸟苷TP;2'-脱氧-2',2'-二氟鸟苷TP;2'-脱氧-2'-a-巯基鸟苷TP;2'-脱氧-2'-a-硫代甲氧基鸟苷TP;2'-脱氧-2'-b-氨基鸟苷TP;2'-脱氧-2'-b-叠氮基鸟苷TP;2'-脱氧-2'-b-溴鸟苷TP;2'-脱氧-2'-b-氯鸟苷TP;2'-脱氧-2'-b-氟鸟苷TP;2'-脱氧-2'-b-碘鸟苷TP;2'-脱氧-2'-b-巯基鸟苷TP;2'-脱氧-2'-b-硫代甲氧基鸟苷TP;4'-叠氮基鸟苷TP;4'-碳环鸟苷TP;4'-乙炔基鸟苷TP;5'-高-鸟苷TP;8-溴-鸟苷TP;9-脱氮鸟苷TP;N2-异丁基-鸟苷TP;1-甲基肌苷;肌苷;1,2'-O-二甲基肌苷;2'-O-甲基肌苷;7-甲基肌苷;2'-O-甲基肌苷;环氧辫苷(Epoxyqueuosine);半乳糖基-辫苷;甘露糖基辫苷;辫苷;烯丙氨基-胸苷;氮杂胸苷;脱氮胸苷;脱氧-胸苷;2'-O-甲基尿苷;2-硫代尿苷;3-甲基尿苷;5-羧基甲基尿苷;5-羟基尿苷;5-甲基尿苷;5-牛磺酸甲基-2-硫代尿苷;5-牛磺酸甲基尿苷;二氢尿苷;假尿苷;(3-(3-氨基-3-羧基丙基)尿苷;1-甲基-3-(3-氨基-5-羧基丙基)假尿苷;1-甲基假尿苷;1-乙基-假尿苷;2'-O-甲基尿苷;2'-O-甲基假尿苷;2'-O-甲基尿苷;2-硫代-2'-O-甲基尿苷;3-(3-氨基-3-羧基丙基)尿苷;3,2'-O-二甲基尿苷;3-甲基-假-尿苷TP;4-硫代尿苷;5-(羧基羟基甲基)尿苷;5-(羧基羟基甲基)尿苷甲酯;5,2'-O-二甲基尿苷;5,6-二氢-尿苷;5-氨基甲基-2-硫代尿苷;5-氨基甲酰基甲基-2'-O-甲基尿苷;5-氨基甲酰基甲基尿苷;5-羧基羟基甲基尿苷;5-羧基羟基甲基尿苷甲酯;5-羧基甲基氨基甲基-2'-O-甲基尿苷;5-羧基甲基氨基甲基-2-硫代尿苷;5-羧基甲基氨基甲基-2-硫代尿苷;5-羧基甲基氨基甲基尿苷;5-羧基甲基氨基甲基尿苷;5-氨基甲酰基甲基尿苷TP;5-甲氧基羰基甲基-2'-O-甲基尿苷;5-甲氧基羰基甲基-2-硫代尿苷;5-甲氧基羰基甲基尿苷;5-甲基尿苷、5-甲氧基尿苷;5-甲基-2-硫代尿苷;5-甲基氨基甲基-2-硒基尿苷;5-甲基氨基甲基-2-硫代尿苷;5-甲基氨基甲基尿苷;5-甲基二氢尿苷;5-氧基乙酸-尿苷TP;5-氧基乙酸-甲酯-尿苷TP;N1-甲基-假-尿嘧啶;N1-乙基-假-尿嘧啶;尿苷5-氧基乙酸;尿苷5-氧基乙酸甲酯;3-(3-氨基-3-羧基丙基)-尿苷TP;5-(异戊烯基氨基甲基)-2-硫代尿苷TP;5-(异戊烯基氨基甲基)-2'-O-甲基尿苷TP;5-(异戊烯氨基甲基)尿苷TP;5-丙炔基尿嘧啶;α-硫代-尿苷;1(氨基烷基氨基-羰基乙烯基)-2(硫代)-假尿嘧啶;1(氨基烷基氨基羰基乙烯基)-2,4-(二硫代)假尿嘧啶;1(氨基烷基氨基羰基乙烯基)-4(硫代)假尿嘧啶;1(氨基烷基氨基羰基乙烯基)-假尿嘧啶;1(氨基羰基乙烯基)-2(硫代)-假尿嘧啶;1(氨基羰基乙烯基)-2,4-(二硫代)假尿嘧啶;1(氨基羰基乙烯基)-4(硫代)假尿嘧啶;1(氨基羰基乙烯基)-假尿嘧啶;1取代的2(硫代)-假尿嘧啶;1取代的2,4-(二硫代)假尿嘧啶;1取代的4(硫代)假尿嘧啶;1取代的假尿嘧啶;1-(氨基烷基氨基-羰基乙烯基)-2-(硫代)-假尿嘧啶;1-甲基-3-(3-氨基-3-羧基丙基)假尿苷TP;1-甲基-3-(3-氨基-3-羧基丙基)假-UTP;1-甲基-假-UTP;1-乙基-假-UTP;2(硫代)假尿嘧啶;2'脱氧尿苷;2'氟尿苷;2-(硫代)尿嘧啶;2,4-(二硫代)假尿嘧啶;2'甲基、2'氨基、2'叠氮基、2'氟-鸟苷;2'-氨基-2'-脱氧-UTP;2'-叠氮基-2'-脱氧-UTP;2'-叠氮基-脱氧尿苷TP;2'-O-甲基假尿苷;2'脱氧尿苷;2'氟尿苷;2'-脱氧-2'-a-氨基尿苷TP;2'-脱氧-2'-a-叠氮基尿苷TP;2-甲基假尿苷;3(3氨基-3羧基丙基)尿嘧啶;4(硫代)假尿嘧啶;4-(硫代)假尿嘧啶;4-(硫代)尿嘧啶;4-硫代尿嘧啶;5(1,3-二唑-1-烷基)尿嘧啶;5(2-氨基丙基)尿嘧啶;5(氨基烷基)尿嘧啶;5(二甲基氨基烷基)尿嘧啶;5(胍鎓烷基)尿嘧啶;5(甲氧基羰基甲基)-2-(硫代)尿嘧啶;5(甲氧基羰基-甲基)尿嘧啶;5(甲基)2(硫代)尿嘧啶;5(甲基)2,4(二硫代)尿嘧啶;5(甲基)4(硫代)尿嘧啶;5(甲基氨基甲基)-2(硫代)尿嘧啶;5(甲基氨基甲基)-2,4(二硫代)尿嘧啶;5(甲基氨基甲基)-4(硫代)尿嘧啶;5(丙炔基)尿嘧啶;5(三氟甲基)尿嘧啶;5-(2-氨基丙基)尿嘧啶;5-(烷基)-2-(硫代)假尿嘧啶;5-(烷基)-2,4(二硫代)假尿嘧啶;5-(烷基)-4(硫代)假尿嘧啶;5-(烷基)假尿嘧啶;5-(烷基)尿嘧啶;5-(炔基)尿嘧啶;5-(烯丙基氨基)尿嘧啶;5-(氰基烷基)尿嘧啶;5-(二烷基氨基烷基)尿嘧啶;5-(二甲基氨基烷基)尿嘧啶;5-(胍鎓烷基)尿嘧啶;5-(卤代)尿嘧啶;5-(l,3-二唑-l-烷基)尿嘧啶;5-(甲氧基)尿嘧啶;5-(甲氧基羰基甲基)-2-(硫代)尿嘧啶;5-(甲氧基羰基-甲基)尿嘧啶;5-(甲基)2(硫代)尿嘧啶;5-(甲基)2,4(二硫代)尿嘧啶;5-(甲基)4(硫代)尿嘧啶;5-(甲基)-2-(硫代)假尿嘧啶;5-(甲基)-2,4(二硫代)假尿嘧啶;5-(甲基)-4(硫代)假尿嘧啶;5-(甲基)假尿嘧啶;5-(甲基氨基甲基)-2(硫代)尿嘧啶;5-(甲基氨基甲基)-2,4(二硫代)尿嘧啶;5-(甲基氨基甲基)-4-(硫代)尿嘧啶;5-(丙炔基)尿嘧啶;5-(三氟甲基)尿嘧啶;5-氨基烯丙基-尿苷;5-溴-尿苷;5-碘-尿苷;5-尿嘧啶;6(偶氮)尿嘧啶;6-(偶氮)尿嘧啶;6-氮杂-尿苷;烯丙氨基-尿嘧啶;氮杂尿嘧啶;脱氮尿嘧啶;N3(甲基)尿嘧啶;假-UTP-1-2-乙酸;假尿嘧啶;4-硫代-假-UTP;1-羧基甲基-假尿苷;1-甲基-1-脱氮-假尿苷;1-丙炔基-尿苷;1-牛磺酸甲基-1-甲基-尿苷;1-牛磺酸甲基-4-硫代-尿苷;1-牛磺酸甲基-假尿苷;2-甲氧基-4-硫代-假尿苷;2-硫代-1-甲基-1-脱氮-假尿苷;2-硫代-1-甲基-假尿苷;2-硫代-5-氮杂-尿苷;2-硫代-二氢假尿苷;2-硫代-二氢尿苷;2-硫代-假尿苷;4-甲氧基-2-硫代-假尿苷;4-甲氧基-假尿苷;4-硫代-1-甲基-假尿苷;4-硫代-假尿苷;5-氮杂-尿苷;二氢假尿苷;(±)1-(2-羟基丙基)假尿苷TP;(2R)-1-(2-羟基丙基)假尿苷TP;(2S)-1-(2-羟基丙基)假尿苷TP;(E)-5-(2-溴-乙烯基)阿糖-尿苷TP;(E)-5-(2-溴-乙烯基)尿苷TP;(Z)-5-(2-溴-乙烯基)阿糖-尿苷TP;(Z)-5-(2-溴-乙烯基)尿苷TP;1-(2,2,2-三氟乙基)-假-UTP;1-(2,2,3,3,3-五氟丙基)假尿苷TP;1-(2,2-二乙氧基乙基)假尿苷TP;1-(2,4,6-三甲基苄基)假尿苷TP;1-(2,4,6-三甲基-苄基)假-UTP;1-(2,4,6-三甲基-苯基)假-UTP;1-(2-氨基-2-羧基乙基)假-UTP;1-(2-氨基-乙基)假-UTP;1-(2-羟基乙基)假尿苷TP;1-(2-甲氧基乙基)假尿苷TP;1-(3,4-双-三氟甲氧基苄基)假尿苷TP;1-(3,4-二甲氧基苄基)假尿苷TP;1-(3-氨基-3-羧基丙基)假-UTP;1-(3-氨基-丙基)假-UTP;1-(3-环丙基-丙-2-炔基)假尿苷TP;1-(4-氨基-4-羧基丁基)假-UTP;1-(4-氨基-苄基)假-UTP;1-(4-氨基-丁基)假-UTP;1-(4-氨基-苯基)假-UTP;1-(4-叠氮基苄基)假尿苷TP;1-(4-溴苄基)假尿苷TP;1-(4-氯苄基)假尿苷TP;1-(4-氟苄基)假尿苷TP;1-(4-碘苄基)假尿苷TP;1-(4-甲磺酰基苄基)假尿苷TP;1-(4-甲氧基苄基)假尿苷TP;1-(4-甲氧基-苄基)假-UTP;1-(4-甲氧基-苯基)假-UTP;1-(4-甲基苄基)假尿苷TP;1-(4-甲基-苄基)假-UTP;1-(4-硝基苄基)假尿苷TP;1-(4-硝基-苄基)假-UTP;1(4-硝基-苯基)假-UTP;1-(4-硫代甲氧基苄基)假尿苷TP;1-(4-三氟甲氧基苄基)假尿苷TP;1-(4-三氟甲基苄基)假尿苷TP;1-(5-氨基-戊基)假-UTP;1-(6-氨基-己基)假-UTP;1,6-二甲基-假-UTP;1-[3-(2-{2-[2-(2-氨基乙氧基)-乙氧基]-乙氧基}-乙氧基)-丙酰基]假尿苷TP;1-{3-[2-(2-氨基乙氧基)-乙氧基]-丙酰基}假尿苷TP;1-乙酰基假尿苷TP;1-烷基-6-(1-丙炔基)-假-UTP;1-烷基-6-(2-丙炔基)-假-UTP;1-烷基-6-烯丙基-假-UTP;1-烷基-6-乙炔基-假-UTP;1-烷基-6-高烯丙基-假-UTP;1-烷基-6-乙烯基-假-UTP;1-烯丙基假尿苷TP;1-氨基甲基-假-UTP;1-苯甲酰基假尿苷TP;1-苄氧基甲基假尿苷TP;1-苄基-假-UTP;1-生物素基-PEG2-假尿苷TP;1-生物素基假尿苷TP;1-丁基-假-UTP;1-氰基甲基假尿苷TP;1-环丁基甲基-假-UTP;1-环丁基-假-UTP;1-环庚基甲基-假-UTP;1-环庚基-假-UTP;1-环己基甲基-假-UTP;1-环己基-假-UTP;1-环辛基甲基-假-UTP;1-环辛基-假-UTP;1-环戊基甲基-假-UTP;1-环戊基-假-UTP;1-环丙基甲基-假-UTP;1-环丙基-假-UTP;1-乙基-假-UTP;1-己基-假-UTP;1-高烯丙基假尿苷TP;1-羟基甲基假尿苷TP;1-异丙基-假-UTP;1-Me-2-硫代-假-UTP;1-Me-4-硫代-假-UTP;1-Me-α-硫代-假-UTP;1-甲磺酰基甲基假尿苷TP;1-甲氧基甲基假尿苷TP;1-甲基-6-(2,2,2-三氟乙基)假-UTP;1-甲基-6-(4-吗啉代)-假-UTP;1-甲基-6-(4-硫代吗啉代)-假-UTP;1-甲基-6-(取代的苯基)假-UTP;1-甲基-6-氨基-假-UTP;1-甲基-6-叠氮基-假-UTP;1-甲基-6-溴-假-UTP;1-甲基-6-丁基-假-UTP;1-甲基-6-氯-假-UTP;1-甲基-6-氰基-假-UTP;1-甲基-6-二甲基氨基-假-UTP;1-甲基-6-乙氧基-假-UTP;1-甲基-6-乙基甲酸酯-假-UTP;1-甲基-6-乙基-假-UTP;1-甲基-6-氟-假-UTP;1-甲基-6-甲酰基-假-UTP;1-甲基-6-羟基氨基-假-UTP;1-甲基-6-羟基-假-UTP;1-甲基-6-碘-假-UTP;1-甲基-6-异丙基-假-UTP;1-甲基-6-甲氧基-假-UTP;1-甲基-6-甲基氨基-假-UTP;1-甲基-6-苯基-假-UTP;1-甲基-6-丙基-假-UTP;1-甲基-6-叔丁基-假-UTP;1-甲基-6-三氟甲氧基-假-UTP;1-甲基-6-三氟甲基-假-UTP;1-吗啉并甲基假尿苷TP;1-戊基-假-UTP;1-苯基-假-UTP;1-新戊酰基假尿苷TP;1-炔丙基假尿苷TP;1-丙基-假-UTP;1-丙炔基-假尿苷;1-对甲苯基-假-UTP;1-叔丁基-假-UTP;1-硫代甲氧基甲基假尿苷TP;1-硫代吗啉并甲基假尿苷TP;1-三氟乙酰基假尿苷TP;1-三氟甲基-假-UTP;1-乙烯基假尿苷TP;2,2'-脱水-尿苷TP;2'-溴-脱氧尿苷TP;2'-F-5-甲基-2'-脱氧-UTP;2'-OMe-5-Me-UTP;2'-OME-假-UTP;2'-a-乙炔基尿苷TP;2'-a-三氟甲基尿苷TP;2'-b-乙炔基尿苷TP;2'-b-三氟甲基尿苷TP;2'-脱氧-2',2'-二氟尿苷TP;2'-脱氧-2'-a-巯基尿苷TP;2'-脱氧-2'-a-硫代甲氧基尿苷TP;2'-脱氧-2'-b-氨基尿苷TP;2'-脱氧-2'-b-叠氮基尿苷TP;2'-脱氧-2'-b-溴尿苷TP;2'-脱氧-2'-b-氯尿苷TP;2'-脱氧-2'-b-氟尿苷TP;2'-脱氧-2'-b-碘尿苷TP;2'-脱氧-2'-b-巯基尿苷TP;2'-脱氧-2'-b-硫代甲氧基尿苷TP;2-甲氧基-4-硫代-尿苷;2-甲氧基尿苷;2'-O-甲基-5-(1-丙炔基)尿苷TP;3-烷基-假-UTP;4'-叠氮基尿苷TP;4'-碳环尿苷TP;4'-乙炔基尿苷TP;5-(1-丙炔基)阿糖-尿苷TP;5-(2-呋喃基)尿苷TP;5-氰基尿苷TP;5-二甲基氨基尿苷TP;5'-高-尿苷TP;5-碘-2'-氟-脱氧尿苷TP;5-苯基乙炔基尿苷TP;5-三氘甲基-6-氘尿苷TP;5-三氟甲基-尿苷TP;5-乙烯基阿糖尿苷TP;6-(2,2,2-三氟乙基)-假-UTP;6-(4-吗啉代)-假-UTP;6-(4-硫代吗啉代)-假-UTP;6-(取代的-苯基)-假-UTP;6-氨基-假-UTP;6-叠氮基-假-UTP;6-溴-假-UTP;6-丁基-假-UTP;6-氯-假-UTP;6-氰基-假-UTP;6-二甲基氨基-假-UTP;6-乙氧基-假-UTP;6-乙基甲酸酯-假-UTP;6-乙基-假-UTP;6-氟-假-UTP;6-甲酰基-假-UTP;6-羟基氨基-假-UTP;6-羟基-假-UTP;6-碘-假-UTP;6-异丙基-假-UTP;6-甲氧基-假-UTP;6-甲基氨基-假-UTP;6-甲基-假-UTP;6-苯基-假-UTP;6-苯基-假-UTP;6-丙基-假-UTP;6-叔丁基-假-UTP;6-三氟甲氧基-假-UTP;6-三氟甲基-假-UTP;α-硫代-假-UTP;假尿苷1-(4-甲基苯磺酸)TP;假尿苷1-(4-甲基苯甲酸)TP;假尿苷TP 1-[3-(2-乙氧基)]丙酸;假尿苷TP 1-[3-{2-(2-[2-(2-乙氧基)-乙氧基]-乙氧基)-乙氧基}]丙酸;假尿苷TP 1-[3-{2-(2-[2-{2(2-乙氧基)-乙氧基}-乙氧基]-乙氧基)-乙氧基}]丙酸;假尿苷TP 1-[3-{2-(2-[2-乙氧基]-乙氧基)-乙氧基}]丙酸;假尿苷TP 1-[3-{2-(2-乙氧基)-乙氧基}]丙酸;假尿苷TP 1-甲基膦酸;假尿苷TP 1-甲基膦酸二乙酯;假-UTP-N1-3-丙酸;假-UTP-N1-4-丁酸;假-UTP-N1-5-戊酸;假-UTP-N1-6-己酸;假-UTP-N1-7-庚酸;假-UTP-N1-甲基-对苯甲酸;假-UTP-N1-对苯甲酸;怀丁苷;羟基怀丁苷;异怀俄苷;过氧怀丁苷;修饰不足的羟基怀丁苷;4-脱甲基怀俄苷;2,6-(二氨基)嘌呤;1-(氮杂)-2-(硫代)-3-(氮杂)-吩噁嗪-1-基:1,3-(二氮杂)-2-(氧代)-噻吩嗪-l-基;1,3-(二氮杂)-2-(氧代)-吩噁嗪-1-基;1,3,5-(三氮杂)-2,6-(二氧杂)-萘;2(氨基)嘌呤;2,4,5-(三甲基)苯基;2'甲基、2'氨基、2'叠氮基、2'氟-胞苷;2'甲基、2'氨基、2'叠氮基、2'氟-腺嘌呤;2'甲基、2'氨基、2'叠氮基、2'氟-尿苷;2'-氨基-2'-脱氧核糖;2-氨基-6-氯-嘌呤;2-氮杂肌苷基;2'-叠氮基-2'-脱氧核糖;2'氟-2'-脱氧核糖;2'-氟-修饰的碱基;2'-O-甲基-核糖;2-氧代-7-氨基吡啶并嘧啶-3-基;2-氧代-吡啶并嘧啶-3-基;2-吡啶酮;3硝基吡咯;3-(甲基)-7-(丙炔基)异喹诺酮基;3-(甲基)异喹诺酮基;4-(氟)-6-(甲基)苯并咪唑;4-(甲基)苯并咪唑;4-(甲基)吲哚基;4,6-(二甲基)吲哚基;5硝基吲哚;5取代的嘧啶;5-(甲基)异喹诺酮基;5-硝基吲哚;6-(氮杂)嘧啶;6-(偶氮)胸腺嘧啶;6-(甲基)-7-(氮杂)吲哚基;6-氯-嘌呤;6-苯基-吡咯并-嘧啶-2-酮-3-基;7-(氨基烷基羟基)-1-(氮杂)-2-(硫代)-3-(氮杂)-噻吩嗪-l-基;7-(氨基烷基羟基)-1-(氮杂)-2-(硫代)-3-(氮杂)-吩噁嗪-1-基;7-(氨基烷基羟基)-1,3-(二氮杂)-2-(氧代)-吩噁嗪-1-基;7-(氨基烷基羟基)-l,3-(二氮杂)-2-(氧代)-噻吩嗪-l-基;7-(氨基烷基羟基)-l,3-(二氮杂)-2-(氧代)-吩噁嗪-l-基;7-(氮杂)吲哚基;7-(胍鎓烷基羟基)-1-(氮杂)-2-(硫代)-3-(氮杂)-吩噁嗪l-基;7-(胍鎓烷基羟基)-1-(氮杂)-2-(硫代)-3-(氮杂)-噻吩嗪-l-基;7-(胍鎓烷基羟基)-1-(氮杂)-2-(硫代)-3-(氮杂)-吩噁嗪-1-基;7-(胍鎓烷基羟基)-1,3-(二氮杂)-2-(氧代)-吩噁嗪-1-基;7-(胍鎓烷基-羟基)-l,3-(二氮杂)-2-(氧代)-噻吩嗪-l-基;7-(胍鎓烷基羟基)-l,3-(二氮杂)-2-(氧代)-吩噁嗪-l-基;7-(丙炔基)异喹诺酮基;7-(丙炔基)异喹诺酮基、丙炔基-7-(氮杂)吲哚基;7-脱氮-肌苷基;7-取代的1-(氮杂)-2-(硫代)-3-(氮杂)-吩噁嗪-1-基;7-取代的1,3-(二氮杂)-2-(氧代)-吩噁嗪-1-基;9-(甲基)-咪唑并吡啶基;氨基吲哚基;蒽基;双-邻-(氨基烷基羟基)-6-苯基-吡咯并-嘧啶-2-酮-3-基;双-邻-取代的-6-苯基-吡咯并-嘧啶-2-酮-3-基;二氟甲苯基;次黄嘌呤;咪唑并吡啶基;肌苷基;异喹诺酮基;异鸟苷;N2-取代的嘌呤;N6-甲基-2-氨基-嘌呤;N6-取代的嘌呤;N-烷基化衍生物;萘基;硝基苯并咪唑基;硝基咪唑基;硝基吲唑基;硝基吡唑基;努布拉林(Nubularine);O6-取代的嘌呤;O-烷基化衍生物;邻-(氨基烷基羟基)-6-苯基-吡咯并-嘧啶-2-酮-3-基;邻-取代的-6-苯基-吡咯并-嘧啶-2-酮-3-基;氧代间型霉素(Oxoformycin)TP;对-(氨基烷基羟基)-6-苯基-吡咯并-嘧啶-2-酮-3-基;对-取代的-6-苯基-吡咯并-嘧啶-2-酮-3-基;并五苯基;菲基(Phenanthracenyl);苯基;丙炔基-7-(氮杂)吲哚基;芘基;吡啶并嘧啶-3-基;吡啶并嘧啶-3-基、2-氧代-7-氨基-吡啶并嘧啶-3-基;吡咯并-嘧啶-2-酮-3-基;吡咯并嘧啶基;吡咯并吡嗪基;二苯乙烯基(Stilbenzyl);取代的1,2,4-三唑;并四苯基;杀结核菌素(Tubercidine);黄嘌呤;黄苷-5'-TP;2-硫代-折布拉林;5-氮杂-2-硫代-折布拉林;7-脱氮-2-氨基-嘌呤;吡啶-4-酮核糖核苷;2-氨基-核糖苷-TP;间型霉素A TP;间型霉素B TP;吡咯苷(Pyrrolosine)TP;2'-OH-阿糖-腺苷TP;2'-OH-阿糖-胞苷TP;2'-OH-阿糖-尿苷TP;2'-OH-阿糖-鸟苷TP;5-(2-甲氧羰基乙烯基)尿苷TP;和N6-(19-氨基-五氧杂十九烷基)腺苷TP。
在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含上述经修饰的核碱基中至少两个(例如,2、3、4个或更多个)的组合。
在一些实施例中,该mRNA包含至少一个经化学修饰的核苷。在一些实施例中,该至少一个经化学修饰的核苷选自下组,该组由以下组成:假尿苷(ψ)、2-硫代尿苷(s2U)、4'-硫代尿苷、5-甲基胞嘧啶、2-硫代-1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-假尿苷、2-硫代-5-氮杂-尿苷、2-硫代-二氢假尿苷、2-硫代-二氢尿苷、2-硫代-假尿苷、4-甲氧基-2-硫代-假尿苷、4-甲氧基-假尿苷、4-硫代-1-甲基-假尿苷、4-硫代-假尿苷、5-氮杂-尿苷、二氢假尿苷、5-甲基尿苷、5-甲氧基尿苷、2'-O-甲基尿苷、1-甲基-假尿苷(m1ψ)、1-乙基-假尿苷(e1ψ)、5-甲氧基-尿苷(mo5U)、5-甲基-胞苷(m5C)、α-硫代-鸟苷、α-硫代-腺苷、5-氰基尿苷、4'-硫代尿苷、7-脱氮-腺嘌呤、1-甲基-腺苷(m1A)、2-甲基-腺嘌呤(m2A)、N6-甲基-腺苷(m6A)和2,6-二氨基嘌呤、(I)、1-甲基-肌苷(m1I)、怀俄苷(imG)、甲基怀俄苷(mimG)、7-脱氮-鸟苷、7-氰基-7-脱氮-鸟苷(preQ0)、7-氨基甲基-7-脱氮-鸟苷(preQ1)、7-甲基-鸟苷(m7G)、1-甲基-鸟苷(m1G)、8-氧代-鸟苷、7-甲基-8-氧代-鸟苷、2,8-二甲基腺苷、2-香叶基硫代尿苷、2-赖胞苷、2-硒基尿苷、3-(3-氨基-3-羧基丙基)-5,6-二氢尿苷、3-(3-氨基-3-羧基丙基)假尿苷、3-甲基假尿苷、5-(羧基羟基甲基)-2'-O-甲基尿苷甲酯、5-氨基甲基-2-香叶基硫代尿苷、5-氨基甲基-2-硒基尿苷、5-氨基甲基尿苷、5-氨基甲酰基羟基甲基尿苷、5-氨基甲酰基甲基-2-硫代尿苷、5-羧基甲基-2-硫代尿苷、5-羧基甲基氨基甲基-2-香叶基硫代尿苷、5-羧基甲基氨基甲基-2-硒基尿苷、5-氰基甲基尿苷、5-羟基胞苷、5-甲基氨基甲基-2-香叶基硫代尿苷、7-氨基羧基丙基-脱甲基怀俄苷、7-氨基羧基丙基怀俄苷、7-氨基羧基丙基怀俄苷甲酯、8-甲基腺苷、N4,N4-二甲基胞苷、N6-甲酰基腺苷、N6-羟基甲基腺苷、agmatidine、环状N6-苏氨酰基氨基甲酰基腺苷、谷酰基-辫苷、甲基化修饰不足的羟基怀丁苷、N4,N4,2'-O-三甲基胞苷、香叶基化5-甲基氨基甲基-2-硫代尿苷、香叶基化5-羧基甲基氨基甲基-2-硫代尿苷、Q碱基(Qbase)、preQ0碱基(preQ0base)、preQ1碱基(preQ1base)、及其两个或更多个组合。在一些实施例中,该至少一个经化学修饰的核苷选自下组,该组由以下组成:假尿苷、1-甲基-假尿苷、1-乙基-假尿苷、5-甲基胞嘧啶、5-甲氧基尿苷及其组合。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含上述经修饰的核碱基中至少两个(例如,2、3、4个或更多个)的组合。
在一些实施例中,该mRNA是包含编码松弛素多肽的ORF的尿嘧啶修饰的序列,其中该mRNA包含经化学修饰的核碱基,例如5-甲氧基尿嘧啶。在本发明的某些方面,当5-甲氧基尿嘧啶碱基与核糖连接时,如在多核苷酸中的那样,所得的经修饰的核苷或核苷酸被称为5-甲氧基尿苷。在一些实施例中,该多核苷酸中的尿嘧啶为至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少90%、至少95%、至少99%或约100%的5-甲氧基尿嘧啶。在一个实施例中,该多核苷酸中的尿嘧啶是至少95%的5-甲氧基尿嘧啶。在另一个实施例中,该多核苷酸中的尿嘧啶是100%的5-甲氧基尿嘧啶。
在该多核苷酸中的尿嘧啶为至少95%的5-甲氧基尿嘧啶的实施例中,可以调整总尿嘧啶含量,使得mRNA提供合适的蛋白质表达水平,同时几乎不诱导免疫应答。在一些实施例中,该ORF的尿嘧啶含量在相应的野生型ORF的理论最小尿嘧啶含量(%Utm)的约105%和约145%之间、约105%和约140%之间、约110%和约140%之间、约110%和约145%之间、约115%和约135%之间、约105%和约135%之间、约110%和约135%之间、约115%和约145%之间或约115%和约140%之间。在其他实施例中,该ORF的尿嘧啶含量在%UTM的约117%和约134%之间或118%和132%之间。在一些实施例中,编码松弛素多肽的ORF的尿嘧啶含量为%Utm的约115%、约120%、约125%、约130%、约135%、约140%、约145%或约150%。在此上下文中,术语“尿嘧啶”可以指5-甲氧基尿嘧啶和/或天然存在的尿嘧啶。
在一些实施例中,编码本发明的松弛素多肽的mRNA的ORF中的尿嘧啶含量小于该ORF中总核碱基含量的约50%、约40%、约30%、约20%、约15%或约12%。在一些实施例中,该ORF中的尿嘧啶含量在该ORF中总核碱基含量的约12%和约25%之间。在其他实施例中,该ORF中的尿嘧啶含量在该ORF中总核碱基含量的约15%和约17%之间。在一些实施例中,编码松弛素多肽的mRNA的ORF中的尿嘧啶含量小于该开放阅读框中总核碱基含量的约20%。在此上下文中,术语“尿嘧啶”可以指5-甲氧基尿嘧啶和/或天然存在的尿嘧啶。
在进一步的实施例中,编码本发明的松弛素多肽的mRNA的ORF包含5-甲氧基尿嘧啶,并且其调整尿嘧啶含量含有比编码该松弛素多肽的相应的野生型核苷酸序列更少的尿嘧啶对(UU)和/或尿嘧啶三联体(UUU)和/或尿嘧啶四联体(UUUU)。在一些实施例中,编码本发明的松弛素多肽的mRNA的ORF不含尿嘧啶对和/或尿嘧啶三联体和/或尿嘧啶四联体。在一些实施例中,在编码该松弛素多肽的mRNA的ORF中尿嘧啶对和/或尿嘧啶三联体和/或尿嘧啶四联体降低至低于某一阈值,例如出现不多于1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20次。在一个具体实施例中,编码本发明的松弛素多肽的mRNA的ORF含有少于20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、3、2或1个非苯丙氨酸尿嘧啶对和/或三联体。在另一个实施例中,编码该松弛素多肽的mRNA的ORF不含非苯丙氨酸尿嘧啶对和/或三联体。
在进一步的实施例中,编码本发明的松弛素多肽的mRNA的ORF包含5-甲氧基尿嘧啶并且其调整尿嘧啶含量含有比编码该松弛素多肽的相应的野生型核苷酸序列更少的富含尿嘧啶的簇。在一些实施例中,编码本发明的松弛素多肽的mRNA的ORF含有富含尿嘧啶的簇,其长度比编码该松弛素多肽的相应的野生型核苷酸序列中相应的富含尿嘧啶的簇短。
在进一步的实施例中,采用更低频率的替代密码子。包含5-甲氧基尿嘧啶的mRNA的编码松弛素多肽的ORF中至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约99%或100%的密码子被替代密码子取代,每个替代密码子的密码子频率低于同义密码子集中被取代密码子的密码子频率。该ORF还具有如上所述的调整尿嘧啶含量。在一些实施例中,编码该松弛素多肽的mRNA的ORF中的至少一个密码子被密码子频率低于同义密码子集中被取代密码子的密码子频率的替代密码子取代。
在一些实施例中,在给予哺乳动物细胞时,包含5-甲氧基尿嘧啶的mRNA的编码松弛素多肽的ORF的调整尿嘧啶含量展现高于来自相应的野生型mRNA的松弛素蛋白表达水平的松弛素蛋白表达水平。在其他实施例中,当给予哺乳动物细胞时,相对于含有至少95%的5-甲氧基尿嘧啶并且尿嘧啶含量为理论最小值的约160%、约170%、约180%、约190%或约200%的相应mRNA,该松弛素蛋白的表达水平增加。在又其他实施例中,在给予哺乳动物细胞时,该松弛素蛋白的表达水平相对于相应的mRNA增加,其中至少约50%、至少约60%、至少约70%、至少约80%至少约90%或约100%的尿嘧啶是1-甲基假尿嘧啶或假尿嘧啶。在一些实施例中,该哺乳动物细胞是小鼠细胞、大鼠细胞或兔细胞。在其他实施例中,该哺乳动物细胞是猴细胞或人细胞。在一些实施例中,该人细胞是HeLa细胞、BJ成纤维细胞或外周血单核细胞(PBMC)。在一些实施例中,当在体内将该mRNA给予哺乳动物细胞时,松弛素蛋白表达。在一些实施例中,将该mRNA给予小鼠、兔、大鼠、猴子或人。在一个实施例中,小鼠是裸鼠。在一些实施例中,将该mRNA以约0.01mg/kg、约0.05mg/kg、约0.1mg/kg或约0.15mg/kg的量给予小鼠。在一些实施例中,将该mRNA静脉内或肌肉内给予。在其他实施例中,当在体外将该mRNA给予哺乳动物细胞时,该松弛素多肽表达。在一些实施例中,表达增加至少约2倍、至少约5倍、至少约10倍、至少约50倍、至少约500倍、至少约1500倍或至少约3000倍。在其他实施例中,表达增加至少约10%、约20%、约30%、约40%、约50%、60%、约70%、约80%、约90%或约100%。
在一些实施例中,具有调整尿嘧啶含量的包含5-甲氧基尿嘧啶的mRNA的编码松弛素多肽的ORF展现增加的稳定性。在一些实施例中,相对于在相同条件下相应野生型mRNA的稳定性,该mRNA在细胞中展现增加的稳定性。在一些实施例中,该mRNA展现增加的稳定性,包括对核酸酶的抗性、热稳定性和/或增加的二级结构稳定性。在一些实施例中,通过确定该mRNA的半衰期(例如,在血浆、细胞或组织样品中)和/或确定该mRNA的随时间的蛋白质表达(例如,在体外或体内)的曲线下面积(AUC)来测量该mRNA展现的增加的稳定性。如果在相同条件下半衰期和/或AUC大于相应野生型mRNA的半衰期和/或AUC,则鉴定mRNA具有增加的稳定性。
在一些实施例中,相对于在相同条件下由相应的野生型mRNA诱导的免疫应答,本发明的mRNA诱导可检测的较低免疫应答(例如,先天性或获得性)。在其他实施例中,相对于由编码松弛素多肽但不包含5-甲氧基尿嘧啶的mRNA在相同条件下诱导的免疫应答,或者相对于由编码松弛素多肽并包含5-甲氧基尿嘧啶但不具有调整尿嘧啶含量的mRNA在相同条件下诱导的免疫应答,本披露的mRNA诱导可检测的较低免疫应答(例如,先天性或获得性)。先天免疫应答可以通过促炎细胞因子的增加的表达、细胞内PRR(RIG-I、MDA5等)的活化、细胞死亡和/或蛋白质翻译的终止或减少来表现。在一些实施例中,先天免疫应答的减少可通过1型干扰素(例如,IFN-α、IFN-β、IFN-κ、IFN-δ、IFN-ε、IFN-τ、IFN-ω和IFN-ζ)的表达或活性水平或者干扰素调控的基因如toll样受体(例如,TLR7和TLR8)的表达和/或通过在一次或多次给予本发明的mRNA后细胞死亡的减少来测量。
在一些实施例中,响应于本披露的mRNA,哺乳动物细胞的1型干扰素的表达相对于相应的野生型mRNA、编码松弛素多肽但不包含5-甲氧基尿嘧啶的mRNA或编码松弛素多肽并且包含5-甲氧基尿嘧啶但不具有调整尿嘧啶含量的mRNA降低至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%、99.9%或大于99.9%。在一些实施例中,该干扰素是IFN-β。在一些实施例中,由向哺乳动物细胞给予本披露的mRNA而引起的细胞死亡频率比在相应的野生型mRNA、编码松弛素多肽但不包含5-甲氧基尿嘧啶的mRNA或编码松弛素多肽并且包含5-甲氧基尿嘧啶但不具有调整尿嘧啶含量的mRNA情况下观察到的细胞死亡频率少10%、25%、50%、75%、85%、90%、95%或超过95%。在一些实施例中,该哺乳动物细胞是BJ成纤维细胞。在其他实施例中,该哺乳动物细胞是脾细胞。在一些实施例中,该哺乳动物细胞是小鼠或大鼠的细胞。在其他实施例中,该哺乳动物细胞是人的细胞。在一个实施例中,本披露的mRNA基本上不诱导引入了该mRNA的哺乳动物细胞的先天免疫应答。
在一些实施例中,该多核苷酸是包含编码松弛素多肽的ORF的mRNA,其中该mRNA中的尿嘧啶为至少约95%的5-甲氧基尿嘧啶,其中该ORF的尿嘧啶含量在相应的野生型ORF中的理论最小尿嘧啶含量的约115%和135%之间,并且其中编码该松弛素多肽的ORF中的尿嘧啶含量小于该ORF中总核碱基含量的约23%。在一些实施例中,进一步修饰编码该松弛素多肽的ORF以使该ORF的G/C含量(绝对或相对)与相应的野生型ORF相比降低至少约40%。在又其他实施例中,编码该松弛素多肽的ORF含有少于20个非苯丙氨酸尿嘧啶对和/或三联体。在一些实施例中,编码该松弛素多肽的mRNA的ORF中的至少一个密码子进一步被密码子频率低于同义密码子集中被取代密码子的密码子频率的替代密码子取代。在一些实施例中,由包含ORF的mRNA(其中该mRNA中的尿嘧啶为至少约95%的5-甲氧基尿嘧啶,并且其中该ORF的尿嘧啶含量在相应的野生型ORF中的理论最小尿嘧啶含量的约115%和135%之间)编码的松弛素多肽的表达与来自相应的野生型mRNA的松弛素多肽的表达相比时增加至少约10倍。在一些实施例中,该mRNA包含开放ORF,其中该mRNA中的尿嘧啶为至少约95%的5-甲氧基尿嘧啶,并且其中该ORF的尿嘧啶含量在相应的野生型ORF中的理论最小尿嘧啶含量的约115%和135%之间,并且其中该mRNA基本上不诱导引入了该mRNA的哺乳动物细胞的先天免疫应答。
在某些实施例中,该化学修饰是在该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)中的核碱基处进行。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)中的经修饰的核碱基选自下组,该组由以下组成:1-甲基-假尿苷(m1ψ)、1-乙基-假尿苷(e1ψ)、5-甲氧基-尿苷(mo5U)、5-甲基-胞苷(m5C)、假尿苷(ψ)、α-硫代-鸟苷以及α-硫代-腺苷。在一些实施例中,该多核苷酸包含上述经修饰的核碱基中至少两个(例如,2、3、4个或更多个)的组合。
在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含假尿苷(ψ)和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含1-甲基-假尿苷(m1ψ)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含1-乙基-假尿苷(e1ψ)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含1-甲基-假尿苷(m1ψ)和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含1-乙基-假尿苷(e1ψ)和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含2-硫代尿苷(s2U)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含2-硫代尿苷和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含甲氧基-尿苷(mo5U)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含5-甲氧基-尿苷(mo5U)和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含2'-O-甲基尿苷。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含2'-O-甲基尿苷和5-甲基-胞苷(m5C)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含N6-甲基-腺苷(m6A)。在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含N6-甲基-腺苷(m6A)和5-甲基-胞苷(m5C)。
在一些实施例中,针于特定修饰,对该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)进行统一修饰(例如,完全修饰,在整个序列中修饰)。例如,可以用5-甲基-胞苷(m5C)统一修饰多核苷酸,这意味着该mRNA序列中的所有胞嘧啶残基都被5-甲基-胞苷(m5C)替代。类似地,对于该序列中存在的任何类型的核苷残基,通过用经修饰的残基(如任何上述那些)替代,可以统一地修饰多核苷酸。
在一些实施例中,该开放阅读框中的经化学修饰的核苷选自下组,该组由以下组成:尿苷、腺嘌呤、胞嘧啶、鸟嘌呤及其任何组合。
在一些实施例中,经修饰的核碱基是经修饰的胞嘧啶。具有经修饰的胞嘧啶的核碱基和核苷的实例包括N4-乙酰基-胞苷(ac4C)、5-甲基-胞苷(m5C)、5-卤代-胞苷(例如,5-碘-胞苷)、5-羟基甲基-胞苷(hm5C)、1-甲基-假异胞苷、2-硫代-胞苷(s2C)、2-硫代-5-甲基-胞苷。
在一些实施例中,经修饰的核碱基是经修饰的尿苷。具有经修饰的尿苷的核碱基和核苷的实例包括5-氰基尿苷或4'-硫代尿苷。
在一些实施例中,经修饰的核碱基是经修饰的腺嘌呤。具有经修饰的腺嘌呤的示例性核碱基和核苷包括7-脱氮-腺嘌呤、1-甲基-腺苷(m1A)、2-甲基-腺嘌呤(m2A)、N6-甲基-腺嘌呤(m6A)和2,6-二氨基嘌呤。
在一些实施例中,经修饰的核碱基是经修饰的鸟嘌呤。具有经修饰的鸟嘌呤的核碱基和核苷的实例包括肌苷(I)、1-甲基-肌苷(m1I)、怀俄苷(imG)、甲基怀俄苷(mimG)、7-脱氮-鸟苷、7-氰基-7-脱氮-鸟苷(preQ0)、7-氨基甲基-7-脱氮-鸟苷(preQ1)、7-甲基-鸟苷(m7G)、1-甲基-鸟苷(m1G)、8-氧代-鸟苷、7-甲基-8-氧代-鸟苷。
在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)中的核碱基修饰的核苷酸是5-甲氧基尿苷。
在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含经修饰的核碱基中至少两个(例如,2、3、4个或更多个)的组合。
在一些实施例中,该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)包含5-甲氧基尿苷(5mo5U)和5-甲基-胞苷(m5C)。
在一些实施例中,针于特定修饰,对该多核苷酸(例如,RNA多核苷酸,如mRNA多核苷酸)进行统一修饰(例如,完全修饰,在整个序列中修饰)。例如,可以用5-甲氧基尿苷统一修饰多核苷酸,这意味着该mRNA序列中基本上所有的尿苷残基都被5-甲氧基尿苷替代。类似地,对于该序列中存在的任何类型的核苷残基,通过用经修饰的残基(如任何上述那些)替代,可以统一地修饰多核苷酸。
在一些实施例中,经修饰的核碱基是经修饰的胞嘧啶。
在一些实施例中,经修饰的核碱基是经修饰的尿嘧啶。具有经修饰的尿嘧啶的示例性核碱基和核苷包括5-甲氧基尿嘧啶。
在一些实施例中,经修饰的核碱基是经修饰的腺嘌呤。
在一些实施例中,经修饰的核碱基是经修饰的鸟嘌呤。
在一些实施例中,这些多核苷酸可包含核苷之间的任何有用的接头。可用于本披露的组合物中的此类接头(包括主链修饰)包括但不限于以下:3'-亚烷基膦酸酯、3'-氨基磷酰胺酯、含烯烃主链、氨基烷基磷酰胺酯、氨基烷基磷酸三酯、硼烷磷酸酯、-CH2-O-N(CH3)-CH2-、-CH2-N(CH3)-N(CH3)-CH2-、-CH2-NH-CH2-、手性膦酸酯、手性硫代磷酸酯、甲酰乙酰基(formacetyl)和硫代甲酰乙酰基主链、亚甲基(甲基亚氨基)、亚甲基甲酰乙酰基和硫代甲酰乙酰基主链、亚甲基亚氨基和亚甲基肼基主链、吗啉代键、-N(CH3)-CH2-CH2-、具有杂原子核苷间键的寡核苷酸、次膦酸酯、磷酰胺酯、二硫代磷酸酯、硫代磷酸酯核苷间键、硫代磷酸酯、磷酸三酯、PNA、硅氧烷主链、氨基磺酸酯主链、硫化亚砜和砜主链、磺酸酯和磺酰胺主链、硫代烷基膦酸酯、硫代烷基磷酸三酯和硫羰基磷酰胺酯。
在核糖核酸的糖上可以修饰经修饰的核苷和核苷酸(例如,构件分子),这些经修饰的核苷和核苷酸可以掺入多核苷酸(例如,如本文所述的RNA或mRNA)中。例如,2'羟基基团(OH)可以被用许多不同的取代基修饰或替代。2'-位的示例性取代包括但不限于H、卤素、任选取代的C1-6烷基;任选取代的C1-6烷氧基;任选取代的C6-10芳氧基;任选取代的C3-8环烷基;任选取代的C3-8环烷氧基;任选取代的C6-10芳氧基;任选取代的C6-10芳基-C1-6烷氧基,任选取代的C1-12(杂环基)氧基;糖(例如,核糖、戊糖或本文所述的任何糖);聚乙二醇(PEG),-O(CH2CH2O)nCH2CH2OR,其中R是H或任选取代的烷基,并且n是0至20(例如,0至4、0至8、0至10、0至16、1至4、1至8、1至10、1至16、1至20、2至4、2至8、2至10、2至16、2至20、4至8、4至10、4至16和4至20)的整数;“锁”核酸(LNA),其中2'-羟基通过C1-6亚烷基或C1-6杂亚烷基桥连接到相同核糖的4'-碳,其中示例性桥包括亚甲基、亚丙基、醚或氨基桥;如本文所定义的氨基烷基;如本文所定义的氨基烷氧基;如本文所定义的氨基;以及如本文所定义的氨基酸
通常,RNA包含糖基核糖,其是具有氧的5元环。示例性的非限制性的经修饰的核苷酸包括替代核糖中的氧(例如,用S、Se或亚烷基,如亚甲基或亚乙基);添加双键(例如,用环戊烯基或环己烯基替代核糖);核糖的环收缩(例如,形成环丁烷或氧杂环丁烷的4元环);核糖的环扩展(例如,形成具有额外碳或杂原子的6元或7元环,如关于还具有磷酰胺酯主链的脱水己糖醇、阿卓糖醇、甘露醇、环己烷基、环己烯基和吗啉代);多环形式(例如,三环;和“解锁”形式,如二醇核酸(GNA)(例如,R-GNA或S-GNA,其中核糖被附接到磷酸二酯键的二醇单元替代),苏糖核酸(TNA,其中核糖被α-L-苏式呋喃糖基-(3'→2')替代))和肽核酸(PNA,其中2-氨基-乙基-甘氨酸键替代核糖和磷酸二酯主链)。该糖基还可含有一个或多个碳,其具有与核糖中相应的碳相反的立体化学构型。因此,多核苷酸分子可包含含有例如阿拉伯糖作为糖的核苷酸。国际专利公开号WO2013052523和WO2014093924传授了此类糖修饰,将其各自的内容通过引用以其全部内容并入本文。
本发明的多核苷酸(例如,包含编码松弛素多肽或其功能片段或变体的核苷酸序列的多核苷酸)可包含对糖、核碱基和/或核苷间键的修饰的组合。这些组合可包括本文所述的任何一种或多种修饰。
非翻译区(UTR)
非翻译区(UTR)是在未翻译的起始密码子(5'UTR)之前和终止密码子(3'UTR)之后的多核苷酸的核酸部分。在一些实施例中,本发明的包含编码松弛素多肽的开放阅读框(ORF)的多核苷酸(例如,核糖核酸(RNA),例如信使RNA(mRNA))进一步包含UTR(例如,5'UTR或其功能片段、3'UTR或其功能片段或其组合)。
UTR可以与多核苷酸中的编码区同源或异源。在一些实施例中,该UTR与编码该松弛素多肽的ORF是同源的。在一些实施例中,该UTR与编码该松弛素多肽的ORF是异源的。在一些实施例中,该多核苷酸包含两个或更多个5'UTR或其功能片段,它们各自具有相同或不同的核苷酸序列。在一些实施例中,该多核苷酸包含两个或更多个3'UTR或其功能片段,它们各自具有相同或不同的核苷酸序列。
在一些实施例中,该5'UTR或其功能片段、3'UTR或其功能片段或其任何组合是序列优化的。
在一些实施例中,该5'UTR或其功能片段、3'UTR或其功能片段或其任何组合包含至少一个经化学修饰的核碱基,例如5-甲氧基尿嘧啶。
UTR可具有提供调控作用的特征,例如增加或降低的稳定性、定位和/或翻译效率。可以将包含UTR的多核苷酸给予细胞、组织或生物体,并且可以使用常规方法测量一种或多种调控特征。在一些实施例中,5'UTR或3'UTR的功能片段分别包含全长5'或3'UTR的一种或多种调控特征。
天然5'UTR具有在翻译启动中起作用的特征。它们具有像Kozak序列的签名,这些序列通常已知参与核糖体启动许多基因的翻译的过程。Kozak序列具有共有的CCR(A/G)CCAUGG(SEQ ID NO:492),其中R是起始密码子(AUG)上游三个碱基的嘌呤(腺嘌呤或鸟嘌呤),其后是另一个“G”。还已知5'UTR形成参与延伸因子结合的二级结构。
通过工程化通常在特定靶器官的大量表达基因中发现的特征,可以增强多核苷酸的稳定性和蛋白质产生。例如,将5'UTR引入肝脏表达的mRNA(如白蛋白、血清淀粉样蛋白A、载脂蛋白A/B/E、转铁蛋白、甲胎蛋白、促红细胞生成素或因子VIII)可以增强肝细胞系或肝脏中多核苷酸的表达。同样地,使用来自其他组织特异性mRNA的5'UTR来改善该组织中的表达对于肌肉(例如,MyoD、肌球蛋白、肌红蛋白、肌细胞生成素、力蛋白(Herculin))、对于内皮细胞(例如,Tie-1、CD36)、对于髓系细胞(例如,C/EBP、AML1、G-CSF、GM-CSF、CD11b、MSR、Fr-1、i-NOS)、对于白细胞(例如,CD45、CD18)、对于脂肪组织(例如,CD36、GLUT4、ACRP30、脂联素)和对于肺上皮细胞(例如,SP-A/B/C/D)是可能的。
在一些实施例中,UTR选自如下的转录物家族,其蛋白质共享共同功能、结构、特征或性质。例如,编码的多肽可以属于蛋白质家族(即,共享至少一种功能、结构、特征、定位、起源或表达模式),其在特定细胞、组织中或在发育的某一时间表达。来自这些基因或mRNA中任一种的UTR可以交换为相同或不同蛋白质家族的任何其他UTR以产生新的多核苷酸。
在一些实施例中,该5'UTR和该3'UTR可以是异源的。在一些实施例中,该5'UTR可以衍生自与该3'UTR不同的物种。在一些实施例中,该3'UTR可以衍生自与该5'UTR不同的物种。
共有的国际专利申请号PCT/US2014/021522(公开号WO/2014/164253,通过引用以其全部内容并入本文)提供了示例性UTR的列表,这些UTR可以在本发明的多核苷酸中用作ORF的侧翼区。
本申请的示例性UTR包括但不限于衍生自以下的核酸序列的一个或多个5'UTR和/或3'UTR:球蛋白,如α-或β-球蛋白(例如,非洲爪蟾、小鼠、兔或人球蛋白);强Kozak翻译起始信号;CYBA(例如,人细胞色素b-245α多肽);白蛋白(例如,人白蛋白7);HSD17B4(羟基类固醇(17-β)脱氢酶);病毒(例如,烟草蚀纹病毒(TEV)、委内瑞拉马脑炎病毒(VEEV)、登革热病毒、巨细胞病毒(CMV)(例如,CMV立即早期1(IE1))、肝炎病毒(例如,乙型肝炎病毒)、辛德毕斯病毒或PAV大麦黄矮病毒);热休克蛋白(例如,hsp70);翻译起始因子(例如,elF4G);葡萄糖转运蛋白(例如,hGLUT1(人葡萄糖转运蛋白1));肌动蛋白(例如,人α或β肌动蛋白);GAPDH;微管蛋白;组蛋白;柠檬酸循环酶;拓扑异构酶(例如,缺少5'TOP基序(寡嘧啶束)的TOP基因的5'UTR);核糖体蛋白大32(L32);核糖体蛋白(例如,人或小鼠核糖体蛋白,如例如rps9);ATP合酶(例如,ATP5A1或线粒体H+-ATP合酶的β亚基);生长激素e(例如,牛(bGH)或人(hGH));延伸因子(例如,延伸因子1α1(EEF1A1));锰超氧化物歧化酶(MnSOD);肌细胞增强因子2A(MEF2A);β-F1-ATP酶、肌酸激酶、肌红蛋白、粒细胞集落刺激因子(G-CSF);胶原(例如,I型胶原α2(Col1A2)、I型胶原α1(Col1A1)、VI型胶原α2(Col6A2)、VI型胶原α1(Col6A1));核糖体结合蛋白(例如,核糖体结合蛋白I(RPNI));低密度脂蛋白受体相关蛋白(例如,LRP1);心肌营养素样细胞因子(例如,Nnt1);钙网蛋白(Calr);原胶原-赖氨酸,2-氧代戊二酸5-双加氧酶1(Plod1);和核连蛋白(例如,Nucb1)。
在一些实施例中,该5'UTR选自下组,该组由以下组成:β-球蛋白5'UTR;含有强Kozak翻译起始信号的5'UTR;细胞色素b-245α多肽(CYBA)5'UTR;羟基类固醇(17-β)脱氢酶(HSD17B4)5'UTR;烟草蚀纹病毒(TEV)5'UTR;委内瑞拉马脑炎病毒(TEEV)5'UTR;编码非结构蛋白的风疹病毒(RV)RNA的5'近端开放阅读框;登革热病毒(DEN)5'UTR;热休克蛋白70(Hsp70)5'UTR;eIF4G 5'UTR;GLUT1 5'UTR;其功能片段及其任何组合。
在一些实施例中,该3'UTR选自下组,该组由以下组成:β-球蛋白3'UTR;CYBA 3'UTR;白蛋白3'UTR;生长激素(GH)3'UTR;VEEV 3'UTR;乙型肝炎病毒(HBV)3'UTR;α-球蛋白3'UTR;DEN 3'UTR;PAV大麦黄矮病毒(BYDV-PAV)3'UTR;延伸因子1α1(EEF1A1)3'UTR;锰超氧化物歧化酶(MnSOD)3'UTR;线粒体H(+)-ATP合酶(β-mRNA)3'UTR的β亚基;GLUT1 3'UTR;MEF2A 3'UTR;β-F1-ATP酶3'UTR;其功能片段及其组合。
可以将衍生自任何基因或mRNA的野生型UTR掺入本发明的多核苷酸中。在一些实施例中,可以相对于野生型或天然UTR改变UTR以产生变体UTR,例如通过改变UTR相对于ORF的方向或位置;或通过额外核苷酸的纳入、核苷酸的缺失、核苷酸的交换或转座。在一些实施例中,可以利用5'或3'UTR的变体,例如野生型UTR的突变体,或其中将一个或多个核苷酸添加到UTR的末端或从UTR的末端除去的变体。
另外,一个或多个合成UTR可以与一个或多个非合成UTR组合使用。参见例如,Mandal和Rossi,Nat.Protoc.[自然方案]2013 8(3):568-82,以及可在www.addgene.org/Derrick_Rossi/处获得的序列,将其各自的内容通过引用以其全部内容并入本文。UTR或其部分可以放置在与它们选择自其中的转录物相同的方向上,或者可以在方向或位置上改变。因此,5'和/或3'UTR可以被倒置、缩短、延长或与一个或多个其他5'UTR或3'UTR组合。
在一些实施例中,该多核苷酸包含多个UTR,例如双重、三重或四重5'UTR或3'UTR。例如,双重UTR包含串联或基本上串联的相同UTR的两个拷贝。例如,可以使用双重β-球蛋白3'UTR(参见US2010/0129877,将其内容通过引用以其全部内容并入本文)。
在某些实施例中,本发明的多核苷酸包含选自本文披露的任何UTR的5'UTR和/或3'UTR。在一些实施例中,该5'UTR和/或3'UTR包含:
在某些实施例中,本发明的5'UTR和/或3'UTR序列包含与选自下组的序列至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或约100%相同的核苷酸序列,该组由以下组成:包含SEQ ID NO:545-569中的任一个的5'UTR序列和/或包含SEQ ID NO:493-505和570-587中的任一个的3'UTR序列及其任何组合。
本发明的多核苷酸可包含特征的组合。例如,该ORF可以侧接包含强Kozak翻译起始信号的5'UTR和/或包含寡聚(dT)序列的用于模板化添加聚-A尾的3'UTR。5'UTR可包含来自相同和/或不同UTR的第一多核苷酸片段和第二多核苷酸片段(参见例如,US2010/0293625,通过引用以其全部内容并入本文)。
其他非UTR序列可用作本发明的多核苷酸内的区域或子区域。例如,可以在本发明的多核苷酸中掺入内含子或内含子序列的部分。内含子序列的掺入可以增加蛋白质产生以及多核苷酸表达水平。在一些实施例中,代替UTR或除UTR之外,本发明的多核苷酸包含内部核糖体进入位点(IRES)(参见例如,Yakubov等人,Biochem.Biophys.Res.Commun.[生物化学和生物物理学研究通讯]2010 394(1):189-193,将其内容通过引用以其全部内容并入本文)。在一些实施例中,该多核苷酸包含IRES而不是5'UTR序列。在一些实施例中,该多核苷酸包含ORF和病毒衣壳序列。在一些实施例中,该多核苷酸包含合成5'UTR与非合成3'UTR的组合。
在一些实施例中,该UTR还可以包含至少一种翻译增强子多核苷酸、翻译增强子元件(translation enhancer element或translational enhancer element)(统称为“TEE”,它是指增加由多核苷酸产生的多肽或蛋白质的量的核酸序列)。作为非限制性实例,该TEE可包括通过引用以其全部内容并入本文的US2009/0226470中描述的那些以及本领域已知的其他TEE。作为非限制性实例,该TEE可位于转录启动子和起始密码子之间。在一些实施例中,该5'UTR包含TEE。
在一方面,TEE是UTR中的保守元件,其可以促进核酸的翻译活性,如但不限于帽依赖性或帽独立性翻译。
在一个非限制性实例中,该TEE包含Gtx同源结构域蛋白的5'前导序列中的TEE序列。参见Chappell等人,PNAS[美国国家科学院院刊]2004101:9590-9594,通过引用以其全部内容并入本文。
“翻译增强子多核苷酸”或“翻译增强子多核苷酸序列”是指包含本文提供和/或本领域已知的一种或多种TEE的多核苷酸(参见例如,US6310197、US6849405、US7456273、US7183395、US2009/0226470、US2007/0048776、US2011/0124100、US2009/0093049、US2013/0177581、WO2009/075886、WO2007/025008、WO2012/009644、WO2001/055371、WO1999/024595、EP2610341A1和EP2610340A1;将其各自的内容通过引用以其全部内容并入本文),或其变体、同源物或功能衍生物。在一些实施例中,本发明的多核苷酸包含TEE的一个或多个拷贝。翻译增强子多核苷酸中的TEE可以组织在一个或多个序列区段中。序列区段可以包含本文提供的一种或多种TEE,每种TEE以一个或多个拷贝存在。当多个序列区段存在于翻译增强子多核苷酸中时,它们可以是同源的或异源的。因此,翻译增强子多核苷酸中的多个序列区段可以在每个序列区段内包含相同或不同类型的本文提供的TEE、相同或不同拷贝数的每种TEE和/或相同或不同组构的TEE。在一个实施例中,本发明的多核苷酸包含翻译增强子多核苷酸序列。
在一些实施例中,包含至少一种本文所述的TEE的5'UTR和/或3'UTR可以掺入单顺反子序列(如但不限于载体系统或核酸载体)中。
在一些实施例中,本发明的多核苷酸的5'UTR和/或3'UTR包含本文所述的TEE或其部分。在一些实施例中,该3'UTR中的TEE可以与位于5'UTR中的TEE相同和/或不同。
在一些实施例中,本发明的多核苷酸的5'UTR和/或3'UTR可包含至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个、至少13个、至少14个、至少15个、至少16个、至少17个、至少18个、至少19个、至少20个、至少21个、至少22个、至少23个、至少24个、至少25个、至少30个、至少35个、至少40个、至少45个、至少50个、至少55个或多于60个TEE序列。在一个实施例中,本发明的多核苷酸的5'UTR可包含1-60个、1-55个、1-50个、1-45个、1-40个、1-35个、1-30个、1-25个、1-20个、1-15个、1-10个、9个、8个、7个、6个、5个、4个、3个、2个或1个TEE序列。本发明的多核苷酸的5'UTR中的TEE序列可以是相同或不同的TEE序列。本发明的多核苷酸的5'UTR中不同TEE序列的组合可包括如下的组合,其中掺入多于一个拷贝的任何不同TEE序列。
在一些实施例中,该5'UTR和/或3'UTR包含分隔两个TEE序列的间隔区。作为非限制性实例,该间隔区可以是15个核苷酸的间隔区和/或本领域已知的其他间隔区。作为另一个非限制性实例,该5'UTR和/或3'UTR包含分别在该5'UTR和/或3'UTR中重复至少一次、至少两次、至少3次、至少4次、至少5次、至少6次、至少7次、至少8次、至少9次、至少10次或多于10次的TEE序列-间隔区模块。在一些实施例中,该5'UTR和/或3'UTR包含重复1、2、3、4、5、6、7、8、9或10次的TEE序列-间隔区模块。
在一些实施例中,分隔两个TEE序列的间隔区可包含本领域已知的可调控本发明的多核苷酸的翻译的其他序列,例如本文所述的miR序列(例如,miR结合位点和miR种子)。作为非限制性实例,用于分离两个TEE序列的每个间隔区可包含不同的miR序列或miR序列的组分(例如,miR种子序列)。
在一些实施例中,本发明的多核苷酸包含miR和/或TEE序列。在一些实施例中,将miR序列和/或TEE序列掺入本发明的多核苷酸中可以改变茎环区的形状,这可以增加和/或减少翻译。参见例如,Kedde等人,Nature Cell Biology[自然细胞生物学]2010 12(10):1014-20,通过引用以其全部内容并入本文。
微RNA(miRNA)结合位点
本发明的多核苷酸可包含调控元件,例如微RNA(miRNA)结合位点、转录因子结合位点、结构化mRNA序列和/或基序、工程化以充当内源核酸结合分子的假受体的人工结合位点及其组合。在一些实施例中,包含此类调控元件的多核苷酸被称为包含“传感器序列(sensor sequence)”。传感器序列的非限制性实例描述于美国公开2014/0200261中,将其内容通过引用以其全部内容并入本文。
在一些实施例中,本发明的多核苷酸(例如,核糖核酸(RNA),例如信使RNA(mRNA))包含编码感兴趣的多肽的开放阅读框(ORF),并且进一步包含一个或多个miRNA结合位点。基于天然存在的miRNA的组织特异性和/或细胞类型特异性表达,纳入或掺入一个或多个miRNA结合位点提供了对本发明的多核苷酸的调控,并且进而提供对由其编码的多肽的调控。
miRNA(例如,天然存在的miRNA)是19-25个核苷酸长的非编码RNA,其结合多核苷酸并通过降低该多核苷酸的稳定性或通过抑制其翻译来下调基因表达。miRNA序列包含“种子”区域,即成熟miRNA的位置2-8的区域中的序列。miRNA种子可包含成熟miRNA的位置2-8或2-7。在一些实施例中,miRNA种子可包含7个核苷酸(例如,成熟miRNA的核苷酸2-8),其中相应miRNA结合位点中的种子互补位点侧翼为与miRNA位置1相对的腺苷(A)。在一些实施例中,miRNA种子可包含6个核苷酸(例如,成熟miRNA的核苷酸2-7),其中相应miRNA结合位点中的种子互补位点侧翼为与miRNA位置1相对的腺苷(A)。参见例如,Grimson A,Farh KK,Johnston WK,Garrett-Engele P,Lim LP,Bartel DP;Mol Cell.[分子细胞]2007年7月6日;27(1):91-105。可以进行靶细胞或组织的miRNA分析(profiling)以确定这些细胞或组织中miRNA的存在或不存在。在一些实施例中,本发明的多核苷酸(例如,核糖核酸(RNA),例如信使RNA(mRNA))包含一个或多个微RNA结合位点、微RNA靶序列、微RNA互补序列或微RNA种子互补序列。此类序列可以对应于任何已知的微RNA(例如,与其具有互补性),如美国公开US2005/0261218和美国公开US2005/0059005中传授的那些,将其各自的内容通过引用以其全部内容并入本文。
如本文所用,术语“微RNA(miRNA或miR)结合位点”是指多核苷酸内的序列,例如DNA内或RNA转录物内的序列,包括5'UTR和/或3'UTR中的序列,其与miRNA的所有或一个区域充分互补以与该miRNA相互作用、缔合或结合。在一些实施例中,本发明的多核苷酸包含编码感兴趣的多肽的ORF,并且进一步包含一个或多个miRNA结合位点。在示例性实施例中,该多核苷酸(例如,核糖核酸(RNA),例如信使RNA(mRNA))的5'UTR和/或3'UTR包含该一个或多个miRNA结合位点。
与miRNA具有足够互补性的miRNA结合位点是指足以促进miRNA介导的多核苷酸调控(例如,miRNA介导的多核苷酸的翻译抑制或降解)的互补程度。在本发明的示例性方面,与miRNA具有足够互补性的miRNA结合位点是指足以促进miRNA介导的多核苷酸降解(例如,miRNA引导的RNA诱导的沉默复合物(RISC)介导的mRNA切割)的互补程度。该miRNA结合位点可以与例如19-25个核苷酸的miRNA序列、19-23个核苷酸的miRNA序列或22个核苷酸的miRNA序列具有互补性。miRNA结合位点可以仅与miRNA的一部分互补,例如与天然存在的miRNA序列的全长中少于1、2、3或4个核苷酸的部分互补。当所希望的调控是mRNA降解时,优选充足的(full)或完全的(complete)互补性(例如,天然存在的miRNA的全长中所有或显著部分上的充足的互补性或完全的互补性)。
在一些实施例中,miRNA结合位点包含与miRNA种子序列具有互补性(例如,部分或完全互补性)的序列。在一些实施例中,该miRNA结合位点包含与miRNA种子序列具有完全互补性的序列。在一些实施例中,miRNA结合位点包含与miRNA序列具有互补性(例如,部分或完全互补性)的序列。在一些实施例中,该miRNA结合位点包含与miRNA序列具有完全互补性的序列。在一些实施例中,miRNA结合位点与miRNA序列具有完全互补性,但是有1、2或3个核苷酸取代、末端添加和/或截短。
在一些实施例中,该miRNA结合位点与相应的miRNA的长度相同。在其他实施例中,该miRNA结合位点比相应的miRNA在5'末端、3'末端或两者处短1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个或12个核苷酸。在仍其他实施例中,该微RNA结合位点比相应的微RNA在5'末端、3'末端或两者处短两个核苷酸。比相应miRNA短的miRNA结合位点仍然能够降解掺入一个或多个miRNA结合位点的该mRNA或阻止该mRNA翻译。
在一些实施例中,该miRNA结合位点结合作为含有Dicer的活性RISC的一部分的相应成熟miRNA。在另一个实施例中,该miRNA结合位点与RISC中相应miRNA的结合降解含有该miRNA结合位点的mRNA或阻止该mRNA被翻译。在一些实施例中,该miRNA结合位点与miRNA具有足够的互补性,使得包含该miRNA的RISC复合物切割包含该miRNA结合位点的多核苷酸。在其他实施例中,该miRNA结合位点具有不完全的互补性,使得包含该miRNA的RISC复合物诱导包含该miRNA结合位点的多核苷酸的不稳定性。在另一个实施例中,该miRNA结合位点具有不完全的互补性,使得包含该miRNA的RISC复合物抑制包含该miRNA结合位点的多核苷酸的转录。
在一些实施例中,该miRNA结合位点具有来自相应miRNA的1、2、3、4、5、6、7、8、9、10、11或12个错配。
在一些实施例中,该miRNA结合位点具有分别与相应miRNA的至少约10个、至少约11个、至少约12个、至少约13个、至少约14个、至少约15个、至少约16个、至少约17个、至少约18个、至少约19个、至少约20个或至少约21个连续核苷酸互补的至少约10个、至少约11个、至少约12个、至少约13个、至少约14个、至少约15个、至少约16个、至少约17个、至少约18个、至少约19个、至少约20个或至少约21个连续核苷酸。
通过将一个或多个miRNA结合位点工程化到本发明的多核苷酸中,可以靶向该多核苷酸用于降解或减少翻译,条件是可获得所讨论的miRNA。这可以减少该多核苷酸递送时的脱靶效应。例如,如果不旨在将本发明的多核苷酸递送至组织或细胞但最终至所述组织或细胞,那么该组织或细胞中丰富的miRNA可抑制感兴趣的基因的表达,如果将该miRNA的一个或多个结合位点工程化到该多核苷酸的5'UTR和/或3'UTR中的话。
相反,miRNA结合位点可以从它们天然存在的多核苷酸序列中除去,以增加特定组织中的蛋白质表达。例如,可以从多核苷酸中除去特定miRNA的结合位点,以改善含有该miRNA的组织或细胞中的蛋白质表达。
在一个实施例中,本发明的多核苷酸可以在5'UTR和/或3'UTR中包含至少一个miRNA结合位点,以便将细胞毒性或细胞保护性mRNA治疗剂调控至特定细胞,如但不限于正常细胞和/或癌细胞。在另一个实施例中,本发明的多核苷酸可以在5'-UTR和/或3'-UTR中包含2个、3个、4个、5个、6个、7个、8个、9个、10个或更多个miRNA结合位点,以便将细胞毒性或细胞保护性mRNA治疗剂调控至特定细胞,如但不限于正常细胞和/或癌细胞。
可以通过引入或除去一个或多个miRNA结合位点(例如,一个或多个不同的miRNA结合位点)来实现对多个组织中表达的调控。是除去还是插入miRNA结合位点的决定可以基于miRNA表达模式和/或它们在发育和/或疾病时在组织和/或细胞中的分布(profiling)来进行。已经报道了miRNA、miRNA结合位点及其在生物学中的表达模式和作用的鉴定(例如,Bonauer等人,Curr Drug Targets[当今药物靶标]201011:943-949;Anand和Cheresh CurrOpin Hematol[血液病学当今视点]2011 18:171-176;Contreras和Rao Leukemia[白血病]2012 26:404-413(2011年12月20日.doi:10.1038/leu.2011.356);Bartel Cell[细胞]2009 136:215-233;Landgraf等人,Cell[细胞],2007 129:1401-1414;Gentner和Naldini,Tissue Antigens[组织抗原].2012 80:393-403及其中的所有参考文献;将其各自通过引用以其全部内容并入本文)。
miRNA和miRNA结合位点可以对应于任何已知序列,包括美国公开号2014/0200261、2005/0261218和2005/0059005中描述的非限制性实例,将其各自通过引用以其全部内容并入本文。
已知miRNA调控mRNA并从而调控蛋白质表达的组织的实例包括但不限于肝(miR-122)、肌肉(miR-133、miR-206、miR-208)、内皮细胞(miR-17-92、miR-126)、髓系细胞(miR-142-3p、miR-142-5p、miR-16、miR-21、miR-223、miR-24、miR-27)、脂肪组织(let-7、miR-30c)、心脏(miR-1d、miR-149)、肾脏(miR-192、miR-194、miR-204)和肺上皮细胞(let-7、miR-133、miR-126)。
确切而言,已知miRNA在免疫细胞(也称为造血细胞)中差异表达,这些免疫细胞是如抗原呈递细胞(APC)(例如,树突细胞和巨噬细胞)、巨噬细胞、单核细胞、B淋巴细胞、T淋巴细胞、粒细胞、自然杀伤细胞等。免疫细胞特异性miRNA参与免疫原性、自身免疫、对感染的免疫应答、炎症以及基因治疗和组织/器官移植后的不想要的免疫应答。免疫细胞特异性miRNA还调控造血细胞(免疫细胞)的发育、增殖、分化和凋亡的许多方面。例如,miR-142和miR-146仅在免疫细胞中表达,在髓系树突细胞中特别丰富。已经证明,通过向多核苷酸的3'-UTR添加miR-142结合位点可以关闭对该多核苷酸的免疫应答,从而使组织和细胞中的基因转移更稳定。miR-142有效降解抗原呈递细胞中的外源多核苷酸并抑制转导细胞的细胞毒性消除(例如,Annoni A等人,blood[血液],2009,114,5152-5161;Brown BD等人,Natmed.[自然医学]2006,12(5),585-591;Brown BD等人,blood[血液],2007,110(13):4144-4152,将其各自通过引用以其全部内容并入本文)。
抗原介导的免疫应答可以指由外源抗原触发的免疫应答,这些外源抗原在进入生物体时由抗原呈递细胞加工并展示在抗原呈递细胞的表面上。T细胞可识别呈递的抗原并诱导表达该抗原的细胞的细胞毒性消除。
将miR-142结合位点引入本发明的多核苷酸的5'UTR和/或3'UTR中可以通过miR-142介导的降解选择性地抑制抗原呈递细胞中的基因表达,限制抗原呈递细胞(例如,树突细胞)中的抗原呈递,从而在递送该多核苷酸后防止抗原介导的免疫应答。然后,该多核苷酸在靶组织或细胞中稳定表达,而不触发细胞毒性消除。
在一个实施例中,已知在免疫细胞(特别是抗原呈递细胞)中表达的miRNA的结合位点可以被工程化到本发明的多核苷酸中,以通过miRNA介导的RNA降解抑制该多核苷酸在抗原呈递细胞中的表达,抑制抗原介导的免疫应答。在不表达免疫细胞特异性miRNA的非免疫细胞中维持该多核苷酸的表达。例如,在一些实施例中,为了防止针对肝特异性蛋白的免疫原性反应,可以除去任何miR-122结合位点并且可以将miR-142(和/或mirR-146)结合位点工程化到本发明的多核苷酸的5'UTR和/或3'UTR中。
为了进一步推动APC和巨噬细胞中的选择性降解和抑制,本发明的多核苷酸可以在5'UTR和/或3'UTR中包含另外的负调控元件,单独或与miR-142和/或miR-146结合位点组合。作为非限制性实例,另外的负调控元件是组成型衰变元件(Constitutive DecayElement,CDE)。
免疫细胞特异性miRNA包括但不限于hsa-let-7a-2-3p、hsa-let-7a-3p、hsa-7a-5p、hsa-let-7c、hsa-let-7e-3p、hsa-let-7e-5p、hsa-let-7g-3p、hsa-let-7g-5p、hsa-let-7i-3p、hsa-let-7i-5p、miR-10a-3p、miR-10a-5p、miR-1184、hsa-let-7f-1--3p、hsa-let-7f-2--5p、hsa-let-7f-5p、miR-125b-1-3p、miR-125b-2-3p、miR-125b-5p、miR-1279、miR-130a-3p、miR-130a-5p、miR-132-3p、miR-132-5p、miR-142-3p、miR-142-5p、miR-143-3p、miR-143-5p、miR-146a-3p、miR-146a-5p、miR-146b-3p、miR-146b-5p、miR-147a、miR-147b、miR-148a-5p、miR-148a-3p、miR-150-3p、miR-150-5p、miR-151b、miR-155-3p、miR-155-5p、miR-15a-3p、miR-15a-5p、miR-15b-5p、miR-15b-3p、miR-16-1-3p、miR-16-2-3p、miR-16-5p、miR-17-5p、miR-181a-3p、miR-181a-5p、miR-181a-2-3p、miR-182-3p、miR-182-5p、miR-197-3p、miR-197-5p、miR-21-5p、miR-21-3p、miR-214-3p、miR-214-5p、miR-223-3p、miR-223-5p、miR-221-3p、miR-221-5p、miR-23b-3p、miR-23b-5p、miR-24-1-5p、miR-24-2-5p、miR-24-3p、miR-26a-1-3p、miR-26a-2-3p、miR-26a-5p、miR-26b-3p、miR-26b-5p、miR-27a-3p、miR-27a-5p、miR-27b-3p、miR-27b-5p、miR-28-3p、miR-28-5p、miR-2909、miR-29a-3p、miR-29a-5p、miR-29b-1-5p、miR-29b-2-5p、miR-29c-3p、miR-29c-5p、miR-30e-3p、miR-30e-5p、miR-331-5p、miR-339-3p、miR-339-5p、miR-345-3p、miR-345-5p、miR-346、miR-34a-3p、miR-34a-5p、miR-363-3p、miR-363-5p、miR-372、miR-377-3p、miR-377-5p、miR-493-3p、miR-493-5p、miR-542、miR-548b-5p、miR548c-5p、miR-548i、miR-548j、miR-548n、miR-574-3p、miR-598、miR-718、miR-935、miR-99a-3p、miR-99a-5p、miR-99b-3p和miR-99b-5p。此外,可以通过微阵列杂交和切片机分析在免疫细胞中鉴定新型miRNA(例如,Jima DD等人,Blood[血液],2010,116:e118-e127;Vaz C等人,BMC Genomics[BMC基因组学],2010,11,288,将其各自的内容通过引用以其全部内容并入本文)。
已知在肝脏中表达的miRNA包括但不限于miR-107、miR-122-3p、miR-122-5p、miR-1228-3p、miR-1228-5p、miR-1249、miR-129-5p、miR-1303、miR-151a-3p、miR-151a-5p、miR-152、miR-194-3p、miR-194-5p、miR-199a-3p、miR-199a-5p、miR-199b-3p、miR-199b-5p、miR-296-5p、miR-557、miR-581、miR-939-3p和miR-939-5p。可以将来自任何肝特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在肝脏中的表达。肝特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在肺中表达的miRNA包括但不限于let-7a-2-3p、let-7a-3p、let-7a-5p、miR-126-3p、miR-126-5p、miR-127-3p、miR-127-5p、miR-130a-3p、miR-130a-5p、miR-130b-3p、miR-130b-5p、miR-133a、miR-133b、miR-134、miR-18a-3p、miR-18a-5p、miR-18b-3p、miR-18b-5p、miR-24-1-5p、miR-24-2-5p、miR-24-3p、miR-296-3p、miR-296-5p、miR-32-3p、miR-337-3p、miR-337-5p、miR-381-3p和miR-381-5p。可以将来自任何肺特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在肺中的表达。肺特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在心脏中表达的miRNA包括但不限于miR-1、miR-133a、miR-133b、miR-149-3p、miR-149-5p、miR-186-3p、miR-186-5p、miR-208a、miR-208b、miR-210、miR-296-3p、miR-320、miR-451a、miR-451b、miR-499a-3p、miR-499a-5p、miR-499b-3p、miR-499b-5p、miR-744-3p、miR-744-5p、miR-92b-3p和miR-92b-5p。可以将来自任何心脏特异性微RNA的mMiRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在心脏中的表达。心脏特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在神经系统中表达的miRNA包括但不限于miR-124-5p、miR-125a-3p、miR-125a-5p、miR-125b-1-3p、miR-125b-2-3p、miR-125b-5p、miR-1271-3p、miR-1271-5p、miR-128、miR-132-5p、miR-135a-3p、miR-135a-5p、miR-135b-3p、miR-135b-5p、miR-137、miR-139-5p、miR-139-3p、miR-149-3p、miR-149-5p、miR-153、miR-181c-3p、miR-181c-5p、miR-183-3p、miR-183-5p、miR-190a、miR-190b、miR-212-3p、miR-212-5p、miR-219-1-3p、miR-219-2-3p、miR-23a-3p、miR-23a-5p、miR-30a-5p、miR-30b-3p、miR-30b-5p、miR-30c-1-3p、miR-30c-2-3p、miR-30c-5p、miR-30d-3p、miR-30d-5p、miR-329、miR-342-3p、miR-3665、miR-3666、miR-380-3p、miR-380-5p、miR-383、miR-410、miR-425-3p、miR-425-5p、miR-454-3p、miR-454-5p、miR-483、miR-510、miR-516a-3p、miR-548b-5p、miR-548c-5p、miR-571、miR-7-1-3p、miR-7-2-3p、miR-7-5p、miR-802、miR-922、miR-9-3p和miR-9-5p。神经系统富含的miRNA进一步包括在神经元中特异性表达的那些,包括但不限于miR-132-3p、miR-132-3p、miR-148b-3p、miR-148b-5p、miR-151a-3p、miR-151a-5p、miR-212-3p、miR-212-5p、miR-320b、miR-320e、miR-323a-3p、miR-323a-5p、miR-324-5p、miR-325、miR-326、miR-328、miR-922;以及在神经胶质细胞中特异性表达的那些,包括但不限于miR-1250、miR-219-1-3p、miR-219-2-3p、miR-219-5p、miR-23a-3p、miR-23a-5p、miR-3065-3p、miR-3065-5p、miR-30e-3p、miR-30e-5p、miR-32-5p、miR-338-5p和miR-657。可以将来自任何CNS特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在神经系统中的表达。神经系统特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在胰腺中表达的miRNA包括但不限于miR-105-3p、miR-105-5p、miR-184、miR-195-3p、miR-195-5p、miR-196a-3p、miR-196a-5p、miR-214-3p、miR-214-5p、miR-216a-3p、miR-216a-5p、miR-30a-3p、miR-33a-3p、miR-33a-5p、miR-375、miR-7-1-3p、miR-7-2-3p、miR-493-3p、miR-493-5p和miR-944。可以将来自任何胰腺特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在胰腺中的表达。胰腺特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在肾脏中表达的miRNA包括但不限于miR-122-3p、miR-145-5p、miR-17-5p、miR-192-3p、miR-192-5p、miR-194-3p、miR-194-5p、miR-20a-3p、miR-20a-5p、miR-204-3p、miR-204-5p、miR-210、miR-216a-3p、miR-216a-5p、miR-296-3p、miR-30a-3p、miR-30a-5p、miR-30b-3p、miR-30b-5p、miR-30c-1-3p、miR-30c-2-3p、miR30c-5p、miR-324-3p、miR-335-3p、miR-335-5p、miR-363-3p、miR-363-5p和miR-562。可以将来自任何肾脏特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在肾脏中的表达。肾脏特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
已知在肌肉中表达的miRNA包括但不限于let-7g-3p、let-7g-5p、miR-1、miR-1286、miR-133a、miR-133b、miR-140-3p、miR-143-3p、miR-143-5p、miR-145-3p、miR-145-5p、miR-188-3p、miR-188-5p、miR-206、miR-208a、miR-208b、miR-25-3p和miR-25-5p。可以将来自任何肌肉特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在肌肉中的表达。肌肉特异性miRNA结合位点可以单独工程化或进一步与免疫细胞(例如,APC)miRNA结合位点组合工程化在本发明的多核苷酸中。
miRNA也在不同类型的细胞中差异表达,这些细胞是如但不限于内皮细胞、上皮细胞和脂肪细胞。
已知在内皮细胞中表达的miRNA包括但不限于let-7b-3p、let-7b-5p、miR-100-3p、miR-100-5p、miR-101-3p、miR-101-5p、miR-126-3p、miR-126-5p、miR-1236-3p、miR-1236-5p、miR-130a-3p、miR-130a-5p、miR-17-5p、miR-17-3p、miR-18a-3p、miR-18a-5p、miR-19a-3p、miR-19a-5p、miR-19b-1-5p、miR-19b-2-5p、miR-19b-3p、miR-20a-3p、miR-20a-5p、miR-217、miR-210、miR-21-3p、miR-21-5p、miR-221-3p、miR-221-5p、miR-222-3p、miR-222-5p、miR-23a-3p、miR-23a-5p、miR-296-5p、miR-361-3p、miR-361-5p、miR-421、miR-424-3p、miR-424-5p、miR-513a-5p、miR-92a-1-5p、miR-92a-2-5p、miR-92a-3p、miR-92b-3p和miR-92b-5p。从深度测序分析中发现了内皮细胞中的许多新型miRNA(例如,Voellenkle C等人,RNA,2012,18,472-484,通过引用以其全部内容并入本文)。可以将来自任何内皮细胞特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在内皮细胞中的表达。
已知在上皮细胞中表达的miRNA包括但不限于let-7b-3p、let-7b-5p、miR-1246、miR-200a-3p、miR-200a-5p、miR-200b-3p、miR-200b-5p、miR-200c-3p、miR-200c-5p、miR-338-3p、miR-429、miR-451a、miR-451b、miR-494、miR-802和miR-34a、miR-34b-5p、miR-34c-5p、miR-449a、miR-449b-3p、在呼吸道纤毛上皮细胞中具有特异性的miR-449b-5p、let-7家族、miR-133a、miR-133b、在肺上皮细胞中具有特异性的miR-126、miR-382-3p、在肾上皮细胞中具有特异性的miR-382-5p和在角膜上皮细胞中具有特异性的miR-762。可以将来自任何上皮细胞特异性miRNA的miRNA结合位点引入本发明的多核苷酸中或从本发明的多核苷酸中除去,以调控该多核苷酸在上皮细胞中的表达。
此外,胚胎干细胞中富含大量的miRNA,控制干细胞自我更新以及各细胞谱系的发育和/或分化,这些细胞谱系是如神经细胞、心脏细胞、造血细胞、皮肤细胞、成骨细胞和肌肉细胞(例如,Kuppusamy KT等人,Curr.Mol Med[当今分子医学],2013,13(5),757-764;Vidigal JA和Ventura A,Semin Cancer Biol.[癌症生物学研究会]2012,22(5-6),428-436;Goff LA等人,PLoS One[公共科学图书馆·综合],2009,4:e7192;Morin RD等人,Genome Res[基因组研究],2008,18,610-621;Yoo JK等人,Stem Cells Dev.[干细胞与发育]2012,21(11),2049-2057,将其各自通过引用以其全部内容并入本文)。胚胎干细胞中丰富的miRNA包括但不限于let-7a-2-3p、let-a-3p、let-7a-5p、let7d-3p、let-7d-5p、miR-103a-2-3p、miR-103a-5p、miR-106b-3p、miR-106b-5p、miR-1246、miR-1275、miR-138-1-3p、miR-138-2-3p、miR-138-5p、miR-154-3p、miR-154-5p、miR-200c-3p、miR-200c-5p、miR-290、miR-301a-3p、miR-301a-5p、miR-302a-3p、miR-302a-5p、miR-302b-3p、miR-302b-5p、miR-302c-3p、miR-302c-5p、miR-302d-3p、miR-302d-5p、miR-302e、miR-367-3p、miR-367-5p、miR-369-3p、miR-369-5p、miR-370、miR-371、miR-373、miR-380-5p、miR-423-3p、miR-423-5p、miR-486-5p、miR-520c-3p、miR-548e、miR-548f、miR-548g-3p、miR-548g-5p、miR-548i、miR-548k、miR-548l、miR-548m、miR-548n、miR-548o-3p、miR-548o-5p、miR-548p、miR-664a-3p、miR-664a-5p、miR-664b-3p、miR-664b-5p、miR-766-3p、miR-766-5p、miR-885-3p、miR-885-5p、miR-93-3p、miR-93-5p、miR-941、miR-96-3p、miR-96-5p、miR-99b-3p和miR-99b-5p。通过深度测序发现人胚胎干细胞中的许多预测的新型miRNA(例如,MorinRD等人,Genome Res[基因组研究],2008,18,610-621;GoffLA等人,PLoS One[公共科学图书馆·综合],2009,4:e7192;Bar M等人,Stem cells[干细胞],2008,26,2496-2505,将其各自的内容通过引用以其全部内容并入本文)。
在一个实施例中,胚胎干细胞特异性miRNA的结合位点可以包含在本发明多核苷酸的3'UTR中或从中除去,以调节胚胎干细胞的发育和/或分化,从而在退行性病症(例如退行性疾病)中抑制干细胞的衰老,或在疾病状态(例如癌症干细胞)下刺激干细胞的衰老和凋亡。
作为非限制性实例,可以从本发明多核苷酸的3'UTR中除去在某些癌症和/或肿瘤细胞中过表达的miRNA的miRNA结合位点,恢复由癌细胞中过表达的miRNA抑制的表达,因此改善相应的生物学功能,例如转录刺激和/或抑制、细胞周期停滞、细胞凋亡和细胞死亡。其中miRNA表达未被上调的正常细胞和组织将保持不受影响。
miRNA还可以调控复杂的生物学过程,如血管生成(例如,miR-132)(Anand和Cheresh Curr Opin Hematol[血液病学当今视点]2011 18:171-176)。在本发明的多核苷酸中,可以除去或引入参与此类过程的miRNA结合位点,以便使该多核苷酸的表达适应生物学相关的细胞类型或相关的生物学过程。在此上下文中,本发明的多核苷酸被定义为营养缺陷型多核苷酸。
在一些实施例中,本发明的多核苷酸包含miRNA结合位点,其中该miRNA结合位点包含选自表4的一个或多个核苷酸序列,包括任何一个或多个miRNA结合位点序列的一个或多个拷贝。在一些实施例中,本发明的多核苷酸进一步包含选自表4的相同或不同miRNA结合位点中的至少1个、2个、3个、4个、5个、6个、7个、8个、9个、10个或更多个,包括其任何组合。在一些实施例中,该miRNA结合位点结合miR-142或与miR-142互补。在一些实施例中,该miR-142包含SEQ ID NO:539。在一些实施例中,该miRNA结合位点结合miR-142-3p或miR-142-5p。在一些实施例中,该miR-142-3p结合位点包含SEQ ID NO:541。在一些实施例中,该miR-142-5p结合位点包含SEQ ID NO:543。在一些实施例中,该miRNA结合位点包含与SEQID NO:541或SEQ ID NO:543至少80%、至少85%、至少90%、至少95%或100%相同的核苷酸序列。
表4. miR-142和替代miR-142结合位点
在一些实施例中,miRNA结合位点被插入本发明的多核苷酸中于该多核苷酸的任何位置(例如,5'UTR和/或3'UTR)处。在一些实施例中,该5'UTR包含miRNA结合位点。在一些实施例中,该3'UTR包含miRNA结合位点。在一些实施例中,该5'UTR和该3'UTR包含miRNA结合位点。在该多核苷酸中的插入位点可以是该多核苷酸中的任何位置,只要该多核苷酸中miRNA结合位点的插入在不存在相应miRNA的情况下不干扰功能性多肽的翻译;并且在存在该miRNA的情况下,该miRNA结合位点在该多核苷酸中的插入以及该miRNA结合位点与相应miRNA的结合能够降解该多核苷酸或阻止该多核苷酸的翻译。
在一些实施例中,将miRNA结合位点插入本发明的包含ORF的多核苷酸中该ORF的终止密码子下游至少约30个核苷酸中。在一些实施例中,将miRNA结合位点插入本发明的多核苷酸中ORF的终止密码子下游至少约10个核苷酸、至少约15个核苷酸、至少约20个核苷酸、至少约25个核苷酸、至少约30个核苷酸、至少约35个核苷酸、至少约40个核苷酸、至少约45个核苷酸、至少约50个核苷酸、至少约55个核苷酸、至少约60个核苷酸、至少约65个核苷酸、至少约70个核苷酸、至少约75个核苷酸、至少约80个核苷酸、至少约85个核苷酸、至少约90个核苷酸、至少约95个核苷酸或至少约100个核苷酸中。在一些实施例中,将miRNA结合位点插入本发明的多核苷酸中ORF的终止密码子下游约10个核苷酸至约100个核苷酸、约20个核苷酸至约90个核苷酸、约30个核苷酸至约80个核苷酸、约40个核苷酸至约70个核苷酸、约50个核苷酸至约60个核苷酸、约45个核苷酸至约65个核苷酸中。
miRNA基因调控可受该miRNA周围序列的影响,如但不限于周围序列的种类、序列的类型(例如,异源、同源、外源、内源或人工)、周围序列中的调控元件和/或周围序列中的结构元件。该miRNA可受该5'UTR和/或3'UTR的影响。作为非限制性实例,与相同序列类型的人3'UTR相比,非人3'UTR可以增加该miRNA序列对感兴趣的多肽表达的调控作用。
在一个实施例中,该5'UTR的其他调控元件和/或结构元件可影响miRNA介导的基因调控。调控元件和/或结构元件的一个实例是该5'UTR中的结构化IRES(内部核糖体进入位点),其对于结合翻译延伸因子以启动蛋白质翻译是必需的。EIF4A2与5'-UTR中此二级结构化元件的结合对于miRNA介导的基因表达是必需的(MeijerHA等人,Science[科学],2013,340,82-85,通过引用以其全部内容并入本文)。本发明的多核苷酸可以进一步包含这种结构化5'UTR,以增强微RNA介导的基因调控。
可以将至少一个miRNA结合位点工程化到本发明多核苷酸的3'UTR中。在此上下文中,可以将至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个或更多个miRNA结合位点工程化到本发明多核苷酸的3'UTR中。例如,可以将1至10个、1至9个、1至8个、1至7个、1至6个、1至5个、1至4个、1至3个、2个或1个miRNA结合位点工程化到本发明多核苷酸的3'UTR中。在一个实施例中,掺入本发明的多核苷酸中的miRNA结合位点可以是相同的或可以是不同的miRNA位点。掺入本发明的多核苷酸中的不同miRNA结合位点的组合可包括如下的组合,其中掺入多于一个拷贝的任何不同miRNA位点。在另一个实施例中,掺入本发明的多核苷酸中的miRNA结合位点可靶向体内相同或不同的组织。作为非限制性实例,通过在本发明多核苷酸的3'-UTR中引入组织特异性、细胞类型特异性或疾病特异性miRNA结合位点,可以降低特定细胞类型(例如,肝细胞、髓系细胞、内皮细胞、癌细胞等)中的表达程度。
在一个实施例中,可以在本发明多核苷酸中的3'UTR的5'末端附近、3'UTR的5'末端和3'末端之间的中线周围和/或3'UTR的3'末端附近将miRNA结合位点工程化。作为非限制性实例,可以在3'UTR的5'末端附近和3'UTR的5'末端和3'末端之间的中线周围将miRNA结合位点工程化。作为另一个非限制性实例,可以在3'UTR的3'末端附近和3'UTR的5'末端和3'末端之间的中线周围将miRNA结合位点工程化。作为又另一个非限制性实例,可以在3'UTR的5'末端附近和3'UTR的3'末端附近工程化miRNA结合位点。
在另一个实施例中,3'UTR可包含1、2、3、4、5、6、7、8、9或10个miRNA结合位点。这些miRNA结合位点可以与miRNA、miRNA种子序列和/或种子序列侧翼的miRNA序列互补。
在一个实施例中,可以将本发明的多核苷酸工程化为包含在受试者的不同组织或不同细胞类型中表达的多于一个miRNA位点。作为非限制性实例,可以将本发明的多核苷酸工程化为包含miR-192和miR-122,以调控该多核苷酸在受试者的肝脏和肾脏中的表达。在另一个实施例中,对于相同组织,可以将本发明的多核苷酸工程化为包含多于一个miRNA位点。
在一些实施例中,本发明的多核苷酸的表达可以通过在该多核苷酸中掺入至少一个miR结合位点并配制该多核苷酸用于给药来控制。作为非限制性实例,本发明的多核苷酸可通过掺入miRNA结合位点并将该多核苷酸配制在包含可电离脂质(包括本文所述的任何脂质)的脂质纳米粒子中而靶向组织或细胞。
基于不同组织、细胞类型或生物学条件中miRNA的表达模式,可以工程化本发明的多核苷酸以在特定组织、细胞类型或生物学条件中进行更多靶向表达。通过引入组织特异性miRNA结合位点,可以设计本发明的多核苷酸以在组织或细胞中或在生物学条件的背景下进行最佳蛋白质表达。
在一些实施例中,可以将本发明的多核苷酸设计为掺入miRNA结合位点,这些miRNA结合位点与已知的miRNA种子序列具有100%同一性或与miRNA种子序列具有小于100%同一性。在一些实施例中,可以将本发明的多核苷酸设计为掺入与已知的miRNA种子序列具有至少60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%同一性的miRNA结合位点。可以使miRNA种子序列部分突变以降低miRNA结合亲和力,并因此导致该多核苷酸的下调减少。实质上,miRNA结合位点和miRNA种子之间的匹配或错配的程度可以充当变阻器,以更精细地调整miRNA调节蛋白质表达的能力。此外,miRNA结合位点的非种子区中的突变也可影响miRNA调节蛋白质表达的能力。
在一个实施例中,可以将miRNA序列掺入茎环的环中。
在另一个实施例中,可以将miRNA种子序列掺入茎环的环中,并且可以将miRNA结合位点掺入茎环的5'或3'茎中。
在一个实施例中,可以将翻译增强子元件(TEE)掺入茎环的茎的5'端,并且可以将miRNA种子掺入茎环的茎中。在另一个实施例中,可以将TEE掺入茎环的茎的5'端,可以将miRNA种子掺入茎环的茎中,并且可以将miRNA结合位点掺入茎的3'端或茎环后的序列中。该miRNA种子和该miRNA结合位点可以针对相同和/或不同的miRNA序列。
在一个实施例中,miRNA序列和/或TEE序列的掺入改变了茎环区的形状,这可以增加和/或减少翻译。(参见例如,Kedde等人,“A Pumilio-induced RNA structure switchin p27-3'UTR controls miR-221 and miR-22 accessibility[P27-3'UTR中的Pumilio诱导的RNA结构转换控制miR-221和miR-22可及性].”Nature Cell Biology[自然细胞生物学].2010,通过引用以其全部内容并入本文)。
在一个实施例中,本发明的多核苷酸的5'-UTR可包含至少一个miRNA序列。该miRNA序列可以是但不限于19或22个核苷酸的序列和/或不含种子的miRNA序列。
在一个实施例中,该5'UTR中的miRNA序列可用于稳定本文所述的本发明的多核苷酸。
在另一个实施例中,本发明的多核苷酸的5'UTR中的miRNA序列可用于降低翻译起始位点(如但不限于起始密码子)的可及性。参见例如,Matsuda等人,PLoS One.[公共科学图书馆·综合]201011(5):e15057;通过引用以其全部内容并入本文,其使用围绕起始密码子(-4至+37,其中AUG密码子的A为+1)的反义锁核酸(LNA)寡核苷酸和外显子拼接复合体(EJC),以便降低第一个起始密码子(AUG)的可及性。Matsuda证明,用LNA或EJC改变起始密码子周围的序列会影响多核苷酸的效率、长度和结构稳定性。本发明的多核苷酸可以在翻译起始位点附近包含miRNA序列,而不是Matsuda等人描述的LNA或EJC序列,以降低翻译起始位点的可及性。翻译起始位点可以在miRNA序列之前、之后或之内。作为非限制性实例,翻译起始位点可位于miRNA序列(如种子序列或结合位点)内。作为另一个非限制性实例,翻译起始位点可位于miR-122序列(如种子序列或mir-122结合位点)内。
在一些实施例中,本发明的多核苷酸可包含至少一种miRNA,以抑制抗原呈递细胞的抗原呈递。该miRNA可以是完整的miRNA序列、miRNA种子序列、不含种子的miRNA序列或其组合。作为非限制性实例,掺入本发明的多核苷酸中的miRNA对造血系统可具特异性。作为另一个非限制性实例,掺入本发明的多核苷酸中以抑制抗原呈递的miRNA是miR-142-3p。
在一些实施例中,本发明的多核苷酸可包含至少一种miRNA,以抑制感兴趣的组织或细胞中编码的多肽的表达。作为非限制性实例,本发明的多核苷酸可包含至少一个miR-122结合位点,以抑制肝脏中编码的感兴趣的多肽的表达。作为另一个非限制性实例,本发明的多核苷酸可包含至少一个miR-142-3p结合位点、miR-142-3p种子序列、不含种子的miR-142-3p结合位点、miR-142-5p结合位点、miR-142-5p种子序列、不含种子的miR-142-5p结合位点、miR-146结合位点、miR-146种子序列和/或不含种子序列的miR-146结合位点。
在一些实施例中,本发明的多核苷酸可在3'UTR中包含至少一个miRNA结合位点,以选择性降解免疫细胞中的mRNA治疗剂,以抑制由治疗剂递送引起的不想要的免疫原性反应。作为非限制性实例,该miRNA结合位点可使本发明的多核苷酸在抗原呈递细胞中更不稳定。这些miRNA的非限制性实例包括mir-142-5p、mir-142-3p、mir-146a-5p和mir-146-3p。
在一个实施例中,本发明的多核苷酸在该多核苷酸的可与RNA结合蛋白相互作用的区域中包含至少一个miRNA序列。
在一些实施例中,本发明的多核苷酸(例如,RNA,例如mRNA)包含(i)编码野生型松弛素多肽的序列优化的核苷酸序列(例如,ORF)和(ii)miRNA结合位点(例如,结合miR-142的miRNA结合位点)。
在一些实施例中,本发明的多核苷酸包含编码本文披露的松弛素多肽的尿嘧啶修饰的序列和本文披露的miRNA结合位点,例如结合miR-142的miRNA结合位点。在一些实施例中,编码松弛素多肽的尿嘧啶修饰的序列包含至少一个经化学修饰的核碱基,例如5-甲氧基尿嘧啶。在一些实施例中,编码本发明的松弛素多肽的尿嘧啶修饰的序列中至少95%的一个类型的核碱基(例如,尿嘧啶)中是经修饰的核碱基。在一些实施例中,编码松弛素多肽的尿嘧啶修饰的序列中至少95%的尿嘧啶是5-甲氧基尿苷。在一些实施例中,将包含编码本文披露的松弛素多肽的核苷酸序列的多核苷酸和miRNA结合位点与递送剂(例如,LNP,其包含例如具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的脂质,例如化合物1-232中的任何一种)一起配制。
3'UTR
在某些实施例中,本发明的多核苷酸(例如,包含编码本发明的松弛素多肽的核苷酸序列的多核苷酸)进一步包含3'UTR。
3'-UTR是紧接在翻译终止密码子之后的mRNA区段,并且通常含有在转录后影响基因表达的调控区。3'-UTR内的调控区可以影响该mRNA的聚腺苷酸化、翻译效率、定位和稳定性。在一个实施例中,可用于本发明的3'-UTR包含调控蛋白或微RNA的结合位点。
具有5'帽的区域
本发明还包括包含5'帽和本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的多核苷酸。
天然mRNA的5'帽结构参与核输出,从而增加mRNA稳定性,并结合mRNA帽结合蛋白(CBP),其通过CBP与聚(A)结合蛋白的缔合以形成成熟环状mRNA种类来负责细胞中的mRNA稳定性和翻译能力。该帽进一步有助于在mRNA剪接期间除去5'近端内含子。
内源mRNA分子可以是5'-端加帽的,在末端鸟苷帽残基和该mRNA分子的5'-末端转录的有义核苷酸之间产生5'-ppp-5'-三磷酸酯键。然后可将此5'-鸟苷酸帽甲基化以产生N7-甲基-鸟苷酸残基。该mRNA的5'端的末端和/或前末端(anteterminal)转录的核苷酸的核糖任选地也可以是2'-O-甲基化的。通过水解和切割鸟苷酸帽结构进行的5'-脱帽可以靶向核酸分子(如mRNA分子)进行降解。
在一些实施例中,本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)掺入帽部分。
在一些实施例中,本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)包含不可水解的帽结构,其防止脱帽并因此增加mRNA半衰期。因为帽结构水解需要切割5'-ppp-5'磷酸二酯键,所以在加帽反应期间可以使用经修饰的核苷酸。例如,来自新英格兰生物实验室(New England Biolabs)(马萨诸塞州伊普斯威奇)的牛痘加帽酶可以根据制造商的说明书与α-硫代-鸟苷核苷酸一起使用,以在5'-ppp-5'帽中产生硫代磷酸酯键。可以使用另外的经修饰的鸟苷核苷酸,如α-甲基-膦酸酯和硒基-磷酸酯核苷酸。
另外的修饰包括但不限于糖环的2'-羟基基团上多核苷酸的5'-末端和/或5'-前末端核苷酸(如上所述)的核糖的2'-O-甲基化。多个不同的5'-帽结构可用于产生核酸分子(如充当mRNA分子的多核苷酸)的5'-帽。帽类似物(在本文中其也称为合成帽类似物、化学帽、化学帽类似物或者结构或功能性帽类似物)的化学结构不同于天然(即,内源、野生型或生理)5'-帽,但是保留帽功能。帽类似物可以化学地(即,非酶促地)或酶促地合成和/或与本发明的多核苷酸连接。
例如,抗反向帽类似物(Anti-Reverse Cap Analog,ARCA)帽可含有通过5'-5'-三磷酸酯基团连接的两个鸟嘌呤,其中一个鸟嘌呤含有N7甲基基团以及3'-O-甲基基团(即,N7,3'-O-二甲基-鸟苷-5'-三磷酸-5'-鸟苷(m7G-3'mppp-G;其可等效地命名为3'O-Me-m7G(5')ppp(5')G)。另一个未经修饰的鸟嘌呤的3'-O原子与带帽多核苷酸的5'-末端核苷酸连接。N7-和3'-O-甲基化鸟嘌呤提供加帽多核苷酸的末端部分。
另一种示例性帽是mCAP,其类似于ARCA但在鸟苷上具有2'-O-甲基基团(即,N7,2'-O-二甲基-鸟苷-5'-三磷酸-5'-鸟苷,m7Gm-ppp-G)。
在一些实施例中,该帽是二核苷酸帽类似物。作为非限制性实例,可以在不同的磷酸位置用硼烷磷酸酯基团或硒代磷酸酯(phophoroselenoate)基团修饰该二核苷酸帽类似物,如美国专利号US 8,519,110中描述的二核苷酸帽类似物,将其内容通过引用以其全部内容并入本文。
在另一个实施例中,该帽是帽类似物,是本领域已知和/或本文所述的N7-(4-氯苯氧基乙基)取代的二核苷酸形式的帽类似物。N7-(4-氯苯氧基乙基)取代的二核苷酸形式的帽类似物的非限制性实例包括N7-(4-氯苯氧基乙基)-G(5')ppp(5')G和N7-(4-氯苯氧基乙基)-m3'-OG(5')ppp(5')G帽类似物(参见例如,Kore等人Bioorganic&Medicinal Chemistry[生物有机化学和药物化学]201321:4570-4574中描述的各种帽类似物和合成帽类似物的方法,将其内容通过引用以其全部内容并入本文)。在另一个实施例中,本发明的帽类似物是4-氯/溴苯氧基乙基类似物。
虽然帽类似物允许多核苷酸或其区域的伴随加帽,但在体外转录反应中,高达20%的转录物可保持未加帽。这以及帽类似物与由内源细胞转录机器产生的核酸的内源5'-帽结构的结构差异可导致降低的翻译能力和降低的细胞稳定性。
本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)也可以使用酶在制造后(无论是IVT还是化学合成)加帽,以产生更真实的5'-帽结构。如本文所用,短语“更真实”是指在结构上或功能上紧密反映或模仿内源或野生型特征的特征。也就是说,与现有技术的合成特征或类似物等相比,“更真实的”特征更好地代表内源、野生型、天然或生理细胞功能和/或结构,或者在一个或多个方面优于相应内源、野生型、天然或生理特征。本发明的更真实的5'帽结构的非限制性实例是与本领域已知的合成5'帽结构(或野生型、天然或生理5'帽结构)相比帽结合蛋白的结合增强、半衰期增加、对5'核酸内切酶的易感性降低和/或5'脱帽减少的那些。例如,重组牛痘病毒加帽酶和重组2'-O-甲基转移酶可在多核苷酸的5'-末端核苷酸和鸟嘌呤帽核苷酸之间产生经典的5'-5'-三磷酸酯键,其中该帽鸟嘌呤含有N7甲基化,并且该mRNA的5'-末端核苷酸含有2'-O-甲基。这种结构称为帽1结构。与例如本领域已知的其他5'帽类似物结构相比,此帽导致更高的翻译能力和细胞稳定性以及减少的细胞促炎细胞因子活化。帽结构包括但不限于7mG(5')ppp(5')N,pN2p(帽0)、7mG(5')ppp(5')NlmpNp(帽1)和7mG(5')-ppp(5')NlmpN2mp(帽2)。
作为非限制性实例,制造后对嵌合多核苷酸加帽可以更有效,因为可以对几乎100%的嵌合多核苷酸加帽。这与当帽类似物在体外转录反应过程中与嵌合多核苷酸连接时的约80%形成对比。
根据本发明,5'末端帽可包括内源帽或帽类似物。根据本发明,5'末端帽可包含鸟嘌呤类似物。有用的鸟嘌呤类似物包括但不限于肌苷、N1-甲基-鸟苷、2′氟-鸟苷、7-脱氮-鸟苷、8-氧代-鸟苷、2-氨基-鸟苷、LNA-鸟苷和2-叠氮基-鸟苷。
聚-A尾
在一些实施例中,本披露的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)进一步包含聚-A尾。在进一步的实施例中,可以掺入聚-A尾上的末端基团用于稳定化。在其他实施例中,聚-A尾包含脱-3'羟基尾。
在RNA加工期间,可以将长链腺嘌呤核苷酸(聚-A尾)添加到多核苷酸(如mRNA分子)中以增加稳定性。转录后立即切割转录物的3'端以释放3'羟基。然后聚-A聚合酶将一条腺嘌呤核苷酸链添加到RNA。该过程(称为聚腺苷酸化)增加了聚-A尾,其长度可在例如大约80至大约250个残基之间,包括大约80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240或250个残基长。
在从细胞核输出构建体后,也可以添加聚A尾。
根据本发明,可以引入聚A尾上的末端基团用于稳定化。本发明的多核苷酸可包含脱-3'羟基尾。它们还可以包含结构部分或2'-甲基修饰,如Junjie Li等人(CurrentBiology[当今生物学],第15卷,1501–1507,2005年8月23日,将其内容通过引用以其全部内容并入本文)所传授的。
可以将本发明的多核苷酸设计为编码具有替代聚A尾结构的转录物(包括组蛋白mRNA)。根据Norbury,“在人复制依赖性组蛋白mRNA上也检测到末端尿苷化。认为这些mRNA的转换对于预防完成或抑制染色体DNA复制后潜在有毒的组蛋白积累是重要的。这些mRNA的特征在于缺少3'多聚(A)尾,而其功能则由稳定的茎-环结构及其同源茎-环结合蛋白(SLBP)承担;后者执行与PABP在聚腺苷酸化mRNA上的功能相同的功能”(Norbury,“Cytoplasmic RNA:a case of the tail wagging the dog[细胞质RNA:主次颠倒的情况],”Nature Reviews Molecular Cell Biology[自然评论分子细胞生物学];AOP,2013年8月29日在线发表;doi:10.1038/nrm3645),将其内容通过引用以其全部内容并入本文。
独特的聚-A尾长度为本发明的多核苷酸提供了某些优点。通常,聚-A尾(当存在时)的长度大于30个核苷酸长。在另一个实施例中,该聚-A尾的长度大于35个核苷酸(例如,至少或大于约35、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、1,000、1,100、1,200、1,300、1,400、1,500、1,600、1,700、1,800、1,900、2,000、2,500和3,000个核苷酸)。
在一些实施例中,该多核苷酸或其区域包含约30至约3,000个(例如,30至50、30至100、30至250、30至500、30至750、30至1,000、30至1,500、30至2,000、30至2,500、50至100、50至250、50至500、50至750、50至1,000、50至1,500、50至2,000、50至2,500、50至3,000、100至500、100至750、100至1,000、100至1,500、100至2,000、100至2,500、100至3,000、500至750、500至1,000、500至1,500、500至2,000、500至2,500、500至3,000、1,000至1,500、1,000至2,000、1,000至2,500、1,000至3,000、1,500至2,000、1,500至2,500、1,500至3,000、2,000至3,000、2,000至2,500和2,500至3,000个)核苷酸。
在一些实施例中,相对于整个多核苷酸的长度或该多核苷酸的特定区域的长度设计聚-A尾。此设计可以基于编码区的长度、特定特征或区域的长度或由该多核苷酸表达的最终产物的长度。
在此上下文中,该聚-A尾的长度可以比该多核苷酸或其特征长10%、20%、30%、40%、50%、60%、70%、80%、90%或100%。也可以将该聚-A尾设计为它所属的多核苷酸的一部分。在此上下文中,该聚-A尾可以是构建体总长度、构建体区域或构建体的总长度减去聚-A尾的10%、20%、30%、40%、50%、60%、70%、80%或90%或更多。此外,工程化的结合位点和多核苷酸与聚-A结合蛋白的缀合可以增强表达。
另外,多个不同的多核苷酸可以经由PABP(聚-A结合蛋白)通过3'-端使用在聚-A尾的3'末端的经修饰的核苷酸连接在一起。转染实验可以在相关细胞系中进行,并且可以在转染后12小时、24小时、48小时、72小时和第7天通过ELISA测定蛋白质产生。
在一些实施例中,将本发明的多核苷酸设计为包含聚A-G四联体区。G四联体是四个鸟嘌呤核苷酸的环状氢键键合阵列,其可以由DNA和RNA中的富含G的序列形成。在此实施例中,在该聚-A尾的末端掺入G四联体。在不同时间点测定所得多核苷酸的稳定性、蛋白质产生和其他参数(包括半衰期)。已经发现聚A-G四联体导致自mRNA的蛋白质产生相当于单独使用120个核苷酸的聚-A尾所见的至少75%。
起始密码子区
本发明还包括包含起始密码子区和本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的多核苷酸。在一些实施例中,本发明的多核苷酸可具有与起始密码子区类似或像它一样起作用的区域。
在一些实施例中,多核苷酸的翻译可以在不是起始密码子AUG的密码子上启动。该多核苷酸的翻译可以在替代起始密码子上启动,该替代起始密码子是如但不限于ACG、AGG、AAG、CTG/CUG、GTG/GUG、ATA/AUA、ATT/AUU、TTG/UUG(参见Touriol等人Biology of theCell[细胞生物学]95(2003)169-178以及Matsuda和Mauro PLoS ONE[公共科学图书馆·综合],20105:11;将其各自的内容通过引用以其全部内容并入本文)。
作为非限制性实例,多核苷酸的翻译在替代起始密码子ACG上开始。作为另一个非限制性实例,多核苷酸翻译在替代起始密码子CTG或CUG上开始。作为又另一个非限制性实例,多核苷酸的翻译在替代起始密码子GTG或GUG上开始。
已知启动翻译的密码子(如但不限于起始密码子或替代起始密码子)侧翼的核苷酸会影响该多核苷酸的翻译效率、长度和/或结构。(参见例如,Matsuda和Mauro PLoS ONE[公共科学图书馆·综合],20105:11;将其内容通过引用以其全部内容并入本文)。掩蔽启动翻译的密码子侧翼的任何核苷酸可用于改变多核苷酸的翻译起始位置、翻译效率、长度和/或结构。
在一些实施例中,可以在起始密码子或替代起始密码子附近使用掩蔽剂,以掩蔽或隐藏该密码子,以降低在掩蔽的起始密码子或替代起始密码子处翻译起始的可能性。掩蔽剂的非限制性实例包括反义锁核酸(LNA)多核苷酸和外显子拼接复合物(EJC)(参见例如,Matsuda和Mauro描述了掩蔽剂LNA多核苷酸和EJC(PLoS ONE[公共科学图书馆·综合],20105:11);将其内容通过引用以其全部内容并入本文)。
在另一个实施例中,掩蔽剂可用于掩蔽多核苷酸的起始密码子,以增加翻译在替代起始密码子上启动的可能性。在一些实施例中,掩蔽剂可用于掩蔽第一个起始密码子或替代起始密码子,以增加翻译将在掩蔽的起始密码子或替代起始密码子下游的起始密码子或替代起始密码子上启动的机会。
在一些实施例中,起始密码子或替代起始密码子可位于miR结合位点的完美补体内。miR结合位点的完美补体可以帮助控制该多核苷酸的翻译、长度和/或结构,类似于掩蔽剂。作为非限制性实例,该起始密码子或替代起始密码子可位于miRNA结合位点的完美补体的中间。该起始密码子或替代起始密码子可位于第一核苷酸、第二核苷酸、第三核苷酸、第四核苷酸、第五核苷酸、第六核苷酸、第七核苷酸、第八核苷酸、第九核苷酸、第十核苷酸、第十一核苷酸、第十二核苷酸、第十三核苷酸、第十四核苷酸、第十五核苷酸、第十六核苷酸、第十七核苷酸、第十八核苷酸、第十九核苷酸、第二十核苷酸或第二十一核苷酸之后。
在另一个实施例中,可以从多核苷酸序列中除去该多核苷酸的起始密码子,以使该多核苷酸的翻译在非起始密码子的密码子上开始。该多核苷酸的翻译可以在除去的起始密码子之后的密码子上或在下游起始密码子或替代起始密码子上开始。在非限制性实例中,起始密码子ATG或AUG作为该多核苷酸序列的前3个核苷酸被除去,以便在下游起始密码子或替代起始密码子上启动翻译。除去了起始密码子的多核苷酸序列可以进一步包含至少一种用于下游起始密码子和/或替代起始密码子的掩蔽剂,以控制或试图控制翻译的起始、多核苷酸的长度和/或多核苷酸的结构。
终止密码子区
本发明还包括包含终止密码子区和本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的多核苷酸。在一些实施例中,本发明的多核苷酸可在3'非翻译区(UTR)之前包含至少两个终止密码子。该终止密码子在DNA的情况下可选自TGA、TAA和TAG,或在RNA的情况下可选自UGA、UAA和UAG。在一些实施例中,本发明的多核苷酸包含DNA情况下的终止密码子TGA或RNA情况下的终止密码子UGA和一个额外的终止密码子。在进一步的实施例中,该额外的终止密码子可以是TAA或UAA。在另一个实施例中,本发明的多核苷酸包含三个连续的终止密码子、四个终止密码子或更多。
插入和取代
本发明还包括本披露的多核苷酸,其进一步包含插入和/或取代。
在一些实施例中,该多核苷酸的5'UTR可以通过插入相同碱基的核苷酸的至少一个区域和/或串来替代。该核苷酸区域和/或串可包含但不限于至少3个、至少4个、至少5个、至少6个、至少7个或至少8个核苷酸,并且这些核苷酸可以是天然的和/或非天然的。作为非限制性实例,该核苷酸组可包含5-8个腺嘌呤、胞嘧啶、胸腺嘧啶、本文披露的任何其他核苷酸的串和/或其组合。
在一些实施例中,该多核苷酸的5'UTR可以通过插入两个不同碱基的核苷酸的至少两个区域和/或串来替代,这两个不同碱基是如但不限于腺嘌呤、胞嘧啶、胸腺嘧啶、本文披露的任何其他核苷酸和/或其组合。例如,可以通过插入5-8个腺嘌呤碱基随后插入5-8个胞嘧啶碱基来替代5'UTR。在另一个实例中,可以通过插入5-8个胞嘧啶碱基随后插入5-8个腺嘌呤碱基来替代5'UTR。
在一些实施例中,该多核苷酸可包含转录起始位点(其可被RNA聚合酶识别)下游的至少一个取代和/或插入。作为非限制性实例,通过取代恰在转录起始位点下游的区域(如但不限于+1至+6)中的至少一个核酸,可以在转录起始位点的下游发生至少一个取代和/或插入。恰在转录起始位点下游的核苷酸区域的变化可以影响起始速率,增加表观核苷酸三磷酸(NTP)反应常数值,并增加短转录物从转录复合物的解离,修复初始转录(Brieba等人,Biochemistry[生物化学](2002)41:5144-5149;通过引用以其全部内容并入本文)。至少一个核苷的修饰、取代和/或插入可引起序列的沉默突变或可引起氨基酸序列的突变。
在一些实施例中,该多核苷酸可包含在转录起始位点下游的至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个或至少13个鸟嘌呤碱基的取代。
在一些实施例中,该多核苷酸可包含恰在转录起始位点下游的区域中至少1个、至少2个、至少3个、至少4个、至少5个或至少6个鸟嘌呤碱基的取代。作为非限制性实例,如果该区域中的核苷酸是GGGAGA,则鸟嘌呤碱基可以被至少1个、至少2个、至少3个或至少4个腺嘌呤核苷酸取代。在另一个非限制性实例中,如果该区域中的核苷酸是GGGAGA,则鸟嘌呤碱基可以被至少1个、至少2个、至少3个或至少4个胞嘧啶碱基取代。在另一个非限制性实例中,如果该区域中的核苷酸是GGGAGA,则鸟嘌呤碱基可以被至少1个、至少2个、至少3个或至少4个胸腺嘧啶和/或本文所述的任何核苷酸取代。
在一些实施例中,该多核苷酸可包含在起始密码子上游的至少一个取代和/或插入。为了清楚起见,本领域技术人员将理解,起始密码子是蛋白质编码区的第一个密码子,而转录起始位点是转录开始的位点。该多核苷酸可包含但不限于至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个或至少8个核苷酸碱基取代和/或插入。这些核苷酸碱基可以在起始密码子上游的1个、至少1个、至少2个、至少3个、至少4个或至少5个位置处插入或取代。插入和/或取代的核苷酸可以是相同的碱基(例如,全为A或全为C或全为T或全为G)、两种不同的碱基(例如,A和C、A和T或C和T)、三种不同的碱基(例如,A、C和T或A、C和T)或至少四种不同的碱基。
作为非限制性实例,该多核苷酸中编码区上游的鸟嘌呤碱基可被腺嘌呤、胞嘧啶、胸腺嘧啶或本文所述的任何核苷酸取代。在另一个非限制性实例中,可以设计该多核苷酸中鸟嘌呤碱基的取代,以便在转录起始位点下游和起始密码子之前的区域留下一个鸟嘌呤碱基(参见Esvelt等人Nature[自然](2011)472(7344):499-503;将其内容通过引用以其全部内容并入本文)。作为非限制性实例,可以在转录起始位点下游但起始密码子的上游的1个位置处插入至少5个核苷酸,并且该至少5个核苷酸可以是相同的碱基类型。
包含编码松弛素多肽的mRNA的多核苷酸
在某些实施例中,本披露的多核苷酸(例如包含编码松弛素多肽的mRNA核苷酸序列的多核苷酸)从5'至3'端包含:
(i)上文提供的5'帽;
(ii)5'UTR,如上文提供的序列;
(iii)编码松弛素多肽的开放阅读框,例如编码本文披露的松弛素多肽的序列优化的核酸序列;
(iv)至少一个终止密码子;
(v)3'UTR,如上文提供的序列;以及
(vi)上文提供的聚-A尾。
在一些实施例中,该多核苷酸进一步包含miRNA结合位点,例如结合miRNA-142的miRNA结合位点。在一些实施例中,该5'UTR包含miRNA结合位点。
在一些实施例中,本披露的多核苷酸包含编码与野生型松弛素蛋白的蛋白质序列至少70%、至少80%、至少81%、至少82%、至少83%、至少84%、至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%相同的多肽序列的核苷酸序列。
制备多核苷酸的方法
本披露还提供了用于制备本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)或其补体的方法。
在一些方面,可以使用体外转录构建本文披露的编码松弛素多肽的多核苷酸(例如,RNA,例如mRNA)。在其他方面,可以使用寡核苷酸合成仪通过化学合成构建本文披露的编码松弛素多肽的多核苷酸(例如,RNA,例如mRNA)。
在其他方面,通过使用宿主细胞制备本文披露的编码松弛素多肽的多核苷酸(例如,RNA,例如mRNA)。在某些方面,本文披露的编码松弛素多肽的多核苷酸(例如,RNA,例如mRNA)是通过IVT、化学合成、宿主细胞表达或本领域已知的任何其他方法的一种或多种组合来制备的。
天然存在的核苷、非天然存在的核苷或其组合可以完全或部分天然地替代候选核苷酸序列中存在的核苷并且可以掺入编码松弛素多肽的序列优化的核苷酸序列(例如,RNA,例如mRNA)中。然后可以检查所得多核苷酸(例如,mRNA)产生蛋白质和/或产生松弛素产物的能力。
a.体外转录/酶促合成
本文披露的本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)可以使用体外转录(IVT)系统转录。该系统通常包含转录缓冲液、核苷酸三磷酸(NTP)、RNA酶抑制剂和聚合酶。这些NTP可以选自但不限于本文所述的那些,包括天然和非天然(经修饰的)NTP。该聚合酶可以选自但不限于T7 RNA聚合酶、T3RNA聚合酶和突变型聚合酶,如但不限于能够掺入本文披露的多核苷酸的聚合酶。参见美国公开号US20130259923,将其通过引用以其全部内容并入本文。
在本发明的多核苷酸的合成中可使用任何数量的RNA聚合酶或变体。可以通过插入或缺失RNA聚合酶序列的氨基酸来修饰RNA聚合酶。作为非限制性实例,可以修饰该RNA聚合酶以展现与未经修饰的RNA聚合酶相比增加的掺入2'-修饰的核苷酸三磷酸的能力(参见国际公开WO2008078180和美国专利8,101,385;通过引用以其全部内容并入本文)。
通过进化RNA聚合酶、优化RNA聚合酶氨基酸和/或核酸序列和/或通过使用本领域已知的其他方法可以获得变体。作为非限制性实例,可以使用Esvelt等人(Nature[自然]472:499-503(2011);通过引用以其全部内容并入本文)提出的连续定向进化系统来进化T7RNA聚合酶变体,其中T7 RNA聚合酶的克隆可以编码至少一个突变,如但不限于,第93位处的赖氨酸被取代为苏氨酸(K93T)、I4M、A7T、E63V、V64D、A65E、D66Y、T76N、C125R、S128R、A136T、N165S、G175R、H176L、Y178H、F182L、L196F、G198V、D208Y、E222K、S228A、Q239R、T243N、G259D、M267I、G280C、H300R、D351A、A354S、E356D、L360P、A383V、Y385C、D388Y、S397R、M401T、N410S、K450R、P451T、G452V、E484A、H523L、H524N、G542V、E565K、K577E、K577M、N601S、S684Y、L699I、K713E、N748D、Q754R、E775K、A827V、D851N或L864F。作为另一个非限制性实例,T7 RNA聚合酶变体可以编码如美国公开号20100120024和20070117112(通过引用以其全部内容并入本文)所述的至少一个突变。RNA聚合酶的变体还可包括但不限于取代变体、保守氨基酸取代、插入变体、缺失变体和/或共价衍生物。
在一方面,可以将该多核苷酸设计为被野生型或变体RNA聚合酶识别。在这样做时,可以修饰该多核苷酸以含有来自野生型或亲本嵌合多核苷酸的序列改变的位点或区域。
多核苷酸或核酸合成反应可以通过利用聚合酶的酶促方法进行。聚合酶催化多核苷酸或核酸链中核苷酸之间的磷酸二酯键的产生。目前已知的DNA聚合酶可基于氨基酸序列比较和晶体结构分析分成不同的家族。DNA聚合酶I(pol I)或A聚合酶家族,包括大肠杆菌的Klenow片段、芽孢杆菌DNA聚合酶I、栖热水生菌(Taq)DNA聚合酶以及T7 RNA和DNA聚合酶,是这些家族中研究得最充分的。另一个大家族是DNA聚合酶α(polα)或B聚合酶家族,包括所有真核复制DNA聚合酶以及来自噬菌体T4和RB69的聚合酶。尽管它们采用相似的催化机制,但这些聚合酶家族在底物特异性、底物类似物掺入效率、引物延伸的程度和速率、DNA合成模式、核酸外切酶活性和对抑制剂的敏感性方面不同。
还根据它们所需的最佳反应条件(如反应温度、pH以及模板和引物浓度)来选择DNA聚合酶。有时采用多于一种DNA聚合酶的组合来实现所希望的DNA片段大小和合成效率。例如,Cheng等人增加pH,添加甘油和二甲基亚砜,减少变性时间,延长延伸时间,并利用具有3'至5'核酸外切酶活性的二级热稳定DNA聚合酶,以有效扩增来自克隆插入片段和人类基因组DNA的长靶标。(Cheng等人,PNAS[美国国家科学院院刊]91:5695-5699(1994),将其内容通过引用以其全部内容并入本文)。来自噬菌体T3、T7和SP6的RNA聚合酶已被广泛用于制备生物化学和生物物理学研究用的RNA。RNA聚合酶、加帽酶和聚-A聚合酶在共同未决的国际公开号WO2014028429中披露,将其内容通过引用以其全部内容并入本文。
在一方面,可用于合成本发明的多核苷酸的RNA聚合酶是Syn5 RNA聚合酶。(参见Zhu等人Nucleic Acids Research[核酸研究]2013,doi:10.1093/nar/gkt1193,将其通过引用以其全部内容并入本文)。最近Zhu等人由海洋噬藻体Syn5表征了Syn5 RNA聚合酶,在其中他们也鉴定了启动子序列(参见Zhu等人Nucleic Acids Research[核酸研究]2013,将其内容通过引用以其全部内容并入本文)。Zhu等人发现与T7 RNA聚合酶相比,Syn5 RNA聚合酶在更广泛的温度和盐度范围内催化RNA合成。此外,发现对于Syn5 RNA聚合酶,对在该启动子处启动核苷酸的要求与T7 RNA聚合酶相比不那么严格,使得Syn5 RNA聚合酶有希望用于RNA合成。
在一方面,Syn5 RNA聚合酶可用于合成本文所述的多核苷酸。作为非限制性实例,Syn5 RNA聚合酶可用于合成要求精确3'末端的多核苷酸。
在一方面,Syn5启动子可用于合成这些多核苷酸。作为非限制性实例,如Zhu等人(Nucleic Acids Research[核酸研究]2013)所述,Syn5启动子可以是5'-ATTGGGCACCCGTAAGGG-3'(SEQ ID NO:544)。
在一方面,Syn5 RNA聚合酶可用于合成包含至少一种本文所述和/或本领域已知的化学修饰的多核苷酸(参见例如,Zhu等人Nucleic Acids Research[核酸研究]2013描述的假-UTP和5Me-CTP的掺入)。
在一方面,本文所述的多核苷酸可以使用Syn5 RNA聚合酶合成,该聚合酶已经使用Zhu等人(Nucleic Acids Research[核酸研究]2013)描述的经修饰和改善的纯化方法来纯化。
基因工程中的各种工具基于充当模板的靶基因的酶促扩增。为了研究单个基因或感兴趣的具体区域的序列和其他研究需要,有必要从多核苷酸或核酸的小样本中生成多个拷贝的靶基因。此类方法可用于制造本发明的多核苷酸。
例如,聚合酶链式反应(PCR)、链置换扩增(SDA)、基于核酸序列的扩增(NASBA)(也称为转录介导的扩增(TMA))和
滚环扩增(RCA)可用于制造本发明的多核苷酸的一个或多个区域。
通过连接酶组装多核苷酸或核酸也被广泛使用。DNA或RNA连接酶通过形成磷酸二酯键促进多核苷酸链的5'和3'端的分子间连接。
b.化学合成
标准方法可用于合成编码分离的感兴趣的多肽的分离的多核苷酸序列,如本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)。例如,可以合成含有编码特定分离的多肽的密码子优化的核苷酸序列的单个DNA或RNA寡聚体。在其他方面,可以合成若干个编码所希望的多肽部分的小寡核苷酸并且然后将其连接。在一些方面,单个寡核苷酸通常含有用于互补组装的5'或3'突出端。
本文披露的多核苷酸(例如,RNA,例如mRNA)可以使用化学合成方法和本领域已知的潜在核碱基取代来化学地合成。参见例如,国际公开号WO2014093924、WO2013052523、WO2013039857、WO2012135805、WO2013151671;美国公开号US20130115272;或美国专利号US8999380或US8710200,将其全部通过引用以其全部内容并入本文。
c.编码松弛素多肽的多核苷酸的纯化
本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的纯化可包括但不限于多核苷酸清洁、质量保证和质量控制。清洁可以通过本领域已知的方法进行,如但不限于珠(贝克曼库尔特基因组学公司(Beckman CoulterGenomics),马萨诸塞州丹弗斯)、聚-T珠、LNATM寡-T捕获探针(公司,丹麦维德伯克)或基于HPLC的纯化方法,如但不限于强阴离子交换HPLC、弱阴离子交换HPLC、反相HPLC(RP-HPLC)和疏水相互作用HPLC(HIC-HPLC)。
当与多核苷酸如“纯化的多核苷酸”相关使用时,术语“纯化的”是指与至少一种污染物分离的多核苷酸。如本文所用,“污染物”是使另一种物质不适合、不纯或较差的任何物质。因此,纯化的多核苷酸(例如,DNA和RNA)以与其在自然界中发现的不同的形式或设定(setting)存在,或者以与对其进行处理或纯化方法之前存在的不同的形式或设定存在。
在一些实施例中,纯化本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)除去可以减少或除去不想要的免疫应答(例如,降低细胞因子活性)的杂质。
在一些实施例中,在给药之前使用柱层析(例如,强阴离子交换HPLC、弱阴离子交换HPLC、反相HPLC(RP-HPLC)和疏水相互作用HPLC(HIC-HPLC)或(LCMS))纯化本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)。
在一些实施例中,使用柱层析(例如,强阴离子交换HPLC、弱阴离子交换HPLC、反相HPLC(RP-HPLC)、疏水相互作用HPLC(HIC-HPLC)或(LCMS))纯化的本披露的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)与通过不同纯化方法纯化的用本披露的相同多核苷酸获得的表达水平相比呈现出编码的松弛素蛋白的增加的表达。
在一些实施例中,柱层析(例如,强阴离子交换HPLC、弱阴离子交换HPLC、反相HPLC(RP-HPLC)、疏水相互作用HPLC(HIC-HPLC)或(LCMS))纯化的多核苷酸包含编码松弛素多肽的核苷酸序列,该松弛素多肽包含一个或多个本领域已知的点突变。
在一些实施例中,相对于将RP-HPLC纯化的多核苷酸引入细胞中之前或在将非RP-HPLC纯化的多核苷酸引入细胞中后这些细胞中的松弛素蛋白的表达水平,使用RP-HPLC纯化的多核苷酸当引入细胞中时将那些细胞中的松弛素蛋白表达水平增加例如10%-100%,即至少约10%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约90%、至少约95%或至少约100%。
在一些实施例中,相对于将RP-HPLC纯化的多核苷酸引入细胞中之前或在将非RP-HPLC纯化的多核苷酸引入细胞中后这些细胞中的松弛素蛋白的功能性表达水平,使用RP-HPLC纯化的多核苷酸当引入细胞中时将那些细胞中的功能性松弛素蛋白表达水平增加例如10%-100%,即至少约10%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约90%、至少约95%或至少约100%。
在一些实施例中,相对于将RP-HPLC纯化的多核苷酸引入细胞中之前或在将非RP-HPLC纯化的多核苷酸引入细胞中后这些细胞中的功能性松弛素蛋白的活性水平,使用RP-HPLC纯化的多核苷酸当引入细胞中时将那些细胞中的可检测的松弛素活性增加例如10%-100%,即至少约10%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约90%、至少约95%或至少约100%。
在一些实施例中,该纯化的多核苷酸为至少约80%纯、至少约85%纯、至少约90%纯、至少约95%纯、至少约96%纯、至少约97%纯、至少约98%纯、至少约99%纯或约100%纯。
可以使用如但不限于凝胶电泳、UV吸光度或分析型HPLC的方法进行质量保证和/或质量控制检查。在另一个实施例中,可以通过包括但不限于逆转录酶-PCR的方法对该多核苷酸进行测序。
d.表达的编码松弛素蛋白的多核苷酸的量化
在一些实施例中,可以根据本领域已知的方法量化本发明的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)、其表达产物以及降解产物和代谢物。
在一些实施例中,可在外来体中或当衍生自一种或多种体液时量化本发明的多核苷酸。如本文所用,“体液”包括外周血、血清、血浆、腹水、尿液、脑脊液(CSF)、痰、唾液、骨髓、滑液、房水、羊水、耳垢、母乳、支气管肺泡灌洗液、精液、前列腺液、考珀液或射精前的液体、汗液、粪便物、头发、眼泪、囊液、胸膜和腹膜液、心包液、淋巴液、食糜、乳糜、胆汁、间质液、月经、脓液、皮脂、呕吐物、阴道分泌物、粘膜分泌物、粪便水、胰液、来自窦腔的灌洗液、支气管肺吸出物、胚泡腔液和脐带血。可替代地,外来体可以从选自下组的器官中回收,该组由以下组成:肺、心脏、胰腺、胃、肠、膀胱、肾脏、卵巢、睾丸、皮肤、结肠、乳腺、前列腺、脑、食道、肝脏和胎盘。
在外来体量化方法中,从受试者获得不多于2mL的样品,并通过尺寸排阻层析、密度梯度离心、差速离心、纳米膜超滤、免疫吸附捕获、亲和纯化、微流体分离或其组合来分离外来体。在分析中,多核苷酸的水平或浓度可以是给予的构建体的表达水平、存在、不存在、截短或改变。将该水平与一种或多种临床表型或与针对人类疾病生物标志物的测定相关联是有利的。
可以使用构建体特异性探针、细胞计数、qRT-PCR、实时PCR、PCR、流式细胞术、电泳、质谱或其组合进行该测定,同时可以使用免疫组织化学方法如酶联免疫吸附测定(ELISA)法分离外来体。外来体也可以通过尺寸排阻层析、密度梯度离心、差速离心、纳米膜超滤、免疫吸附捕获、亲和纯化、微流体分离或其组合来分离。
这些方法使研究者能够实时监测剩余或递送的多核苷酸的水平。这是可能的,因为由于结构或化学修饰,本发明的多核苷酸与内源形式不同。
在一些实施例中,可以使用如但不限于紫外可见光谱(UV/Vis)的方法量化该多核苷酸。UV/Vis光谱仪的非限制性实例是光谱仪(赛默飞世尔公司(ThermoFisher),马萨诸塞州沃尔瑟姆)。可以分析经量化的多核苷酸以确定该多核苷酸是否具有合适的大小,检查该多核苷酸是否未发生降解。该多核苷酸的降解可通过以下方法检查,如但不限于琼脂糖凝胶电泳、基于HPLC的纯化方法(如但不限于强阴离子交换HPLC、弱阴离子交换HPLC、反相HPLC(RP-HPLC)和疏水相互作用HPLC(HIC-HPLC))、液相层析-质谱(LCMS)、毛细管电泳(CE)和毛细管凝胶电泳(CGE)。
药物组合物和配制品
本发明提供了包含任何上述多核苷酸的药物组合物和配制品。在一些实施例中,该组合物或配制品进一步包含递送剂。
在一些实施例中,该组合物或配制品可含有包含本文披露的编码松弛素多肽的序列优化的核酸序列的多核苷酸。在一些实施例中,该组合物或配制品可含有如下多核苷酸(例如,RNA,例如mRNA),其包含与本文披露的编码松弛素多肽的序列优化的核酸序列具有显著序列同一性的多核苷酸(例如,ORF)。在一些实施例中,该多核苷酸进一步包含miRNA结合位点,例如结合miR-142和/或miR-126的miRNA结合位点。
药物组合物或配制品可任选地包含一种或多种另外的活性物质,例如治疗和/或预防活性物质。本发明的药物组合物或配制品可以是无菌的和/或无热原的。配制和/或制造药剂的一般考虑因素可以在例如Remington:The Science and Practice of Pharmacy[雷明顿:药学科学与实践]第21版,Lippincott Williams&Wilkins[利平科特·威廉姆斯和威尔金斯出版公司],2005(通过引用以其全部内容并入本文)中找到。在一些实施例中,将组合物给予人、人类患者或受试者。出于本披露的目的,短语“活性成分”通常是指如本文所述递送的多核苷酸。
本文所述的配制品和药物组合物可通过药理学领域已知或以后开发的任何方法制备。通常,此类制备方法包括将活性成分与赋形剂和/或一种或多种其他辅助成分缔合的步骤,并且然后,如果需要和/或希望的话,将产品分成、成形和/或包装为所希望的单剂量或多剂量单位。
根据本披露的药物组合物或配制品可以作为单一单位剂量和/或作为多个单一单位剂量大量制备、包装和/或销售。如本文所用,“单位剂量”是指包含预定量的活性成分的离散量的药物组合物。活性成分的量通常等于将给予受试者的活性成分的剂量和/或这个剂量的方便分数,如例如这个剂量的一半或三分之一。
根据本披露的药物组合物中活性成分、药学上可接受的赋形剂和/或任何其他成分的相对量可以根据所治疗的受试者的身份、尺寸和/或状况而变化,并且进一步取决于给予组合物的途径。
在一些实施例中,本文所述的组合物和配制品可含有至少一种本发明的多核苷酸。作为非限制性实例,该组合物或配制品可含有1、2、3、4或5种本发明的多核苷酸。在一些实施例中,本文所述的组合物或配制品可包含多于一种类型的多核苷酸。在一些实施例中,该组合物或配制品可包含线性和环状形式的多核苷酸。在另一个实施例中,该组合物或配制品可包含环状多核苷酸和IVT多核苷酸。在又另一个实施例中,该组合物或配制品可包含IVT多核苷酸、嵌合多核苷酸和环状多核苷酸。
尽管本文提供的药物组合物和配制品的描述主要涉及适合给予人类的药物组合物和配制品,但技术人员将理解,此类组合物通常适合给予任何其他动物,例如非人类动物,例如非人类哺乳动物。
本发明提供了包含本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)的药物配制品。可以使用一种或多种赋形剂配制本文所述的多核苷酸,以便:(1)增加稳定性;(2)增加细胞转染;(3)允许持续或延迟释放(例如,从该多核苷酸的贮库配制品);(4)改变生物分布(例如,将该多核苷酸靶向特定组织或细胞类型);(5)增加体内编码的蛋白质的翻译;和/或(6)改变体内编码的蛋白质的释放曲线。在一些实施例中,该药物配制品进一步包含递送剂(例如,LNP,其包含例如具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)或(IIe)的脂质,例如化合物1-232中的任何一种)。
如本文所用,药学上可接受的赋形剂包括但不限于任何和所有溶剂、分散介质或其他液体载体、分散或悬浮助剂、稀释剂、制粒剂和/或分散剂、表面活性剂、等渗剂、增稠剂或乳化剂、防腐剂、粘合剂、润滑剂或油、着色剂、甜味剂或调味剂、稳定剂、抗氧化剂、抗微生物剂或抗真菌剂、渗透压调节剂、pH调节剂、缓冲剂、螯合剂、冷冻保护剂和/或填充剂,适合于所需的特定剂型。用于配制药物组合物的各种赋形剂和用于制备组合物的技术是本领域已知的(参见Remington:The Science and Practice of Pharmacy[雷明顿:药学科学与实践],第21版,A.R.Gennaro(利平科特、威廉姆斯和威尔金斯出版公司(Lippincott,Williams&Wilkins),马里兰州巴尔的摩,2006;通过引用以其全部内容并入本文)。
示例性稀释剂包括但不限于碳酸钙或碳酸钠、磷酸钙、磷酸氢钙、磷酸钠、乳糖、蔗糖、纤维素、微晶纤维素、高岭土、甘露醇、山梨糖醇等和/或其组合。
示例性制粒剂和/或分散剂包括但不限于淀粉、预糊化淀粉或微晶淀粉、海藻酸、瓜尔胶、琼脂、聚(乙烯基-吡咯烷酮)(聚维酮)、交联聚(乙烯基-吡咯烷酮)(交聚维酮)、纤维素、甲基纤维素、羧甲基纤维素、交联羧甲基纤维素钠(交联羧甲纤维素)、硅酸铝镁十二烷基硫酸钠等和/或其组合。
示例性表面活性剂和/或乳化剂包括但不限于天然乳化剂(例如,阿拉伯胶、琼脂、海藻酸、海藻酸钠、黄蓍胶、chondrux、胆甾醇、黄原胶、果胶、明胶、蛋黄、酪蛋白、羊毛脂肪、胆甾醇、蜡和卵磷脂)、脱水山梨糖醇脂肪酸酯(例如,聚氧乙烯脱水山梨糖醇单油酸酯脱水山梨糖醇单棕榈酸酯甘油单油酸酯、聚氧乙烯酯、聚乙二醇脂肪酸酯(例如,)、聚氧乙烯醚(例如,聚氧乙烯十二烷基醚)、68、188等和/或其组合。
示例性结合剂包括但不限于淀粉、明胶、糖(例如,蔗糖、葡萄糖、右旋糖、糊精、糖蜜、乳糖、乳糖醇、甘露醇)、氨基酸(例如,甘氨酸)、天然和合成树胶(例如,阿拉伯胶、海藻酸钠)、乙基纤维素、羟乙基纤维素、羟丙基甲基纤维素等及其组合。
氧化是mRNA的潜在降解途径,特别是对于液体mRNA配制品。为了防止氧化,可以向配制品中添加抗氧化剂。示例性抗氧化剂包括但不限于α-生育酚、抗坏血酸、棕榈酸抗坏血酸酯、苯甲醇、丁基化羟基茴香醚、间甲酚、甲硫氨酸、丁基化羟基甲苯、一硫代甘油、偏亚硫酸氢钠或偏亚硫酸氢钾、丙酸、没食子酸丙酯、抗坏血酸钠等及其组合。
示例性螯合剂包括但不限于乙二胺四乙酸(EDTA)、柠檬酸一水合物、乙二胺四乙酸二钠、富马酸、苹果酸、磷酸、乙二胺四乙酸钠、酒石酸、乙二胺四乙酸三钠等及其组合。
示例性抗微生物剂或抗真菌剂包括但不限于苯扎氯铵、苄索氯铵、对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯、苯甲酸、羟基苯甲酸、苯甲酸钾或苯甲酸钠、山梨酸钾或山梨酸钠、丙酸钠、山梨酸等及其组合。
示例性防腐剂包括但不限于维生素A、维生素C、维生素E、β-胡萝卜素、柠檬酸、抗坏血酸、丁基化羟基茴香醚、乙二胺、十二烷基硫酸钠(SLS)、十二烷基醚硫酸钠(SLES)等及其组合。
在一些实施例中,多核苷酸溶液的pH维持在pH 5和pH 8之间以改善稳定性。用以控制pH的示例性缓冲剂可包括但不限于磷酸钠、柠檬酸钠、琥珀酸钠、组氨酸(或组氨酸-HCl)、苹果酸钠、碳酸钠等和/或其组合。
示例性润滑剂包括但不限于硬脂酸镁、硬脂酸钙、硬脂酸、二氧化硅、滑石、麦芽、氢化植物油、聚乙二醇、苯甲酸钠、十二烷基硫酸钠或十二烷基硫酸镁等及其组合。
本文所述的药物组合物或配制品可含有冷冻保护剂,以在冷冻期间稳定本文所述的多核苷酸。示例性冷冻保护剂包括但不限于甘露醇、蔗糖、海藻糖、乳糖、甘油、右旋糖等及其组合。
本文所述的药物组合物或配制品可在冻干的多核苷酸配制品中含有填充剂以产生“药学上美观的”块状物,在长期(例如,36个月)储存期间稳定冻干的多核苷酸。本发明的示例性填充剂可包括但不限于蔗糖、海藻糖、甘露醇、甘氨酸、乳糖、棉子糖及其组合。
在一些实施例中,该药物组合物或配制品进一步包含递送剂。本披露的递送剂可包括但不限于脂质体、脂质纳米粒子、类脂质、聚合物、阳离子脂质体/DNA复合物(lipoplex)、微泡、外来体、肽、蛋白质、用多核苷酸转染的细胞、透明质酸酶、纳米粒子模拟物、纳米管、缀合物及其组合。
递送剂
本披露提供了具有有利性质的药物组合物。特别地,本申请提供了包含如下多核苷酸和本文所述的脂质化合物的药物组合物,该多核苷酸包含编码松弛素多肽的核苷酸序列。
加速血液清除(ABC)
本发明提供了用于减少ABC对重复给药的活性剂(如生物活性剂)的作用的化合物、组合物及其使用方法。显而易见的是,完全减少或消除ABC对给予的活性剂的作用有效地增加了其半衰期并因此增加了其功效。
在一些实施例中,术语减少ABC是指与阳性参考对照诱导ABC的LNP(如MC3 LNP)相比ABC的任何减少。诱导ABC的LNP在给定时间范围内在第二次或后续给予时引起活性剂循环水平的减少。因此,ABC的减少是指相对于标准LNP,在第二次或后续剂量的药剂时循环剂的清除较少。例如,该减少可以是至少10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或100%。在一些实施例中,该减少是10%-100%、10%-50%、20%-100%、20%-50%、30%-100%、30%-50%、40%-100%、40%-80%、50%-90%或50%-100%。可替代地,ABC的减少可以表征为在第二次或后续给药后至少可检测水平的循环剂或者循环剂相对于给予标准LNP后的循环剂增加至少2倍、3倍、4倍、5倍。在一些实施例中,该减少是2-100倍、2-50倍、3-100倍、3-50倍、3-20倍、4-100倍、4-50倍、4-40倍、4-30倍、4-25倍、4-20倍、4-15倍、4-10倍、4-5倍、5-100倍、5-50倍、5-40倍、5-30倍、5-25倍、5-20倍、5-15倍、5-10倍、6-100倍、6-50倍、6-40倍、6-30倍、6-25倍、6-20倍、6-15倍、6-10倍、8-100倍、8-50倍、8-40倍、8-30倍、8-25倍、8-20倍、8-15倍、8-10倍、10-100倍、10-50倍、10-40倍、10-30倍、10-25倍、10-20倍、10-15倍、20-100倍、20-50倍、20-40倍、20-30倍或20-25倍。
本披露提供了含脂质的化合物和组合物,其不易清除并因此具有更长的体内半衰期。特别是意在将组合物用于重复(包括长期)给药的情况下,并且甚至更特别是在数天或数周内发生此类重复给药的情况下。
值得注意的是,这些组合物不太易感于观察到的加速血液清除(ABC)现象或完全规避它。ABC是这样一种现象,其中某些外源给予的药剂在第二次和后续给药时迅速从血液中清除。对于多种含脂质的组合物(包括但不限于脂化剂、脂质体或其他基于脂质的递送载体和脂质包封的药剂),已经部分地观察到这种现象。迄今为止,ABC的基础知之甚少,并且在某些情况下归因于体液免疫应答,并且因此限制其在体内(特别是在临床环境中)的影响的策略仍然是难以捉摸的。
本披露提供了不太易感于ABC(如果真的易感的话)的化合物和组合物。在一些重要方面,此类化合物和组合物是含脂质的化合物或组合物。令人惊讶的是,本披露的含脂质化合物或组合物在第二次和随后体内给药时不经历ABC。这种对ABC的抗性使得这些化合物和组合物特别适合于体内重复使用,包括在短时间(包括数天或1-2周)内重复使用。这种增强的稳定性和/或半衰期部分是由于这些组合物不能活化B1a和/或B1b细胞和/或常规B细胞、pDC和/或血小板。
因此,本披露提供了加速血液清除(ABC)机制的阐明。已经发现,根据本披露和本文提供的发明,至少当它涉及脂质和脂质纳米粒子时,ABC现象至少部分地由涉及B1a和/或B1b细胞、pDC和/或血小板的先天免疫应答介导。B1a细胞通常负责以循环IgM的形式分泌天然抗体。此IgM是多反应性的,意味着它能够结合多种抗原,尽管对每种抗原具有相对低的亲和力。
根据本发明已经发现,一些脂化剂或含脂质的配制品(如体内给予的脂质纳米粒子)触发并经受ABC。根据本发明现在已经发现,在给予第一剂LNP后,一种或多种参与产生先天免疫应答的细胞(在本文中称为传感器)结合这种药剂,被活化,并且然后启动免疫因子(在本文中称为效应物)的级联,这些免疫因子促进ABC和毒性。例如,B1a和B1b细胞可以与LNP结合,被活化(单独或在其他传感器(如pDC)和/或效应物(如IL6)存在下)并分泌与LNP结合的天然IgM。受试者体内预先存在的天然IgM也可识别并结合LNP,从而触发补体固定。在给予第一剂后,在给予LNP后1-2小时内开始产生天然IgM。通常约2-3周,由于IgM的天然半衰期,天然IgM被从系统中清除。在给予LNP后约96小时开始产生天然IgG。当在初试环境中给予时,该药剂可以相对不受B1a细胞或B1b细胞的活化后产生的天然IgM或者天然IgG的影响而发挥其生物学作用。该天然IgM和天然IgG是非特异性的,并且因此不同于抗PEG IgM和抗PEG IgG。
虽然申请人不受机制约束,但建议LNP通过以下机制触发ABC和/或毒性。据信当将LNP给予受试者时,该LNP迅速通过血液转运至脾脏。LNP可能遇到血液和/或脾脏中的免疫细胞。响应于血液和/或脾脏中LNP的存在,触发快速先天免疫应答。申请人在本文中已经证明,在给予LNP的数小时内,几种免疫传感器已经对LNP的存在作出反应。这些传感器包括但不限于参与产生免疫应答的免疫细胞,如B细胞、pDC和血小板。这些传感器可以存在于脾脏中(如脾脏的边缘区域中)和/或血液中。LNP可以与一种或多种传感器物理地相互作用,这些传感器可以与其他传感器相互作用。在这种情况下,LNP直接或间接地与传感器相互作用。响应于LNP的识别,这些传感器可以彼此直接相互作用。例如,许多传感器位于脾脏中并且可以容易地彼此相互作用。可替代地,一种或多种传感器可以与血液中的LNP相互作用并被活化。然后,活化的传感器可以直接与其他传感器相互作用或间接地相互作用(例如,通过刺激或产生信使,如细胞因子,例如IL6)。
在一些实施例中,LNP可以直接与以下传感器中的每一种相互作用并活化它:pDC、B1a细胞、B1b细胞和血小板。然后,这些细胞可以直接或间接地相互作用以引发效应物的产生,这最终导致与重复剂量的LNP相关的ABC和/或毒性。例如,申请人已经证明给予LNP导致pDC活化、血小板聚集和活化以及B细胞活化。响应于LNP,血小板也聚集并被活化并与B细胞聚集。pDC细胞被活化。已经发现LNP相对快速地与血小板和B细胞的表面相互作用。阻断这些传感器中任何一种或其组合响应于LNP的活化对于抑制通常发生的免疫应答是有用的。这种免疫应答抑制导致避免ABC和/或毒性。
这些传感器一旦活化就会产生效应物。如本文所用,效应物是由免疫细胞(如B细胞)产生的免疫分子。效应物包括但不限于免疫球蛋白(如天然IgM和天然IgG)以及细胞因子(如IL6)。在给予LNP后2-6小时内,B1a和B1b细胞刺激天然IgM的产生。可在96小时内检测到天然IgG。IL6水平在几小时内增加。天然IgM和IgG在体内循环数天至数周。在此期间,循环效应物可以与新给予的LNP相互作用,触发那些LNP供身体清除。例如,效应物可识别并结合LNP。效应物的Fc区可被巨噬细胞识别并触发巨噬细胞对装饰的LNP的摄取。然后将巨噬细胞转运至脾脏。免疫传感器产生效应物是瞬时响应,其与ABC观察到的时序相关。
如果给予的剂量是第二次或后续给予的剂量,并且如果在先前诱导的天然IgM和/或IgG从系统中清除之前给予这种第二次或后续剂量(例如,在2-3窗口时间段之前),则这种第二次或后续剂量被循环的天然IgM和/或天然IgG或Fc靶定,其触发替代补体途径活化并且本身快速被清除。当效应物从体内清除或数量减少后给予LNP时,未观察到ABC。
因此,根据本发明的多个方面,有用的是抑制LNP与一种或多种传感器之间的相互作用,以抑制LNP(直接或间接)活化一种或多种传感器,抑制一种或多种效应物的产生,和/或抑制一种或多种效应物的活性。在一些实施例中,LNP被设计为限制或阻断LNP与传感器的相互作用。例如,LNP可具有改变的PC和/或PEG以防止与传感器的相互作用。可替代地或另外,抑制由LNP诱导的免疫应答的药剂可用于实现这些作用中的任何一种或多种。
还已经确定常规B细胞也与ABC有牵连。具体地,在第一次给予药剂时,常规B细胞(在本文中称为CD19(+))与该药剂结合并对其起反应。尽管与B1a和B1b细胞不同,常规B细胞能够首先开展IgM应答(在给予LNP后约96小时开始),随后开展IgG应答(在给予LNP后约14天开始),伴随记忆应答。因此,常规B细胞对给予的药剂起反应并促成介导ABC的IgM(并最终促成IgG)。IgM和IgG通常是抗PEG IgM和抗PEG IgG。
预期在一些情况下,大部分ABC应答是通过B1a细胞介导的并是B1a介导的免疫应答。进一步预期在一些情况下,ABC应答由IgM和IgG介导,常规B细胞和B1a细胞均介导这些作用。在又仍其他情况下,ABC应答由天然IgM分子介导,其中一些能够结合天然IgM,其可以由活化的B1a细胞产生。天然IgM可以结合LNP的一种或多种组分,例如结合LNP的磷脂组分(如结合磷脂的PC部分)和/或结合LNP的PEG-脂质组分(如结合PEG-DMG,特别是结合PEG-DMG的PEG部分)。由于B1a表达CD36(其中磷脂酰胆碱是配体),预期CD36受体可介导B1a细胞的活化并因此产生天然IgM。在又仍其他情况下,ABC应答主要由常规B细胞介导。
根据本发明已经发现,通过使用不活化B1a细胞的化合物和组合物(如试剂、递送载体和配制品),可以至少部分地减少或消除ABC现象。不活化B1a细胞的化合物和组合物在本文中可称为B1a惰性化合物和组合物。根据本发明进一步发现,通过使用不活化常规B细胞的化合物和组合物可以至少部分地减少或消除ABC现象。在一些实施例中,不活化常规B细胞的化合物和组合物在本文中可称为CD19惰性化合物和组合物。因此,在本文提供的一些实施例中,这些化合物和组合物不活化B1a细胞,并且它们不活化常规B细胞。在一些实施例中,不活化B1a细胞和常规B细胞的化合物和组合物在本文中可称为B1a/CD19惰性化合物和组合物。
迄今尚未理解这些潜在的机制,并且也未领会在这种现象中B1a和B1b细胞的作用以及它们与常规B细胞的相互作用。
因此,本披露提供了不促进ABC的化合物和组合物。这些可以进一步表征为不能活化B1a和/或B1b细胞、血小板和/或pDC以及任选地常规B细胞。这些化合物(例如,药剂,包括生物活性剂如预防剂、治疗剂和诊断剂;递送载体,包括脂质体、脂质纳米粒子和其他基于脂质的包封结构等)和组合物(例如,配制品等)特别适用于需要重复给药的应用,并且特别是在短时间内(例如,1-2周内)发生的重复给药。例如,如果该药剂是基于核酸的治疗剂,则以规律的、紧密间隔的时间区间提供给受试者。本文提供的发现可以应用于这些以及被类似给予和/或经受ABC的其他药剂。
特别感兴趣的是含脂质化合物、含脂质粒子和含脂质组合物,因为已知这些易感于ABC。此类含脂质化合物粒子和组合物已广泛用作生物活性剂或用作这些试剂的递送载体。因此,通过减少ABC对药剂本身抑或其递送载体的作用来改善这些药剂的功效的能力对于多种活性剂是有益的。
本文还提供了不刺激或加强与重复剂量给予一种或多种生物活性剂相关的急性期应答(ARP)的组合物。
在一些情况下,该组合物可能不与IgM(包括但不限于天然IgM)结合。
在一些情况下,该组合物可能不与急性期蛋白(如但不限于C-反应蛋白)结合。
在某些情况下,该组合物可能不会触发CD5(+)介导的免疫应答。如本文所用,CD5(+)介导的免疫应答是由B1a和/或B1b细胞介导的免疫应答。这种应答可包括ABC应答、急性期应答、天然IgM和/或IgG的诱导等。
在某些情况下,该组合物可能不会触发CD19(+)介导的免疫应答。如本文所用,CD19(+)介导的免疫应答是由常规CD19(+),CD5(-)B细胞介导的免疫应答。这样的应答可以包括IgM的诱导、IgG的诱导、记忆B细胞的诱导、ABC应答、包括抗蛋白应答的抗药物抗体(ADA)应答(其中该蛋白质可以被包封在LNP内)等等。
B1a细胞是参与先天免疫的B细胞的子集。这些细胞是称为天然抗体或天然血清抗体的循环IgM的来源。天然IgM抗体的特征在于对许多抗原具有弱亲和力,并且因此它们被称为“多特异性的”或“多反应性的”,指示它们结合多于一种抗原的能力。B1a细胞不能产生IgG。另外,它们不会发育成记忆细胞,并且因此不会促成适应性免疫应答。然而,它们能够在活化后分泌IgM。分泌的IgM通常在约2-3周内被清除,此时免疫系统对于先前给予的抗原相对原始如果在该时间段后(例如,在初次暴露后约3周)呈递相同的抗原,则该抗原不会被快速清除。然而,显著地,如果在该时间段内(例如,在2周内,包括在1周内,或在数天内)呈递该抗原,则该抗原被快速清除。连续剂量之间的这种延迟使得某些含脂质的治疗剂或诊断剂不适合使用。
在人类中,B1a细胞是CD19(+)、CD20(+)、CD27(+)、CD43(+)、CD70(-)和CD5(+)。在小鼠中,B1a细胞是CD19(+)、CD5(+)和CD45B细胞同种型B220(+)。通常将B1a细胞与其他常规B细胞区分开的是CD5的表达。B1a细胞可以表达高水平的CD5,并且在此基础上可以区别于其他B-1细胞,如表达低水平或不可检测水平的CD5的B-1b细胞。CD5是pan-T细胞表面糖蛋白。B1a细胞也表达CD36,也称为脂肪酸转位酶。CD36是B类清道夫受体家族的成员。CD36可以结合许多配体,包括氧化的低密度脂蛋白、天然脂蛋白、氧化的磷脂和长链脂肪酸。
B1b细胞是参与先天免疫的B细胞的另一子集。这些细胞是循环天然IgM的另一种来源。包括PS在内的几种抗原能够通过B1b活化来诱导不依赖T细胞的免疫。CD27通常在B1b细胞上上调以响应抗原活化。与B1a细胞类似,B1b细胞通常位于特定的身体位置,如脾脏和腹膜腔,并且在血液中的丰度非常低。B1b分泌的天然IgM通常在约2-3周内被清除,此时免疫系统对于先前给予的抗原相对原始。如果在该时间段后(例如,在初次暴露后约3周)呈递相同的抗原,则该抗原不会被快速清除。然而,显著地,如果在该时间段内(例如,在2周内,包括在1周内,或在数天内)呈递该抗原,则该抗原被快速清除。连续剂量之间的这种延迟使得某些含脂质的治疗剂或诊断剂不适合使用。
在一些实施例中,理想的是阻断B1a和/或B1b细胞活化。阻断B1a和/或B1b细胞活化的一种策略涉及确定脂质纳米粒子的哪些组分促进B细胞活化并中和这些组分。本文已经发现,至少PEG和磷脂酰胆碱(PC)有助于B1a和B1b细胞与其他细胞的相互作用和/或活化。PEG可能在促进B1细胞和血小板之间的聚集(可能导致活化)中起作用。PC(LNP中的辅助脂)也可能通过与B细胞表面上的CD36受体相互作用而参与活化B1细胞。许多粒子具有PEG-脂质替代物,已经设计和测试了无PEG和/或PC替代脂质(例如油酸或其类似物)。申请人已经确定,替代LNP内的一种或多种这些组分(另外在重复给药时会促进ABC)可用于通过减少天然IgM的产生和/或B细胞活化来防止ABC。因此,本发明涵盖由于消除B细胞触发因素的纳入的设计而具有减少的ABC的LNP。
阻断B1a和/或B1b细胞活化的另一种策略涉及使用抑制由LNP诱导的免疫应答的试剂。下面更详细地讨论这些类型的药剂。在一些实施例中,这些试剂阻断B1a/B1b细胞与LNP或血小板或pDC之间的相互作用。例如,试剂可以是物理阻断该相互作用的抗体或其他结合剂。其实例是结合CD36或CD6的抗体。该试剂也可以是阻止或禁止B1a/B1b细胞在活化时或在活化之前发信号的化合物。例如,可以阻断B1a/B1b信号传导级联(B细胞与LNP或其他免疫细胞相互作用的结果)中的一种或多种组分。在其他实施例中,该药剂可以在活化后起到B1a/B1b细胞产生的一种或多种效应物的作用。这些效应物包括例如天然IgM和细胞因子。
根据本发明的多个方面已经证明,当阻断pDC细胞的活化时,响应于LNP的B细胞活化降低。因此,为了避免ABC和/或毒性,理想的可能是防止pDC活化。与上文讨论的策略类似,pDC细胞活化可被干扰pDC和LNP和/或B细胞/血小板之间相互作用的试剂阻断。可替代地,作用于pDC以阻断其被活化的能力或作用于其效应物的药剂可与LNP一起使用以避免ABC。
血小板也可在ABC和毒性中起重要作用。在将第一剂LNP给予受试者后,血小板非常快速地与LNP缔合、聚集并被活化。在一些实施例中,理想的是阻断血小板聚集和/或活化。阻断血小板聚集和/或活化的一种策略涉及确定脂质纳米粒子的哪些组分促进血小板聚集和/或活化并中和那些组分。本文已经发现,至少PEG有助于血小板聚集、活化和/或与其他细胞的相互作用。许多粒子具有PEG-脂质替代物,并且已经设计和测试了无PEG的。申请人已经确定,替代LNP内的一种或多种这些组分(另外在重复给药时会促进ABC)可用于通过减少天然IgM的产生和/或血小板聚集来防止ABC。因此,本发明涵盖由于消除血小板触发因素的纳入的设计而具有减少的ABC的LNP。可替代地,作用于血小板以在其被活化时阻断其活性或作用于其效应物上的药剂可与LNP一起使用以避免ABC。
测量ABC活性和相关活性
本文提供的各种化合物和组合物(包括LNP)在体内给药后不促进ABC活性。这些LNP可以通过许多测定中的任何一种来表征和/或鉴定,如但不限于下面描述的那些,以及实例部分中披露的任何测定,包括实例的方法分段。
在一些实施例中,该方法涉及给予LNP而不产生促进ABC的免疫应答。促进ABC的免疫应答涉及活化一种或多种传感器,如B1细胞、pDC或血小板,以及一种或多种效应物,如天然IgM、天然IgG,或细胞因子,如IL6。因此,给予LNP而不产生促进ABC的免疫应答最低限度涉及给予LNP而没有显著活化一种或多种传感器和显著产生一种或多种效应物。在此上下文中使用的显著性是指相对于对第二次剂量的触发ABC的LNP所预期的血液清除水平,将导致全部或部分第二次剂量的加速血液清除的生理结果的量。例如,应当抑制免疫应答,使得在第二次剂量后观察到的ABC低于对触发ABC的LNP所预期的。
B1a或B1b活化测定
本披露中提供的某些组合物不活化B细胞,如B1a或B1b细胞(CD19+CD5+)和/或常规B细胞(CD19+CD5-)。B1a细胞、B1b细胞或常规B细胞的活化能以多种方式确定,其中一些方式在下面提供。B细胞群可以作为分级B细胞群或未分级的脾细胞或外周血单核细胞(PBMC)群提供。如果是后者,可以将细胞群与选择的LNP一起孵育一段时间,并且然后收获用于进一步分析。可替代地,可以收获上清液并进行分析。
活化标志物细胞表面表达的上调
B细胞活化标志物(包括晚期活化标志物,如CD86)的表达增加可以证明B1a细胞、B1b细胞或常规B细胞的活化。在示例性的非限制性测定中,提供未分级的B细胞作为脾细胞群或作为PBMC群,与选择的LNP一起孵育特定的一段时间,并且然后针对标准B细胞标记物如CD19和活化标记物如CD86进行染色,并使用例如流式细胞术进行分析。合适的阴性对照涉及将相同的群体与培养基一起孵育,并且然后进行相同的染色和可视化步骤。与阴性对照相比,测试群体中CD86表达的增加指示B细胞活化。
促炎细胞因子释放
还可以通过细胞因子释放测定评估B细胞活化。例如,可以通过在用感兴趣的LNP暴露后产生和/或分泌细胞因子如IL-6和/或TNF-α来评估活化。
可以使用本领域熟知的常规细胞因子分泌测定进行这样的测定。细胞因子分泌的增加指示B细胞活化。
LNP与B细胞结合/缔合和/或被B细胞摄取
LNP与B细胞缔合或结合也可用于评估感兴趣的LNP并进一步表征这种LNP。可以使用可检测地标记的如荧光标记的LNP并在不同的孵育期后跟踪这种LNP在B细胞中或上的位置评估缔合/结合和/或摄取/内化。
本发明进一步预期本文提供的组合物能够逃避识别或检测并且任选地通过ABC的下游介质如循环IgM和/或急性期应答介质如急性期蛋白(例如,C-反应蛋白(CRP))进行结合。
用于减少ABC的方法
本文还提供了用于将LNP递送至受试者而不促进ABC的方法,这些LNP可以包封诸如治疗剂等的药剂。
在一些实施例中,该方法包括给予本文所述的任何不促进ABC的LNP,例如,不诱导与LNP结合的天然IgM的产生,不活化B1a和/或B1b细胞。如本文所用,“不促进ABC”的LNP是指如下的LNP,它不诱导会导致实质性ABC的免疫应答,或导致基本上低水平的不足以导致实质性ABC的免疫应答。不诱导产生与LNP结合的天然IgM的LNP是指如下的LNP,它不诱导与LNP结合的天然IgM或诱导基本上低水平的不足以导致实质性ABC的天然IgM分子。不活化B1a和/或B1b细胞的LNP是指如下的LNP,它不诱导B1a和/或B1b细胞产生与LNP结合的天然IgM的应答或诱导基本上低水平的不足以导致实质性ABC的B1a和/或B1b应答。
在一些实施例中,术语不活化且不诱导产生是相对于参考值或条件的相对减少。在一些实施例中,该参考值或条件是活化或诱导标准LNP(如MC3LNP)产生分子(如IgM)的量。在一些实施例中,相对减少是至少30%的减少、例如至少30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。在其他实施例中,术语不活化细胞如B细胞并且不诱导蛋白质如IgM的产生可以指不可检测量的活性细胞或特定蛋白质。
血小板作用和毒性
另外,本发明的部分前提在于阐明与给予LNP相关的剂量限制性毒性的机制。这种毒性可能涉及凝血病、弥散性血管内凝血(DIC,也称为消耗性凝血病,无论是急性还是慢性)和/或血管血栓形成。在一些情况下,与LNP相关的剂量限制性毒性是急性期应答(APR)或补体活化相关的假性变态反应(CARPA)。
如本文所用,凝血病是指体内凝血(血液凝固)增加。本披露中报道的发现与这种凝血增加一致并且明显提供对潜在机制的了解。凝血是涉及许多不同因子和细胞类型的过程,并且迄今为止,在这方面尚未理解LNP和血小板之间的关系和相互作用。本披露提供了这种相互作用的证据,并且还提供了经修饰以具有减少的血小板作用的化合物和组合物,该血小板作用包括减少的血小板缔合、减少的血小板聚集和/或减少的血小板聚集。调节(包括优选地下调)这种血小板作用的能力可以降低给予LNP后凝血病的发生率和/或严重性。这反过来将减少与这种LNP相关的毒性,从而允许更高剂量的LNP,并且重要的是将它们给予有需要的患者的装载量。
CARPA是一类急性免疫毒性,表现为过敏反应(HSR),可能由纳米药物和生物制剂触发。与变态反应不同,CARPA通常不涉及IgE,而是由于补体系统的活化而产生,该补体系统是先天免疫系统的一部分,其增强身体清除病原体的能力。一种或多种以下途径即经典补体途径(CP)、旁路途径(AP)和凝集素途径(LP)可能参与CARPA。Szebeni,MolecularImmunology[分子免疫学],61:163-173(2014)。
该经典途径由C1复合物的活化触发,该复合物含有C1q、C1r、C1s或C1qr2s2。当C1q结合与抗原复合的IgM或IgG时,或当C1q直接结合到病原体表面时,发生C1复合物的活化。这种结合导致C1q分子的构象变化,这导致C1r的活化,它转而切割C1s。C1r2s2组分现在分裂C4并且然后分裂C2,产生C4a、C4b、C2a和C2b。C4b和C2b结合以形成经典途径C3转化酶(C4b2b复合物),其促进C3切割成C3a和C3b。然后C3b结合C3以形成C5转化酶(C4b2b3b复合物)。由于自发的C3水解,替代途径被连续活化。因子P(备解素)是替代途径的正调控剂。备解素的寡聚化使C3转化酶稳定,然后它可以切割更多的C3。C3分子可以结合表面并募集更多的B、D和P活性,导致补体活化的扩增。
急性期应答(APR)是一种复杂的系统性先天免疫应答,用于预防感染和清除潜在的病原体。许多蛋白质参与APR,并且C反应蛋白是一种充分表征的蛋白质。
根据本发明已经发现,某些LNP在体内给予后几乎立即能够与血小板物理缔合,而其他LNP根本不与血小板缔合或仅以背景水平缔合。值得注意的是,与血小板缔合的那些LNP也明显稳定了之后形成的血小板聚集体。血小板与某些LNP的物理接触与这些血小板在给予后很长一段时间保持聚集或连续形成聚集体的能力相关。此类聚集体包含活化的血小板以及先天免疫细胞,如巨噬细胞和B细胞。
a.脂质化合物
本披露提供了具有有利性质的药物组合物。例如,本文所述的脂质(例如具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)、(IIe)、(III)、(IV)、(V)或(VI)中任一个的那些)可有利地用于脂质纳米粒子组合物中,用于将治疗剂和/或预防剂递送至哺乳动物细胞或器官。例如,本文描述的脂质具有很小的免疫原性或没有免疫原性。例如,与参考脂质(例如,MC3、KC2或DLinDMA)相比,本文披露的脂质化合物具有较低的免疫原性。例如,与包含参考脂质(例如MC3、KC2或DLinDMA)和相同治疗剂或预防剂的相应配制品相比,包含本文披露的脂质和治疗剂或预防剂的配制品具有增加的治疗指数。特别地,本申请提供了如下药物组合物,其包含:
(a)包含编码松弛素多肽的核苷酸序列的多核苷酸;以及
(b)递送剂。
在一些实施例中,该递送剂包含具有化学式(I)的脂质化合物
其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自碳环、杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、N(R)2、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、N(R)R8、O(CH2)nOR、N(R)C(=NR9)N(R)2、N(R)C(=CHR9)N(R)2、OC(O)N(R)2、N(R)C(O)OR、N(OR)C(O)R、N(OR)S(O)2R、N(OR)C(O)OR、N(OR)C(O)N(R)2、N(OR)C(S)N(R)2、N(OR)C(=NR9)N(R)2、N(OR)C(=CHR9)N(R)2、C(=NR9)N(R)2、C(=NR9)R、C(O)N(R)OR和C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自碳环、杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、N(R)2、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2和C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体,其中烷基和烯基基团可为直链的或支链的。
在一些实施例中,具有化学式(I)的化合物的子集包括以下那些,其中当R4是(CH2)nQ、(CH2)nCHQR、CHQR或CQ(R)2时,则(i)Q不是N(R)2,当n是1、2、3、4或5时;或者(ii)Q不是5元、6元或7元杂环烷基,当n是1或2时。
在另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和被一个或多个选自氧代(=O)、OH、氨基和C13烷基的取代基取代的具有一个或多个选自N、O和S的杂原子的5元至14元杂环烷基,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR和被一个或多个选自氧代(=O)、OH、氨基和C13烷基的取代基取代的具有一个或多个选自N、O和S的杂原子的5元至14元杂环烷基,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在又另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR、N(R)R8、O(CH2)nOR、N(R)C(=NR9)N(R)2、N(R)C(=CHR9)N(R)2、OC(O)N(R)2、N(R)C(O)OR、N(OR)C(O)R、N(OR)S(O)2R、N(OR)C(O)OR、N(OR)C(O)N(R)2、N(OR)C(S)N(R)2、N(OR)C(=NR9)N(R)2、N(OR)C(=CHR9)N(R)2、C(=NR9)R、C(O)N(R)OR和C(=NR9)N(R)2,并且每个n独立地选自1、2、3、4和5;并且当Q是5元至14元杂环,并且(i)R4是(CH2)nQ,其中n是1或2,或者(ii)R4是(CH2)nCHQR,其中n是1,或者(iii)R4是CHQR和CQ(R)2时,则Q是5元至14元杂芳基或8元至14元杂环烷基;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在又另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;并且当Q是5元至14元杂环,并且(i)R4是(CH2)nQ,其中n是1或2,或者(ii)R4是(CH2)nCHQR,其中n是1,或者(iii)R4是CHQR和CQ(R)2时,则Q是5元至14元杂芳基或8元至14元杂环烷基;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在仍另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、-OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR、N(R)R8、-O(CH2)nOR、N(R)C(=NR9)N(R)2、N(R)C(=CHR9)N(R)2、OC(O)N(R)2、-N(R)C(O)OR、N(OR)C(O)R、N(OR)S(O)2R、N(OR)C(O)OR、N(OR)C(O)N(R)2、N(OR)C(S)N(R)2、N(OR)C(=NR9)N(R)2、N(OR)C(=CHR9)N(R)2、C(=NR9)R、C(O)N(R)OR和C(=NR9)N(R)2,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在仍另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR、CQ(R)2和未取代的C16烷基,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、-OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、CRN(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C212烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在又另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C214烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4是(CH2)nQ或(CH2)nCHQR,其中Q是N(R)2,并且n选自3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C112烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在又另一个实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C214烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4是(CH2)nQ或(CH2)nCHQR,其中Q是N(R)2,并且n选自3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C118烷基、C218烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C112烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在仍其他实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C530烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q是N(R)2,并且n选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C112烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在仍其他实施例中,具有化学式(I)的化合物的另一个子集包括以下那些,其中
R1选自下组,该组由以下组成:C520烷基、C520烯基、R*YR"、YR"和R"M'R';
R2和R3独立地选自下组,该组由以下组成:C114烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q是N(R)2,并且n选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R6独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R独立地选自下组,该组由以下组成:C13烷基、C23烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、R*YR"、YR"和H;
每个R"独立地选自下组,该组由以下组成:C314烷基和C314烯基;
每个R*独立地选自下组,该组由以下组成:C112烷基和C112烯基;
每个Y独立地是C36碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13,
或其盐或立体异构体。
在某些实施例中,具有化学式(I)的化合物的子集包括具有化学式(IA)的那些:
或其盐或立体异构体,其中l选自1、2、3、4和5;m选自5、6、7、8和9;M1是键或M';R4是未取代的C13烷基或(CH2)nQ,其中Q是OH、NHC(S)N(R)2、NHC(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)R8、NHC(=NR9)N(R)2、NHC(=CHR9)N(R)2、OC(O)N(R)2、N(R)C(O)OR、杂芳基或杂环烷基;M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、P(O)(OR')O、-S-S-、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C114烷基和C214烯基。
在一些实施例中,具有化学式(I)的化合物的子集包括具有化学式(IA)的那些,或其盐或立体异构体,
其中
l选自1、2、3、4和5;m选自5、6、7、8和9;
M1是键或M';
R4是未取代的C13烷基或(CH2)nQ,其中Q是OH、NHC(S)N(R)2或NHC(O)N(R)2
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、P(O)(OR')O、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C114烷基和C214烯基。
在某些实施例中,具有化学式(I)的化合物的子集包括具有化学式(II)的那些:
或其盐或立体异构体,其中l选自1、2、3、4和5;M1是键或M';R4是未取代的C13烷基或(CH2)nQ,其中n是2、3或4和Q是OH、NHC(S)N(R)2、NHC(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)R8、NHC(=NR9)N(R)2、NHC(=CHR9)N(R)2、-OC(O)N(R)2、N(R)C(O)OR、杂芳基或杂环烷基;M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、P(O)(OR')O、-S-S-、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C114烷基和C214烯基。
在一些实施例中,具有化学式(I)的化合物的子集包括具有化学式(II)的那些,或其盐或立体异构体,其中
l选自1、2、3、4和5;
M1是键或M';
R4是未取代的C13烷基或(CH2)nQ,其中n是2、3或4和Q是OH、NHC(S)N(R)2或NHC(O)N(R)2
M和M'独立地选自C(O)O、OC(O)、C(O)N(R')、P(O)(OR')O、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C114烷基和C214烯基。
在一些实施例中,该具有化学式(I)的化合物具有化学式(IIa),
或其盐,其中R4是如上所述的。
在一些实施例中,该具有化学式(I)的化合物具有化学式(IIb),
或其盐,其中R4是如上所述的。
在一些实施例中,该具有化学式(I)的化合物具有化学式(IIc),
或其盐,其中R4是如上所述的。
在一些实施例中,该具有化学式(I)的化合物具有化学式(IIe):
或其盐,其中R4是如上所述的。
在一些实施例中,具有化学式(IIa)、(IIb)、(IIc)或(IIe)的化合物包含R4,其选自(CH2)nQ和(CH2)nCHQR,其中Q、R和n是如上所定义的。
在一些实施例中,Q选自下组,该组由以下组成:OR、OH、O(CH2)nN(R)2、OC(O)R、CX3、CN、N(R)C(O)R、N(H)C(O)R、N(R)S(O)2R、N(H)S(O)2R、N(R)C(O)N(R)2、N(H)C(O)N(R)2、N(H)C(O)N(H)(R)、N(R)C(S)N(R)2、N(H)C(S)N(R)2、N(H)C(S)N(H)(R)和杂环,其中R是如上所定义的。在一些方面,n是1或2。在一些实施例中,Q是OH、NHC(S)N(R)2或NHC(O)N(R)2
在一些实施例中,该具有化学式(I)的化合物具有化学式(IId),
或其盐,其中R2和R3独立地选自下组,该组由以下组成:C514烷基和C514烯基,n选自2、3和4,并且R'、R”、R5、R6和m是如上所定义的。
在具有化学式(IId)的化合物的一些方面,R2是C8烷基。在具有化学式(IId)的化合物的一些方面,R3是C5C9烷基。在具有化学式(IId)的化合物的一些方面,m是5、7或9。在具有化学式(IId)的化合物的一些方面,每个R5是H。在具有化学式(IId)的化合物的一些方面,每个R6是H。
在另一方面,本申请提供脂质组合物(例如,脂质纳米粒子(LNP)),其包含:(1)具有化学式(I)的化合物;(2)任选地辅助脂(例如磷脂);(3)任选地结构脂质(例如甾醇);以及(4)任选地脂质缀合物(例如PEG-脂质)。在示例性实施例中,该脂质组合物(例如,LNP)进一步包含编码松弛素多肽的多核苷酸,例如包封在其中的多核苷酸。
如本文所用,术语“烷基”或“烷基基团”意指包括一个或多个碳原子(例如,一个、二个、三个、四个、五个、六个、七个、八个、九个、十个、十一个、十二个、十三个、十四个、十五个、十六个、十七个、十八个、十九个、二十个或更多个碳原子)的直链或支链饱和烃。
符号“C114烷基”意指包括1-14个碳原子的直链或支链饱和烃。烷基基团可任选被取代。
如本文所用,术语“烯基”或“烯基基团”意指包括两个或更多个碳原子(例如,二个、三个、四个、五个、六个、七个、八个、九个、十个、十一个、十二个、十三个、十四个、十五个、十六个、十七个、十八个、十九个、二十个或更多个碳原子)和至少一个双键的直链或支链烃。
符号“C214烯基”意指包括2-14个碳原子和至少一个双键的直链或支链烃。烯基基团可包括一个、两个、三个、四个或更多个双键。例如,C18烯基可包括一个或多个双键。包括两个双键的C18烯基可以是亚油烯基基团。烯基基团可任选被取代。
如本文所用,术语“碳环”或“碳环基团”意指包括一个或多个碳原子环的单环或多环系统。环可以是三、四、五、六、七、八、九、十、十一、十二、十三、十四或十五元环。
符号“C36碳环”意指包括具有3-6个碳原子的单环的碳环。碳环可包括一个或多个双键,并且可以是芳族的(例如,芳基基团)。碳环的实例包括环丙基、环戊基、环己基、苯基、萘基和1,2-二氢萘基基团。碳环可任选被取代。
如本文所用,术语“杂环”或“杂环基团”意指包括一个或多个环的单环或多环系统,其中至少一个环包括至少一个杂原子。杂原子可以是例如氮、氧或硫原子。环可以是三、四、五、六、七、八、九、十、十一或十二元环。杂环可包括一个或多个双键,并且可以是芳族的(例如,杂芳基基团)。杂环的实例包括咪唑基、咪唑烷基、噁唑基、噁唑烷基、噻唑基、噻唑烷基、吡唑烷基、吡唑基、异噁唑烷基、异噁唑基、异噻唑烷基、异噻唑基、吗啉基、吡咯基、吡咯烷基、呋喃基、四氢呋喃基、噻吩基、吡啶基、哌啶基、喹啉基和异喹啉基基团。杂环可任选被取代。
如本文所用,“可生物降解的基团”是可以促进受试者中脂质更快代谢的基团。可生物降解的基团可以为但不限于C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团。
如本文所用,“芳基”是包括一个或多个芳族环的碳环基团。芳基基团的实例包括苯基和萘基基团。
如本文所用,“杂芳基基团”是包括一个或多个芳族环的杂环基基团。杂芳基的实例包括吡咯基、呋喃基、噻吩基、咪唑基、噁唑基和噻唑基。芳基和杂芳基基团均可任选被取代。例如,M和M'可选自以下非限制性的组,该组由以下组成:任选取代的苯基、噁唑和噻唑。在本文的化学式中,M和M'可以独立地选自上述可生物降解的基团的列表。
除非另有说明,烷基、烯基和环基(例如,碳环基和杂环基)基团可任选被取代。任选的取代基可以选自下组,该组由(但不限于)以下组成:卤素原子(例如,氯化物、溴化物、氟化物或碘化物基团)、羧酸(例如,C(O)OH)、醇(例如,羟基、OH)、酯(例如,C(O)OR或OC(O)R)、醛(例如,C(O)H)、羰基(例如,C(O)R,可替代地表示为C=O)、酰基卤(例如,C(O)X,其中X是选自溴化物、氟化物、氯化物和碘化物的卤化物)、碳酸(例如,OC(O)OR)、烷氧基(例如,OR)、乙缩醛(例如,C(OR)2R"",其中每个OR是可以相同或不同的烷氧基基团,并且R""是烷基或烯基基团)、磷酸盐(例如,P(O)4 3)、硫醇(例如,SH)、亚砜(例如,S(O)R)、亚磺酸(例如,S(O)OH)、磺酸(例如,S(O)2OH)、硫醛(例如,C(S)H)、硫酸盐(例如,S(O)4 2)、磺酰基(例如,S(O)2)、酰胺(例如,C(O)NR2或N(R)C(O)R)、叠氮基(例如,N3)、硝基(例如,NO2)、氰基(例如,CN)、异氰基(例如,NC)、酰氧基(例如,OC(O)R)、氨基(例如,NR2、NRH或NH2)、氨基甲酰基(例如,OC(O)NR2、OC(O)NRH或OC(O)NH2)、磺胺(例如,S(O)2NR2、S(O)2NRH、S(O)2NH2、N(R)S(O)2R、N(H)S(O)2R、N(R)S(O)2H或N(H)S(O)2H)、烷基基团、烯基基团和环基(例如,碳环基或杂环基)基团。
在任何前述项中,R是如本文所定义的烷基或烯基基团。在一些实施例中,该取代基本身可以进一步被例如本文定义的一个、两个、三个、四个、五个或六个取代基取代。例如,C16烷基基团可以进一步被一个、两个、三个、四个、五个或六个如本文所述的取代基取代。
当适用时,具有化学式(I)、(IA)、(II)、(IIa)、(IIb)、(IIc)、(IId)和(IIe)中任一个的化合物包括一个或多个以下特点。
在一些实施例中,R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q选自C36碳环、具有一个或多个选自N、O、S和P的杂原子的5元至14元芳香族的或非芳香族的杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、N(R)2、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2和C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5。
在另一个实施例中,R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、C(R)N(R)2C(O)OR和被一个或多个选自氧代(=O)、OH、氨基和C13烷基的取代基取代的具有一个或多个选自N、O和S的杂原子的5元至14元杂环烷基,并且每个n独立地选自1、2、3、4和5。
在另一个实施例中,R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂环、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;并且当Q是5元至14元杂环,并且(i)R4是(CH2)nQ,其中n是1或2,或者(ii)R4是(CH2)nCHQR,其中n是1,或者(iii)R4是CHQR和CQ(R)2时,则Q是5元至14元杂芳基或8元至14元杂环烷基。
在另一个实施例中,R4选自下组,该组由以下组成:C36碳环、(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q选自C36碳环、具有一个或多个选自N、O和S的杂原子的5元至14元杂芳基、OR、O(CH2)nN(R)2、C(O)OR、OC(O)R、CX3、CX2H、CXH2、CN、C(O)N(R)2、N(R)C(O)R、N(R)S(O)2R、N(R)C(O)N(R)2、N(R)C(S)N(R)2、C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5。
在另一个实施例中,R4是未取代的C14烷基,例如,未取代的甲基。
在某些实施例中,本披露文本提供了具有化学式(I)的化合物,其中R4是(CH2)nQ或(CH2)nCHQR,其中Q是N(R)2,并且n选自3、4和5。
在某些实施例中,本披露文本提供了具有化学式(I)的化合物,其中R4选自下组,该组由以下组成:(CH2)nQ、(CH2)nCHQR、CHQR和CQ(R)2,其中Q是N(R)2,并且n选自1、2、3、4和5。
在某些实施例中,本披露文本提供了具有化学式(I)的化合物,其中R2和R3独立地选自下组,该组由以下组成:C214烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环,并且R4是(CH2)nQ或(CH2)nCHQR,其中Q是N(R)2,并且n选自3、4和5。
在某些实施例中,R2和R3独立地选自下组,该组由以下组成:C214烷基、C214烯基、R*YR"、YR"和R*OR",或R2和R3连同它们所附接的原子一起形成杂环或碳环。
在一些实施例中,R1选自下组,该组由以下组成:C520烷基和C520烯基。
在其他实施例中,R1选自下组,该组由以下组成:R*YR"、YR"和R"M'R'。
在某些实施例中,R1是选自R*YR"和YR"。在一些实施例中,Y是环丙基基团。在一些实施例中,R*是C8烷基或C8烯基。在某些实施例中,R"是C312烷基。例如,R"可以是C3烷基。例如,R"可以是C48烷基(例如,C4、C5、C6、C7或C8烷基)。
在一些实施例中,R1是C520烷基。在一些实施例中,R1是C6烷基。在一些实施例中,R1是C8烷基。在其他实施例中,R1是C9烷基。在某些实施例中,R1是C14烷基。在其他实施例中,R1是C18烷基。
在一些实施例中,R1是C520烯基。在某些实施例中,R1是C18烯基。在一些实施例中,R1是亚油烯基。
在某些实施例中,R1是支链的(例如,癸-2-基、十一烷-3-基、十二烷-4-基、十三烷-5-基、十四烷-6-基、2-甲基十一烷-3-基、2-甲基癸-2-基、3-甲基十一烷-3-基、4-甲基十二烷-4-基或十七烷-9-基)。在某些实施例中,R1
在某些实施例中,R1是未取代的C520烷基或C520烯基。在某些实施例中,R'是取代的C520烷基或C520烯基(例如,被C36碳环如1-环丙基壬基取代)。
在其他实施例中,R1是R"M'R'。
在一些实施例中,R'选自R*YR"和YR"。在一些实施例中,Y是C38环烷基。在一些实施例中,Y是C610芳基。在一些实施例中,Y是环丙基基团。在一些实施例中,Y是环己基基团。在某些实施例中,R*是C1烷基。
在一些实施例中,R"选自下组,该组由以下组成:C3-12烷基和C312烯基。在一些实施例中,邻近Y的R"是C1烷基。在一些实施例中,邻近Y的R"是C49烷基(例如,C4、C5、C6、C7或C8或C9烷基)。
在一些实施例中,R'选自C4烷基和C4烯基。在某些实施例中,R'选自C5烷基和C5烯基。在一些实施例中,R'选自C6烷基和C6烯基。在一些实施例中,R'选自C7烷基和C7烯基。在一些实施例中,R'选自C9烷基和C9烯基。
在其他实施例中,R'选自C11烷基和C11烯基。在其他实施例中,R'选自C12烷基、C12烯基、C13烷基、C13烯基、C14烷基、C14烯基、C15烷基、C15烯基、C16烷基、C16烯基、C17烷基、C17烯基、C18烷基和C18烯基。在某些实施例中,R'是支链的(例如,癸-2-基、十一烷-3-基、十二烷-4-基、十三烷-5-基、十四烷-6-基、2-甲基十一烷-3-基、2-甲基癸-2-基、3-甲基十一烷-3-基、4-甲基十二烷-4-基或十七烷-9-基)。在某些实施例中,R'是
在某些实施例中,R'是未取代的C118烷基。在某些实施例中,R'是取代的C118烷基(例如,被C36碳环如1-环丙基壬基取代的C115烷基)。
在一些实施例中,R"选自下组,该组由以下组成:C314烷基和C314烯基。在一些实施例中,R"是C3烷基、C4烷基、C5烷基、C6烷基、C7烷基或C8烷基。在一些实施例中,R"是C9烷基、C10烷基、C11烷基、C12烷基、C13烷基或C14烷基。
在一些实施例中,M'是C(O)O。在一些实施例中,M'是OC(O)。
在其他实施例中,M'是芳基基团或杂芳基基团。例如,M'可以选自下组,该组由以下组成:苯基、噁唑和噻唑。
在一些实施例中,M是C(O)O。在一些实施例中,M是OC(O)。在一些实施例中,M是C(O)N(R')。在一些实施例中,M是P(O)(OR')O。
在其他实施例中,M是芳基基团或杂芳基基团。例如,M可以选自下组,该组由以下组成:苯基、噁唑和噻唑。
在一些实施例中,M与M'相同。在其他实施例中,M与M'不同。
在一些实施例中,每个R5是H。在某些此类实施例中,每个R6也是H。
在一些实施例中,R7是H。在其他实施例中,R7是C13烷基(例如,甲基、乙基、丙基或异丙基)。
在一些实施例中,R2和R3独立地是C514烷基或C514烯基。
在一些实施例中,R2和R3是相同的。在一些实施例中,R2和R3是C8烷基。在某些实施例中,R2和R3是C2烷基。在其他实施例中,R2和R3是C3烷基。在一些实施例中,R2和R3是C4烷基。在某些实施例中,R2和R3是C5烷基。在其他实施例中,R2和R3是C6烷基。在一些实施例中,R2和R3是C7烷基。
在其他实施例中,R2和R3是不同的。在某些实施例中,R2是C8烷基。在一些实施例中,R3是C17(例如,C1、C2、C3、C4、C5、C6或C7烷基)或C9烷基。
在一些实施例中,R7和R3是H。
在某些实施例中,R2是H。
在一些实施例中,m是5、7或9。
在一些实施例中,R4选自(CH2)nQ和(CH2)nCHQR。
在一些实施例中,Q选自下组,该组由以下组成:OR、OH、O(CH2)nN(R)2、OC(O)R、CX3、CN、N(R)C(O)R、N(H)C(O)R、N(R)S(O)2R、N(H)S(O)2R、N(R)C(O)N(R)2、N(H)C(O)N(R)2、N(H)C(O)N(H)(R)、N(R)C(S)N(R)2、N(H)C(S)N(R)2、N(H)C(S)N(H)(R)、C(R)N(R)2C(O)OR、碳环和杂环。
在某些实施例中,Q是OH。
在某些实施例中,Q是取代的或未取代的5元至10元杂芳基,例如,Q是咪唑、嘧啶、嘌呤、2-氨基-1,9-二氢-6H-嘌呤-6-酮-9-基(或鸟嘌呤-9-基)、腺嘌呤-9-基、胞嘧啶-1-基或尿嘧啶-1-基。在某些实施例中,Q是取代的5元至14元杂环烷基,例如,被一个或多个选自氧代(=O)、OH、氨基和C1-3烷基的取代基取代。例如,Q是4-甲基哌嗪基、4-(4-甲氧基苄基)哌嗪基或异吲哚啉-2-基-1,3-二酮。
在某些实施例中,Q是未取代的或取代的C610芳基(如苯基)或C36环烷基。
在一些实施例中,n是1。在其他实施例中,n是2。在进一步的实施例中,n是3。在某些其他实施例中,n是4。例如,R4可以是(CH2)2OH。例如,R4可以是(CH2)3OH。例如,R4可以是(CH2)4OH。例如,R4可以是苄基。例如,R4可以是4-甲氧基苄基。
在一些实施例中,R4是C36碳环。在一些实施例中,R4是C36环烷基。例如,R4可以是任选被例如OH、卤代、C16烷基等取代的环己基。例如,R4可以是2-羟基环己基。
在一些实施例中,R是H。
在一些实施例中,R是未取代的C13烷基或未取代的C23烯基。例如,R4可以是CH2CH(OH)CH3或CH2CH(OH)CH2CH3
在一些实施例中,R是取代的C13烷基,例如,CH2OH。例如,R4可以是CH2CH(OH)CH2OH。
在一些实施例中,R2和R3连同它们所附接的原子一起形成杂环或碳环。在一些实施例中,R2和R3连同它们所附接的原子一起形成具有一个或多个选自N、O、S和P的杂原子的5元至14元芳香族的或非芳香族的杂环。在一些实施例中,R2和R3连同它们所附接的原子一起形成任选取代的C320碳环(例如,C318碳环、C315碳环、C312碳环或C310碳环),无论芳香族的或非芳香族的。在一些实施例中,R2和R3连同它们所附接的原子一起形成C36碳环。在其他实施例中,R2和R3连同它们所附接的原子一起形成C6碳环,如环己基或苯基基团。在某些实施例中,该杂环或C36碳环被一个或多个烷基基团取代(例如,在相同环原子处或在邻近或非邻近环原子处)。例如,R2和R3连同它们所附接的原子一起可形成具有一个或多个C5烷基取代的环己基或苯基基团。在某些实施例中,由R2和R3形成的杂环或C36碳环被碳环基团取代。例如,R2和R3连同它们所附接的原子一起可形成环己基或被环己基取代的苯基基团。在一些实施例中,R2和R3连同它们所附接的原子一起形成C715碳环,如环庚基、环十五烷基或萘基基团。
在一些实施例中,R4选自(CH2)nQ和(CH2)nCHQR。在一些实施例中,Q选自下组,该组由以下组成:OR、OH、O(CH2)nN(R)2、OC(O)R、CX3、CN、N(R)C(O)R、N(H)C(O)R、N(R)S(O)2R、N(H)S(O)2R、N(R)C(O)N(R)2、N(H)C(O)N(R)2、N(H)C(O)N(H)(R)、N(R)C(S)N(R)2、N(H)C(S)N(R)2、N(H)C(S)N(H)(R)和杂环。在其他实施例中,Q选自下组,该组由以下组成:咪唑、嘧啶和嘌呤。
在一些实施例中,R2和R3连同它们所附接的原子一起形成杂环或碳环。在一些实施例中,R2和R3连同它们所附接的原子一起形成C36碳环,如苯基基团。在某些实施例中,该杂环或C36碳环被一个或多个烷基基团取代(例如,在相同环原子处或在邻近或非邻近环原子处)。例如,R2和R3连同它们所附接的原子一起可形成具有一个或多个C5烷基取代的苯基基团。
在一些实施例中,本披露文本的药物组合物,具有化学式(I)的化合物选自下组,该组由以下组成:
及其盐或立体异构体。
在其他实施例中,该具有化学式(I)的化合物选自下组,该组由以下组成:化合物1-化合物232,或其盐或立体异构体。
在一些实施例中,提供了包括中心哌嗪部分的可电离脂质。本文所述的脂质可有利地用在用于将治疗剂和/或预防剂递送至哺乳动物细胞或器官的脂质纳米粒子组合物中。例如,本文描述的脂质具有很小的免疫原性或没有免疫原性。例如,与参考脂质(例如,MC3、KC2或DLinDMA)相比,本文披露的脂质化合物具有较低的免疫原性。例如,与包含参考脂质(例如MC3、KC2或DLinDMA)和相同治疗剂或预防剂的相应配制品相比,包含本文披露的脂质和治疗剂或预防剂的配制品具有增加的治疗指数。
在一些实施例中,该递送剂包含具有化学式(III)的脂质化合物
或其盐或立体异构体,其中
环A是
t是1或2;
A1和A2各自独立地选自CH或N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2、R3、R4和R5独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自下组,该组由以下组成:C(O)O、OC(O)、OC(O)O、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
X1、X2和X3独立地选自下组,该组由以下组成:键、CH2、(CH2)2-、CHR、CHY、C(O)、C(O)O、OC(O)、-C(O)-CH2-、-CH2-C(O)-、C(O)O-CH2、OC(O)-CH2、CH2-C(O)O、CH2-OC(O)、CH(OH)、C(S)和CH(SH;
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C212烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且
每个R"独立地选自下组,该组由以下组成:C3-12烷基和C312烯基,
其中当环A是时,则
i)X1、X2和X3中至少一个不是-CH2-;和/或
ii)R1、R2、R3、R4和R5中至少一个是-R"MR'。
在一些实施例中,该化合物具有化学式(IIIa1)-(IIIa6)中任一个:
当适用时,具有化学式(III)的或(IIIa1)-(IIIa6)中任一个的化合物包括一个或多个以下特点。
在一些实施例中,环A是
在一些实施例中,环A是
在一些实施例中,环A是
在一些实施例中,环A是
在一些实施例中,环A是
在一些实施例中,环A是其中环中,N原子与X2连接。
在一些实施例中,Z是CH2
在一些实施例中,Z不存在。
在一些实施例中,A1和A2中至少一个是N。
在一些实施例中,A1和A2中每个都是N。
在一些实施例中,A1和A2中每个都是CH。
在一些实施例中,A1是N,并且A2是CH。
在一些实施例中,A1是CH,并且A2是N。
在一些实施例中,X1、X2和X3中至少一个不是-CH2-。例如,在某些实施例中,X1不是-CH2-。在一些实施例中,X1、X2和X3中至少一个是-C(O)-。
在一些实施例中,X2是-C(O)-、-C(O)O、OC(O)、-C(O)-CH2-、-CH2-C(O)-、C(O)O-CH2、OC(O)-CH2、CH2-C(O)O或CH2-OC(O)。
在一些实施例中,X3是-C(O)-、-C(O)O-、-OC(O)-、-C(O)-CH2-、-CH2-C(O)-、C(O)O-CH2、OC(O)-CH2、CH2-C(O)O或CH2-OC(O)。在其他实施例中,X3是-CH2-。
在一些实施例中,X3是一个键或–(CH2)2-。
在一些实施例中,R1和R2是相同的。在某些实施例中,R1、R2和R3是相同的。在一些实施例中,R4和R5是相同的。在某些实施例中,R1、R2、R3、R4和R5是相同的。
在一些实施例中,R1、R2、R3、R4和R5中至少一个是-R"MR'。在一些实施例中,R1、R2、R3、R4和R5中至多一个是-R"MR'。例如,R1、R2和R3中至少一个可以是-R"MR',和/或R4和R5中至少一个是-R"MR'。在某些实施例中,至少一个M是-C(O)O-。在一些实施例中,每个M是-C(O)O-。在一些实施例中,至少一个M是-OC(O)-。在一些实施例中,每个M是-OC(O)-。在一些实施例中,至少一个M是-OC(O)O-。在一些实施例中,每个M是-OC(O)O-。在一些实施例中,至少一个R"是C3烷基。在某些实施例中,每个R"是C3烷基。在一些实施例中,至少一个R"是C5烷基。在某些实施例中,每个R"是C5烷基。在一些实施例中,至少一个R"是C6烷基。在某些实施例中,每个R"是C6烷基。在一些实施例中,至少一个R"是C7烷基。在某些实施例中,每个R"是C7烷基。在一些实施例中,至少一个R'是C5烷基。在某些实施例中,每个R'是C5烷基。在其他实施例中,至少一个R'是C1烷基。在某些实施例中,每个R'是C1烷基。在一些实施例中,至少一个R'是C2烷基。在某些实施例中,每个R'是C2烷基。
在一些实施例中,R1、R2、R3、R4和R5中至少一个是C12烷基。在某些实施例中,R1、R2、R3、R4和R5中每个都是C12烷基。
在某些实施例中,该化合物选自下组,该组由以下组成:
中一些实施例中,该递送剂包含化合物236。
在一些实施例中,该递送剂包含具有化学式(IV)的化合物
或其盐或立体异构体,其中
A1和A2各自独立地选自CH或N,并且A1和A2中至少一个是N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2、R3、R4和R5独立地选自下组,该组由以下组成:C620烷基和C6-20烯基;
其中当环A是时,则
i)R1、R2、R3、R4和R5是相同的,其中R1不是C12烷基、C18烷基或C18烯基;
ii)R1、R2、R3、R4和R5中仅一个选自C6-20烯基;
iii)R1、R2、R3、R4和R5中至少一个与R1、R2、R3、R4和R5中至少一个其他项具有不同数目的碳原子;
iv)R1、R2和R3选自C6-20烯基,并且R4和R5选自C6-20烷基;或
v)R1、R2和R3选自C6-20烷基,并且R4和R5选自C6-20烯基。
在一些实施例中,该化合物具有化学式(IVa):
当适用时,具有化学式(IV)或(IVa)的化合物包括一个或多个以下特点。
在一些实施例中,Z是CH2
在一些实施例中,Z不存在。
在一些实施例中,A1和A2中至少一个是N。
在一些实施例中,A1和A2中每个都是N。
在一些实施例中,A1和A2中每个都是CH。
在一些实施例中,A1是N,并且A2是CH。
在一些实施例中,A1是CH,并且A2是N。
在一些实施例中,R1、R2、R3、R4和R5是相同的,并且不是C12烷基、C18烷基或C18烯基。在一些实施例中,R1、R2、R3、R4和R5是相同的,并且是C9烷基或C14烷基。
在一些实施例中,R1、R2、R3、R4和R5中仅一个选自C6-20烯基。在某些此类实施例中,R1、R2、R3、R4和R5具有相同数目的碳原子。在一些实施例中,R4选自C5-20烯基。例如,R4可以是C12烯基或C18烯基。
在一些实施例中,R1、R2、R3、R4和R5中至少一个与R1、R2、R3、R4和R5中至少一个其他项具有不同数目的碳原子。
在某些实施例中,R1、R2和R3选自C6-20烯基,并且R4和R5选自C6-20烷基。在其他实施例中,R1、R2和R3选自C6-20烷基,并且R4和R5选自C6-20烯基。在一些实施例中,R1、R2和R3具有相同数目的碳原子,和/或R4和R5具有相同数目的碳原子。例如,R1、R2和R3或R4和R5可具有6、8、9、12、14或18个碳原子。在一些实施例中,R1、R2和R3或R4和R5是C18烯基(例如,亚油烯基)。在一些实施例中,R1、R2和R3或R4和R5是包括6、8、9、12或14个碳原子的烷基基团。
在一些实施例中,R1与R2、R3、R4和R5具有不同数目的碳原子。在其他实施例中,R3与R1、R2、R4和R5具有不同数目的碳原子。在进一步的实施例中,R4与R1、R2、R3和R5具有不同数目的碳原子。
在一些实施例中,该化合物选自下组,该组由以下组成:
在其他实施例中,该递送剂包含具有化学式(V)的化合物
或其盐或立体异构体,其中
A3是CH或N;
A4是CH2或NH;并且A3和A4中至少一个是N或NH;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2和R3独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
X1和X2独立地选自下组,该组由以下组成:CH2、(CH2)2、CHR、CHY、C(O)、C(O)O、OC(O)、-C(O)-CH2-、-CH2-C(O)-、C(O)OCH2、OC(O)CH2、CH2-C(O)O、CH2OC(O)、CH(OH)、C(S)和CH(SH);
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C212烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且
每个R"独立地选自下组,该组由以下组成:C3-12烷基和C312烯基。
在一些实施例中,该化合物具有化学式(Va):
当适用时,具有化学式(V)或(Va)的化合物包括一个或多个以下特点。
在一些实施例中,Z是CH2
在一些实施例中,Z不存在。
在一些实施例中,A3和A4中至少一个是N或NH。
在一些实施例中,A3是N,并且A4是NH。
在一些实施例中,A3是N,并且A4是CH2
在一些实施例中,A3是CH,并且A4是NH。
在一些实施例中,X1和X2中至少一个不是-CH2-。例如,在某些实施例中,X1不是-CH2-。在一些实施例中,X1和X2中至少一个是-C(O)-。
在一些实施例中,X2是-C(O)-、C(O)O、OC(O)、-C(O)-CH2-、-CH2-C(O)-、C(O)O-CH2、OC(O)-CH2、CH2-C(O)O或CH2-OC(O)。
在一些实施例中,R1、R2和R3独立地选自下组,该组由以下组成:C5-20烷基和C5-20烯基。在一些实施例中,R1、R2和R3是相同的。在某些实施例中,R1、R2和R3是C6、C9、C12或C14烷基。在其他实施例中,R1、R2和R3是C18烯基。例如,R1、R2和R3可以是亚油烯基。
在一些实施例中,该化合物选自下组,该组由以下组成:
在其他实施例中,该递送剂包含具有化学式(VI)的化合物:
或其盐或立体异构体,其中
A6和A7各自独立地选自CH或N,其中A6和A7中至少一个是N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
X4和X5独立地选自下组,该组由以下组成:-CH2-、CH2)2-、CHR、CHY、C(O)、C(O)O、OC(O)、-C(O)-CH2-、-CH2-C(O)-、C(O)OCH2、OC(O)-CH2、CH2-C(O)O、CH2-OC(O)、CH(OH)、C(S)和CH(SH);
R1、R2、R3、R4和R5各自独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自下组,该组由以下组成:C(O)O、OC(O)、C(O)N(R')、N(R')C(O)、C(O)、C(S)、C(S)S、SC(S)、CH(OH)、P(O)(OR')O、S(O)2、芳基基团和杂芳基基团;
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C212烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且
每个R"独立地选自下组,该组由以下组成:C3-12烷基和C312烯基。
在一些实施例中,R1、R2、R3、R4和R5各自独立地选自下组,该组由以下组成:C6-20烷基和C6-20烯基。
在一些实施例中,R1和R2是相同的。在某些实施例中,R1、R2和R3是相同的。在一些实施例中,R4和R5是相同的。在某些实施例中,R1、R2、R3、R4和R5是相同的。
在一些实施例中,R1、R2、R3、R4和R5中至少一个是C9-12烷基。在某些实施例中,R1、R2、R3、R4和R5中每个独立地是C9、C12或C14烷基。在某些实施例中,R1、R2、R3、R4和R5中每个都是C9烷基。
在一些实施例中,A6是N,并且A7是N。在一些实施例中,A6是CH,并且A7是N。
在一些实施例中,X4是-CH2-和X5是-C(O)-。在一些实施例中,X4和X5是-C(O)-。
在一些实施例中,当A6是N且A7是N时,X4和X5中至少一个不是-CH2-,例如,X4和X5中至少一个是-C(O)-。在一些实施例中,当A6是N且A7是N时,R1、R2、R3、R4和R5中至少一个是-R"MR'。
在一些实施例中,R1、R2、R3、R4和R5中至少一个不是-R"MR'。
在一些实施例中,该化合物是
在其他实施例中,该递送剂包含具有以下化学式的化合物:
本文披露的脂质化合物的胺部分可在某些条件下质子化。例如,根据化学式(I)的脂质的中心胺部分通常在低于氨基部分的pKa的pH下质子化(即带正电),并且在高于该pKa的pH下基本上不带电。这种脂质可以称为可电离的氨基脂质。
在一个具体实施例中,可电离的氨基脂质是化合物18。在另一个实施例中,可电离的氨基脂质是化合物236。
在一些实施例中,可电离的氨基脂质(例如,具有化学式(I)的化合物)在该脂质组合物中的量范围为约1mol%至99mol%。
在一个实施例中,可电离的氨基脂质(例如,具有化学式(I)的化合物)在该脂质组合物中的量为至少约1mol%、2mol%、3mol%、4mol%、5mol%、6mol%、7mol%、8mol%、9mol%、10mol%、11mol%、12mol%、13mol%、14mol%、15mol%、16mol%、17mol%、18mol%、19mol%、20mol%、21mol%、22mol%、23mol%、24mol%、25mol%、26mol%、27mol%、28mol%、29mol%、30mol%、31mol%、32mol%、33mol%、34mol%、35mol%、36mol%、37mol%、38mol%、39mol%、40mol%、41mol%、42mol%、43mol%、44mol%、45mol%、46mol%、47mol%、48mol%、49mol%、50mol%、51mol%、52mol%、53mol%、54mol%、55mol%、56mol%、57mol%、58mol%、59mol%、60mol%、61mol%、62mol%、63mol%、64mol%、65mol%、66mol%、67mol%、68mol%、69mol%、70mol%、71mol%、72mol%、73mol%、74mol%、75mol%、76mol%、77mol%、78mol%、79mol%、80mol%、81mol%、82mol%、83mol%、84mol%、85mol%、86mol%、87mol%、88mol%、89mol%、90mol%、91mol%、92mol%、93mol%、94mol%、95mol%、96mol%、97mol%、98mol%或99mol%。
在一个实施例中,可电离的氨基脂质(例如具有化学式(I)的化合物)在该脂质组合物中的量范围为约30mol%至约70mol%、约35mol%至约65mol%、约40mol%至约60mol%和约45mol%至约55mol%。
在一个具体实施例中,可电离的氨基脂质(例如具有化学式(I)的化合物)在该脂质组合物中的量为约50mol%。
除了本文披露的可电离的氨基脂质,例如具有化学式(I)的化合物,本文披露的药物组合物的脂质组合物还可包含其他组分,如磷脂、结构脂质、PEG-脂质及其任何组合。
b.脂质组合物中的其他组分
(i)磷脂
本文披露的药物组合物的脂质组合物可包含一种或多种磷脂,例如,一种或多种饱和或(多)不饱和磷脂或其组合。通常,磷脂包含磷脂部分和一个或多个脂肪酸部分。
磷脂部分可以选自例如以下非限制性的组,该组由以下组成:磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰甘油、磷脂酰丝氨酸、磷脂酸、2-溶血磷脂酰胆碱和鞘磷脂。
脂肪酸部分可以选自例如以下非限制性的组,该组由以下组成:月桂酸、肉豆蔻酸、肉豆蔻脑酸、棕榈酸、棕榈油酸、硬脂酸、油酸、亚油酸、α-亚麻酸、芥酸、植酸、花生酸、花生四烯酸、二十碳五烯酸、山萮酸、二十二碳五烯酸和二十二碳六烯酸。
特定的磷脂可以促进与膜的融合。例如,阳离子磷脂可以与膜(例如,细胞或细胞内膜)的一种或多种带负电荷的磷脂相互作用。磷脂与膜的融合可允许含脂质组合物(例如,LNP)的一种或多种元素(例如,治疗剂)穿过膜,从而允许例如将该一种或多种元素递送至靶组织。
还考虑了非天然磷脂物质,包括具有修饰和取代的天然物质,包括支化、氧化、环化和炔烃。例如,磷脂可以用一个或多个炔烃(例如,其中一个或多个双键被三键取代的烯基)官能化或与其交联。在适当的反应条件下,炔基基团在暴露于叠氮化物时可经历铜催化的环加成反应。此类反应可用于官能化纳米粒子组合物的脂质双层以促进膜渗透或细胞识别,或用于将纳米粒子组合物与有用组分如靶向或成像部分(例如,染料)缀合。
磷脂包括但不限于甘油磷脂,如磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂甘油和磷脂酸。磷脂还包括磷酸鞘脂,如鞘磷脂。
磷脂的实例包括但不限于以下:
在某些实施例中,在本发明中有用或可能有用的磷脂是DSPC的类似物或变体。在某些实施例中,在本发明中有用或可能有用的磷脂是具有化学式(IX)的化合物:
或其盐,其中:
每个R1独立地是任选取代的烷基;或任选地,两个R1与间插原子连接在一起以形成任选取代的单环碳环基或任选取代的单环杂环基;或任选地,三个R1与间插原子连接在一起以形成任选取代的双环碳环基或任选取代的双环杂环基;
n是1、2、3、4、5、6、7、8、9或10;
m是0、1、2、3、4、5、6、7、8、9或10;
A具有以下化学式:
L2的每个情况独立地是一个键或任选取代的C1-6亚烷基,其中该任选取代的C1-6亚烷基的一个亚甲基单元任选地被O、N(RN)、S、C(O)、C(O)N(RN)、NRNC(O)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O或NRNC(O)N(RN)替代;
R2的每个情况独立地是任选取代的C1-30烷基、任选取代的C1-30烯基或任选取代的C1-30炔基;任选地其中R2的一个或多个亚甲基单元独立地被任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、N(RN)、O、S、C(O)、C(O)N(RN)、NRNC(O)、NRNC(O)N(RN)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O、C(O)S、SC(O)、C(=NRN)、C(=NRN)N(RN)、NRNC(=NRN)、NRNC(=NRN)N(RN)、C(S)、C(S)N(RN)、NRNC(S)、NRNC(S)N(RN)、S(O)、OS(O)、S(O)O、OS(O)O、OS(O)2、S(O)2O、OS(O)2O、N(RN)S(O)、S(O)N(RN)、N(RN)S(O)N(RN)、OS(O)N(RN)、N(RN)S(O)O、S(O)2、N(RN)S(O)2、S(O)2N(RN)、N(RN)S(O)2N(RN)、OS(O)2N(RN)或N(RN)S(O)2O替代;
RN的每个情况独立地是氢、任选取代的烷基或氮保护基团;
环B是任选取代的碳环基、任选取代的杂环基、任选取代的芳基或任选取代的杂芳基;并且
p是1或2;
条件是,该化合物不具有以下化学式:
其中R2的每个情况独立地是未取代的烷基、未取代的烯基或未取代的炔基。
磷脂头修饰
在某些实施例中,在本发明中有用或可能有用的磷脂包含经修饰的磷脂头(例如,经修饰的胆碱基团)。在某些实施例中,具有经修饰的头部的磷脂是具有经修饰的季胺的DSPC或其类似物。例如,在具有化学式的(IX)的实施例中,R1中至少一个不是甲基。在某些实施例中,R1中至少一个不是氢或甲基。在某些实施例中,具有化学式(IX)的化合物具有以下化学式之一:
或其盐,其中:
每个t独立地是1、2、3、4、5、6、7、8、9或10;
每个u独立地是0、1、2、3、4、5、6、7、8、9或10;并且
每个v独立地是1、2或3。
在某些实施例中,具有化学式(IX)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(IX)的化合物为以下之一:
或是其盐。
在某些实施例中,具有化学式(IX)的化合物具有化学式(IX-a):
或是其盐。
在某些实施例中,在本发明中有用或可能有用的磷脂包含经修饰的核心。在某些实施例中,本文描述的具有经修饰的核心的磷脂是具有经修饰的核心结构的DSPC或其类似物。例如,在化学式(IX-a)的某些实施例中,基团A不具有以下化学式:
在某些实施例中,具有化学式(IX-a)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(IX)的化合物为以下之一:
或其盐。
在某些实施例中,在本发明中有用或可能有用的磷脂包含环状部分,代替甘油酯部分。在某些实施例中,在本发明中有用的磷脂是具有环状部分代替甘油酯部分的DSPC或其类似物。在某些实施例中,具有化学式(IX)的化合物具有化学式(IX-b):
或是其盐。
在某些实施例中,具有化学式(IX-b)的化合物具有化学式(IX-b-1):
或其盐,其中:
w是0、1、2或3。
在某些实施例中,具有化学式(IX-b)的化合物具有化学式(IX-b-2):
或是其盐。
在某些实施例中,具有化学式(IX-b)的化合物具有化学式(IX-b-3):
或是其盐。
在某些实施例中,具有化学式(IX-b)的化合物具有化学式(IX-b-4):
或是其盐。
在某些实施例中,具有化学式(IX-b)的化合物为以下之一:
或其盐。
磷脂尾修饰
在某些实施例中,在本发明中有用或可能有用的磷脂包含经修饰的尾。在某些实施例中,在本发明中有用或可能有用的磷脂是具有经修饰的尾的DSPC或其类似物。如本文所述,“经修饰的尾”可以是具有更短或更长脂肪链的尾、引入了支化的脂肪链、引入了取代基的脂肪链、其中一个或多个亚甲基被环状或杂原子基团替代的脂肪链或其任何组合。例如,在某些实施例中,该具有(IX)的化合物具有化学式(IX-a)或是其盐,其中R2的至少一个情况是R2为任选取代的C1-30烷基的每个情况,其中R2的一个或多个亚甲基单元独立地被任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、N(RN)、O、S、C(O)、C(O)N(RN)、NRNC(O)、NRNC(O)N(RN)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O、C(O)S、SC(O)、C(=NRN)、C(=NRN)N(RN)、NRNC(=NRN)、NRNC(=NRN)N(RN)、C(S)、C(S)N(RN)、NRNC(S)、NRNC(S)N(RN)、S(O)、OS(O)、S(O)O、OS(O)O、OS(O)2、S(O)2O、OS(O)2O、N(RN)S(O)、S(O)N(RN)、N(RN)S(O)N(RN)、OS(O)N(RN)、N(RN)S(O)O、S(O)2、N(RN)S(O)2、S(O)2N(RN)、N(RN)S(O)2N(RN)、OS(O)2N(RN)或N(RN)S(O)2O替代。
在某些实施例中,具有化学式(IX)的化合物具有化学式(IX-c):
或是其盐,其中:
每个x独立地是0-30之间的整数(包括端值);并且
G的每个情况独立地选自下组,该组由以下组成:任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、N(RN)、O、S、C(O)、C(O)N(RN)、NRNC(O)、NRNC(O)N(RN)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O、C(O)S、SC(O)、C(=NRN)、C(=NRN)N(RN)、NRNC(=NRN)、NRNC(=NRN)N(RN)、C(S)、C(S)N(RN)、NRNC(S)、NRNC(S)N(RN)、S(O)、OS(O)、S(O)O、OS(O)O、OS(O)2、S(O)2O、OS(O)2O、N(RN)S(O)、S(O)N(RN)、N(RN)S(O)N(RN)、OS(O)N(RN)、N(RN)S(O)O、S(O)2、N(RN)S(O)2、S(O)2N(RN)、N(RN)S(O)2N(RN)、OS(O)2N(RN)或N(RN)S(O)2O。每种可能性代表本发明独立的实施例。
在某些实施例中,具有化学式(IX-c)的化合物具有化学式(IX-c-1):
或其盐,其中:
v的每个情况独立地是1、2或3。
在某些实施例中,具有化学式(IX-c)的化合物具有化学式(IX-c-2):
或是其盐。
在某些实施例中,具有化学式(IX-c)的化合物具有以下化学式:
或是其盐。
在某些实施例中,具有化学式(IX-c)的化合物为以下:
或是其盐。
在某些实施例中,具有化学式(IX-c)的化合物具有化学式(IX-c-3):
或是其盐。
在某些实施例中,具有化学式(IX-c)的化合物具有以下化学式:
或是其盐。
在某些实施例中,具有化学式(IX-c)的化合物为以下:
或是其盐。
在某些实施例中,在本发明中有用或可能有用的磷脂包含经修饰的磷酸胆碱部分,其中连接季胺与磷酰基基团的烷基链不是亚乙基(例如,n不是2)。因此,在某些实施例中,在本发明中有用或可能有用的磷脂是具有化学式(IX)的化合物,其中n是1、3、4、5、6、7、8、9或10。例如,在某些实施例中,具有化学式(IX)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(IX)的化合物为以下之一:
或其盐。
替代脂质
在某些实施例中,使用替代脂质代替本发明的磷脂。此类替代脂质的非限制性实例包括以下:
(ii)结构脂质
本文披露的药物组合物的脂质组合物可包含一种或多种结构脂质。如本文所用,术语“结构脂质”是指甾醇以及含有甾醇部分的脂质。
在脂质纳米粒子中掺入结构脂质可有助于减轻粒子中其他脂质的聚集。结构脂质可选自下组,该组包括但不限于胆甾醇、粪甾醇、谷甾醇、麦角甾醇、菜油甾醇、豆甾醇、菜籽甾醇、番茄碱、番茄苷、熊果酸、α-生育酚、霍烷、植物甾醇、类固醇及其混合物。在一些实施例中,该结构脂质是甾醇。如本文所定义,“甾醇”是由类固醇组成的类固醇子组。在某些实施例中,该结构脂质是类固醇。在某些实施例中,该结构脂质是胆甾醇。在某些实施例中,该结构脂质是胆甾醇的类似物。在某些实施例中,该结构脂质是α-生育酚。结构脂质的实例包括但不限于以下:
在一个实施例中,本文披露的药物组合物的脂质组合物中结构脂质(例如,甾醇,如胆甾醇)的量范围为约20mol%至约60mol%、约25mol%至约55mol%、约30mol%至约50mol%或约35mol%至约45mol%。
在一个实施例中,本文披露的脂质组合物中结构脂质(例如,甾醇,如胆甾醇)的量范围为约25mol%至约30mol%、约30mol%至约35mol%或约35mol%至约40mol%。
在一个实施例中,本文披露的脂质组合物中结构脂质(例如,甾醇,如胆甾醇)的量为约24mol%、约29mol%、约34mol%或约39mol%。
在一些实施例中,本文披露的脂质组合物中结构脂质(例如,甾醇,如胆甾醇)的量为至少约20mol%、21mol%、22mol%、23mol%、24mol%、25mol%、26mol%、27mol%、28mol%、29mol%、30mol%、31mol%、32mol%、33mol%、34mol%、35mol%、36mol%、37mol%、38mol%、39mol%、40mol%、41mol%、42mol%、43mol%、44mol%、45mol%、46mol%、47mol%、48mol%、49mol%、50mol%、51mol%、52mol%、53mol%、54mol%、55mol%、56mol%、57mol%、58mol%、59mol%或60mol%。
(iii)聚乙二醇(PEG)-脂质
本文披露的药物组合物的脂质组合物可包含一种或多种聚乙二醇(PEG)脂质。
如本文所用,术语“PEG-脂质”是指聚乙二醇(PEG)修饰的脂质。PEG-脂质的非限制性实例包括PEG-修饰的磷脂酰乙醇胺和磷脂酸、PEG-神经酰胺缀合物(例如,PEG-CerC14或PEG-CerC20)、PEG-修饰的二烷基胺和PEG-修饰的1,2-二酰氧基丙-3-胺。这种脂质也称为PEG化脂质。例如,PEG脂质可以是PEG-c-DOMG、PEG-DMG、PEG-DLPE、PEG-DMPE、PEG-DPPC或PEG-DSPE脂质。
在一些实施例中,该PEG-脂质包括但不限于1,2-二肉豆蔻酰基-sn-甘油甲氧基聚乙烯乙二醇(PEG-DMG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙烯乙二醇)](PEG-DSPE)、PEG-二甾基甘油(PEG-DSG)、PEG-二棕榈酰基、PEG-二油烯基、PEG-二硬脂酰基、PEG-二酰基甘氨酰胺(PEG-DAG)、PEG-二棕榈酰基磷脂酰乙醇胺(PEG-DPPE)或PEG-l,2-二肉豆蔻基氧基丙基-3-胺(PEG-c-DMA)。
在一个实施例中,该PEG脂质选自下组,该组由以下组成:PEG修饰磷脂酰乙醇胺、PEG修饰磷脂酸、PEG修饰神经酰胺、PEG修饰二烷基胺、PEG修饰二酰基甘油、PEG修饰二烷基甘油、及其混合物。
在一些实施例中,该PEG-脂质的脂质部分包括长度为约C14至约C22,优选约C14至约C16的那些。在一些实施例中,PEG部分,例如mPEG-NH2,具有约1000、2000、5000、10,000、15,000或20,000道尔顿的大小。在一个实施例中,PEG-脂质是PEG2k-DMG。
在一个实施例中,本文所述的脂质纳米粒子可包含PEG脂质,其是非扩散性PEG。非扩散性PEG的非限制性实例包括PEG-DSG和PEG-DSPE。
PEG-脂质是本领域已知的,如美国专利号8158601和国际公开号WO 2015/130584A2描述的那些,将其通过引用以其全部内容并入本文。
通常,本文所述的一些具有不同化学式的其他脂质组分(例如,PEG脂质)可以如2016年12月10日提交的题为“用于递送治疗剂的组合物和方法”的国际专利申请号PCT/US2016/000129所述合成,将其通过引用以其全部内容并入本文。
脂质纳米粒子组合物的脂质组分可包括一种或多种包含聚乙二醇的分子,如PEG或PEG-修饰的脂质。可替代地,这些物质可称为PEG化脂质。PEG脂质是用聚乙二醇修饰的脂质。PEG脂质可选自以下非限制性组,该组包括PEG-修饰的磷脂酰乙醇胺、PEG-修饰的磷脂酸、PEG-修饰的神经酰胺、PEG-修饰的二烷基胺、PEG-修饰的二酰基甘油、PEG-修饰的二烷基甘油、及其混合物。例如,PEG脂质可以是PEG-c-DOMG、PEG-DMG、PEG-DLPE、PEG-DMPE、PEG-DPPC或PEG-DSPE脂质。
在一些实施例中,PEG修饰的脂质是PEG DMG的修饰形式。PEG-DMG具有以下结构:
在一个实施例中,可用于本发明的PEG脂质可以是国际公开号WO2012099755中描述的PEG化脂质,将其内容通过引用以其全部内容并入本文。可以修饰本文所述的任何这些示例性PEG脂质以在PEG链上包含羟基基团。在某些实施例中,该PEG脂质是PEG-OH脂质。如本文一般定义的,“PEG-OH脂质”(本文中也称为“羟基-PEG化脂质”)是在脂质上具有一个或多个羟基(-OH)基团的PEG化脂质。在某些实施例中,该PEG-OH脂质在PEG链上包括一个或多个羟基。在某些实施例中,PEG-OH或羟基-PEG化的脂质在PEG链的末端包含-OH基团。每种可能性代表本发明独立的实施例。
在某些实施例中,在本发明中有用的PEG脂质是具有化学式(VII)的化合物。本文提供了具有化学式(VII)的化合物:
或其盐,其中:
R3是–ORO
RO是氢、任选取代的烷基或氧保护基团;
r是1和100之间的整数(包括端值);
L1是任选取代的C1-10亚烷基,其中任选取代的C1-10亚烷基的至少一个亚甲基独立地被任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、O、N(RN)、S、C(O)、C(O)N(RN)、NRNC(O)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O或NRNC(O)N(RN)替代;
D是通过点击化学获得的一个部分或在生理条件下可裂解的一个部分;
m是0、1、2、3、4、5、6、7、8、9或10;
A具有以下化学式:
L2的每个情况独立地是一个键或任选取代的C1-6亚烷基,其中该任选取代的C1-6亚烷基的一个亚甲基单元任选地被O、N(RN)、S、C(O)、C(O)N(RN)、NRNC(O)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O或NRNC(O)N(RN)替代;
R2的每个情况独立地是任选取代的C1-30烷基、任选取代的C1-30烯基或任选取代的C1-30炔基;任选地其中R2的一个或多个亚甲基单元独立地被任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、N(RN)、O、S、C(O)、C(O)N(RN)、NRNC(O)、NRNC(O)N(RN)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O、C(O)S、SC(O)、C(=NRN)、C(=NRN)N(RN)、NRNC(=NRN)、NRNC(=NRN)N(RN)、C(S)、C(S)N(RN)、NRNC(S)、NRNC(S)N(RN)、S(O)、OS(O)、S(O)O、OS(O)O、OS(O)2、S(O)2O、OS(O)2O、N(RN)S(O)、S(O)N(RN)、N(RN)S(O)N(RN)、OS(O)N(RN)、N(RN)S(O)O、S(O)2、N(RN)S(O)2、S(O)2N(RN)、N(RN)S(O)2N(RN)、OS(O)2N(RN)或N(RN)S(O)2O替代;
RN的每个情况独立地是氢、任选取代的烷基或氮保护基团;
环B是任选取代的碳环基、任选取代的杂环基、任选取代的芳基或任选取代的杂芳基;并且
p是1或2。
在某些实施例中,具有化学式(VII)的化合物是PEG-OH脂质(即,R3是–ORO,并且RO是氢)。在某些实施例中,具有化学式(VII)的化合物具有化学式(VII-OH):
或是其盐。
在某些实施例中,D是通过点击化学获得的一个部分(例如,三唑)。在某些实施例中,具有化学式(VII)的化合物具有化学式(VII-a-1)或(VII-a-2):
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或其盐,其中
s是0、1、2、3、4、5、6、7、8、9或10。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,D是在生理条件下可裂解的部分(例如,酯、酰胺、碳酸酯、氨基甲酸酯、脲)。在某些实施例中,具有化学式(VII)的化合物具有化学式(VII-b-1)或(VII-b-2):
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有化学式(VII-b-1-OH)或(VII-b-2-OH):
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或是其盐。
在某些实施例中,具有化学式(VII)的化合物具有以下化学式之一:
或其盐。
在某些实施例中,在本发明中有用的PEG脂质是PEG化脂肪酸。在某些实施例中,在本发明中有用的PEG脂质是具有化学式(VIII)的化合物。本文提供了具有化学式(VIII)的化合物:
或其盐,其中:
R3是–ORO
RO是氢、任选取代的烷基或氧保护基团;
r是1和100之间的整数(包括端值);
R5是任选取代的C10-40烷基、任选取代的C10-40烯基或任选取代的C10-40炔基;并且任选地R5的一个或多个亚甲基基团被任选取代的亚碳环基、任选取代的亚杂环基、任选取代的亚芳基、任选取代的杂亚芳基、N(RN)、O、S、C(O)、C(O)N(RN)、NRNC(O)、NRNC(O)N(RN)、C(O)O、OC(O)、OC(O)O、OC(O)N(RN)、NRNC(O)O、C(O)S、SC(O)、C(=NRN)、C(=NRN)N(RN)、NRNC(=NRN)、NRNC(=NRN)N(RN)、C(S)、C(S)N(RN)、NRNC(S)、NRNC(S)N(RN)、S(O)、OS(O)、S(O)O、OS(O)O、OS(O)2、S(O)2O、OS(O)2O、N(RN)S(O)、S(O)N(RN)、N(RN)S(O)N(RN)、OS(O)N(RN)、N(RN)S(O)O、S(O)2、N(RN)S(O)2、S(O)2N(RN)、N(RN)S(O)2N(RN)、OS(O)2N(RN)或N(RN)S(O)2O替代;并且
RN的每个情况独立地是氢、任选取代的烷基或氮保护基团。
在某些实施例中,具有化学式(VIII)的化合物具有化学式(VIII-OH):
或是其盐。在一些实施例中,r是45。
在某些实施例中,具有化学式(VIII)的化合物具有以下化学式之一:
或是其盐。在一些实施例中,r是45。
在又其他实施例中,具有化学式(VIII)的化合物是:
或是其盐。
在一个实施例中,具有化学式(VIII)的化合物是
在一个实施例中,本文披露的药物组合物的脂质组合物中PEG-脂质的量范围为约0.1mol%至约5mol%、约0.5mol%至约5mol%、约1mol%至约5mol%、约1.5mol%至约5mol%、约2mol%至约5mol%mol%、约0.1mol%至约4mol%、约0.5mol%至约4mol%、约1mol%至约4mol%、约1.5mol%至约4mol%、约2mol%至约4mol%、约0.1mol%至约3mol%、约0.5mol%至约3mol%、约1mol%至约3mol%、约1.5mol%至约3mol%、约2mol%至约3mol%、约0.1mol%至约2mol%、约0.5mol%至约2mol%、约1mol%至约2mol%、约1.5mol%至约2mol%、约0.1mol%至约1.5mol%、约0.5mol%至约1.5mol%或约1mol%至约1.5mol%。
在一个实施例中,本文披露的脂质组合物中PEG-脂质的量为约2mol%。在一个实施例中,本文披露的脂质组合物中PEG-脂质的量为约1.5mol%。
在一个实施例中,本文披露的脂质组合物中PEG-脂质的量为至少约0.1mol%、0.2mol%、0.3mol%、0.4mol%、0.5mol%、0.6mol%、0.7mol%、0.8mol%、0.9mol%、1mol%、1.1mol%、1.2mol%、1.3mol%、1.4mol%、1.5mol%、1.6mol%、1.7mol%、1.8mol%、1.9mol%、2mol%、2.1mol%、2.2mol%、2.3mol%、2.4mol%、2.5mol%、2.6mol%、2.7mol%、2.8mol%、2.9mol%、3mol%、3.1mol%、3.2mol%、3.3mol%、3.4mol%、3.5mol%、3.6mol%、3.7mol%、3.8mol%、3.9mol%、4mol%、4.1mol%、4.2mol%、4.3mol%、4.4mol%、4.5mol%、4.6mol%、4.7mol%、4.8mol%、4.9mol%或5mol%。
在一些方面,本文披露的药物组合物的脂质组合物不包含PEG-脂质。
(iv)其他可电离的氨基脂质
除了根据化学式(I)、(III)、(IV)、(V)或(VI)的脂质之外,本文披露的药物组合物的脂质组合物还可包含一种或多种可电离的氨基脂质。
可电离脂质可选自以下非限制性的组,该组由以下组成:3-(二十二烷基氨基)-N1,N1,4-三十二烷基-1-哌嗪乙胺(KL10)、N1-[2-(二十二烷基氨基)乙基]-N1,N4,N4-三十二烷基-1,4-哌嗪二乙胺(KL22)、14,25-二十三烷基-15,18,21,24-四氮杂-三十八烷(KL25)、1,2-二亚油烯基氧基-N,N-二甲基氨基丙烷(DLin-DMA)、2,2-二亚油烯基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)、三十七烷-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯(DLin-MC3-DMA)、2,2-二亚油烯基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLin-KC2-DMA)、1,2-二油烯基氧基-N,N-二甲基氨基丙烷(DODMA)、(13Z,165Z)-N,N-二甲基-3-壬基二十二烷-13-16-二烯-1-胺(L608)、2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA)、(2R)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2R))和(2S)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2S))。除此之外,可电离的氨基脂质也可以是包括环胺基的脂质。
可电离脂质也可以是国际公开号WO 2017/075531 A1(通过引用以其全部内容特此并入)中披露的化合物。例如,可电离的氨基脂质包括但不限于:
及其任何组合。
可电离脂质也可以是国际披露号WO 2015/199952 A1(通过引用以其全部内容特此并入)中披露的化合物。例如,可电离的氨基脂质包括但不限于:
及其任何组合。
(v)其他脂质组合物组分
除了上述那些之外,本文披露的药物组合物的脂质组合物还可包括一种或多种组分。例如,该脂质组合物可包括一种或多种渗透性增强剂分子、碳水化合物、聚合物、表面改变剂(例如,表面活性剂)或其他组分。例如,渗透性增强剂分子可以是美国专利申请公开号2005/0222064描述的分子。碳水化合物可包括单糖(例如,葡萄糖)和多糖(例如,糖原及其衍生物和类似物)。
可包括聚合物和/或将其用于包封或部分包封本文披露的药物组合物(例如,脂质纳米粒子形式的药物组合物)。聚合物可以是可生物降解的和/或生物相容的。聚合物可选自但不限于多胺、聚醚、聚酰胺、聚酯、聚氨基甲酸酯、聚脲、聚碳酸酯、聚苯乙烯、聚酰亚胺、聚砜、聚氨酯、聚乙炔、聚乙烯、聚乙烯亚胺、多异氰酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯腈和聚芳酯。
该脂质组合物和该多核苷酸之间的比例范围可以为约10:1至约60:1(wt/wt)。
在一些实施例中,该脂质组合物和该多核苷酸之间的比例范围可以为约10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1、20:1、21:1、22:1、23:1、24:1、25:1、26:1、27:1、28:1、29:1、30:1、31:1、32:1、33:1、34:1、35:1、36:1、37:1、38:1、39:1、40:1、41:1、42:1、43:1、44:1、45:1、46:1、47:1、48:1、49:1、50:1、51:1、52:1、53:1、54:1、55:1、56:1、57:1、58:1、59:1或60:1(wt/wt)。在一些实施例中,该脂质组合物与编码治疗剂的多核苷酸的wt/wt比为约20:1或约15:1。
在一个实施例中,本文所述的脂质纳米粒子可包含多核苷酸(例如,mRNA),脂质:多核苷酸重量比为5:1、10:1、15:1、20:1、25:1、30:1、35:1、40:1、45:1、50:1、55:1、60:1或70:1,或为以下范围或如下这些比率中任一个,如但不限于5:1至约10:1、约5:1至约15:1、约5:1至约20:1、约5:1至约25:1、约5:1至约30:1、约5:1至约35:1、约5:1至约40:1、约5:1至约45:1、约5:1至约50:1、约5:1至约55:1、约5:1至约60:1、约5:1至约70:1、约10:1至约15:1、约10:1至约20:1、约10:1至约25:1、约10:1至约30:1、约10:1至约35:1、约10:1至约40:1、约10:1至约45:1、约10:1至约50:1、约10:1至约55:1、约10:1至约60:1、约10:1至约70:1、约15:1至约20:1、约15:1至约25:1,从约15:1至约30:1、约15:1至约35:1、约15:1至约40:1、约15:1至约45:1、约15:1至约50:1、约15:1至约55:1、约15:1至约60:1或约15:1至约70:1。
在一个实施例中,本文所述的脂质纳米粒子可包含浓度如下的多核苷酸:大约0.1mg/ml至2mg/ml,诸如但不限于0.1mg/ml、0.2mg/ml、0.3mg/ml、0.4mg/ml、0.5mg/ml、0.6mg/ml、0.7mg/ml、0.8mg/ml、0.9mg/ml、1.0mg/ml、1.1mg/ml、1.2mg/ml、1.3mg/ml、1.4mg/ml、1.5mg/ml、1.6mg/ml、1.7mg/ml、1.8mg/ml、1.9mg/ml、2.0mg/ml或大于2.0mg/ml。
(vi)纳米粒子组合物
在一些实施例中,将本文披露的药物组合物配制为脂质纳米粒子(LNP)。因此,本披露还提供纳米粒子组合物,这些纳米粒子组合物包含(i)脂质组合物,其包含递送剂,诸如本文所述的具有化学式(I)或(III)的化合物,以及(ii)编码松弛素多肽的多核苷酸。在此类纳米粒子组合物中,本文披露的脂质组合物可包封编码松弛素多肽的多核苷酸。
纳米粒子组合物的尺寸量级通常为微米或更小,并且可包括脂质双层。纳米粒子组合物涵盖脂质纳米粒子(LNP)、脂质体(例如,脂质囊泡)和阳离子脂质体/DNA复合物。例如,纳米粒子组合物可以是具有直径为500nm或更小的脂质双层的脂质体。
纳米粒子组合物包括例如脂质纳米粒子(LNP)、脂质体和阳离子脂质体/DNA复合物。在一些实施例中,纳米粒子组合物是包括一个或多个脂质双层的囊泡。在某些实施例中,纳米粒子组合物包括由水性隔室分隔的两个或更多个同心双层。脂质双层可以被官能化和/或彼此交联。脂质双层可包括一种或多种配体、蛋白质或通道。
在一些实施例中,本披露的纳米粒子组合物包含至少一种根据化学式(I)、(III)、(IV)、(V)或(VI)的化合物。例如,纳米粒子组合物可包括化合物1-147中的一种或多种,或化合物1-342中的一种或多种。纳米粒子组合物还可包括多种其他组分。例如,除了根据化学式(I)、(III)、(IV)、(V)或(VI)的脂质之外,该纳米粒子组合物还可包括一种或多种其他脂质,如(i)至少一种磷脂,(ii)至少一种结构脂质,(iii)至少一种PEG-脂质,或(iv)其任何组合。结构脂质的纳入可以是任选的,例如当根据化学式III的脂质用于本发明的脂质纳米粒子组合物中时。
在一些实施例中,该纳米粒子组合物包含具有化学式(I)的化合物(例如,化合物18、25、26或48)。在一些实施例中,该纳米粒子组合物包含具有化学式(I)的化合物(例如,化合物18、25、26或48)和磷脂(例如,DSPC)。
在一些实施例中,该纳米粒子组合物包含具有化学式(III)的化合物(例如,化合物236)。在一些实施例中,该纳米粒子组合物包含具有化学式(III)的化合物(例如化合物236)和磷脂(例如,DOPE或DSPC)。
在一些实施例中,该纳米粒子组合物包含由具有化学式(I)的化合物(例如,化合物18、25、26或48)组成或基本上由其组成的脂质组合物。在一些实施例中,该纳米粒子组合物包含由具有化学式(I)的化合物(例如,化合物18、25、26或48)和磷脂(例如,DSPC)组成或基本上由其组成的脂质组合物。
在一些实施例中,该纳米粒子组合物包含由具有化学式(III)的化合物(例如,化合物236)组成或基本上由其组成的脂质组合物。在一些实施例中,该纳米粒子组合物包含由具有化学式(III)的化合物(例如,化合物236)和磷脂(例如,DOPE或DSPC)组成或基本上由其组成的脂质组合物。
在一个实施例中,脂质纳米粒子包含可电离脂质、结构脂质、磷脂和mRNA。在一些实施例中,该LNP包含可电离脂质、PEG-修饰的脂质、甾醇和结构脂质。在一些实施例中,该LNP具有约20%-60%摩尔比的可电离脂质:约5%-25%的结构脂质:约25%-55%摩尔比的甾醇;和约0.5%-15%摩尔比的PEG修饰的脂质。在一些实施例中,该LNP包含约50%摩尔比的可电离脂质、约1.5%摩尔比的PEG修饰脂质、约38.5%摩尔比的胆甾醇和约10%摩尔比的结构脂质。在一些实施例中,该LNP包含约55%摩尔比的可电离脂质、约2.5%摩尔比的PEG脂质、约32.5%摩尔比的胆甾醇和约10%摩尔比的结构脂质。在一些实施例中,可电离脂质是可电离脂质,并且结构脂质是中性脂质,并且甾醇是胆甾醇。在一些实施例中,该LNP具有摩尔比为50:38.5:10:1.5的可电离脂质:胆甾醇:DSPC:PEG脂质。在一些实施例中,该可电离脂质是化合物18或化合物236,并且PEG脂质是化合物428。
在一些实施例中,该LNP具有摩尔比为50:38.5:10:1.5的化合物18:磷脂:胆甾醇:化合物428。在一些实施例中,该LNP具有摩尔比为50:38.5:10:1.5的化合物18:DSPC:胆甾醇:化合物428。
在一些实施例中,该LNP具有摩尔比为50:38.5:10:1.5的化合物236:磷脂:胆甾醇:化合物428。在一些实施例中,该LNP具有摩尔比为50:38.5:10:1.5的化合物236:DSPC:胆甾醇:化合物428。
在一些实施例中,该LNP具有少于0.4的多分散性值。在一些实施例中,该LNP在中性pH下具有净中性电荷。在一些实施例中,该LNP的平均直径为50-150nm。在一些实施例中,该LNP的平均直径为80-100nm。
如本文一般定义,术语“脂质”是指具有疏水或两亲性质的小分子。脂质可以是天然存在的或合成的。脂类的实例包括但不限于脂肪、蜡、含甾醇的代谢物、维生素、脂肪酸、甘油脂、甘油磷脂、鞘脂、糖脂和聚酮化合物和异戊烯醇脂质。在一些情况下,一些脂质的两亲性质导致它们在水性介质中形成脂质体、囊泡或膜。
在一些实施例中,脂质纳米粒子(LNP)可包含可电离脂质。如本文所用,术语“可电离脂质”具有其在本领域中的普通含义,并且可以指包含一个或多个带电荷部分的脂质。在一些实施例中,可电离脂质可带正电或带负电。可电离脂质可带正电荷,在这种情况下,它可称为“阳离子脂质”。在某些实施例中,可电离脂质分子可包含胺基,并且可称为可电离的氨基脂质。如本文所用,“带电荷部分”是携带形式电子电荷(例如,单价(+1或-1)、二价(+2或-2)、三价(+3或-3)等)的化学部分。带电荷部分可以是阴离子(即带负电的)或阳离子(即带正电的)。带正电荷的部分的实例包括胺基(例如伯、仲和/或叔胺)、铵基、吡啶鎓基、胍基和咪唑鎓基。在一个具体实施例中,带电荷部分包含胺基基团。带负电荷的基团或其前体的实例包括羧酸酯基团、磺酸酯基团、硫酸酯基团、膦酸酯基团、磷酸酯基团、羟基基团等。在一些情况下,带电荷部分的电荷可以随环境条件而变化,例如,pH的变化可以改变该部分的电荷,和/或使该部分带电荷或不带电荷。通常,可以根据所希望的选择分子的电荷密度。
应当理解,术语“带电荷”或“带电荷部分”不是指分子上的“部分负电荷”或“部分正电荷”。术语“部分负电荷”和“部分正电荷”被给与其在本领域中的普通含义。当官能团包含被极化的键使得电子密度被拉向该键的一个原子,在该原子上产生部分负电荷时,可能导致“部分负电荷”。通常,本领域普通技术人员将识别能以这种方式变得极化的键。
在一些实施例中,可电离脂质是可电离的氨基脂质,在本领域中有时称为“可电离的阳离子脂质”。在一个实施例中,可电离的氨基脂质可具有通过接头结构连接的带正电荷的亲水头和疏水尾。
除此之外,可电离脂质也可以是包括环胺基的脂质。
在一个实施例中,可电离脂质可以选自但不限于国际公开号WO2013086354和WO2013116126中描述的可电离脂质;将其各自的内容通过引用以其全部内容并入本文。
在又另一个实施例中,可电离脂质可以选自但不限于美国专利号7,404,969的化学式CLI-CLXXXXII;将其各自通过引用以其全部内容并入本文。
在一个实施例中,脂质可以是可切割的脂质,如国际公开号WO2012170889(通过引用以其全部内容并入本文)中描述的那些。在一个实施例中,脂质可以通过本领域已知和/或国际公开号WO2013086354中所述的方法合成;将其各自的内容通过引用以其全部内容并入本文。
纳米粒子组合物可以通过多种方法表征。例如,显微镜(例如,透射电子显微镜或扫描电子显微镜)可用于检查纳米粒子组合物的形态和尺寸分布。动态光散射或电位滴定法(例如,电位滴定)可用于测量ζ电位。动态光散射也可用于确定粒径。仪器如ZetasizerNano ZS(莫尔文仪器有限公司(Malvern Instruments Ltd),莫尔文,伍斯特郡,英国)也可用于测量纳米粒子组合物的多种特征,如粒度、多分散指数和ζ电位。
在一些实施例中,该纳米粒子组合物包含由具有化学式(I)的化合物(例如,化合物18、25、26或48)组成或基本上由其组成的脂质组合物。在一些实施例中,该纳米粒子组合物包含由具有化学式(I)的化合物(例如,化合物18、25、26或48)和磷脂(例如,DSPC或MSPC)组成或基本上由其组成的脂质组合物。
纳米粒子组合物可以通过多种方法表征。例如,显微镜(例如,透射电子显微镜或扫描电子显微镜)可用于检查纳米粒子组合物的形态和尺寸分布。动态光散射或电位滴定法(例如,电位滴定)可用于测量ζ电位。动态光散射也可用于确定粒径。仪器如ZetasizerNano ZS(莫尔文仪器有限公司(Malvern Instruments Ltd),莫尔文,伍斯特郡,英国)也可用于测量纳米粒子组合物的多种特征,如粒度、多分散指数和ζ电位。
纳米粒子的尺寸可以帮助抵抗生物反应,如但不限于炎症,或者可以增加多核苷酸的生物学效应。
如本文所用,纳米粒子组合物背景下的“尺寸”或“平均尺寸”是指纳米粒子组合物的直径均值。
在一个实施例中,编码松弛素多肽的多核苷酸被配制在直径为约10至约100nm的脂质纳米粒子中,如但不限于约10至约20nm、约10至约30nm、约10至约40nm、约10至约50nm、约10至约60nm、约10至约70nm、约10至约80nm、约10至约90nm、约20至约30nm、约20至约40nm、约20至约50nm、约20至约60nm、约20至约70nm、约20至约80nm、约20至约90nm、约20至约100nm、约30至约40nm、约30至约50nm、约30至约60nm、约30至约70nm、约30至约80nm、约30至约90nm、约30至约100nm、约40至约50nm、约40至约60nm、约40至约70nm、约40至约80nm、约40至约90nm、约40至约100nm、约50至约60nm、约50至约70nm、约50至约80nm、约50至约90nm、约50至约100nm、约60至约70nm、约60至约80nm、约60至约90nm、约60至约100nm、约70至约80nm、约70至约90nm、约70至约100nm、约80至约90nm、约80至约100nm和/或约90至约100nm。
在一个实施例中,纳米粒子的直径为约10至500nm。在一个实施例中,纳米粒子的直径大于100nm、大于150nm、大于200nm、大于250nm、大于300nm、大于350nm、大于400nm、大于450nm、大于500nm、大于550nm、大于600nm、大于650nm、大于700nm、大于750nm、大于800nm、大于850nm、大于900nm、大于950nm或大于1000nm。
在一些实施例中,纳米粒子组合物的最大尺寸为1μm或更短(例如,1μm、900nm、800nm、700nm、600nm、500nm、400nm、300nm、200nm、175nm、150nm、125nm、100nm、75nm、50nm或更短)。
纳米粒子组合物可以是相对均匀的。多分散指数可用于指示纳米粒子组合物的均匀性,例如纳米粒子组合物的粒度分布。小的(例如,小于0.3)多分散指数通常指示窄的粒度分布。纳米粒子组合物可具有约0至约0.25的多分散指数,如0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24或0.25。在一些实施例中,本文披露的纳米粒子组合物的多分散指数可为约0.10至约0.20。
纳米粒子组合物的ζ电位可用于指示组合物的动电学电位。例如,ζ电位可以描述纳米粒子组合物的表面电荷。通常理想的是具有相对低电荷(正或负)的纳米粒子组合物,因为更高电荷的物质可能与体内的细胞、组织和其他元素不希望地相互作用。在一些实施例中,本文披露的纳米粒子组合物的ζ电位可为约-10mV至约+20mV、约-10mV至约+15mV、约10mV至约+10mV、约-10mV至约+5mV、约-10mV至约0mV、约-10mV至约-5mV、约-5mV至约+20mV、约-5mV至约+15mV、约-5mV至约+10mV、约-5mV至约+5mV、约-5mV至约0mV、约0mV至约+20mV、约0mV至约+15mV、约0mV至约+10mV、约0mV至约+5mV、约+5mV至约+20mV、约+5mV至约+15mV或约+5mV至约+10mV。
在一些实施例中,该脂质纳米粒子的ζ电位可为约0mV至约100mV、约0mV至约90mV、约0mV至约80mV、约0mV至约70mV、约0mV至约60mV、约0mV至约50mV、约0mV至约40mV、约0mV至约30mV、约0mV至约20mV、约0mV至约10mV、约10mV至约100mV、约10mV至约90mV、约10mV至约80mV、约10mV至约70mV、约10mV至约60mV、约10mV至约50mV、约10mV至约40mV、约10mV至约30mV、约10mV至约20mV、约20mV至约100mV、约20mV至约90mV、约20mV至约80mV、约20mV至约70mV、约20mV至约60mV、约20mV至约50mV、约20mV至约40mV、约20mV至约30mV、约30mV至约100mV、约30mV至约90mV、约30mV至约80mV、约30mV至约70mV、约30mV至约60mV、约30mV至约50mV、约30mV至约40mV、约40mV至约100mV、约40mV至约90mV、约40mV至约80mV、约40mV至约70mV、约40mV至约60mV和约40mV至约50mV。在一些实施例中,该脂质纳米粒子的ζ电位可为约10mV至约50mV、约15mV至约45mV、约20mV至约40mV和约25mV至约35mV。在一些实施例中,该脂质纳米粒子的ζ电位可为约10mV、约20mV、约30mV、约40mV、约50mV、约60mV、约70mV、约80mV、约90mV和约100mV。
术语多核苷酸的“包封效率”描述了相对于提供的初始量,制备后纳米粒子组合物包封或以其他方式与纳米粒子组合物相关联的多核苷酸的量。如本文所用,“包封”可以指完全、实质性或部分围合、限制、包围或包裹。
包封效率理想地较高(例如,接近100%)。例如,可以通过比较在用一种或多种有机溶剂或洗涤剂破碎纳米粒子组合物之前和之后含有纳米粒子组合物的溶液中的多核苷酸的量来测量包封效率。
荧光可用于测量溶液中游离多核苷酸的量。对于本文所述的纳米粒子组合物,多核苷酸的包封效率可为至少50%,例如50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。在一些实施例中,包封效率可为至少80%。在某些实施例中,包封效率可为至少90%。
本文披露的药物组合物中存在的多核苷酸的量可取决于多种因素,如多核苷酸的尺寸、所希望的靶标和/或应用或纳米粒子组合物的其他性质以及多核苷酸的性质。
例如,可用于纳米粒子组合物的mRNA的量可取决于mRNA的尺寸(表示为长度或分子量)、序列和其他特征。纳米粒子组合物中多核苷酸的相对量也可以变化。
可以根据功效和耐受性的考虑来优化存在于本披露的脂质纳米粒子组合物中的脂质组合物和多核苷酸的相对量。对于包括mRNA作为多核苷酸的组合物,N:P比可以充当有用的度量。
由于纳米粒子组合物的N:P比控制表达和耐受性,因此理想的是具有低N:P比和强表达的纳米粒子组合物。N:P比根据纳米粒子组合物中脂质与RNA的比例而变化。
通常,较低的N:P比是优选的。可以选择一种或多种RNA、脂质及其量来提供约2:1至约30:1的N:P比,如2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、12:1、14:1、16:1、18:1、20:1、22:1、24:1、26:1、28:1或30:1。在某些实施例中,该N:P比可为约2:1至约8:1。在其他实施例中,该N:P比为约5:1至约8:1。在某些实施例中,该N:P比为5:1至6:1。在一个具体方面,该N:P比为约5.67:1。
除了提供纳米粒子组合物之外,本披露还提供了生产包含包封多核苷酸的脂质纳米粒子的方法。此类方法包括使用本文披露的任何药物组合物并根据本领域已知的脂质纳米粒子的生产方法来生产脂质纳米粒子。参见例如,Wang等人(2015)“Delivery ofoligonucleotides with lipid nanoparticles[用脂质纳米粒子递送寡核苷酸]”Adv.Drug Deliv.Rev.[先进药物递送评论]87:68-80;Silva等人(2015)“DeliverySystems for Biopharmaceuticals.Part I:Nanoparticles and Microparticles[生物药物递送系统.第一部分:纳米粒子和微粒]”Curr.Pharm.Technol.[当今制药技术]16:940-954;Naseri等人(2015)“Solid Lipid Nanoparticles and Nanostructured LipidCarriers:Structure,Preparation and Application[固体脂质纳米粒子和纳米结构化脂质载体:结构,制备和应用]”Adv.Pharm.Bull.[先进制药公告]5:305-13;Silva等人(2015)“Lipid nanoparticles for the delivery of biopharmaceuticals[用于提供生物药物的脂质纳米粒子]”Curr.Pharm.Biotechnol.[当今制药生物技术]16:291-302以及其中引用的参考文献。
其他递送剂
a.脂质体、阳离子脂质体/DNA复合物和脂质纳米粒子
在一些实施例中,本披露的组合物或配制品包含递送剂,例如脂质体、脂质复合物、脂质纳米粒子或其任何组合。可以使用一种或多种脂质体、阳离子脂质体/DNA复合物或脂质纳米粒子配制本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸)。脂质体、阳离子脂质体/DNA复合物或脂质纳米粒子可用于改善多核苷酸定向蛋白质产生的功效,因为这些配制品可增加多核苷酸的细胞转染;和/或增加编码的蛋白质的翻译。脂质体、阳离子脂质体/DNA复合物或脂质纳米粒子也可用于增加多核苷酸的稳定性。
脂质体是人工制备的囊泡,其主要可以由脂质双层组成,并且可以用作给予药物配制品的递送运载体。脂质体可以具有不同的尺寸。多层囊泡(MLV)的直径可以是几百纳米,并且可以含有由窄水性隔室分隔的一系列同心双层。小的单细胞囊泡(SUV)的直径可以小于50nm,并且大的单层囊泡(LUV)的直径可以在50和500nm之间。脂质体设计可以包括但不限于调理素或配体,以改善脂质体与不健康组织的连接或以便激活事件,例如但不限于胞吞。为了改善药物配制品的递送,脂质体可以含有低或高pH值。
脂质体的形成可取决于截留的药物配制品和脂质体成分、脂质囊泡分散于其中的介质的性质、截留物质的有效浓度及其潜在的毒性、在囊泡的应用和/或递送期间涉及的任何其他过程、囊泡用于预期应用的最佳尺寸、多分散性和保质期和安全有效的脂质体产品的批次间重复性和放大生产等。
作为非限制性实例,脂质体如合成膜囊泡可以通过美国公开号US20130177638、US20130177637、US20130177636、US20130177635、US20130177634、US20130177633、US20130183375、US20130183373和US20130183372中描述的方法、设备和装置制备。在一些实施例中,本文所述的多核苷酸可以被脂质体包封和/或它可以含在水性核心中,然后可以被脂质体包封,如例如在国际公开号WO2012031046、WO2012031043、WO2012030901、WO2012006378和WO2013086526和美国公开号US20130189351、US20130195969和US20130202684中描述的。将这些参考文献中的每一个通过引用以其全部内容并入本文。
在一些实施例中,本文所述的多核苷酸可以配制在阳离子水包油乳液中,其中该乳液粒子包含油核和可以与多核苷酸相互作用将该分子锚定在乳液粒子上的阳离子脂质。在一些实施例中,本文所述的多核苷酸可以配制在油包水乳液中,该油包水乳液包含连续疏水相,亲水相分散于其中。示例性乳液可以通过国际公开号WO2012006380和WO201087791中描述的方法制备,将其通过各自引用以其全部内容并入本文。
在一些实施例中,本文描述的多核苷酸可以配制在脂质-聚阳离子复合物中。脂质-聚阳离子复合物的形成可以通过例如美国公开号US20120178702中所述的方法完成。作为非限制性实例,聚阳离子可包括阳离子肽或多肽,如但不限于聚赖氨酸、聚鸟氨酸和/或聚精氨酸,以及国际公开号WO2012013326或美国公开号US20130142818中所述的阳离子肽。将这些参考文献中的每一个通过引用以其全部内容并入本文。
在一些实施例中,本文所述的多核苷酸可以配制在脂质纳米粒子(LNP)中,如国际公开号WO2013123523、WO2012170930、WO2011127255和WO2008103276以及美国公开号US20130171646所述的那些,将其各自通过引用以其全部内容并入本文。
脂质纳米粒子配制品通常包含一种或多种脂质。在一些实施例中,该脂质是阳离子或可电离脂质。在一些实施例中,脂质纳米粒子配制品进一步包含其他组分,包括磷脂、结构脂质、季胺化合物和能够减少粒子聚集的分子,例如PEG或PEG修饰的脂质。
阳离子和可电离脂质可包括例如国际公开号WO2015199952、WO 2015130584、WO2015011633和WO2012040184WO2013126803、WO2011153120、WO2011149733、WO2011090965、WO2011043913、WO2011022460、WO2012061259、WO2012054365、WO2012044638、WO2010080724、WO201021865、WO2008103276和WO2013086373;美国专利号7,893,302、7,404,969、8,283,333和8,466,122;以及美国公开号US20110224447、US20120295832、US20150315112、US20100036115、US20120202871、US20130064894、US20130129785、US20130150625、US20130178541、US20130123338和US20130225836所述的那些,将其各自通过引用以其全部内容并入本文。在一些实施例中,该脂质组合物中阳离子和可电离脂质的量为约0.01mol%至约99mol%。
示例性可电离脂质包括但不限于本文披露的化合物1-147中任一项、DLin-MC3-DMA(MC3)、DLin-DMA、DLenDMA、DLin-D-DMA、DLin-K-DMA、DLin-M-C2-DMA、DLin-K-DMA、DLin-KC2-DMA、DLin-KC3-DMA、DLin-KC4-DMA、DLin-C2K-DMA、DLin-MP-DMA、DODMA、98N12-5、C12-200、DLin-C-DAP、DLin-DAC、DLinDAP、DLinAP、DLin-EG-DMA、DLin-2-DMAP、KL10、KL22、KL25、辛基-CLinDMA、辛基-CLinDMA(2R)、辛基-CLinDMA(2S)及其任何组合。其他示例性可电离脂质包括(13Z,16Z)-N,N-二甲基-3-壬基二十二烷-13,16-二烯-1-胺(L608)、(20Z,23Z)-N,N-二甲基二十九烷-20,23-二烯-10-胺、(17Z,20Z)-N,N-二甲基二十六烷-17,20-二烯-9-胺、(16Z,19Z)-N5N-二甲基二十五烷-16,19-二烯-8-胺、(13Z,16Z)-N,N-二甲基二十二烷-13,16-二烯-5-胺、(12Z,15Z)-N,N-二甲基二十一烷-12,15-二烯-4-胺、(14Z,17Z)-N,N-二甲基二十三烷-14,17-二烯-6-胺、(15Z,18Z)-N,N-二甲基二十四烷-15,18-二烯-7-胺、(18Z,21Z)-N,N-二甲基二十七烷-18,21-二烯-10-胺、(15Z,18Z)-N,N-二甲基二十四烷-15,18-二烯-5-胺、(14Z,17Z)-N,N-二甲基二十三烷-14,17-二烯-4-胺、(19Z,22Z)-N,N-二甲基二十八烷-19,22-二烯-9-胺、(18Z,21Z)-N,N-二甲基二十七烷-18,21-二烯-8-胺、(17Z,20Z)-N,N-二甲基二十六烷-17,20-二烯-7-胺、(16Z,19Z)-N,N-二甲基二十五烷-16,19-二烯-6-胺、(22Z,25Z)-N,N-二甲基三十一烷-22,25-二烯-10-胺、(21Z,24Z)-N,N-二甲基三十烷-21,24-二烯-9-胺、(18Z)-N,N-二甲基二十七烷-18-烯-10-胺、(17Z)-N,N-二甲基二十六烷-17-烯-9-胺、(19Z,22Z)-N,N-二甲基二十八烷-19,22-二烯-7-胺、Ν,Ν-二甲基二十七烷-10-胺、(20Z,23Z)-N-乙基-N-甲基二十九烷-20,23-二烯-10-胺、1-[(11Z,14Z)-l-壬基二十烷-11,14-二烯-l-基]吡咯烷、(20Z)-N,N-二甲基二十七烷-20-烯-10-胺、(15Z)-N,N-二甲基二十七烷-15-烯-10-胺、(14Z)-N,N-二甲基二十九烷-14-烯-10-胺、(17Z)-N,N-二甲基二十九烷-17-烯-10-胺、(24Z)-N,N-二甲基三十三烷-24-烯-10-胺、(20Z)-N,N-二甲基二十九烷-20-烯-10-胺、(22Z)-N,N-二甲基三十一烷-22-烯-10-胺、(16Z)-N,N-二甲基二十五烷-16-烯-8-胺、(12Z,15Z)-N,N-二甲基-2-壬基二十一烷-12,15-二烯-1-胺、N,N-二甲基-l-[(lS,2R)-2-辛基环丙基]十七烷-8-胺、l-[(1S,2R)-2-己基环丙基]-N,N-二甲基十九烷-10-胺、N,N-二甲基-1-[(1S,2R)-2-辛基环丙基]十九烷-10-胺、N,N-二甲基-21-[(1S,2R)-2-辛基环丙基]二十一烷-10-胺、N,N-二甲基-l-[(lS,2S)-2-{[(1R,2R)-2-戊基环丙基]甲基}环丙基]十九烷-10-胺、N,N-二甲基-l-[(1S,2R)-2-辛基环丙基]十六烷-8-胺、N,N-二甲基-[(lR,2S)-2-十一烷环丙基]十四烷-5-胺、N,N-二甲基-3-{7-[(lS,2R)-2-辛基环丙基]庚基}十二烷-1-胺、1-[(1R,2S)-2-庚基环丙基]-N,N-二甲基十八烷-9-胺、1-[(1S,2R)-2-癸基环丙基]-N,N-二甲基十五烷-6-胺、N,N-二甲基-l-[(lS,2R)-2-辛基环丙基]十五烷-8-胺、R-N,N-二甲基-1-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]-3-(辛基氧基)丙-2-胺、S-N,N-二甲基-1-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]-3-(辛基氧基)丙-2-胺、1-{2-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]-1-[(辛基氧基)甲基]乙基}吡咯烷、(2S)-Ν,Ν-二甲基-1-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]-3-[(5Z)-辛-5-烯-1-基氧基]丙-2-胺、1-{2-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]-1-[(辛基氧基)甲基]乙基}氮杂环丁烷、(2S)-1-(己基氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-2-胺、(2S)-1-(庚基氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-2-胺、Ν,Ν-二甲基-1-(壬基氧基)-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-2-胺、Ν,Ν-二甲基-1-[(9Z)-十八烷-9-烯-l-基氧基]-3-(辛基氧基)丙-2-胺;(2S)-N,N-二甲基-l-[(6Z,9Z,12Z)-十八烷-6,9,12-三烯-l-基氧基]-3-(辛基氧基)丙-2-胺、(2S)-1-[(11Z,14Z)-二十烷-11,14-二烯-1-基氧基]-N,N-二甲基-3-(戊基氧基)丙-2-胺、(2S)-1-(己基氧基)-3-[(11Z,14Z)-二十烷-11,14-二烯-l-基氧基]-N,N-二甲基丙-2-胺、1-[(11Z,14Z)-二十烷-11,14-二烯-l-基氧基]-N,N-二甲基-3-(辛基氧基)丙-2-胺、1-[(13Z,16Z)-二十二烷-13,16-二烯-l-基氧基]-N,N-二甲基-3-(辛基氧基)丙-2-胺、(2S)-1-[(13Z、16Z)-二十二烷-13,16-二烯-1-基氧基]-3-(己基氧基)-N,N-二甲基丙-2-胺、(2S)-1-[(13Z)-二十二烷-13-烯-1-基氧基]-3-(己基氧基)-N,N-二甲基丙-2-胺、1-[(13Z)-二十二烷-13-烯-1-基氧基]-N,N-二甲基-3-(辛基氧基)丙-2-胺、1-[(9Z)-十六烷-9-烯-1-基氧基]-N,N-二甲基-3-(辛基氧基)丙-2-胺、(2R)-N,N-二甲基-H(1-甲基辛基)氧基]-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-2-胺、(2R)-1-[(3,7-二甲基辛基)氧基]-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-l-基氧基]丙-2-胺、Ν,Ν-二甲基-1-(辛基氧基)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-戊基环丙基]甲基}环丙基]辛基}氧基)丙-2-胺、Ν,Ν-二甲基-1-{[8-(2-辛基环丙基)辛基]氧基}-3-(辛基氧基)丙-2-胺和(11E,20Z,23Z)-N,N-二甲基二十九烷-11,20,2-三烯-10-胺及其任何组合。
磷脂包括但不限于甘油磷脂,如磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂甘油和磷脂酸。磷脂还包括磷酸鞘脂,如鞘磷脂。在一些实施例中,该磷脂是DLPC、DMPC、DOPC、DPPC、DSPC、DUPC、DUPC、18:0二醚PC、DLnPC、DAPC、DHAPC、DOPE、4ME 16:0PE、DSPE、DLPE,DLnPE、DAPE、DHAPE、DOPG及其任何组合。在一些实施例中,该磷脂是MPPC、MSPC、PMPC、PSPC、SMPC、SPPC、DHAPE、DOPG及其任何组合。在一些实施例中,该脂质组合物中磷脂(例如,DSPC)的量为约1mol%至约20mol%。
该结构脂质包括甾醇和含有甾醇部分的脂质。在一些实施例中,该结构脂质包括胆甾醇、粪甾醇、谷甾醇、麦角甾醇、菜油甾醇、豆甾醇、菜籽甾醇、番茄碱、番茄苷、熊果酸、α-生育酚、及其混合物。在一些实施例中,该结构脂质是胆甾醇。在一些实施例中,该脂质组合物中结构脂质(例如,胆甾醇)的量为约20mol%至约60mol%。
PEG修饰的脂质包括PEG-修饰的磷脂酰乙醇胺和磷脂酸、PEG-神经酰胺缀合物(例如,PEG-CerC14或PEG-CerC20)、PEG-修饰的二烷基胺和PEG-修饰的1,2-二酰氧基丙-3-胺。这种脂质也称为PEG化脂质。例如,PEG脂质可以是PEG-c-DOMG、PEG-DMG、PEG-DLPE、PEG-DMPE、PEG-DPPC或PEG-DSPE脂质。在一些实施例中,该PEG-脂质是1,2-二肉豆蔻酰基-sn-甘油甲氧基聚乙烯乙二醇(PEG-DMG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙烯乙二醇)](PEG-DSPE)、PEG-二甾基甘油(PEG-DSG)、PEG-二棕榈酰基、PEG-二油烯基、PEG-二硬脂酰基、PEG-二酰基甘氨酰胺(PEG-DAG)、PEG-二棕榈酰基磷脂酰乙醇胺(PEG-DPPE)或PEG-l,2-二肉豆蔻基氧基丙基-3-胺(PEG-c-DMA)。在一些实施例中,该PEG部分的大小为约1000、2000、5000、10,000、15,000或20,000道尔顿。在一些实施例中,该脂质组合物中PEG-脂质的量为约0.1mol%至约5mol%。
在一些实施例中,本文所述的LNP配制品可另外包含通透性增强剂分子。非限制性通透性增强剂分子描述于美国公开号US20050222064(通过引用以其全部内容并入本文)中。
该LNP配制品可进一步含有磷酸酯缀合物。磷酸酯缀合物可以增加体内循环时间和/或增加纳米粒子的靶向递送。磷酸酯缀合物可以通过例如国际公开号WO2013033438或美国公开号US20130196948所述的方法制备。LNP配制品还可含有聚合物缀合物(例如,水溶性缀合物),如例如美国公开号US20130059360、US20130196948和US20130072709所述的。将这些参考文献中的每一个通过引用以其全部内容并入本文。
LNP配制品可包含缀合物以增强受试者中本发明的纳米粒子的递送。此外,缀合物可以抑制受试者中纳米粒子的吞噬清除。在一些实施例中,该缀合物可以是由人膜蛋白CD47设计的“自身”肽(例如,Rodriguez等人,Science[科学]2013339,971-975描述的“自身”粒子,通过引用以其全部内容并入本文)。如Rodriguez等人所示,该自身肽延迟了巨噬细胞介导的纳米粒子的清除,这增强了纳米粒子的递送。
LNP配制品可包含碳水化合物载体。作为非限制性实例,碳水化合物载体可包括但不限于酸酐修饰的植物糖原或糖原型物质、植物糖原辛烯基琥珀酸酯、植物糖原β-糊精、酸酐修饰的植物糖原β-糊精(例如,国际公开号WO2012109121,通过引用以其全部内容并入本文)。
可以用表面活性剂或聚合物涂覆LNP配制品以改善粒子的递送。在一些实施例中,LNP可以涂覆有亲水涂层,如但不限于PEG涂层和/或具有中性表面电荷的涂层,如美国公开号US20130183244(通过引用以其全部内容并入本文)中所述的。
可以工程化LNP配制品以改变粒子的表面性质,使得该脂质纳米粒子可以穿透粘膜屏障,如美国专利号8,241,670或国际公开号WO2013110028所述,将其各自通过引用以其全部内容并入本文。
工程化用于穿透粘液的LNP可包含聚合物材料(即聚合物核心)和/或聚合物-维生素缀合物和/或三嵌段共聚物。聚合物材料可包括但不限于多胺、聚醚、聚酰胺、聚酯、聚氨基甲酸酯、聚脲、聚碳酸酯、聚(苯乙烯)、聚酰亚胺、聚砜、聚氨酯、聚乙炔、聚乙烯、聚乙烯亚胺、多异氰酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯腈和聚芳酯。
工程化用于穿透粘液的LNP还可以包括表面改变剂,如但不限于多核苷酸、阴离子蛋白质(例如,牛血清白蛋白)、表面活性剂(例如,阳离子表面活性剂,如例如二甲基二十八烷基溴化铵)、糖或糖衍生物(例如,环糊精)、核酸、聚合物(例如,肝素、聚乙二醇和泊洛沙姆)、粘液溶解剂(例如,N-乙酰半胱氨酸、艾蒿、菠萝蛋白酶、木瓜蛋白酶、臭牡丹、乙酰半胱氨酸、溴己新、羧甲司坦、依普拉酮、美司钠、氨溴索、索布瑞醇、多米奥醇、来托司坦、司替罗宁、硫普罗宁、凝胶溶素、胸腺素β4链道酶α、奈替克新、厄多司坦)和各种DNA酶(包括rhDNA酶)。
在一些实施例中,穿透粘液的LNP可以是包含粘膜渗透增强涂层的低渗配制品。该配制品对于其正要递送的上皮细胞可以是低渗的。低渗配制品的非限制性实例可以在例如国际公开号WO2013110028(通过引用以其全部内容并入本文)中找到。
在一些实施例中,本文描述的多核苷酸被配制为阳离子脂质体/DNA复合物,如但不限于ATUPLEXTM系统、DACC系统、DBTC系统和来自静默治疗公司(Silence Therapeutics)(伦敦,英国)的其他siRNA-阳离子脂质体/DNA复合物技术、来自(马萨诸塞州剑桥)的STEMFECTTM以及聚乙烯亚胺(PEI)或基于鱼精蛋白的靶向和非靶向核酸递送(Aleku等人Cancer Res.[癌症研究]200868:9788-9798;Strumberg等人Int J ClinPharmacol Ther[国际临床药理学和治疗学杂志]201250:76-78;Santel等人,Gene Ther[基因疗法]200613:1222-1234;Santel等人,Gene Ther[基因疗法]2006 13:1360-1370;Gutbier等人,Pulm Pharmacol.Ther.[肺药理学和治疗学]201023:334-344;Kaufmann等人Microvasc Res[微血管研究]2010 80:286-293;Weide等人J Immunother.[免疫疗法杂志]2009 32:498-507;Weide等人J Immunother.[免疫疗法杂志]2008 31:180-188;PascoloExpert Opin.Biol.Ther.[生物疗法的专家意见]4:1285-1294;Fotin-Mleczek等人,2011J.Immunother.[免疫疗法杂志]34:1-15;Song等人,Nature Biotechnol.[自然生物技术]2005,23:709-717;Peer等人,Proc Natl Acad Sci U S A.[美国国家科学院院刊]20076;104:4095-4100;deFougerolles Hum Gene Ther.[人类基因治疗]200819:125-132;将其全部通过引用以其全部内容并入本文。
在一些实施例中,将本文所述的多核苷酸配制为固体脂质纳米粒子(SLN),其可以是平均直径为10至1000nm之间的球形。SLN具有可溶解亲脂性分子并可用表面活性剂和/或乳化剂稳定的固体脂质核心基质。示例性SLN可以是如国际公开号WO2013105101(通过引用以其全部内容并入本文)中所述的那些。
在一些实施例中,可以配制本文所述的多核苷酸用于控释和/或靶向递送。如本文所用,“控制释放”是指符合特定释放模式以实现治疗结果的药物组合物或化合物释放曲线。在一个实施例中,多核苷酸可以包封在本文所述和/或本领域已知的递送剂中用于控制释放和/或靶向递送。如本文所用,术语“包封”意指围合、包围或包裹。当涉及本发明的化合物的配制品时,包封可以是实质性的、完全的或部分的。术语“实质性包封”意指本发明的药物组合物或化合物的至少大于50%、60%、70%、80%、85%、90%、95%、96%、97%、98%、99%、99.9%、99.9%或大于99.999%可以被围合、包围或包裹在递送剂内。“部分包封”意指本发明的药物组合物或化合物的少于10%、10%、20%、30%、40%50%或更少可以被围合、包围或包裹在递送剂内。
有利地,可以通过使用荧光和/或电子显微照片测量本发明的药物组合物或化合物的逃逸或活性来确定包封。例如,本发明的药物组合物或化合物的至少1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、96%、97%、98%、99%、99.9%、99.99%或大于99.99%被包封在递送剂内。
在一些实施例中,多核苷酸控制释放配制品可包括至少一种控释包衣(例如,EUDRAGITEUDRAGIT和纤维素衍生物,如乙基纤维素水性分散体())。在一些实施例中,多核苷酸控制释放配制品可以包含如美国公开号US20130130348所述的聚合物系统或如美国专利号8,404,222所述的PEG和/或PEG相关聚合物衍生物,将其各自通过引用以其全部内容并入。
在一些实施例中,本文描述的多核苷酸可以包封在治疗性纳米粒子中,在本文中称为“治疗性纳米粒子多核苷酸”。治疗性纳米粒子可以通过例如国际公开号WO2010005740、WO2010030763、WO2010005721、WO2010005723和WO2012054923;和美国公开号US20110262491、US20100104645、US20100087337、US20100068285、US20110274759、US20100068286、US20120288541、US20120140790、US20130123351和US20130230567;以及美国公开号8,206,747、8,293,276、8,318,208和8,318,211所述的方法配制,将其各自通过引用以其全部内容并入本文。
在一些实施例中,可以配制治疗性纳米粒子多核苷酸用于持续释放。如本文所用,“持续释放”是指符合特定时间段内的释放速率的药物组合物或化合物。该时间段可包括但不限于数小时、数天、数周、数月和数年。作为非限制性实例,本文所述的多核苷酸的持续释放纳米粒子可以如国际公开号WO2010075072和美国专利号US20100216804、US20110217377、US20120201859和US20130150295所披露的配制,将其各自通过引用以其全部内容并入本文。
在一些实施例中,该治疗性纳米粒子多核苷酸可以配制成靶特异性的,如国际公开号WO2008121949、WO2010005726、WO2010005725、WO2011084521和WO2011084518以及美国公开号US20100069426、US20120004293和US20100104655所述的那些,将其各自通过引用以其全部内容并入本文。
可以使用微流体混合器或微混合器制备LNP。示例性微流体混合器可包括但不限于狭缝叉指式微混合器,包括但不限于由微英诺华公司(Microinnova)(维尔东附近阿勒莱利根,奥地利)制造的那些和/或交错人字形微混合器(SHM)(参见Zhigaltsev等人,“Bottom-up design and synthesis oflimit size lipid nanoparticle systems withaqueous and triglyceride cores using millisecond microfluidic mixing[使用毫秒微流体混合,自下而上设计和合成具有水性和甘油三酯核的极限尺寸脂质纳米粒子系统],”Langmuir[朗缪尔]28:3633-40(2012);Belliveau等人,“Microfluidic synthesisof highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA[微流体合成高效有限尺寸的脂质纳米粒,用于siRNA的体内传递],”Molecular Therapy-Nucleic Acids.[分子疗法-核酸]1:e37(2012);Chen等人,“Rapid discovery of potentsiRNA-containing lipid nanoparticles enabled by controlled microfluidicformulation[通过受控微流体配制品实现的有效含siRNA脂质纳米粒子的快速发现],”J.Am.Chem.Soc.[美国化学学会杂志]134(16):6948-51(2012);将其各自通过引用以其全部内容并入本文)。示例性微混合器包括狭缝叉指式微结构化混合器(SIMM-V2)或标准狭缝叉指式微混合器(SSIMM)或卡特彼勒(CPMM)或来自德国美因茨的美因茨理工学院有限公司(Institut für Mikrotechnik Mainz GmbH,Mainz Germany)的冲击射流器(IJMM)。在一些实施例中,使用SHM制备LNP的方法进一步包括混合至少两种输入流,其中通过微结构诱导的混沌平流(MICA)发生混合。根据该方法,流体流流过以人字形图案中存在的通道,引起旋转流动并使流体彼此叠合。该方法还可包括用于流体混合的表面,其中该表面在流体循环期间改变方向。使用SHM产生LNP的方法包括在美国公开号US20040262223和US20120276209中披露的那些,将其各自通过引用以其全部内容并入本文。
在一些实施例中,可使用微流体技术将本文所述的多核苷酸配制在脂质纳米粒子中(参见Whitesides,George M.,“The Origins and the Future of Microfluidics[微流体的起源和未来],”Nature[自然]442:368-373(2006);和Abraham等人,“Chaotic Mixerfor Microchannels[微通道混沌混频器],”Science[科学]295:647-651(2002);将其各自通过引用以其全部内容并入本文)。在一些实施例中,可以使用微混合器芯片将多核苷酸配制在脂质纳米粒子中,该微混合器芯片如但不限于来自哈佛仪器公司(HarvardApparatus)(马萨诸塞州霍利斯顿)或多洛迈特微流体公司(Dolomite Microfluidics)(罗伊斯顿,英国)的那些。微混合器芯片可用于通过分离和重组机制快速混合两种或更多种流体流。
在一些实施例中,本文所述的多核苷酸可以配制在如下的脂质纳米粒子中,直径为约1nm至约100nm,如但不限于约1nm至约20nm、约1nm至约30nm、约1nm至约40nm、约1nm至约50nm、约1nm至约60nm、约1nm至约70nm、约1nm至约80nm、约1nm至约90nm、约5nm至约从100nm、约5nm至约10nm、约5nm至约20nm、约5nm至约30nm、约5nm至约40nm、约5nm至约50nm、约5nm至约60nm、约5nm至约70nm、约5nm至约80nm、约5nm至约90nm、约10至约20nm、约10至约30nm、约10至约40nm、约10至约50nm、约10至约60nm、约10至约70nm、约10至约80nm、约10至约90nm、约20至约30nm、约20至约40nm、约20至约50nm、约20至约60nm、约20至约70nm、约20至约80nm、约20至约90nm、约20至约100nm、约30至约40nm、约30至约50nm、约30至约60nm、约30至约70nm、约30至约80nm、约30至约90nm、约30至约100nm、约40至约50nm、约40至约60nm、约40至约70nm、约40至约80nm、约40至约90nm、约40至约100nm、约50至约60nm、约50至约70nm约50至约80nm、约50至约90nm、约50至约100nm、约60至约70nm、约60至约80nm、约60至约90nm、约60至约100nm、约70至约80nm、约70至约90nm、约70至约100nm、约80至约90nm、约80至约100nm和/或约90至约100nm。
在一些实施例中,该脂质纳米粒子可具有约10至500nm的直径。在一个实施例中,脂质纳米粒子可具有大于100nm、大于150nm、大于200nm、大于250nm、大于300nm、大于350nm、大于400nm、大于450nm、大于500nm、大于550nm、大于600nm、大于650nm、大于700nm、大于750nm、大于800nm、大于850nm、大于900nm、大于950nm或大于1000nm的直径。
在一些实施例中,可以使用较小的LNP递送多核苷酸。这样的粒子可以包括从低于0.1μm直到100nm的直径,如但不限于少于0.1μm、少于1.0μm、少于5μm、少于10μm、少于15um、少于20um、少于25um、少于30um、少于35um、少于40um、少于50um、少于55um、少于60um、少于65um、少于70um、少于75um、少于80um、少于85um、少于90um、少于95um、少于100um、少于125um、少于150um、少于175um、少于200um、少于225um、少于250um、少于275um、少于300um、少于325um、少于350um、少于375um、少于400um、少于425um、少于450um、少于475um、少于500um、少于525um、少于550um、少于575um、少于600um、少于625um、少于650um、少于675um、少于700um、少于725um、少于750um、少于775um、少于800um、少于825um、少于850um、少于875um、少于900um、少于925um、少于950um或少于975um。
本文所述的纳米粒子和微粒可以进行几何学工程化以调节巨噬细胞和/或免疫应答。几何学工程化的粒子可具有不同的形状、尺寸和/或表面电荷,以掺入本文所述的多核苷酸用于靶向递送,如但不限于肺部递送(参见例如,国际公开号WO2013082111,通过引用以其全部内容并入本文)。几何学工程化粒子的其他物理特征可以包括但不限于开窗、成角度的臂、不对称和表面粗糙度、可以改变与细胞和组织的相互作用的电荷。
在一些实施例中,本文描述的纳米粒子是隐形纳米粒子或靶特异性隐形纳米粒子,如但不限于美国公开号US20130172406(通过引用以其全部内容并入本文)中描述的那些。隐形或靶标特异性隐形纳米粒子可包含聚合物基质,其可包含两种或更多种聚合物,如但不限于聚乙烯、聚碳酸酯、聚酸酐、多羟基酸、聚丙基富马酸酯、聚己内酯、聚酰胺、聚缩醛、聚醚、聚酯、聚(原酸酯)、聚氰基丙烯酸酯、聚乙烯醇、聚氨酯、聚磷腈、聚丙烯酸酯、聚甲基丙烯酸酯、聚氰基丙烯酸酯、聚脲、聚苯乙烯、聚胺、聚酯、聚酐、聚醚、聚氨酯、聚甲基丙烯酸酯、聚丙烯酸酯、聚氰基丙烯酸酯或其组合。
作为非限制性实例,通过制备具有可调释放速率(例如,数天和数周)的PLGA微球并将经修饰的mRNA包封在PLGA微球中同时在包封过程中维持经修饰的mRNA的完整性,可以将经修饰的mRNA配制在PLGA微球中。EVAc是不可生物降解的生物相容性聚合物,广泛用于临床前持续释放植入物应用(例如,延长释放产品Ocusert,即用于青光眼的匹鲁卡品眼科插入物,或黄体酮节育器,即持续释放孕酮子宫内避孕器;透皮递送系统Testoderm、Duragesic和Selegiline;导管)。泊洛沙姆F-407NF是聚氧乙烯-聚氧丙烯-聚氧乙烯的亲水性非离子表面活性剂三嵌段共聚物,在低于5℃的温度下具有低粘度并且在高于15℃的温度下形成固体凝胶。
作为非限制性实例,本文所述的多核苷酸可以用PLL接枝的PEG的聚合化合物配制,如美国专利号6,177,274所述。作为另一个非限制性实例,本文所述的多核苷酸可以用嵌段共聚物如PLGA-PEG嵌段共聚物(参见例如美国公开号US20120004293和美国专利号8,236,330和8,246,968)或PLGA-PEG-PLGA嵌段共聚物(参见例如美国专利号6,004,573)配制。将这些参考文献中的每一个通过引用以其全部内容并入本文。
在一些实施例中,本文所述的多核苷酸可以用至少一种含胺聚合物配制,如但不限于聚赖氨酸、聚乙烯亚胺、聚(酰胺基胺)树状聚合物、聚(胺-共-酯)或其组合。示例性的多胺聚合物及其作为递送剂的用途描述于例如美国专利号8,460,696、8,236,280,将其各自通过引用以其全部内容并入本文。
在一些实施例中,本文所述的多核苷酸可以配制成可生物降解的阳离子脂质聚合物、可生物降解的聚合物或可生物降解的共聚物、可生物降解的聚酯共聚物、可生物降解的聚酯聚合物、线性可生物降解的共聚物、PAGA、可生物降解的交联阳离子多嵌段共聚物或其组合,如例如美国专利号6,696,038、6,517,869、6,267,987、6,217,912、6,652,886、8,057,821和8,444,992;美国公开号US20030073619、US20040142474、US20100004315、US2012009145和US20130195920;以及国际公开号WO2006063249和WO2013086322所述的,将其各自通过引用以其全部内容并入本文。
在一些实施例中,可以使用聚合物、脂质和/或其他可生物降解的试剂(如但不限于磷酸钙)的组合将本文披露的多核苷酸配制为纳米粒子。组分能以核-壳、混合和/或叠层结构组合,以允许微调纳米粒子进行递送(Wang等人,Nat Mater.[自然材料]20065:791-796;Fuller等人,Biomaterials.[生物材料]200829:1526-1532;DeKoker等人,Adv DrugDeliv Rev.[先进药物递送评论]2011 63:748-761;Endres等人,Biomaterials.[生物材料]2011 32:7721-7731;Su等人,Mol Pharm.[分子药物学]2011年6月6日;8(3):774-87;通过引用以其全部内容并入本文)。作为非限制性实例,纳米粒子可包含多种聚合物,如但不限于亲水-疏水聚合物(例如PEG-PLGA)、疏水聚合物(例如PEG)和/或亲水聚合物(国际公开号WO20120225129,通过引用以其全部内容并入本文。
核-壳纳米粒子的使用还关注于合成阳离子交联纳米凝胶核和各种壳的高通量方法(Siegwart等人,Proc Natl Acad Sci US A.[美国国家科学院院刊]2011 108:12996-13001;通过引用以其全部内容并入本文)。通过改变纳米粒子的核和壳组分中的化学组成,可以精确地控制该聚合物纳米粒子的络合、递送和内化。例如,核-壳纳米粒子在将胆甾醇共价附接到纳米粒子上之后可以有效地将siRNA递送到小鼠肝细胞。
在一些实施例中,包含中间PLGA层和含有PEG的外部中性脂质层的中空脂质核心可用于递送如本文所述的多核苷酸。在一些实施例中,该脂质纳米粒子可包含本文披露的多核苷酸的核心和用于保护核心中的多核苷酸的聚合物壳。聚合物壳可以是本文所述的任何聚合物并且是本领域已知的,聚合物壳可用于保护核心中的多核苷酸。
与本文描述的多核苷酸一起使用的核-壳纳米粒子描述于美国专利号8,313,777或国际公开号WO2013124867,将其各自通过引用以其全部内容并入本文。
b.缀合物
在一些实施例中,本披露的组合物或配制品包含本文所述的多核苷酸(例如,包含编码松弛素多肽的核苷酸序列的多核苷酸),其与载体或靶向基团共价连接,或包括一起产生融合蛋白(例如,带有靶向基团和松弛素蛋白或肽)作为缀合物的两个编码区。缀合物可以是如下的肽,其选择性地将纳米粒子引导至组织或生物体中的神经元,或有助于穿过血脑屏障。
缀合物包括天然存在的物质,如蛋白质(例如,人血清白蛋白(HSA)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)或球蛋白);碳水化合物(例如,葡聚糖、支链淀粉、甲壳质、壳聚糖、菊粉、环糊精或透明质酸);或脂质。配体也可以是重组或合成分子,如合成聚合物,例如合成聚氨基酸,寡核苷酸(例如,适体)。聚氨基酸的实例包括聚氨基酸(聚赖氨酸(PLL)、聚L-天冬氨酸、聚L-谷氨酸)、苯乙烯-马来酸酐共聚物、聚(L-丙交酯-共-乙交酯)共聚物、二乙烯基醚-马来酸酐共聚物、N-(2-羟丙基)甲基丙烯酰胺共聚物(HMPA)、聚乙二醇(PEG)、聚乙烯醇(PVA)、聚氨酯、聚(2-乙基丙烯酸)、N-异丙基丙烯酰胺聚合物或聚磷腈。多胺的实例包括:聚乙烯亚胺、聚赖氨酸(PLL)、精胺、亚精胺、多胺、假肽-多胺、拟肽多胺、树状聚合物多胺、精氨酸、脒、鱼精蛋白、阳离子脂质、阳离子卟啉、多胺的季盐或α螺旋肽。
在一些实施例中,该缀合物可以充当本文披露的多核苷酸的载体。缀合物可包含阳离子聚合物,如但不限于多胺、聚赖氨酸、聚亚烷基亚胺和聚乙烯亚胺,其可与聚(乙二醇)接枝。示例性缀合物及其制剂描述于美国专利号6,586,524和美国公开号US20130211249,将其各自通过引用以其全部内容并入本文。
该缀合物还可以包括靶向基团,例如细胞或组织靶向剂,例如凝集素、糖蛋白、脂质或蛋白质,例如结合特定细胞类型如肾细胞的抗体。靶向基团可以是促甲状腺素、促黑激素、凝集素、糖蛋白、表面活性蛋白A、粘蛋白碳水化合物、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价岩藻糖、糖基化聚氨基酸、多价半乳糖、转铁蛋白、二膦酸盐、聚谷氨酸酯、聚天冬氨酸酯、脂质、胆甾醇、类固醇、胆汁酸、叶酸、维生素B12、生物素、RGD肽、RGD肽模拟物或适体。
靶向基团可以是蛋白质,例如糖蛋白或肽,例如对共配体具有特异性亲和力的分子,或抗体,例如结合特定细胞类型如癌细胞、内皮细胞或骨细胞的抗体。靶向基团还可包括激素和激素受体。它们还可以包括非肽物质,如脂质、凝集素、碳水化合物、维生素、辅因子、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价果糖或适体。配体可以是例如脂多糖或p38MAP激酶的活化剂。
靶向基团可以是能够靶向特定受体的任何配体。实例包括但不限于叶酸、GalNAc、半乳糖、甘露糖、甘露糖-6P、适体、整联蛋白受体配体、趋化因子受体配体、转铁蛋白、生物素、血清素受体配体、PSMA、内皮素、GCPII、生长抑素、LDL和HDL配体。在特定的实施例中,该靶向基团是适体。适体可以是未经修饰的或具有本文披露的任何修饰组合。作为非限制性实例,靶向基团可以是用于穿过血液-中枢神经系统屏障靶向递送的谷胱甘肽受体(GR)结合缀合物,例如美国公开号US2013021661012(通过引用以其全部内容并入本文)所述的。
在一些实施例中,该缀合物可以是协同生物分子-聚合物缀合物,其包含长效连续释放系统以提供更大的治疗功效。协同生物分子-聚合物缀合物可以是美国公开号US20130195799中描述的那些。在一些实施例中,该缀合物可以是国际专利公开号WO2012040524所述的适体缀合物。在一些实施例中,该缀合物可以是如美国专利号8,507,653所述的含胺聚合物缀合物。将这些参考文献中的每一个通过引用以其全部内容并入本文。在一些实施例中,该多核苷酸可以与SMARTT POLYMER(PHASERX公司,西雅图,华盛顿)缀合。
在一些实施例中,本文所述的多核苷酸与细胞穿透多肽共价缀合,其还可包括信号序列或靶向序列。可以将缀合物设计为具有增加的稳定性和/或增加的细胞转染;和/或改变生物分布(例如,靶向特定组织或细胞类型)。
在一些实施例中,本文描述的多核苷酸可以与药剂缀合以增强递送。在一些实施例中,该试剂可以是单体或聚合物,如靶向单体或具有如国际公开号WO2011062965所述的靶向嵌段的聚合物。在一些实施例中,该试剂可以是与多核苷酸共价偶联的转运试剂,如美国专利号6,835.393和7,374,778中所述。在一些实施例中,该试剂可以是膜屏障转运增强剂,如美国专利号7,737,108和8,003,129中所述的那些。将这些参考文献中的每一个通过引用以其全部内容并入本文。
使用方法
上述多核苷酸、药物组合物和配制品有用于治疗和/或心力衰竭和/或其他障碍或病症的制备、制造和治疗用途。在一些实施例中,本发明的多核苷酸、组合物和配制品用于治疗和/或预防急性心力衰竭(AHF)。
在一些实施例中,在用于增加有需要的受试者中松弛素蛋白水平的方法中使用本发明的多核苷酸、药物组合物和配制品。例如,本发明的一个方面提供了减轻受试者的HF症状的方法,该方法包括向该受试者给予包含编码治疗性蛋白质的多核苷酸(例如,编码松弛素多肽的功能组分的mRNA)的组合物或配制品。
在一些实施例中,向受试者给予包含多核苷酸的组合物或配制品、本发明的药物组合物或配制品导致细胞中松弛素蛋白增加至比给予该组合物或配制品之前观察到的水平高至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%至少75%、至少80%、至少85%、至少90%、至少95%或100%的水平。
在一些实施例中,本发明的多核苷酸、药物组合物或配制品的给予导致受试者细胞中松弛素蛋白的表达。在一些实施例中,给予本发明的多核苷酸、药物组合物或配制品导致受试者中松弛素蛋白活性的增加。例如,在一些实施例中,本发明的多核苷酸用于向受试者给予包含编码松弛素多肽的mRNA的组合物或配制品的方法中,其中该方法导致受试者的至少一些细胞中松弛素蛋白活性的增加。
在一些实施例中,向受试者给予包含编码松弛素多肽的mRNA的组合物或配制品导致细胞中松弛素蛋白活性增加至如下的水平,即正常受试者(例如,未患心脏病的人)中预期的活性水平的至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或至100%或更多。
在一些实施例中,本发明的多核苷酸、药物组合物或配制品的给予导致受试者的至少一些细胞中持续足以允许发生显著代谢的一段时间的松弛素蛋白表达。
在一些实施例中,编码的多肽的表达增加。在一些实施例中,当在那些细胞中引入时,该多核苷酸将细胞中的松弛素蛋白表达水平相对于在细胞中引入多肽之前细胞中的松弛素蛋白表达水平增加例如至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或100%。
本披露的其他方面涉及将含有多核苷酸的细胞移植到哺乳动物受试者体内。向哺乳动物受试者给予细胞是本领域普通技术人员已知的,并且包括但不限于局部植入(例如,局部或皮下给予)、器官递送或全身注射(例如,静脉内注射或吸入)和药学上可接受的载体中的细胞配制品。
使用的组合物和配制品
本发明的某些方面涉及包含上文披露的任何多核苷酸的组合物或配制品。
在一些实施例中,该组合物或配制品包含:
(i)包含编码松弛素多肽(例如,野生型序列、其功能片段或变体)的序列优化的核苷酸序列(例如,ORF)的多核苷酸(例如,RNA,例如mRNA),其中该多核苷酸包含至少一个经化学修饰的核碱基,例如5-甲氧基尿嘧啶(例如,其中至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约99%或100%的尿嘧啶是5-甲氧基尿嘧啶),并且其中该多核苷酸进一步包含miRNA结合位点,例如,结合miR-142的miRNA结合位点(例如,miR-142-3p或miR-142-5p结合位点);以及
(ii)递送剂,包含LNP,其包含例如具有化学式(I)的脂质,例如化合物1-147中的任一种(例如,化合物18、25、26或48)。
在一些实施例中,相对于编码松弛素多肽的核苷酸序列的理论最小尿嘧啶或胸腺嘧啶含量的该ORF的尿嘧啶或胸腺嘧啶含量(%UTM或%TTM)在约100%和150%之间。
在一些实施例中,上述多核苷酸、组合物或配制品用于治疗和/或预防疾病或障碍,例如急性心力衰竭。
给药形式
本发明的上述多核苷酸、药物组合物和配制品可以通过导致治疗有效结果的任何途径给予。这些包括但不限于肠内(进入肠道)、胃肠道、硬膜外(进入硬脑膜)、口服(通过口腔)、透皮、硬膜周围、脑内(进入大脑)、脑室内(进入脑室)、表皮(应用于皮肤)、皮内(进步皮肤本身内)、皮下(皮肤下)、鼻腔给药(通过鼻)、静脉注射(进入静脉)、静脉推注、静脉滴注、动脉内(进入动脉)、肌内(进入肌肉)、心内(进入心脏)、骨内输注(进入骨髓)、鞘内(进入椎管)、腹膜内(输注或注入腹膜)、膀胱内输注、玻璃体内(通过眼睛)、海绵体内注射(进入病理腔)腔内(进入阴茎根部)、阴道内给药、宫内、羊膜外给药、透皮(通过完整皮肤扩散为全身分布)、透粘膜(通过粘膜扩散)、经阴道、吹气(鼻吸)、舌下、阴唇下、灌肠、滴眼液(到结膜上)、滴耳液、耳廓(耳内或通过耳)、颊(指向脸颊)、结膜、皮肤、牙齿(向一个或多个牙齿)、电渗透、宫颈内膜、内窦、气管内、体外、血液透析、浸润、间质、腹腔内、羊膜腔内、关节内、胆管内、支气管内、囊内、软骨内(软骨内部)、股骨内(马尾内)、脑池内(小脑延髓池内)、角膜内(角膜内部)、牙冠内、冠状动脉内(冠状动脉内部)、阴茎海绵体内(在阴茎海绵体的可膨胀空间内)、椎间盘内(盘内)、管内(腺管内)、十二指肠内(十二指肠内部)、硬膜内(硬脑膜内或下方)、表皮内(到表皮)、食管内(到食道)、胃内(在胃内)、龈内(在牙龈内)、回肠内(在小肠的远端部分内)、病灶内(在局部病变内或直接引到局部病变)、管腔内(在管腔内)、淋巴管内(淋巴内)、髓内(骨髓腔内)、脑膜内(在脑膜内)、眼内(在眼睛内)、卵巢内(在卵巢内)、心包内(在心包内)、胸膜内(在胸膜内)、前列腺内(在前列腺内)、肺内(在肺或其支气管内)、窦内(鼻内或眶周窦内)、脊柱内(在脊柱内)、滑膜内(关节滑膜腔内)、腱内(肌腱内)、睾丸内(在睾丸内)、鞘内(在任何脑脊髓轴水平的脑脊液内)、胸廓内(胸腔内)、管内(器官小管内)、肿瘤内(在肿瘤内)、鼓室内(中耳内)、血管内(在一条或多条血管内)、心室内(在心室内)、离子电渗疗法(通过电流,其中可溶性盐的离子迁移到身体的组织中)、灌洗(用水洗或冲洗开放性伤口或体腔)、喉(直接在喉部上)、鼻胃管(通过鼻子且进入胃)、闭塞敷料技术(局部给药途径,然后由闭塞该区域的敷料覆盖)、眼科(对外眼)、口咽(直接到口和咽)、肠外、经皮、关节周围、硬膜周围、神经周围、牙周、直肠、呼吸道(在呼吸道内通过口腔或鼻腔吸入用于局部或全身作用)、眼球后(脑桥后面或眼球后面)、心肌内(进入心肌)、软组织、蛛网膜下、结膜下、粘膜下、局部、经胎盘(通过或穿过胎盘)、经气管(通过气管壁)、经鼓室(穿过或穿过鼓室)、输尿管(到输尿管)、尿道(到尿道)、阴道、骶管阻滞、诊断、神经阻滞、胆道灌注、心脏灌注、光分离置换法或脊椎麻醉。在具体的实施例中,组合物能以允许它们穿过血脑屏障、血管屏障或其他上皮屏障的方式给予。在一些实施例中,用于给予途径的配制品可包括至少一种非活性成分。
本发明的多核苷酸(例如,包含编码松弛素多肽或其功能片段或变体的核苷酸序列的多核苷酸)可以裸露地递送至细胞。如本文所用,“裸露”是指递送不含促进转染的试剂的多核苷酸。可以使用本领域已知的和本文描述的给予途径将裸多核苷酸递送至细胞。
可以使用本文描述的方法配制本发明的多核苷酸(例如,包含编码松弛素多肽或其功能片段或变体的核苷酸序列的多核苷酸)。该配制品可含有多核苷酸,该多核苷酸可以是经修饰的和/或未经修饰的。该配制品可进一步包括但不限于细胞渗透剂、药学上可接受的载体、递送剂、可生物溶蚀的或生物相容的聚合物、溶剂和持续释放递送贮库。可以使用本领域已知的和本文描述的给予途径将配制的多核苷酸递送至细胞。
用于肠胃外给药的药物组合物可包含至少一种非活性成分。使用的任何非活性成分可以已由美国食品和药物管理局(FDA)批准。用在用于肠胃外给予的药物组合物中的非活性成分的非穷举性列表包括盐酸、甘露醇、氮、乙酸钠、氯化钠和氢氧化钠。
可注射制剂例如无菌可注射的水性或油性悬浮液可以使用合适的分散剂、湿润剂和/或悬浮剂根据已知技术进行配制。无菌可注射制剂可以是无毒的肠胃外可接受的稀释剂和/或溶剂中的无菌可注射溶液、悬浮液和/或乳液(例如,中1,3-丁二醇中的溶液)。在可采用的可接受的运载体和溶剂中有水、林格氏(Ringer's)溶液、U.S.P.和等渗氯化钠溶液。常规采用无菌的固定油作为溶剂或悬浮介质。为了这一目的,可以采用任何温和的非挥发性油,包括合成的甘油单酯或甘油二酯。脂肪酸如油酸可用于制备注射剂。无菌配制品还可包含佐剂,如局部麻醉剂、防腐剂和缓冲剂。
可注射的配制品可以通过例如以下方式灭菌:通过细菌过滤器过滤,和/或在无菌固体组合物中添加灭菌剂,这些组合物可以在使用前溶于或分散于无菌-或其他无菌注射介质。
可注射配制品可以用于直接注射到组织、器官和/或受试者的区域中。作为非限制性实例,可以通过心肌内注射将配制品直接注射到组织、器官和/或受试者缺血区域中。(参见例如,Zangi等人,Nature Biotechnology[自然生物技术]2013;将其内容通过引用以其全部内容并入本文)。
为了延长活性成分的效果,通常希望的是减缓皮下或肌内注射的活性成分的吸收。这可通过用水溶性低的晶体或非晶体物质的液体悬浮液实现。然后,药物的吸收速率取决于其溶解速率,而溶解速率进而可取决于晶体大小以及晶型。可替代地,通过将药物溶解或悬浮于油性运载体中可以延迟肠胃外给予的药物的吸收。通过在可生物降解的聚合物(如聚乳酸交酯-聚乙交酯)中形成药物的微胶囊基质来制得可注射的贮库形式。取决于药物对聚合物的比率以及所使用的特定聚合物的性质,可以对药物释放的速率进行控制。其他可生物降解的聚合物的实例包括聚(原酸酯)和聚(酸酐)。长效可注射配制品通过将药物包陷入与人体组织相容的脂质体或微乳液中来制备。
试剂盒和装置
a.试剂盒
本发明提供了多种试剂盒,用于方便和/或有效地使用本发明要求保护的核苷酸。通常,试剂盒将包含足够量和/或数量的组分以允许用户对一名或多名受试者进行多次治疗和/或进行多次实验。
在一方面,本发明提供了包含本发明的分子(多核苷酸)的试剂盒。
所述试剂盒可用于蛋白质生产,包含第一多核苷酸(包含可翻译区)。该试剂盒可进一步包含包装和说明书和/或递送剂以形成配制品组合物。该递送剂可包含盐水、缓冲溶液、类脂质或本文披露的任何递送剂。
在一些实施例中,该缓冲溶液可包括氯化钠、氯化钙、磷酸盐和/或EDTA。在另一个实施例中,缓冲溶液可包括但不限于盐水,含2mM钙、5%蔗糖、5%蔗糖和2mM钙、5%甘露醇、5%甘露醇和2mM钙的盐水,林格氏乳酸盐,氯化钠,含有2mM钙和甘露糖的氯化钠(参见例如,美国公开号20120258046;通过引用以其全部内容并入本文)。在另一个实施例中,该缓冲溶液可以沉淀或可被冻干。可以改变每种组分的量以使得能够获得一致的、可再现的更高浓度的盐水或简单的缓冲配制品。还可以改变组分,以便在一段时间内和/或在多种条件下增加经修饰的RNA在缓冲溶液中的稳定性。在一方面,本发明提供了用于蛋白质生产的试剂盒,包括:包含可翻译区的多核苷酸,其以有效于在引入靶细胞时产生所希望的量的由可翻译区编码的蛋白质的量提供;包含抑制性核酸的第二多核苷酸,以有效于基本上抑制细胞先天免疫应答的量提供;以及包装和说明书。
在一方面,本发明提供了用于蛋白质生产的试剂盒,其包含含有可翻译区的多核苷酸,其中该多核苷酸展现减少的细胞核酸酶降解,以及包装和说明书。
在一方面,本发明提供了用于蛋白质生产的试剂盒,其包含含有可翻译区的多核苷酸,其中该多核苷酸展现减少的细胞核酸酶降解,以及适于翻译第一核酸的可翻译区的哺乳动物细胞。
b.装置
本发明提供了可以掺入编码感兴趣的多肽的多核苷酸的装置。这些装置在稳定的配制品中含有用以在配制品中合成多核苷酸的试剂,可立即将其递送给有需要的受试者,如人类患者。
用于给予的装置可用于根据本文传授的单次、多次或分次给药方案递送本发明的多核苷酸。在例如国际申请公开号WO2013151666中传授了这种装置,将其内容通过引用以其全部内容并入本文。
本领域已知的用于细胞、器官和组织的多次给药的方法和装置预期与本文披露的方法和组合物结合用作本发明的实施例。这些包括,例如,具有多个针的那些方法和装置、采用例如管腔或导管的混合装置以及利用热、电流或辐射驱动机构的装置。
根据本发明,这些多次给药装置可用于递送本文考虑的单剂量、多剂量或分剂量。在例如国际申请公开号WO2013151666中传授了这种装置,将其内容通过引用以其全部内容并入本文。
在一些实施例中,同时或在60分钟内将该多核苷酸通过至少3个针皮下或肌肉内给予到3个不同的(任选相邻的)位点(例如,同时或在60分钟内给予到4、5、6、7、8、9或10个位点)。
c.利用导管和/或管腔的方法和装置
使用导管和管腔的方法和装置可用于以单次、多次或分次给药方案给予本发明的多核苷酸。这些方法和装置描述于国际申请公开号WO2013151666中,将其内容通过引用以其全部内容并入本文。
d.利用电流的方法和装置
利用电流的方法和装置可用于根据本文传授的单次、多次或分次给药方案递送本发明的多核苷酸。这些方法和装置描述于国际申请公开号WO2013151666中,将其内容通过引用以其全部内容并入本文。定义
为了更容易地理解本披露,首先定义某些术语。如本申请中所使用的,除非本文另有明确规定,否则以下术语中的每一个应具有下文所述的含义。另外的定义在整个申请中阐述。
本发明包括这样的实施例,其中在给定产品或过程中存在、采用该组的恰好一个成员,或该组的恰好一个成员以其他方式与给定产品或过程相关。本发明包括如下的实施例,其中在给定产品或过程中存在、采用多于一个或所有组成员,或多于一个或所有组成员与给定产品或过程相关。
在本说明书和随附权利要求书中,除非上下文另外明确说明,否则单数形式“一个”、“一种”和“该”包括复数参考对象。术语“一个”(或“一种”),以及术语“一个或多个/一种或多种”和“至少一个/至少一种”在本文中可以互换地使用。在某些方面,术语“一个”或“一种”意味着“单一”。在其他方面,术语“一个”或“一种”包括“两个或更多个(两种或更多种)”或“多个(种)”。
此外,当在本文中使用时“和/或”被理解为这两个指定的特征或组分每一者与或不与另一者的特定披露。因此,如在本文中的短语例如“A和/或B”中所使用的术语“和/或”旨在包括“A和B”、“A或B”、“A”(单独)和“B”(单独)。同样,在短语例如“A、B和/或C”中所使用的术语“和/或”旨在涵盖以下方面中的每一者:A、B和C;A、B或C;A或C;A或B;B或C;A和C;A和B;B和C;A(单独);B(单独);和C(单独)。
除非另外定义,否则在本文中使用的所有技术和科学术语具有如本披露所属领域的普通技术人员通常理解的相同含义。例如,Concise Dictionary of Biomedicine andMolecular Biology[生物医学与分子生物学简明词典],Juo,Pei-Show,第2版,2002,CRC出版社;The Dictionary of Cell and Molecular Biology[细胞与分子生物学词典]第3版,1999,学术出版社(Academic Press);以及Oxford Dictionary Of Biochemistry AndMolecular Biology[生物化学和分子生物学牛津词典],修订版,2000,牛津大学出版社(Oxford University Press)为技术人员提供在本披露中使用的许多术语的通用词典注释。
当用语言“包含”来说明方面时,还提供了关于“由……组成”和/或“主要由……组成”描述的其他类似方面。
单位、前缀和符号均以它们的国际单位系统(SI)接受形式表示。数值范围包括限定该范围的数字。在列举一系列值的情况下,应当理解,还具体披露了在该范围的所述上限和下限之间的每个中间整数值及其每个分数,以及这些值之间的每个子范围。任何范围的上限和下限可以独立地包括在该范围内或从该范围中排除,并且包括其中一个限制、两个限制都不包括或包括两个限制的每个范围也涵盖在本发明内。在明确列举值的情况下,应理解,与所述值大约相同的数量或量的值也在本发明的范围内。在披露组合的情况下,该组合的元素的每个子组合也被具体披露并且在本发明的范围内。相反,在单独披露不同元素或元素组的情况下,还披露了它们的组合。当本发明的任何元素被披露为具有多个替代方案时,本文还披露了本发明的其中每个替代方案被单独排除或与其他替代方案的任何组合被排除的实例;本发明的多于一个元件可以具有这样的排除,并且特此披露了具有这样的排除的元件的所有组合。
核苷酸通过它们普遍公认的单字母代码来表示。除非另外指明,否则核酸以5'至3'方向从左向右书写。核碱基在本文中通过其通常已知的由IUPAC-IUB生物化学命名委员会推荐的单字母符号来表示。因此,A代表腺嘌呤,C代表胞嘧啶,G代表鸟嘌呤,T代表胸腺嘧啶,U代表尿嘧啶。
氨基酸在本文中通过其通常已知的三字母符号或由IUPAC-IUB生物化学命名委员会推荐的单字母符号来表示。除非另外指明,否则氨基酸序列以氨基到羧基的方向从左到右书写。
约:在说明书和随附权利要求书通篇中与数值结合使用的术语“约”表示本领域技术人员熟知并可接受的精确度的区间,此类精确度的区间是±10%。
在给出范围的情况下,包括端点。此外,除非从本领域普通技术人员的上下文和理解中另外指明或以其他方式显而易见,否则表示为范围的值可以假设在本发明的不同实施例中的所述范围内的任何特定值或子范围为该范围下限的单位的十分之一,除非上下文另有明确规定。
组合给予:如本文所用,术语“组合给予”或“组合给药”意指两种或更多种药剂同时或在一个时间间隔内给予受试者,使得每种药剂对患者的作用可以交叠。在一些实施例中,它们在彼此约60、30、15、10、5或1分钟内给予。在一些实施例中,该药剂的给予间隔得足够紧密,从而实现组合(例如,协同)作用。
氨基酸取代:术语“氨基酸取代”是指用另一个氨基酸残基替代存在于亲本或参考序列(例如野生型松弛素序列)中的氨基酸残基。亲本或参考序列(例如野生型松弛素序列)中的氨基酸可以是例如经由化学肽合成或通过本领域已知的重组方法来取代。因此,提及“在位置X的取代”是指用替代氨基酸残基取代存在于位置X的氨基酸。在一些方面,取代类型可以根据模式AnY描述,其中A是对应于天然或最初存在于位置n处的氨基酸的单个字母代码,并且Y是取代氨基酸残基。在其他方面,取代类型可以根据模式An(YZ)描述,其中A是对应于取代天然或最初存在于位置X处的氨基酸的氨基酸残基的单个字母代码,并且Y和Z是替代取代氨基酸残基,即
在本披露的上下文中,取代(即使它们被称为氨基酸取代)在核酸水平进行,即用替代氨基酸残基取代氨基酸残基是通过用编码第二氨基酸的密码子取代编码第一氨基酸的密码子来进行。
动物:如本文所用,术语“动物”是指动物界的任何成员。在一些实施例中,“动物”是指处于任何发育阶段的人。在一些实施例中,“动物”是指处于任何发育阶段的非人类动物。在某些实施例中,该非人类动物是哺乳动物(例如,啮齿动物、小鼠、大鼠、兔、猴、狗、猫、绵羊、牛、灵长类动物或猪)。在一些实施例中,动物包括但不限于哺乳动物、鸟类、爬行动物、两栖动物、鱼类和蠕虫。在一些实施例中,动物是转基因动物、基因工程动物或克隆。
大约:如本文所用,当应用于一个或多个感兴趣的值时,术语“大约”是指与所述参考值类似的值。在某些实施例中,术语“大约”是指落入所述参考值的任一方向(大于或小于)的25%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或更少内的一系列值,除非另有说明或以其他方式显而易见(除非此类数字超过可能值的100%)。
与......相关:如本文关于疾病所使用的,术语“与......相关”意指与该疾病的诊断、发展、存在或进展有关联的所讨论的症状、测量、特征或状态。由于关联可以但不一定与该疾病有因果关系。
当关于两个或更多个部分使用时,术语“相关”、“缀合”、“连接”、“附接”和“栓系”意指这些部分直接地或通过一个或多个用作连接剂的额外部分彼此物理相关或连接,以形成足够稳定的结构,使得这些部分在使用该结构的条件(例如,生理条件)下保持物理相关。“相关”不必严格通过直接共价化学键合。它还可以建议离子或氢键键合或基于杂化的连接足够稳定,使得“相关”实体保持物理相关。
双功能:如本文所用,术语“双功能”是指能够或维持至少两种功能的任何物质、分子或部分。这些功能可以影响相同的结果或不同的结果。产生该功能的结构可以相同或不同。例如,本发明的双功能的经修饰的RNA可编码松弛素肽(第一功能),而包含编码RNA的那些核苷本身能够延长该RNA的半衰期(第二功能)。在该实施例中,将该双功能的经修饰的RNA递送至患有蛋白质缺乏症的受试者不仅会产生可改善或治疗疾病或病症的肽或蛋白质分子,而且还会维持受试者中存在的群体经修饰RNA很长一段时间。在其他方面,该双功能的经修饰的mRNA可以是嵌合(chimeric或quimeric)分子,其包含例如编码松弛素肽(第一功能)的RNA和与第一蛋白融合或与第一蛋白共表达的第二蛋白。
生物相容的:如本文所用,术语“生物相容的”意指与活细胞、组织、器官或系统相容,这些活细胞、组织、器官或系统几乎没有受到免疫系统的损伤、毒性或排斥的风险。
可生物降解的:如本文所用,术语“可生物降解的”意指能够通过生物的作用分解成无害产物。
有生物活性的:如本文所用,短语“有生物活性的”是指在生物系统和/或生物体中具有活性的任何物质的特征。例如,当给予生物体时,对该生物体具有生物学作用的物质被认为是有生物活性的。在具体的实施例中,如果甚至一部分多核苷酸有生物活性或模拟被认为有生物学相关性的活性,则可认为本发明的多核苷酸有生物活性。
嵌合体:如本文所用,“嵌合体”是具有两个或更多个不一致或异源部分或区域的实体。例如,嵌合分子可包含含松弛素多肽的第一部分和含第二松弛素蛋白的第二部分(例如,具有不同酶活性的蛋白质,抗原结合部分,或能够延长松弛素的血浆半衰期的部分,例如抗体的Fc区)(例如,与第一部分遗传上融合)。
序列优化:术语“序列优化”是指参考核酸序列中的核碱基被替代核碱基替代的过程或一系列过程,导致核酸序列具有改善的性质,例如改善的蛋白质表达或降低的免疫原性。
通常,序列优化的目标是产生同义核苷酸序列,而不是编码由参考核苷酸序列编码的相同多肽序列。因此,密码子优化的核苷酸序列编码的多肽相对于参考核苷酸序列编码的多肽没有氨基酸取代(作为密码子优化的结果)。
密码子取代:在序列优化的上下文中,术语“密码子取代”或“密码子替代”是指用另一个密码子替代参考核酸序列中存在的密码子。参考核酸序列中的密码子可以是例如经由化学肽合成或通过本领域已知的重组方法来取代。因此,提及在核酸序列(例如,mRNA)中的某个位置处或在核酸序列(例如,mRNA)的某个区域或子序列内的“取代”或“替代”是指用替代密码子进行的在此类位置或区域处的密码子取代。
如本文所用,术语“编码区”和“编码......的区域”及其语法变体是指表达后产生多肽或蛋白质的多核苷酸中的开放阅读框(ORF)。
化合物:如本文所用,术语“化合物”意指包括所描绘的结构的所有立体异构体和同位素。如本文所用,术语“立体异构体”意指化合物的任何几何异构体(例如,顺式异构体和反式异构体)、对映异构体或非对映异构体。本披露涵盖本文所述化合物的任何和所有立体异构体,包括立体异构纯形式(例如,几何纯形式、对映体纯形式或非对映异构体纯形式)以及对映体和立体异构体混合物,例如外消旋体。化合物的对映体和立体异构体混合物以及将它们分解成其组分对映体或立体异构体的方法是公知的。“同位素”是指具有相同原子序数但质量数不同的原子,其由核中不同数目的中子产生。举例来说,氢的同位素包括氚和氘。此外,本披露的化合物、盐或复合物可以与溶剂或水分子组合制备,以通过常规方法形成溶剂化物和水合物。
接触:如本文所用,术语“接触”意味着在两个或更多个实体之间建立物理连接。例如,使哺乳动物细胞与纳米粒子组合物接触意味着使哺乳动物细胞和纳米粒子共享物理连接。在体内和离体情况下使细胞与外部实体接触的方法在生物学领域中是公知的。例如,使纳米粒子组合物和置于哺乳动物体内的哺乳动物细胞接触可以通过不同的给药途径(例如,静脉内、肌肉内、皮内和皮下)进行,并且可以涉及不同量的纳米粒子组合物。此外,纳米粒子组合物可以接触多于一个哺乳动物细胞。
保守氨基酸取代:“保守性氨基酸取代”是其中用具有类似侧链的氨基酸残基替代蛋白质序列中的氨基酸残基的取代。在本领域中已经定义了具有相似侧链的氨基酸残基家族,包括碱性侧链(例如,赖氨酸、精氨酸或组氨酸)、酸性侧链(例如,天门冬氨酸或谷氨酸),不带电荷的极性侧链(例如,甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸或半胱氨酸)、非极性的侧链(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸或色氨酸)、β-分支侧链(例如,苏氨酸、缬氨酸、异亮氨酸)以及芳香族侧链(例如,酪氨酸、苯丙氨酸、色氨酸或组氨酸)。因此,如果多肽中的氨基酸被来自相同侧链家族的另一个氨基酸替代,该氨基酸取代被认为是保守性的。在另一方面,氨基酸串可以被保守地替代为在侧链家族成员的顺序和/或组成上不同的结构上类似的串。
非保守氨基酸替代:非保守氨基酸取代包括如下那些,其中(i)具有阳电性侧链的残基(例如,Arg、His或Lys)取代为或被阴电性残基(例如,Glu或Asp)取代,(ii)亲水残基(例如,Ser或Thr)取代为或被疏水残基(例如,Ala、Leu、Ile、Phe或Val)取代,(iii)半胱氨酸或脯氨酸取代为或被任何其他残基取代,或(iv)具有大的疏水或芳族侧链的残基(例如,Val、His、Ile或Trp)取代为或被具有更小的侧链的残基(例如,Ala或Ser)或无侧链的残基(例如,Gly)取代。
本领域普通技术人员可以容易地鉴定其他氨基酸取代。例如,对于氨基酸丙氨酸,取代可以从D-丙氨酸、甘氨酸、β-丙氨酸、L-半胱氨酸以及D-半胱氨酸中任一项进行。针对赖氨酸,替代可以是D-赖氨酸、精氨酸、D-精氨酸、高精氨酸、甲硫氨酸、D-甲硫氨酸、鸟氨酸或D-鸟氨酸中任一项。通常,可以预期诱导分离的多肽的特性上的改变的在功能上重要的区域中的取代是如下那些,其中(i)极性残基例如丝氨酸或苏氨酸取代为疏水残基例如亮氨酸、异亮氨酸、苯丙氨酸或丙氨酸(或被其取代);(ii)半胱氨酸残基取代为任何其他残基(或被其取代);(iii)具有阳电性侧链的残基例如赖氨酸、精氨酸或组氨酸取代为具有阴电性侧链的残基例如谷氨酸或天冬氨酸(或被其取代);或(iv)具有大的侧链的残基例如苯丙氨酸取代为不具有这样的侧链的残基例如甘氨酸(或被其取代)。前述的非保守性取代之一可改变蛋白质的功能特性的可能性也与关于该蛋白质的在功能上重要的区域的取代位置相关:一些非保守性取代因此可对生物特性具很少或没有影响。
保守的:如本文所用,术语“保守的”分别指多核苷酸序列的核苷酸或多肽序列的氨基酸残基,其是在被比较的两个或更多个序列的相同位置处未发生改变的那些。相对保守的核苷酸或氨基酸是在序列中比其他地方出现的核苷酸或氨基酸更相关的序列中保守的那些。
在一些实施例中,如果两个或更多个序列彼此100%相同,则称其为“完全保守的”。在一些实施例中,如果两个或更多个序列彼此至少70%相同、至少80%相同、至少90%相同或至少95%相同,则称其为“高度保守的”。在一些实施例中,如果两个或更多个序列彼此约70%相同、约80%相同、约90%相同、约95%、约98%或约99%相同,则称其为“高度保守的”。在一些实施例中,如果两个或更多个序列彼此至少30%相同、至少40%相同、至少50%相同、至少60%相同、至少70%相同、至少80%相同、至少90%相同或至少95%相同,则称其为“保守的”。在一些实施例中,如果两个或更多个序列彼此约30%相同、约40%相同、约50%相同、约60%相同、约70%相同、约80%相同、约90%相同、约95%相同、约98%相同或约99%相同,则称其为“保守的”。序列的保守可以适用于多核苷酸或多肽的整个长度,或者可以适用于其部分、区域或特征。
控制释放:如本文所用,术语“控制释放”是指符合特定释放模式以实现治疗结果的药物组合物或化合物释放曲线。
环状或环化:如本文所用,术语“环状”是指存在连续环。环状分子不需要是圆形的,仅连接形成不间断的亚基链。环状分子如本发明的工程化RNA或mRNA可以是单一单元或多聚体,或者包含复合物或更高级结构的一个或多个组分。
毒性:如本文所用,“细胞毒性”是指杀死或引起对细胞(例如,哺乳动物细胞(例如,人细胞))、细菌、病毒、真菌、原生动物、寄生虫、朊病毒或其组合的有害、毒性或致命影响。
递送:如本文所用,术语“递送”意指向目的地提供实体。例如,将多核苷酸递送至受试者可涉及向该受试者给予包括多核苷酸的纳米粒子组合物(例如,通过静脉内、肌肉内、皮内或皮下途径)。向哺乳动物或哺乳动物细胞给予纳米粒子组合物可涉及使一种或多种细胞与纳米粒子组合物接触。
递送剂:如本文所用,“递送剂”是指至少部分地促进多核苷酸体内、体外或离体递送至靶定细胞的任何物质。
去稳定的:如本文所用,术语“不稳定的”、“去稳定的”或“去稳定的区域”意指比相同区域或分子的起始、野生型或天然形式更不稳定的区域或分子。
非对映异构体:如本文所用,术语“非对映异构体”意指彼此不是镜像并且彼此不可重叠的立体异构体。
消化:如本文所用,术语“消化”意指分解成较小的片或组分。当提及多肽或蛋白质时,消化导致肽的产生。
远端:如本文所用,术语“远端”意指位置远离中心或远离感兴趣的点或区域。
结构域:如本文所用,当提及多肽时,术语“结构域”是指具有一种或多种可识别的结构或功能特征或性质(例如,结合能力,充当蛋白质-蛋白质相互作用的位点)的多肽的基序。
给药方案:如本文所用,“给药方案”是给予方案或医生确定的治疗方案、预防方案或姑息治疗方案。
有效量:如本文所用,术语药剂的“有效量”是足以产生有益或所希望的结果(例如,临床结果)的量,并且因此“有效量”取决于应用它的上下文。例如,在给予治疗蛋白质缺乏症(例如松弛素缺乏症)的药剂的背景下,有效量的药剂是例如表达足够的松弛素以与不给予该药剂时观察到的症状的严重程度相比改善、减少、消除或预防与松弛素缺乏相关的体征或症状的量的mRNA。术语“有效量”可与“有效剂量”、“治疗有效量”或“治疗有效剂量”互换使用。
对映异构体:如本文所用,术语“对映异构体”意指本发明的化合物的每个单独的光学活性形式,其具有至少80%(即,至少90%的一种对映异构体和至多10%的另一种对映异构体)、至少90%或至少98%的光学纯度或对映体过量(如通过本领域标准方法测定)。
包封:如本文所用,术语“包封”意指围合、包围或包裹。
包封效率:如本文所用,“包封效率”是指相对于制备纳米粒子组合物中使用的多核苷酸的初始总量,成为纳米粒子组合物的一部分的多核苷酸的量。例如,如果将97mg多核苷酸包封在纳米粒子组合物中,而最初提供给组合物的为总100mg多核苷酸,则包封效率可以为97%。如本文所用,“包封”可以指完全、实质性或部分围合、限制、包围或包裹。
编码的蛋白质切割信号:如本文所用,“编码的蛋白质切割信号”是指编码蛋白质切割信号的核苷酸序列。
工程化:如本文所用,当本发明的实施例被设计为具有从起始点、野生型或天然分子变化的特征或性质(无论是结构还是化学)时,其被“工程化”。
增强的递送:如本文所用,术语“增强的递送”意指与通过对照纳米粒子向感兴趣的靶组织(例如,MC3、KC2或DLinDMA)递送多核苷酸的水平相比,通过纳米粒子向感兴趣的靶组织(例如,哺乳动物肝脏)递送更多的(例如,多至少1.5倍、多至少2倍、多至少3倍、多至少4倍、多至少5倍、多至少6倍、多至少7倍、多至少8倍、多至少9倍、多至少10倍)。纳米粒子向特定组织的递送水平可以通过如下来测量:将组织中产生的蛋白质的量与所述组织的重量进行比较,将组织中的多核苷酸的量与所述组织的重量进行比较,将组织中产生的蛋白质与所述组织中总蛋白质的量进行比较,或者将组织中多核苷酸的量与所述组织中总多核苷酸的量进行比较。应当理解,不需要在正治疗的受试者中确定纳米粒子向靶组织的增强递送,可以在替代物如动物模型(例如,大鼠模型)中确定。
外来体:如本文所用,“外来体”是哺乳动物细胞分泌的囊泡或参与RNA降解的复合物。
表达:如本文所用,核酸序列的“表达”是指一个或多个以下事件:(1)从DNA序列产生mRNA模板(例如,通过转录);(2)加工mRNA转录物(例如,通过剪接、编辑、5'帽形成和/或3'端加工);(3)将mRNA翻译成多肽或蛋白质;以及(4)多肽或蛋白质的翻译后修饰。
离体:如本文所用,术语“离体”是指在生物体(例如,动物、植物或微生物或其细胞或组织)外发生的事件。离体事件可以在从天然(例如,体内)环境最小程度改变的环境中发生。
特征:如本文所用,“特征”是指特征、性质或独特元素。当提及多肽时,“特征”被定义为分子的不同的基于氨基酸序列的组分。由本发明的多核苷酸编码的多肽的特征包括表面表现、局部构象形状、折叠、环、半环、结构域、半结构域、位点、末端或其任何组合。
配制品:如本文所用,“配制品”至少包括多核苷酸以及载体、赋形剂和递送剂中的一种或多种。
片段:如本文所用,“片段”是指一部分。例如,蛋白质片段可包含通过消化从培养细胞分离的全长蛋白质而获得的多肽。在一些实施例中,片段是全长蛋白质的子序列,其中N-末端和/或C-末端和/或内部子序列已缺失。在本发明的一些优选方面,本发明的蛋白质的片段是功能片段。
功能性:如本文所用,“功能性”生物分子是处于展现表征它的性质和/或活性的一种形式的生物分子。因此,本发明的多核苷酸的功能片段是能够表达功能性松弛素片段的多核苷酸。如本文所用,松弛素的功能片段是指野生型松弛素的片段(即,其任何天然存在的同种型的片段)或其突变体或变体,其中该片段保留相应的全长蛋白质的生物活性的至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%或至少约95%。
辅助脂:如本文所用,术语“辅助脂”是指包括脂质部分(用于插入脂质层,例如脂质双层)和极性部分(用于与脂质层表面的生理溶液相互作用)的化合物或分子。通常,该辅助脂是磷脂。辅助脂的功能是“补充”氨基脂质并增加该双层的融合性和/或有助于促进例如递送至细胞的核酸的内体逃逸。辅助脂也被认为是LNP表面的关键结构组分。
同源性:如本文所用,术语“同源性”是指聚合物分子之间的总体相关性,例如,核酸分子(例如DNA分子和/或RNA分子)之间和/或多肽分子之间。通常,术语“同源性”意味着两个分子之间的演化关系。因此,两个同源的分子将具有共同的演化祖先。在本发明的上下文中,术语同源性涵盖同一性和相似性。
在一些实施例中,如果分子中至少25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%的单体是相同的(完全相同的单体)或相似的(保守取代),则聚合物分子被认为是彼此“同源的”。术语“同源的”必然是指至少两个序列(多核苷酸或多肽序列)之间的比较。
同一性:如本文所用,术语“同一性”是指聚合物分子之间的总体单体保守性,例如,多核苷酸分子(例如DNA分子和/或RNA分子)之间和/或多肽分子之间。出于最佳比较的目的,例如,可以通过比对两个序列来进行两个多核苷酸序列的百分比同一性的计算(例如,在一个第一和第二核酸序列的一个或两个中引入空位以用于最佳比对,并且出于比较目的,非相同序列可以忽略)。在某些实施例中,为比较目的而比对的序列的长度为参考序列长度的至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或100%。然后比较相应核苷酸位置处的核苷酸。当该第一序列中的位置被与该第二序列中的相应位置相同的核苷酸占据时,这些分子在该位置处是一致的。两个序列之间的百分比同一性是这些序列共享的多个同一性位置的一个函数,考虑了空位数目以及每个空位的长度,需要引入它以用于两个序列的最佳比对。序列比较以及两个序列之间的百分比同一性的确定可以使用数学算法完成。当比较DNA和RNA时,胸腺嘧啶(T)和尿嘧啶(U)可被认为是等同的。
合适的软件程序可从不同来源获得,并且用于比对蛋白质与核苷酸序列。用于确定序列同一性百分比的一种合适程序是bl2seq,该程序是可从美国政府的国家生物技术信息中心(National Center for Biotechnology Information)BLAST网站(blast.ncbi.nlm.nih.gov)获得的BLAST程序套件的一部分。Bl2seq使用BLASTN或BLASTP算法在两个序列之间执行比较。BLASTN用于比较核酸序列,而BLASTP用于比较氨基酸序列。其他合适程序是例如Needle、Stretcher、Water或Matcher,它们是EMBOSS生物信息学程序套件的一部分并且也可在www.ebi.ac.uk/Tools/psa上从欧洲生物信息学研究所(European Bioinformatics Institute;EBI)获得。
序列比对可以使用本领域已知的方法进行,如MAFFT、Clustal(ClustalW、ClustalX或Clustal Omega)、MUSCLE等。
与多核苷酸或多肽参考序列比对的单一多核苷酸或多肽靶标序列内的不同区域可各自具有其本身的序列同一性百分比。应指出的是序列同一性百分比值被四舍五入至最近的十分位。例如,80.11、80.12、80.13以及80.14向下舍入至80.1,而80.15、80.16、80.17、80.18以及80.19向上舍入至80.2。还应指出长度值将总是整数。
在某些方面,第一氨基酸序列(或核酸序列)与第二氨基酸序列(或核酸序列)的同一性百分比“%ID”计算为%ID=100x(Y/Z),其中Y是氨基酸残基(核碱基)数目,计分为比对该第一和第二序列时的相同匹配数(如通过目检或具体序列比对程序比对的),并且Z是该第二序列中的残基的总数目。如果第一序列的长度比第二序列长,该第一序列与该第二序列的百分比同一性将高于该第二序列与该第一序列的百分比同一性。
本领域技术人员应了解用于计算序列同一性百分比的序列比对的产生不局限于完全由基本序列数据驱动的二元序列-序列比较。还应理解序列比对可以通过将序列数据与来自异类来源的数据如结构数据(例如,结晶学蛋白质结构)、功能数据(例如,突变位置)或系统发生数据集成来产生。将异类数据集成以便产生多重序列比对的合适程序是T-Coffee,它可从www.tcoffee.org获得,并且可替代地可从例如EBI获得。还应理解用于计算序列同一性百分比的最终比对可以自动或手动地管理(curated)。
免疫应答:术语“免疫应答”是指例如淋巴细胞、抗原呈递细胞、吞噬细胞、粒细胞和由上述细胞或肝脏产生的可溶性大分子(包括抗体、细胞因子和补体)的行为,其产生对侵入病原体、被病原体感染的细胞或组织、癌细胞或(在自身免疫或病理性炎症的情况下)正常人细胞或组织的选择性损害、破坏或从人体中消除。在一些情况下,包含脂质组分和包封的治疗剂的纳米粒子的给予可以触发免疫应答,其可以由(i)包封的治疗剂(例如,mRNA)、(ii)这种包封的治疗剂的表达产物(例如,由该mRNA编码的多肽)、(iii)该纳米粒子的脂质组分或(iv)其组合引起。
炎症反应:“炎症反应”是指涉及特定和非特异性防御系统的免疫应答。特定的防御系统反应是对抗原的特异性免疫系统反应。特定防御系统反应的实例包括抗体应答。非特异性防御系统反应是由通常不能免疫记忆的白细胞(例如,巨噬细胞、嗜酸性粒细胞和嗜中性粒细胞)介导的炎症反应。在一些方面,免疫应答包括炎性细胞因子的分泌,导致炎性细胞因子水平升高。
炎性细胞因子:术语“炎性细胞因子”是指在炎症反应中升高的细胞因子。炎性细胞因子的实例包括白细胞介素-6(IL-6)、CXCL1(趋化因子(C-X-C基序)配体1;也称为GROα、干扰素-γ(IFNγ)、肿瘤坏死因子α(TNFα)、干扰素γ诱导的蛋白质10(IP-10)或粒细胞集落刺激因子(G-CSF)。术语炎性细胞因子还包括与炎症反应相关的本领域已知的其他细胞因子,例如白细胞介素-1(IL-1)、白细胞介素-8(IL-8)、白细胞介素-12(IL-12)、白细胞介素-13(Il-13)、干扰素α(IFN-α)等。
体外:如本文所用,术语“体外”是指在人造环境(例如,在试管或反应容器中、在细胞培养物中、在皮氏培养皿中等)而非在生物体(例如,动物、植物或微生物)内发生的事件。
体内:如本文所用,术语“体内”是指在生物体(例如,动物、植物或微生物或其细胞或组织)内发生的事件。
插入和缺失变体:当提及多肽时,“插入变体”是在紧邻天然或起始序列的特定位置处的氨基酸插入了一个或多个氨基酸的那些。“紧邻”氨基酸意指与氨基酸的α-羧基或α-氨基官能团连接。当提及多肽时,“缺失变体”是除去了天然或起始氨基酸序列中的一个或多个氨基酸的那些。通常,缺失变体将在分子的特定区域中缺失一个或多个氨基酸。
完整:如本文所用,在多肽的上下文中,术语“完整”意指保留对应于野生型蛋白质的氨基酸,例如,不使野生型氨基酸突变或取代。相反,在核酸的上下文中,术语“完整”意指保留对应于野生型核酸的核碱基,例如,不使野生型核碱基突变或取代。
可电离的氨基脂质:术语“可电离的氨基脂质”包括具有一个、两个、三个或更多个脂肪酸或脂肪烷基链和pH可滴定的氨基头部基团(例如烷基氨基或二烷基氨基头部基团)的那些脂质。可电离的氨基脂质通常在低于氨基头部基团的pKa的pH下质子化(即带正电),并且在高于该pKa的pH下基本上不带电。这种可电离的氨基脂质包括但不限于DLin-MC3-DMA(MC3)和(13Z,165Z)-N,N-二甲基-3-壬基二十二烷-13-16-二烯-1-胺(L608)。
分离的:如本文所用,术语“分离的”是指已经与至少一些曾与其相关(无论是在天然状态下还是在实验环境中)的组分分离的物质或实体。分离的物质(例如,多核苷酸或多肽)相对于分离它们的物质可具有不同的纯度水平。分离的物质和/或实体可以与它们最初相关的其他组分的至少约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%或更多分离。在一些实施例中、分离的物质的纯度大于约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或大于约99%。如本文所用,如果物质基本上不含其他组分,则该物质是“纯的”。
基本上分离:“基本上分离”是指该化合物基本上与形成或检测它的环境分离。部分分离可包括例如富含本披露化合物的组合物。实质分离可包括含有按重量计至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约97%或在至少约99%的本披露化合物或其盐的组合物。
本文披露的“分离的”多核苷酸、载体、多肽、细胞或任何组合物是处于非天然形式的多核苷酸、载体、多肽、细胞或组合物。分离的多核苷酸、载体、多肽或组合物包括已经被纯化至它们不再呈自然界中发现形式的程度的那些。在一些方面中,分离的多核苷酸、载体、多肽或组合物是基本上纯的。
异构体:如本文所用,术语“异构体”意指本发明的任何化合物的任何互变异构体、立体异构体、对映异构体或非对映异构体。认识到本发明的化合物可具有一个或多个手性中心和/或双键,并且因此以立体异构体存在,如双键异构体(即几何E/Z异构体)或非对映异构体(例如,对映异构体(即,(+)或(-))或顺式/反式异构体)。根据本发明,本文描绘的化学结构以及因此本发明的化合物涵盖所有相应的立体异构体,即立体异构纯形式(例如,几何纯形式、对映体纯形式或非对映异构体纯形式)以及对映体和立体异构体混合物,例如外消旋体。本发明的化合物的对映体和立体异构体混合物通常可通过众所周知的方法(如手性相气相层析、手性相高效液相层析)分解成其组分对映体或立体异构体,将该化合物结晶为手性盐络合物,或在手性溶剂中使该化合物结晶。对映体和立体异构体也可以通过公知的不对称合成方法从立体异构纯或对映体纯的中间体、试剂和催化剂获得。
接头:如本文所用,“连接基”是指一组原子,如10-1,000个原子,并且可以由多种原子或基团如但不限于碳、氨基、烷基氨基、氧、硫、亚砜、磺酰基、羰基和亚胺组成。接头可以在第一端与核碱基或糖部分上的修饰核苷或核苷酸附接,并且在第二端与有效负载(例如可检测或治疗剂)附接。接头可以具有足够的长度以便不干扰掺入核酸序列。接头可用于任何有用的目的,如形成多核苷酸多聚体(例如,通过两个或更多个嵌合多核苷酸分子或IVT多核苷酸的连接)或多核苷酸缀合物,以及给予有效载荷,如本文所述。可以掺入接头中的化学基团的实例包括但不限于烷基、烯基、炔基、酰氨基、氨基、醚、硫醚、酯、亚烷基、亚杂烷基、芳基或杂环基,其各自可如本文所述被任选取代。接头的实例包括但不限于不饱和烷烃、聚乙二醇(例如,乙二醇或丙二醇单体单元,例如二甘醇、二丙二醇、三甘醇、三丙二醇、四甘醇或四甘醇)及其葡聚糖聚合物和衍生物。其他实例包括但不限于接头内的可裂解部分,如例如二硫键(-S-S-)或偶氮键(-N=N-),其可以用还原剂或光解裂解。选择性可裂解键的非限制性实例包括酰胺键,可以例如通过使用三(2-羧乙基)膦(TCEP)或其他还原剂和/或光解裂解,酯键也可以例如通过酸性或碱性水解裂解。
给药方法:如本文所用,“给药方法”可包括静脉内、肌肉内、皮内、皮下或将组合物递送至受试者的其他方法。可以选择给药方法以靶向递送(例如,特异性递送)至身体的特定区域或系统。
经修饰的:如本文所用,“经修饰的”是指本发明分子的改变的状态或结构。能以许多方式(包括化学上、结构上和功能上)修饰分子。在一些实施例中,通过引入非天然核苷和/或核苷酸来修饰本发明的mRNA分子,例如,因为其涉及天然核糖核苷酸A、U、G和C。非经典核苷酸如帽结构不被认为是“经修饰的”,尽管它们与A、C、G、U核糖核苷酸的化学结构不同。
粘液:如本文所用,“粘液”是指为粘性并且包含粘蛋白糖蛋白的天然物质。
纳米粒子组合物:如本文所用,“纳米粒子组合物”是包含一种或多种脂质的组合物。纳米粒子组合物的尺寸量级通常为微米或更小,并且可包括脂质双层。纳米粒子组合物涵盖脂质纳米粒子(LNP)、脂质体(例如,脂质囊泡)和阳离子脂质体/DNA复合物。例如,纳米粒子组合物可以是具有直径为500nm或更小的脂质双层的脂质体。
天然存在的:如本文所用,“天然存在的”意指在没有人工辅助的情况下天然存在。
非人脊椎动物:如本文所用,“非人脊椎动物”包括除人类之外的所有脊椎动物,包括野生和驯养物种。非人类脊椎动物的实例包括但不限于哺乳动物、如羊驼、白臀野牛(banteng)、野牛、骆驼、猫、牛、鹿、狗、驴、大额牛、山羊、豚鼠、马、美洲驼、骡、猪、兔、驯鹿、绵羊、水牛和牦牛。
核酸序列:术语“核酸序列”、“核苷酸序列”或“多核苷酸序列”可互换使用,并且指连续的核酸序列。序列可以是单链或双链DNA或RNA,例如mRNA。
在最广泛的意义上,术语“核酸”包括包含核苷酸聚合物的任何化合物和/或物质。这些聚合物通常称为多核苷酸。本发明的示例性核酸或多核苷酸包括但不限于核糖核酸(RNA)、脱氧核糖核酸(DNA)、苏糖核酸(TNA)、乙二醇核酸(GNA)、肽核酸(PNA)、锁核酸(LNA,包括具有β-D-核糖构型的LNA、具有α-L-核糖构型的α-LNA(LNA的非对映异构体)、具有2'-氨基官能化的2'-氨基-LNA和具有2'-氨基官能化的2'-氨基-α-LNA)、亚乙基核酸(ENA)、环己烯基核酸(CeNA)或其杂合物或组合。
短语“编码......的核苷酸序列”是指编码多肽的核酸(例如,mRNA或DNA分子)编码序列。该编码序列可以进一步包括与调控元件可操作地连接的起始和终止信号,这些调控元件包括能够指导在给予核酸的个体或哺乳动物的细胞中表达的启动子和聚腺苷酸化信号。编码序列可进一步包括编码信号肽的序列。
脱靶:如本文所用,“脱靶”是指对任何一种或多种靶标、基因或细胞转录物的任何非预期效果。
开放阅读框:如本文所用,“开放阅读框”或“ORF”是指在给定阅读框中不含终止密码子的序列。
可操作地连接:如本文所用,短语“可操作地连接”是指两个或更多个分子、构建体、转录物、实体、部分等之间的功能性连接。
任选取代:本文中“任选取代的X”形式(例如,任选取代的烷基)的短语旨在等同于“X,其中X任选被取代”(例如,“烷基,其中所述烷基任选被取代”)。它并不旨在意指特征“X”(例如,烷基)本身是任选的。
部分:如本文所用,多核苷酸的“部分”或“区域”定义为多核苷酸的小于多核苷酸的整个长度的任何部分。
患者:如本文所用,“患者”是指可以寻求或有需要治疗的受试者、需要治疗的受试者、正接受治疗的受试者、将接受治疗的受试者或正在受过针对特定疾病或病症的训练的专业人员护理下的受试者。
药学上可接受的:本文使用的短语“药学上可接受的”是指在合理的医学判断的范围,适合用于与人类和动物的组织接触而不产生过度毒性、刺激、过敏反应或其他问题或并发症,同时具有相称的合理受益/风险比的那些化合物、材料、组合物和/或剂型。
药学上可接受的赋形剂:如本文所用,短语“药学上可接受的赋形剂”是指除本文所述化合物之外并且在患者中具有基本上无毒和非炎性的性质的任何成分(例如,能够悬浮或溶解活性化合物的载体)。赋形剂可包括例如:抗粘附剂、抗氧化剂、粘合剂、涂料、压缩助剂、崩解剂、染料(颜色)、软化剂、乳化剂、填充剂(稀释剂)、成膜剂或涂膜、调味剂、香料、助流剂(流动增强剂)、润滑剂、防腐剂、印刷油墨、吸附剂、悬浮剂或分散剂、甜味剂和水合水。示例性赋形剂包括但不限于:丁基化羟基甲苯(BHT)、碳酸钙、磷酸钙(二元)、硬脂酸钙、交联羧甲纤维素、交联聚乙烯吡咯烷酮、柠檬酸、交聚维酮、半胱氨酸、乙基纤维素、明胶、羟丙基纤维素、羟丙基甲基纤维素、乳糖、硬脂酸镁、麦芽糖醇、甘露醇、甲硫氨酸、甲基纤维素、对羟基苯甲酸甲酯、微晶纤维素、聚乙二醇、聚乙烯吡咯烷酮、聚维酮、预糊化淀粉、对羟基苯甲酸丙酯、棕榈酸视黄酯、虫胶、二氧化硅、羧甲基纤维素钠、柠檬酸钠、羟基乙酸淀粉钠、山梨糖醇、淀粉(玉米)、硬脂酸、蔗糖、滑石粉、二氧化钛、维生素A、维生素E、维生素C和木糖醇。
药学上可接受的盐:本披露还包括本文描述的化合物的药学上可接受的盐。如本文所用,“药学上可接受的盐”是指所披露化合物的衍生物,其中通过将现有的酸或碱部分转化为其盐形式(例如,通过使游离碱基与合适的有机酸反应)来修饰亲本化合物。药学上可接受的盐的实例包括但不限于碱性残基如胺的无机或有机酸盐;碱或者酸性残留物如羧酸的有机盐;等等。代表性的酸加成盐包括乙酸盐、乙酸、己二酸盐、藻酸盐、抗坏血酸盐、天冬氨酸盐、苯磺酸盐、苯磺酸、苯甲酸盐、硫酸氢盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二葡糖酸盐、十二烷基硫酸盐、乙磺酸盐、富马酸盐、葡庚糖酸盐、甘油磷酸盐、半硫酸盐、庚酸盐、己酸盐、氢溴酸盐、盐酸盐、氢碘酸盐、2-羟基-乙磺酸盐、乳糖醛酸盐、乳酸盐、月桂酸盐、十二烷基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、双羟萘酸盐、果胶酸盐、过硫酸盐、3-苯基丙酸盐、磷酸盐、苦味酸盐、新戊酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、甲苯磺酸盐、十一酸盐、戊酸盐等。代表性的碱金属或碱土金属盐包括钠、锂、钾、钙、镁等以及无毒的铵、季铵和胺阳离子,包括但不限于铵、四甲基铵、四乙基铵、甲胺、二甲胺、三甲胺、三乙胺、乙胺等。本披露的药学上可接受的盐包括亲本化合物的常规无毒盐,其由例如无毒无机或有机酸形成。本披露的药学上可接受的盐可以通过常规化学方法由含有碱性或酸性部分的亲本化合物合成。通常,这些盐可以通过使这些化合物的游离酸或碱形式与化学计算量的适当的碱或酸在水中或在有机溶剂中或在两者的混合物中反应来制备;通常,使用非水介质如醚、乙酸乙酯、乙醇、异丙醇或乙腈。合适的盐的列表可参见Remington'sPharmaceutical Sciences[雷明顿药物科学],第17版,Mack PublishingCompany[麦克出版公司],宾夕法尼亚州伊斯顿,1985,第1418页,Pharmaceutical Salts:Properties,Selection,and Use[药用盐:性质,选择和使用],P.H.Stahl和C.G.Wermuth(编辑),Wiley-VCH[威利出版社],2008和Berge等人,Journal of PharmaceuticalScience[药物科学杂志],66,1-19(1977),将其各自通过引用以其全部内容并入本文。
药学上可接受的溶剂化物:如本文所用,术语“药学上可接受的溶剂化物”意指本发明的其中在晶格中掺入了合适的溶剂分子的化合物。在给予剂量下合适的溶剂是生理学上可耐受的。例如,溶剂化物可以通过从包括有机溶剂、水或其混合物的溶液中结晶、重结晶或沉淀来制备。合适溶剂的实例是乙醇、水(例如,单水合物、二水合物和三水合物)、N-甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)、N,N'-二甲基甲酰胺(DMF)、N,N'-二甲基乙酰胺(DMAC)、1,3-二甲基-2-咪唑烷酮(DMEU)、1,3-二甲基-3,4,5,6-四氢-2-(1H)-嘧啶酮(DMPU)、乙腈(ACN)、丙二醇、乙酸乙酯、苯甲醇、2-吡咯烷酮、苯甲酸苄酯等。当水是溶剂时,溶剂化物被称为“水合物”。
药代动力学:如本文所用,“药代动力学”是指分子或化合物的任何一种或多种性质,当它涉及确定给予活生物体的物质的命运时。药代动力学被分为几个方面,包括吸收、分布、代谢和排泄的程度和速度。这通常称为ADME,其中:(A)吸收是物质进入血液循环的过程;(D)分布是物质在整个体液和组织中的分散或散播;(M)代谢(或生物转化)是亲本化合物向子代谢物的不可逆转化;并且(E)排泄(或消除)是指从身体中消除这些物质。在极少数情况下,一些药物会不可逆地积聚在身体组织中。
物理化学:如本文所用,“物理化学”意指物理和/或化学性质或与物理和/或化学性质有关。
多核苷酸:如本文所用,术语“多核苷酸”是指任何长度的核苷酸聚合物,包括核糖核苷酸、脱氧核糖核苷酸、其类似物或其混合物。该术语是指该分子的一级结构。因此,该术语包括三链、双链和单链脱氧核糖核酸(“DNA”)和三链、双链和单链核糖核酸(“RNA”)。它还包括例如通过烷基化和/或通过加帽修饰的和未修饰形式的多核苷酸进行修饰。更具体地,术语“多核苷酸”包括多脱氧核糖核苷酸(含有2-脱氧-D-核糖),多核糖核苷酸(含有D-核糖,包括tRNA、rRNA、hRNA、siRNA和mRNA,无论是剪接还是未剪接),任何其他类型的作为嘌呤或嘧啶碱基的N-或C-糖苷的多核苷酸,以及含有单核苷酸主链的其他聚合物例如聚酰胺(例如,肽核酸“PNA”)和多晶型聚合物,以及其他合成的序列特异性核酸聚合物,条件是聚合物含有核碱基,其构型允许碱基配对和碱基堆积,如在DNA和RNA中发现的。在特定方面,该多核苷酸包含mRNA。在另一方面,该mRNA是合成mRNA。在一些方面,该合成mRNA包含至少一个非天然核碱基。在一些方面,某些类别的所有核碱基已经被非天然核碱基替代(例如,本文披露的多核苷酸中的所有尿苷都可被非天然核碱基例如5-甲氧基尿苷替代)。在一些方面,多核苷酸(例如,合成RNA或合成DNA)在合成DNA的情况下仅包含天然核碱基,即A(腺苷)、G(鸟苷)、C(胞苷)和T(胸苷),或在合成RNA的情况下,仅包含A、C、G和U(尿苷)。
技术人员将理解,本文披露的密码子图谱中的T碱基存在于DNA中,而在相应的RNA中T碱基将被U碱基替代。例如,本文披露的DNA形式的密码子-核苷酸序列,例如载体或体外翻译(IVT)模板,其T碱基在其相应的转录mRNA中被转录为U。在这方面,密码子优化的DNA序列(包含T)和它们相应的mRNA序列(包含U)都被认为是本发明的密码子优化的核苷酸序列。技术人员还将理解,可以通过用非天然碱基替代一个或多个碱基来产生等同的密码子图谱。因此,例如,TTC密码子(DNA图谱)将对应于UUC密码子(RNA图谱),其进而将对应于ΨΨC密码子(其中U已被假尿苷替代的RNA图谱)。
在允许胸苷的N3-H和C4-氧基分别与腺苷的N1和C6-NH2之间以及胞苷的C2-氧基、N3和C4-NH2分别与鸟苷的C2-NH2、N'—H和C6-氧基之间形成氢键的条件下,标准的A-T和G-C碱基对形成。因此,例如,可以修饰鸟苷(2-氨基-6-氧-9-β-D-呋喃核糖基-嘌呤)以形成异鸟苷(2-氧-6-氨基-9-β-D-呋喃核糖基-嘌呤)。这种修饰导致核苷碱基不再与胞嘧啶有效形成标准碱基对。然而,胞嘧啶(1-β-D-呋喃核糖基-2-氧基-4-氨基-嘧啶)的形成异胞嘧啶(1-β-D-呋喃核糖基-2-氨基-4-氧基-嘧啶-)的修饰导致经修饰的核苷酸不能与鸟苷有效碱基配对,但与异鸟苷形成碱基对(Collins等人的美国专利号5,681,702)。异胞嘧啶可从西格玛化学公司(Sigma Chemical Co.)(密苏里州圣路易斯县)获得;异胞苷可以通过Switzer等人(1993)Biochemistry[生物化学]32:10489-10496和其中引用的参考文献所述的方法制备;2'-脱氧-5-甲基-异胞苷可以通过Tor等人,1993,J.Am.Chem.Soc.[美国化学学会杂志]115:4461-4467和其中引用的参考文献所述的方法制备;并且异鸟嘌呤核苷酸可以使用Switzer等人,1993,同上和Mantsch等人,1993,Biochem.[生物化学]14:5593-5601所述的方法,或者通过Collins等人的美国专利号5,780,610所述的方法制备。其他非天然碱基对可以通过Piccirilli等人,1990,Nature[自然]343:33-37所述的用于合成2,6-二氨基嘧啶及其补体(1-甲基吡唑并[4,3]嘧啶-5,7-(4H,6H)-二酮)的方法合成。形成独特碱基对的其他此类经修饰的核苷酸单元是已知的,如Leach等人(1992)J.Am.Chem.Soc.[美国化学学会杂志]114:3675-3683和Switzer等人,同上所述的那些。
多肽:在本文中可互换使用的术语“多肽”、“肽”和“蛋白质”是指具有任何长度的氨基酸聚合物。聚合物可包含经修饰的氨基酸。这些术语还涵盖已经被天然修饰或通过干预修饰的氨基酸聚合物;例如,二硫键形成、糖基化、脂化、乙酰化、磷酸化或任何其他操纵或修饰,如与标记组分缀合。该定义中还包括,例如,含有一种或多种氨基酸类似物(包括例如非天然氨基酸,如高半胱氨酸、鸟氨酸、对乙酰基苯丙氨酸、D-氨基酸和肌酸),以及本领域已知的其他修饰的多肽。
如本文使用的,该术语是指具有任何大小、结构或功能的蛋白质、多肽以及肽。多肽包括编码的多核苷酸产物、天然存在的多肽、合成多肽、同源物、直向同源物、旁系同源物、片段和其他等同物、前述项的变体和类似物。多肽可以是单体或者可以是多分子复合物,如二聚体、三聚体或四聚体。它们还可以包含单链或多链多肽。最常见的二硫键见于多链多肽中。术语多肽还可以适用于氨基酸聚合物,其中一个或多个氨基酸残基是相应的天然存在的氨基酸的一种人工化学类似物。在一些实施例中,“肽”可以小于或等于50个氨基酸长,例如,约5、10、15、20、25、30、35、40、45或50个氨基酸长。
多肽变体:如本文所用,术语“多肽变体”是指其氨基酸序列与天然或参考序列不同的分子。与天然或参考序列相比,氨基酸序列变体可在氨基酸序列内的某些位置具有取代、缺失和/或插入。通常,变体将与天然或参考序列具有至少约50%同一性、至少约60%同一性、至少约70%同一性、至少约80%同一性、至少约90%同一性、至少约95%同一性、至少约99%同一性。在一些实施例中,它们与天然或参考序列至少约80%或至少约90%相同。
每单位药物多肽(PUD):如本文所用,PUD或每单位药物的产品定义为在体液或组织中测量的产品(如多肽)的总日剂量(通常为1mg、pg、kg等)的细分部分(通常定义为浓度,如pmol/mL、mmol/mL等)除以在体液中的量度。
预防:如本文所用,术语“预防”是指部分或完全延迟感染、疾病、障碍和/或病症的发作;部分或完全延迟特定感染、疾病、障碍和/或病症的一种或多种体征或症状、特征或临床表现的发作;部分或完全延迟特定感染、疾病、障碍和/或病症的一种或多种体征或症状、特征或表现的发作;部分或完全延迟感染、特定疾病、障碍和/或病症的进展;和/或降低与感染、疾病、障碍和/或病症相关的病理学发展的风险。
增殖:如本文所用,术语“增殖”意指生长、扩增或增加或导致快速生长、扩增或增加。“增殖”意指具有增殖能力。“抗增殖”意指具有与增殖性质相反或不合适的性质。
预防性:如本文所用,“预防性”是指用于预防疾病传播的治疗或行动方案。
预防:如本文所用,“预防”是指为维持健康和预防疾病传播而采取的措施。“免疫预防”是指产生主动或被动免疫以防止疾病传播的措施。
蛋白质切割位点:如本文所用,“蛋白质切割位点”意指可通过化学、酶促或光化学手段实现氨基酸链的受控切割的位点。
蛋白质切割信号:如本文所用,“蛋白质切割信号”是指对多肽插旗或作标记用于切割的至少一个氨基酸。
感兴趣的蛋白质:如本文所用,术语“感兴趣的蛋白质”或“所希望的蛋白质”包括本文提供的那些及其片段、突变体、变体和改变。
近端:如本文所用,术语“近端”意指位置更靠近中心或感兴趣的点或区域。
假尿苷:如本文所用,假尿苷(ψ)是指核苷尿苷的C-糖苷异构体。“假尿苷类似物”是假尿苷的任何修饰、变体、同种型或衍生物。例如,假尿苷类似物包括但不限于1-羧基甲基-假尿苷、1-丙炔基-假尿苷、1-牛磺酸甲基-假尿苷、1-牛磺酸甲基-4-硫代-假尿苷、1-甲基假尿苷(m1ψ)、1-甲基-4-硫代-假尿苷(m1s4ψ)、4-硫代-1-甲基-假尿苷、3-甲基-假尿苷(m3ψ)、2-硫代-1-甲基-假尿苷、1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢假尿苷、2-硫代-二氢假尿苷、2-甲氧基尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫代-假尿苷、N1-甲基-假尿苷、1-甲基-3-(3-氨基-3-羧基丙基)假尿苷(acp3ψ)和2'-O-甲基-假尿苷(ψm)。
纯化:如本文所用,“纯化(purify,purified,purification)”意指使不想要的组分、玷污材料、掺合料或不完美成为基本上纯的或清洁的。
参考核酸序列:术语“参考核酸序列”或“参考核酸”或“参考核苷酸序列”或“参考序列”是指可被序列优化的起始核酸序列(例如,RNA,例如mRNA序列)。在一些实施例中,参考核酸序列是野生型核酸序列、其片段或变体。在一些实施例中,参考核酸序列是先前序列优化的核酸序列。
盐:在一些方面,本文披露的用于肿瘤内递送的药物组合物包含其一些脂质成分的盐。术语“盐”包括任何阴离子和阳离子络合物。阴离子的非限制性实例包括无机和有机阴离子,例如氟离子、氯离子、溴离子、碘离子、草酸根(例如,半草酸根(hemioxalate))、磷酸根、膦酸根、磷酸氢根、磷酸二氢根、氧离子(oxide)、碳酸根、碳酸氢根、硝酸根、亚硝酸根、氮离子、亚硫酸氢根、硫离子、亚硫酸根、硫酸氢根(bisulfate)、硫酸根、硫代硫酸根、硫酸氢根(hydrogen sulfate)、硼酸根、甲酸根、乙酸根、苯甲酸根、柠檬酸根、酒石酸根、乳酸根、丙烯酸根、聚丙烯酸根、富马酸根、马来酸根、衣康酸根、乙醇酸根、葡萄糖酸根、苹果酸根、扁桃酸根、惕各酸根、抗坏血酸根、水杨酸根、聚甲基丙烯酸根、高氯酸根、氯酸根、亚氯酸根、次氯酸根、溴酸根、次溴酸根、碘酸根、烷基磺酸根、芳基磺酸根、砷酸根、亚砷酸根、铬酸根、重铬酸根、氰离子、氰酸根、硫氰酸根、氢氧根、过氧根、高锰酸盐、及其混合物。
样品:如本文所用,术语“样品”或“生物样品”是指其组织、细胞或组成部分(例如,体液,包括但不限于血液、粘液、淋巴液、滑液、脑脊髓液、唾液、羊水、羊膜脐带血、尿液、阴道分泌物和精液)的子集。样品还可包括从如下制备的匀浆、裂解物或提取物:整个生物体或其组织、细胞或组成部分的子集或其级分或部分,包括但不限于例如血浆、血清、脊髓液、淋巴液、皮肤外部切片、呼吸道、肠道和泌尿生殖道、泪液、唾液、乳汁、血细胞、肿瘤、器官。样品进一步指培养基,如营养肉汤或凝胶,其可含有细胞组分,如蛋白质或核酸分子。
信号序列:如本文所用,短语“信号序列”、“信号肽”和“转运肽”可互换使用,并且是指可以指导蛋白质转运或定位于某个细胞器、细胞区室或细胞外输出的序列。该术语涵盖信号序列多肽和编码该信号序列的核酸序列。因此,在核酸的上下文中对信号序列的提及实际上是指编码信号序列多肽的核酸序列。
信号转导途径:“信号转导途径”是指多种信号转导分子之间的生物化学关系,这些信号转导分子在从一个细胞的一部分到细胞的另一部分的信号传递中起作用。如本文所用,短语“细胞表面受体”包括,例如,能够接收信号以及跨细胞浆膜传递这种信号的分子和分子复合物。
相似性:如本文所用,术语“相似性”是指聚合物分子之间的总体相关性,例如,多核苷酸分子(例如DNA分子和/或RNA分子)之间和/或多肽分子之间。聚合物分子彼此的百分比相似性的计算能以与百分比同一性的计算相同的方式进行,除了相似性百分比的计算考虑了本领域所理解的保守取代。
单一单位剂量:如本文所用,“单一单位剂量”是以一剂/一次/单一途径/单一接触点,即单次给药事件给予的任何治疗剂的剂量。
分剂量:如本文所用,“分剂量”是将单个单位剂量或总日剂量分成两剂或更多剂。
特异性递送:如本文所用,术语术语“特异性递送(specific delivery,specifically deliver或specifically delivering)”意指与脱靶组织(例如,哺乳动物脾脏)相比,通过纳米粒子向感兴趣的靶组织(例如,哺乳动物肝脏)递送更多的(例如,多至少1.5倍、多至少2倍、多至少3倍、多至少4倍、多至少5倍、多至少6倍、多至少7倍、多至少8倍、多至少9倍、多至少10倍)。纳米粒子向特定组织的递送水平可以通过如下来测量:将组织中产生的蛋白质的量与所述组织的重量进行比较,将组织中的多核苷酸的量与所述组织的重量进行比较,将组织中产生的蛋白质与所述组织中总蛋白质的量进行比较,或者将组织中多核苷酸的量与所述组织中总多核苷酸的量进行比较。例如,对于肾血管靶向,与肝脏和脾脏相比,特异性地向哺乳动物肾脏提供多核苷酸,如果在系统给予多核苷酸后,向肾脏递送比向肝脏或脾脏递送多1.5倍、2倍、3倍、5倍、10倍、15倍或20倍的多核苷酸/1g组织。应当理解,不需要在正治疗的受试者中确定纳米粒子特异性递送至靶组织的能力,可以在替代物如动物模型(例如,大鼠模型)中确定。
稳定的:如本文所用,“稳定的”是指化合物足够稳固以经受从反应混合物中分离至有用纯度,并且在一些情况下能够配制成有效的治疗剂。
稳定:如本文所用,术语“稳定(stabilize,stabilized)”、“稳定的区域”意指使得稳定或变得稳定。
立体异构体:如本文所用,术语“立体异构体”是指化合物可具有的所有可能的不同异构形式以及构象形式(例如,具有本文所述的任何化学式的化合物),特别是所有可能的立体化学和构象异构形式,基本分子结构的所有非对映异构体、对映体和/或构象异构体。本发明的一些化合物能以不同的互变异构形式存在,所有后者都包括在本发明的范围内。
受试者:“受试者”或“个体”或“动物”或“患者”或“哺乳动物”意指希望进行诊断、预后或治疗的任何受试者,尤其是哺乳动物受试者。哺乳动物受试者包括但不限于人、家畜、农畜、动物园动物、体育动物、宠物动物,如狗、猫、豚鼠、兔、大鼠、小鼠、马、牛、奶牛;灵长类动物,如猿、猴、猩猩和黑猩猩;犬科动物,如狗和狼;猫科动物,如猫、狮子和老虎;马科动物,如马、驴和斑马;熊,食用动物,如牛、猪和羊;有蹄类动物,如鹿和长颈鹿;啮齿动物,如小鼠、大鼠、仓鼠和豚鼠;等等。在某些实施例中,该哺乳动物是人类受试者。在其他实施例中,受试者是人类患者。在一个具体实施例中,受试者是有需要治疗的人类患者。
基本上:如本文所用,术语“基本上”是指展现感兴趣的特征或性质的总体或接近总体范围或程度的定性条件。生物学领域的普通技术人员将理解,生物学和化学特征很少(如果有的话)定位到完成和/或转到完整性或者实现或避免绝对结果。因此,术语“基本上”在本文中用于捕获许多生物和化学特征中固有完整性的潜在缺少。
基本上相等:如本文所用,因为它涉及剂量之间的时间差,该术语意指+/-2%。
基本同时:如本文所用并且当涉及多个剂量时,该术语意指在2秒内。
患有:“患有”疾病、障碍和/或病症的个体已被诊断患有或显现出疾病、障碍和/或病症的一种或多种体征或症状。
易感:“易感”于疾病、障碍和/或病症的个体未被诊断患有和/或不能展现疾病、障碍和/或病症的体征或症状但具有发展疾病或其症状或体征的倾向。在一些实施例中,对疾病、障碍和/或病症(例如,癌症)易感的个体可以通过一个或多个以下来表征:(1)与疾病、障碍和/或病症的发展相关的基因突变;(2)与疾病、障碍和/或病症的发展相关的遗传多态性;(3)与疾病、障碍和/或病症相关的蛋白质和/或核酸的表达和/或活性增加和/或降低;(4)与疾病、障碍和/或病症的发展相关的习惯和/或生活方式;(5)疾病、障碍和/或病症的家族史;以及(6)暴露于和/或感染与疾病、障碍和/或病症的发展相关的微生物。在一些实施例中,对疾病、障碍和/或病症易感的个体将发展疾病、障碍和/或病症。在一些实施例中,对疾病、障碍和/或病症易感的个体不会发展疾病、障碍和/或病症。
持续释放:如本文所用,术语“持续释放”是指符合特定时间段内的释放速率的药物组合物或化合物释放曲线。
合成:术语“合成”意指由人工生产、制备和/或制造。本发明的多核苷酸或其他分子的合成可以是化学的或酶促的。
靶定细胞:如本文所用,“靶定细胞”是指任何一种或多种感兴趣的细胞。这些细胞可以在体外、体内、原位或在生物体的组织或器官中发现。该生物体可以是动物(例如哺乳动物、人),受试者或患者。
靶组织:如本文所用,“靶组织”是指任何一种或多种感兴趣的组织类型,其中多核苷酸的递送将导致所希望的生物学和/或药理学作用。感兴趣的靶组织的实例包括特定组织、器官和系统或其组。在特定应用中,靶组织可以是肾脏、肺、脾脏、血管内的血管内皮(例如,冠状动脉内或股内),或肿瘤组织(例如,通过肿瘤内注射)。“脱靶组织”是指如下的任一种或多种组织类型,其中编码的蛋白质的表达不会产生所希望的生物学和/或药理学作用。在特定应用中,脱靶组织可包括肝脏和脾脏。
在脱靶组织中存在治疗剂可能是由于:(i)多核苷酸通过扩散或通过血流从给药部位泄漏到外周组织或远离的脱靶组织(例如肝脏)(例如,旨在在某些组织中表达多肽的多核苷酸将到达肝脏并且该多肽将在肝脏中表达);或(ii)在给予编码这种多肽的多核苷酸后通过扩散或通过血流泄漏到外周组织或远离的脱靶组织(例如肝脏)(例如,多核苷酸将在靶组织中表达多肽,并且该多肽会扩散到外周组织中)。
靶向序列:如本文所用,短语“靶向序列”是指可指导蛋白质或多肽的转运或定位的序列。
末端:如本文所用,术语“末端(termini或terminus)”在提及多肽时是指肽或多肽的末端。这种末端不仅限于肽或多肽的第一个或最后一个位点,而且可以在末端区域包括另外的氨基酸。本发明的基于多肽的分子可以表征为具有N-末端(由具有游离氨基基团(NH2)的氨基酸终止)和C-末端(由具有游离羧基基团(COOH)的氨基酸终止)。在一些情况下,本发明的蛋白质由通过二硫键或非共价力(多聚体、寡聚体)聚集在一起的多条多肽链组成。这些种类的蛋白质将具有多个N-末端和C-末端。可替代地,可以修饰多肽的末端,使得它们根据具体情况以基于非多肽的部分(如有机缀合物)开始或结束。
治疗剂:术语“治疗剂”是指当给予受试者时具有治疗、诊断和/或预防效果和/或引发所希望的生物学和/或药理学作用的药剂。例如,在一些实施例中,编码松弛素多肽的mRNA可以是治疗剂。在其他实施例中,治疗剂可以是治疗性蛋白质。
治疗有效量:如本文所用,术语“治疗有效量”意指当给予患有或易感于感染、疾病、障碍和/或病症的受试者时足以治疗、改善该感染、疾病、障碍和/或病症的体征或症状,诊断、预防和/或延迟该感染、疾病、障碍和/或病症的发作的待递送药剂(例如,核酸、药物、治疗剂、诊断剂、预防剂等)的量。
治疗有效结果:如本文所用,术语“治疗有效结果”意指在患有或易感于感染、疾病、障碍和/或病症的受试者中足以治疗、改善该感染、疾病、障碍和/或病症的体征或症状,诊断、预防和/或延迟该感染、疾病、障碍和/或病症的发作的结果。
总日剂量:如本文所用,“总日剂量”是给出或开处的24小时时段内的量。总日剂量可以作为单一单位剂量或分剂量给予。
转录因子:如本文所用,术语“转录因子”是指DNA结合蛋白,其调控DNA转录成RNA,例如通过活化或抑制转录。一些转录因子单独影响转录的调控,而其他转录因子与其他蛋白质配合作用。一些转录因子可以在某些条件下活化和抑制转录。通常,转录因子结合特定靶序列或与靶基因调控区中的特定共有序列高度相似的序列。转录因子可以单独或以与其他分子的复合物调节靶基因的转录。
转录:如本文所用,术语“转录”是指从DNA(例如,DNA模板或序列)产生mRNA(例如,mRNA序列或模板)的方法。
转染:如本文所用,“转染”是指将多核苷酸引入如下细胞,其中由多核苷酸(例如mRNA)编码的多肽表达或该多肽调节细胞功能(例如,siRNA、miRNA)。如本文所用,核酸序列的“表达”是指多核苷酸(例如,mRNA)翻译成多肽或蛋白质和/或多肽或蛋白质的翻译后修饰。
治疗(treating,treatment),疗法:如本文所用,术语“治疗(treating或treatment)”或“疗法”是指部分或完全缓解、改善、改进、减轻疾病的一个或多个体征、症状或特征,延迟其发作,抑制其进展,降低其严重性和/或降低其发病率。例如,“治疗”心脏病可以指减少与疾病相关的体征或症状,延长患者的寿命(提高存活率),降低疾病的严重程度,预防或延迟疾病的发作等。为了降低与疾病、障碍和/或病症相关的病理学发展风险的目的,治疗可以给予没有展现疾病、障碍和/或病症体征的受试者和/或给予仅展现疾病、障碍和/或病症的早期体征受试者。
未经修饰的:如本文所用,“未经修饰的”是指在以某种方式改变之前的任何物质、化合物或分子。未经修饰的可以但不总是指生物分子的野生型或天然形式。分子可以经历一系列修饰,由此每个经修饰的分子可以作为“未修饰的”起始分子用于随后的修饰。
尿嘧啶:尿嘧啶是RNA核酸中的四个核碱基之一,并且它由字母U表示。尿嘧啶可通过β-N1-糖苷键与核糖环(或更具体地,呋喃核糖)附接,以得到核苷尿苷。核苷尿苷也通常根据其核碱基的单字母代码缩写,即U。因此,在本披露的上下文中,当多核苷酸序列中的单体是U时,这种U可互换地指定为“尿嘧啶”或“尿苷”。
尿苷含量:术语“尿苷含量”或“尿嘧啶含量”是可互换的,并且是指某种核酸序列中存在的尿嘧啶或尿苷的量。尿苷含量或尿嘧啶含量可表示为绝对值(序列中尿苷或尿嘧啶的总数)或相对值(相对于核酸序列中核碱基总数的尿苷或尿嘧啶百分比)。
尿苷修饰的序列:术语“尿苷修饰的序列”是指如下的序列优化的核酸(例如,合成的mRNA序列),其相对于候选核酸序列的尿苷含量和/或尿苷模式具有不同的总尿苷或局部尿苷含量(更高或更低的尿苷含量)或具有不同的尿苷模式(例如,梯度分布或聚类)。在本披露的内容中,术语“尿苷修饰的序列”和“尿嘧啶修饰的序列”被认为是等同的和可互换的。
“高尿嘧啶密码子”被定义为包含两个或三个尿嘧啶的密码子,“低尿苷密码子”被定义为包含一个尿苷的密码子,并且“无尿苷密码子”是不含任何尿嘧啶的密码子。在一些实施例中,尿苷修饰的序列包含用低尿苷密码子进行的高尿苷密码子的取代、用无尿苷密码子进行的高尿苷密码子的取代、用高尿苷密码子进行的低尿苷密码子的取代、用无尿苷密码子进行的低尿苷密码子的取代、用低尿苷密码子进行的无尿苷密码子的取代、用高尿苷密码子进行的无尿苷密码子的取代、及其组合。在一些实施例中,高尿苷密码子可以被另一个高尿苷密码子替代。在一些实施例中,低尿苷密码子可以被另一个低尿苷密码子替代。在一些实施例中,无尿苷密码子可以被另一个无尿苷密码子替代。尿苷修饰的序列可以是尿苷富集的(enriched)或尿苷稀疏的(rarefied)。
尿苷富集的:如本文所用,术语“尿苷富集的”和语法变体是指序列优化的核酸(例如,合成的mRNA序列)中的尿苷含量相对于相应候选核酸序列的尿苷含量的增加(以绝对值或以百分比值表示)。尿苷富集可以通过用含有较少尿苷核碱基的同义密码子取代候选核酸序列中的密码子来实现。尿苷富集可以是全局的(即,相对于候选核酸序列的整个长度)或局部的(即,相对于候选核酸序列的子序列或区域)。
尿苷稀疏的:如本文所用,术语“尿苷稀疏的”和语法变体是指序列优化的核酸(例如,合成的mRNA序列)中的尿苷含量相对于相应候选核酸序列的尿苷含量的降低(以绝对值或以百分比值表示)。尿苷稀疏可以通过用含有较少尿苷核碱基的同义密码子取代候选核酸序列中的密码子来实现。尿苷稀疏可以是全局的(即,相对于候选核酸序列的整个长度)或局部的(即,相对于候选核酸序列的子序列或区域)。
变体:本披露中使用的术语变体是指天然变体(例如,多态性、同种型等)和人工变体,其中天然或起始序列(例如,野生型序列)中的至少一个氨基酸残基已被除去并且在相同位置原位插入不同的氨基酸。这些变体可被描述为“取代变体”。取代可以是其中分子中只有一个氨基酸被取代的单一取代,或者它们可以是其中在同一分子中两个或多个氨基酸被取代的多取代。如果插入或缺失氨基酸,则所得变体分别是“插入变体”或“缺失变体”。
等效物和范围
本领域普通技术人员将认识到,或使用不超出常规实验能够确定根据本文所述的发明的特定实施例的很多等效物。本发明的范围不旨在限于以上说明书,而是如在附加的权利要求中所陈述的。
在权利要求中,如“一个”、“一种”和“该”的冠词可以意指一个或多于一个,除非相反地指出或从上下文中显而易见。如果一个、多于一个或所有组成员在给定产品或过程中存在、采用或以其他方式相关,则认为包括“或”在组中一个或多个成员之间的声明或描述是满足的,除非另有说明相反或另外从上下文中显而易见。本发明包括这样的实施例,其中在给定产品或过程中存在、采用该组的恰好一个成员,或该组的恰好一个成员以其他方式与给定产品或过程相关。本发明包括如下的实施例,其中在给定产品或过程中存在、采用多于一个或所有组成员,或多于一个或所有组成员与给定产品或过程相关。
还应注意,术语“包含”旨在是开放的并且允许但不要求纳入额外的元素或步骤。当在本文中使用术语“包含”时,就此也涵盖和披露了术语“由......组成”。
在给出范围的情况下,包括端点。此外,应理解,除非从本领域普通技术人员的上下文和理解中另外指明或以其他方式显而易见,否则表示为范围的值可以假设在本发明的不同实施例中的所述范围内的任何特定值或子范围为该范围下限的单位的十分之一,除非上下文另有明确规定。
另外,应该理解,落入现有技术内的本发明的任何特定实施例可以明确地从任何一个或多个权利要求中排除。由于这些实施例被认为是本领域普通技术人员已知的,因此即使在本文中未明确阐述排除,也可排除它们。本发明的组合物的任何特定实施例(例如,由其编码的任何核酸或蛋白质;任何生产方法;任何使用方法;等等)可以出于任何原因从任何一个或多个权利要求中排除,无论是否与现有技术的存在有关。
所有引用的来源(例如,参考文献、出版物、数据库、数据库条目和本文引用的技术)通过引用并入本申请中,即使在引用中没有明确说明。如果引用来源和本申请的陈述相互矛盾,则本申请中的陈述应占主控。
章节和表格标题不旨在进行限制。
实例
实例1:多核苷酸的制造
根据本披露,多核苷酸和或其部分或区域的制造可以利用标题为“ManufacturingMethods for Production of RNA Transcripts[用于产生RNA转录物的制造方法]”的国际申请WO2014/152027中传授的方法完成,将其内容通过引用以其全部内容并入本文。
纯化方法可包括国际申请WO2014/152030和WO2014/152031中传授的那些,将其各自通过引用以其全部内容并入本文。
这些多核苷酸的检测和表征方法可以如WO2014/144039中传授的那样进行,将其通过引用以其全部内容并入本文。
本披露的多核苷酸的表征可以使用选自下组的程序完成,该组由以下组成:多核苷酸作图、逆转录酶测序、电荷分布分析和RNA杂质检测,其中表征包括确定RNA转录物序列、确定RNA转录物纯度或确定RNA转录物的电荷异质性。此类方法在例如WO2014/144711和WO2014/144767中传授,将其各自的内容通过引用以其全部内容并入本文。
实例2:嵌合多核苷酸合成
介绍
根据本披露,嵌合多核苷酸的两个区域或部分可以使用三磷酸酯化学方法(triphosphate chemistry)接合或连接。
根据此方法,100个核苷酸或更少的第一区域或部分用5'单磷酸酯和末端3'脱OH或嵌段OH化学地合成。如果该区域长于80个核苷酸,则可以将其合成为用于连接的两条链。
如果使用体外转录(IVT)将第一区域或部分合成为非位置修饰的区域或部分,则可以随后转化5'单磷酸酯并且随后对3'末端加帽。
单磷酸酯保护基团可选自本领域已知的那些中的任何一种。
嵌合多核苷酸的第二区域或部分可以使用化学合成或IVT方法合成。IVT方法可包括可利用具有经修饰的帽的引物的RNA聚合酶。可替代地,可以化学地合成多达130个核苷酸的帽,并将其偶联至IVT区域或部分。
应注意,对于连接方法,用DNA T4连接酶连接随后用DNA酶处理应该容易避免串接。
整个嵌合多核苷酸不需要用磷酸-糖主链制造。如果这些区域或部分之一编码多肽,则优选的是该区域或部分包含磷酸-糖主链。
然后使用本领域技术人员已知的任何已知的点击化学、邻位点击化学(orthoclick chemistry)、溶联(solulink)或其他生物缀合化学进行连接。
合成途径
使用一系列起始区段制备嵌合多核苷酸。此类区段包括:
(a)加帽且受保护的包含正常3'OH的5'区段(SEG.1)
(b)5'三磷酸酯区段,其可包括多肽的编码区并包含正常的3'OH(SEG.2)
(c)嵌合多核苷酸的3'端(例如,尾)的5'单磷酸酯区段,其包含虫草素或无3'OH(SEG.3)
合成(化学或IVT)后,将区段3(SEG.3)用虫草素处理,并且然后用焦磷酸酶处理以产生5'单磷酸酯。
然后使用RNA连接酶将区段2(SEG.2)连接到SEG.3。然后纯化经连接的多核苷酸并用焦磷酸酶处理以裂解二磷酸酯。然后纯化经处理的SEG.2-SEG.3构建体并将SEG.1连接到5'末端。可以进行嵌合多核苷酸的进一步纯化步骤。
当嵌合多核苷酸编码多肽时,经连接或接合的区段可表示为:5'UTR(SEG.1),开放阅读框或ORF(SEG.2)和3'UTR+聚A(SEG.3)。
每个步骤的产率可高达90%-95%。
实例3:用于cDNA产生的PCR
使用卡帕生物系统公司(Kapa BioSystems)(马萨诸塞州沃本)的2x KAPA HIFITMHotStart ReadyMix进行cDNA制备的PCR程序。此系统包括2x KAPA ReadyMix 12.5μl;正向引物(10μm)0.75μl;反向引物(10μm)0.75μl;模板cDNA-100ng;和dH20,稀释至25.0μl。反应条件为95℃持续5分钟,以及25个循环的98℃持续20秒,然后58℃持续15秒,然后72℃持续45秒,然后72℃持续5分钟,然后4℃到终止。
使用英杰公司(Invitrogen)的PURELINKTM PCR Micro试剂盒(加利福尼亚州卡尔斯巴德)按照制造商的说明书清洁反应(最多5μg)。较大的反应将需要使用容量较大的产品进行清洁。清洁后,使用NANODROPTM量化cDNA,并通过琼脂糖凝胶电泳分析以确认cDNA是预期的大小。然后将cDNA提交进行测序分析,之后进行体外转录反应。
实例4:体外转录(IVT)
体外转录反应产生含有经统一修饰的多核苷酸的多核苷酸。此类经统一修饰的多核苷酸可包含本披露的多核苷酸的一个区域或部分。输入核苷酸三磷酸(NTP)混合物使用天然和非天然NTP在内部制备。
典型的体外转录反应包括以下:
将粗制IVT混合物在4℃下储存过夜,以便在第二天进行清洁。然后使用1U无RNA酶的DNA酶消化原始模板。在37℃下孵育15分钟后,使用Ambion公司的MEGACLEARTM试剂盒(德克萨斯州奥斯汀)按照制造商的说明书纯化mRNA。此试剂盒可纯化高达500μg的RNA。清洁后,使用NanoDrop量化RNA,并通过琼脂糖凝胶电泳分析以确认RNA是合适的大小并且没有发生RNA的降解。
实例5:酶促加帽
多核苷酸的加帽如下进行,其中混合物包括:IVT RNA 60μg-180μg,以及dH20,直到72μl。将混合物在65℃下孵育5分钟以使RNA变性,并且然后立即转移至冰中。
然后该方案涉及混合10x加帽缓冲液(0.5M Tris-HCl(pH 8.0),60mM KCl,12.5mMMgCl2)(10.0μl);20mM GTP(5.0μl);20mM S-腺苷甲硫氨酸(2.5μl);RNA酶抑制剂(100U);2'-O-甲基转移酶(400U);牛痘加帽酶(鸟苷酰基转移酶)(40U);dH20(直到28μl);并且在37℃下,对于60μg RNA孵育30分钟,或者对于180μg RNA孵育长达2小时。
然后使用Ambion公司的MEGACLEARTM试剂盒(德克萨斯州奥斯汀)按照制造商的说明书纯化多核苷酸。清洁后,使用NANODROPTM(赛默飞世尔公司,马萨诸塞州沃尔瑟姆)量化RNA,并通过琼脂糖凝胶电泳分析以确认RNA是合适的大小并且没有发生RNA的降解。还可以通过运行逆转录-PCR对RNA产物进行测序以产生cDNA用于测序。
实例6:聚A加尾反应
如果cDNA中没有聚-T,则必须在清洁最终产物之前进行聚-A加尾反应。这是通过混合以下来完成的:加帽的IVT RNA(100μl);RNA酶抑制剂(20U);10x加尾缓冲液(0.5MTris-HCl(pH 8.0),2.5M NaCl,100mM MgCl2)(12.0μl);20mM ATP(6.0μl);聚-A聚合酶(20U);dH20,直到123.5μl,并且在37℃下孵育30分钟。如果聚-A尾已经在转录物中,则可以跳过加尾反应并使用Ambion公司的MEGACLEARTM试剂盒(德克萨斯州奥斯汀)直接进行清洁(最多500μg)。聚-A聚合酶优选是在酵母中表达的重组酶。
应当理解,聚A加尾反应的持续合成能力或完整性可能不会总导致精确尺寸的聚A尾。因此,大约40-200个之间(例如,约40、50、60、70、80、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、150-165、155、156、157、158、159、160、161、162、163、164或165个)的核苷酸的聚A尾在本发明的范围内。
实例7:天然5'帽和5'帽类似物
根据制造商的方案,使用以下化学RNA帽类似物在体外-转录反应期间伴随地完成多核苷酸的5'-加帽以产生5'-鸟苷帽结构:3′-O-Me-m7G(5')ppp(5')G[ARCA帽];G(5')ppp(5')A;G(5')ppp(5')G;m7G(5')ppp(5')A;m7G(5')ppp(5')G(新英格兰生物实验室,马萨诸塞州伊普斯威奇)。可以使用牛痘病毒加帽酶在转录后完成经修饰的RNA的5'-加帽以产生“帽0”结构:m7G(5')ppp(5')G(新英格兰生物实验室,马萨诸塞州伊普斯威奇)。可以使用牛痘病毒加帽酶和2'-O甲基转移酶产生帽1结构以产生:m7G(5')ppp(5')G-2'-O-甲基。帽2结构可以从帽1结构产生,随后使用2'-O甲基转移酶对5'-倒数第三个核苷酸进行2'-O-甲基化。帽3结构可以从帽2结构产生,随后使用2'-O甲基转移酶对5'-倒数第四个(preantepenultimate)核苷酸进行2'-O-甲基化。酶优选衍生自重组来源。
当转染到哺乳动物细胞中时,经修饰的mRNA具有12-18小时之间或大于18小时(例如,24、36、48、60、72或大于72小时)的稳定性。
实例8:加帽测定
A.蛋白质表达测定
含有本文传授的任何帽的编码多肽的多核苷酸能以相同浓度转染到细胞中。转染后6、12、24和36小时,可以通过ELISA测定分泌到培养基中的蛋白质的量。将更高水平的蛋白质分泌到培养基中的合成多核苷酸对应于具有更高翻译能力的帽结构的合成多核苷酸。
B.纯度分析合成
可以使用变性琼脂糖-尿素凝胶电泳或HPLC分析比较含有本文传授的任何帽的编码多肽的多核苷酸的纯度。通过电泳,与具有多个条带或带条痕条带的多核苷酸相比,具有单一合并(consolidated)条带的多核苷酸对应于更高纯度的产物。具有单个HPLC峰的合成多核苷酸也对应于更高纯度的产物。具有更高效率的加帽反应将提供更纯的多核苷酸群。
C.细胞因子分析
含有本文传授的任何帽的编码多肽的多核苷酸能以多个浓度转染到细胞中。转染后6、12、24和36小时,可以通过ELISA测定分泌到培养基中的促炎细胞因子(如TNF-α和IFN-β)的量。导致向培养基中分泌更高水平的促炎细胞因子的多核苷酸对应于含有免疫活化帽结构的多核苷酸。
D.加帽反应效率
可以在核酸酶处理后通过LC-MS分析含有本文传授的任何帽的编码多肽的多核苷酸的加帽反应效率。对加帽的多核苷酸进行核酸酶处理将产生通过LC-MS可检测到的游离核苷酸和加帽的5'-5-三磷酸酯帽结构的混合物。LC-MS谱上的加帽产物的量可以表示为来自反应的总多核苷酸的百分比,并且对应于加帽反应效率。通过LC-MS,具有更高加帽反应效率的帽结构将具有更高量的加帽产物。
实例9:经修饰的RNA或RT PCR产物的琼脂糖凝胶电泳
根据制造商的方案,将单个多核苷酸(20μl体积中200-400ng)或逆转录PCR产物(200-400ng)加载到非变性1.2%琼脂糖E-凝胶(英杰公司,加利福尼亚州卡尔斯巴德)的孔中并运行12-15分钟。
实例10:Nanodrop修饰的RNA量化和UV光谱数据
将TE缓冲液(1μl)中的经修饰的多核苷酸用于Nanodrop UV吸光度读取,以量化来自化学合成或体外转录反应的每种多核苷酸的产率。
实例11:使用类脂质配制经修饰的mRNA
通过在添加到细胞中之前将多核苷酸与类脂质以设定比率混合,配制多核苷酸用于体外实验。体内配制可能需要添加额外的成分以促进整个身体的循环。为了测试这些类脂质形成适于体内运行的粒子的能力,可以使用用于siRNA-类脂质配制品的标准配制工艺作为起始点。形成粒子后,添加多核苷酸并使其与复合物整合。使用标准染料排除测定来确定包封效率。
实例12:功能性松弛素蛋白的松弛素mRNA产生
如实例1至11中所述合成松弛素mRNA变体,目的是产生在血液中会具有更长半衰期的构建体。野生型松弛素由两种肽组成:A链和B链,并含有53个氨基酸。合成108个氨基酸的靶向人血清白蛋白的人免疫球蛋白IgG的可变轻链部分(κ)(VLk),并添加到野生型松弛素的A链中(图1)。
在EXP1293f细胞中进行三次独立的转染研究,并在表达RXFP1的CHO-K1细胞中进行cAMP测定(图2)。体外活性证明测定证明VLk-hRLN2mRNA产生功能性松弛素蛋白。有趣的是,发现VLk融合蛋白与野生型松弛素相比在体外活性较低(大约50%)。测试的所有mRNA都产生具有相似比活性的VLk-hRLN2蛋白。
还显示在小鼠体内耻骨间韧带伸长(ILE)测定中,VLk-hRLN2融合蛋白产生功能性蛋白质。向雌二醇致敏的CD1雌性小鼠给予VLk-hRLN2融合蛋白的单次静脉推注(0.5mg/kg)。二十四小时后,解剖小鼠,并测量耻骨间韧带。如图6所示,与阴性对照组相比,所有测试变体中的耻骨间韧带测量值显著更高。
实例13:松弛素mRNA体内研究:自发性高血压大鼠
使用自发性高血压大鼠来研究VLk-hRLN2构建体在体内的作用。首先给大鼠植入遥测装置。收集血液以确定基线循环松弛素水平。在整个研究中,持续监测心率和血压(每10分钟测量收缩和舒张动脉血压10秒)。将大鼠分成四组(每组N=8只大鼠):mo5U-构建体1,mo5U-野生型,m1ΨLuc和rhRLN2。前三组进行三次静脉输注,间隔七天。第四组rhRLN2植入了皮下泵,并在14天输注期间以恒定速率给予rhRLN2。在输注前并且然后在输注后6小时、12小时、1天、2天、4天和6天(在静脉组的情况下,下一次给药“前”测量是在第7天,在给予静脉剂量之前)从所有大鼠收集血液。
显示在静脉注射的自发性高血压大鼠中,VLk-hRLN2 mRNA产生具有持续活性的功能性蛋白质。图3A中显示的心率数据证明,松弛素VLk融合蛋白的体内效力与野生型松弛素相比较低。显示的数据根据日间和夜间时段进行平均(均值+/-SD),除去动物的操作时间(每组N=8只大鼠)。在大鼠中,心率数据在谷(日间)和峰(夜间)之间振荡。舒张动脉压数据(图3B)也证明VLk融合蛋白在体内具有持续活性。尽管效力较低,但较长的半衰期可为活性化合物提供治疗益处。
还测量了自发性高血压大鼠中的循环松弛素蛋白水平(图4)。向WKY大鼠给予在含有化合物18的纳米粒子中的编码VLk融合蛋白(构建体1(SEQ ID NO.5))的RNA的单次推注0.5mg/kg注射液。对血浆样品进行人RLN2蛋白ELISA;在大鼠模型中发现VLk融合蛋白血液水平高于野生型松弛素(图7)。
实例14:松弛素mRNA体内研究:食蟹猴
还研究了食蟹猴中松弛素的循环蛋白质水平。使用静脉输注或皮下注射测试两组食蟹猴(每组N=5只初试雄性猴)。在1小时输注中,每隔一周向静脉组给予0.5mg/kg的在含有化合物18的脂质纳米粒子中的松弛素-2mRNA(VLk融合蛋白,构建体1,SEQ ID NO.1的RNA),持续4周。剂量浓度为0.1mg/mL,体积为5mL/kg。皮下组接受在与皮质类固醇共同配制的含有化合物18的脂质纳米粒子中的松弛素2mRNA(VLk融合蛋白,SEQ ID NO.1的RNA)。剂量体积为0.5mL/kg,并且剂量浓度为1.0mg/mL。
在输注后长达6天,在静脉注射的食蟹猴中发现松弛素的循环水平高于靶浓度(图5)。请注意,在第14天,所有受试者都恢复到基线。然而,显示再给药产生低蛋白质药代动力学(图9)。
另一项研究还研究了在食蟹猴中使用两种不同的脂质纳米粒子配制品进行重复静脉给药的效果。在此研究中,将SEQ ID NO.1的RNA配制在两种不同的脂质纳米粒子中:一种含有化合物18,并且另一种含有化合物403。每隔一周向受试者给予0.5mg/kg的任一配制品,持续4周。然后使用人松弛素-2ELISA测定血浆样品,并且结果显示在图10中。另外,发现在第一、第二和第三剂量后SEQ ID NO.5的RNA的循环mRNA水平相似,如通过使用来自上述研究的血浆的bDNA测定所证明的(图11)。
实例15:松弛素mRNA体内研究:小鼠
给小鼠静脉注射松弛素-2mRNA(编码SEQ ID NO.2的VLk融合蛋白),并且在输注后的不同时间点测量循环松弛素的浓度。发现松弛素-2mRNA(VLk融合蛋白,构建体1)表达的松弛素浓度高于靶浓度的浓度持续长达8天(图8)。
序列
表5.氨基酸序列
下划线指示信号序列
表6. DNA序列
表7. RNA序列
具体实施例的前述描述将如此充分地揭示本发明的总体性质,使得在不脱离本发明的一般概念的情况下,其他人可以无需过多的实验、通过应用本领域技术范围内的知识,容易地针对此类具体实施例的各种应用进行修改和/或改编。因此,基于本文给出的传授内容和指导,此类改编和修改旨在落入所披露实施例的含义和等同范围内。应当理解,本文中的短语或术语是出于描述而非限制的目的,这样使得本说明书的术语或短语可根据传授内容和指导为技术人员所理解。本发明的宽度和范围应当不限于以上描述的示例性实施例中的任一个,而应当仅根据以下权利要求书和它们的等效物来限定。
本文所提及的全部出版物、专利申请、专利和其他参考文献通过引用以其全部内容并入。在有矛盾的情况下,将以本说明书(包括定义)为准。

Claims (159)

1.一种组合物,该组合物包含配制在可电离脂质纳米粒子中的具有编码至少一种人松弛素蛋白的开放阅读框的RNA多核苷酸,其中该可电离脂质纳米粒子具有约20%-60%摩尔比的可电离脂质:约5%-25%摩尔比的非阳离子脂质:约25%-55%摩尔比的甾醇;和约0.5%-15%摩尔比的PEG修饰的脂质。
2.如权利要求1所述的组合物,其中该松弛素蛋白是松弛素融合蛋白。
3.如权利要求2所述的组合物,其中该松弛素融合蛋白包括免疫球蛋白(Ig)片段。
4.如权利要求3所述的组合物,其中该Ig片段是可变链片段。
5.如权利要求3所述的组合物,其中该Ig片段是恒定链片段。
6.如权利要求3所述的组合物,其中该Ig片段是可变轻链片段。
7.如权利要求6所述的组合物,其中该松弛素融合蛋白包括可变轻链片段,即VLκIgG区。
8.如权利要求1所述的组合物,其中该松弛素蛋白具有与SEQ ID NO.1的序列70%-100%相同的核苷酸序列。
9.如权利要求1所述的组合物,其中该松弛素蛋白具有与SEQ ID NO.1的序列85%-100%相同的核苷酸序列。
10.如权利要求1-9中任一项所述的组合物,其中针对在人类受试者中高达2mg/kg的剂量,该组合物是剂量为25微克至400微克RNA多核苷酸的单位剂型。
11.如权利要求1-10中任一项所述的组合物,其中该可电离脂质是选自化合物1-25的脂质。
12.如权利要求1-11中任一项所述的组合物,其中该开放阅读框是密码子优化的。
13.如权利要求1-12中任一项所述的组合物,其中该RNA包含至少一种化学修饰。
14.如权利要求13所述的组合物,其中该化学修饰选自假尿苷、1-甲基假尿苷、1-乙基假尿苷、2-硫代尿苷、4'-硫代尿苷、5-甲基胞嘧啶、2-硫代-1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-假尿苷、2-硫代-5-氮杂-尿苷、2-硫代-二氢假尿苷、2-硫代-二氢尿苷、2-硫代-假尿苷、4-甲氧基-2-硫代-假尿苷、4-甲氧基-假尿苷、4-硫代-1-甲基-假尿苷、4-硫代-假尿苷、5-氮杂-尿苷、二氢假尿苷、5-甲基尿苷、5-甲氧基尿苷以及2'-O-甲基尿苷。
15.如权利要求1-14中任一项所述的组合物,其中配制在该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大60%。
16.如权利要求1-14中任一项所述的组合物,其中配制在该可电离脂质纳米粒子中的RNA多核苷酸的治疗指数比单独的RNA多核苷酸的治疗指数大80%。
17.如权利要求1-8中任一项所述的组合物,其中该可电离脂质是具有化学式(I)的脂质:
或其盐或异构体,其中:
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自碳环、杂环、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-N(R)2、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和-C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且
m选自5、6、7、8、9、10、11、12和13。
18.如权利要求1-17中任一项所述的组合物,其中该纳米粒子的多分散性值小于0.4。
19.如权利要求1-18中任一项所述的组合物,其中该纳米粒子在中性pH下具有净中性电荷。
20.如权利要求13所述的组合物,其中该开放阅读框中80%的尿嘧啶具有化学修饰。
21.如权利要求13所述的组合物,其中该开放阅读框中100%的尿嘧啶具有化学修饰。
22.如权利要求13所述的组合物,其中该化学修饰位于尿嘧啶的5-位。
23.如权利要求13所述的组合物,其中该化学修饰是N1-甲基假尿苷。
24.如权利要求13所述的组合物,其中该RNA多核苷酸的尿嘧啶和胸腺嘧啶含量比野生型松弛素多核苷酸或其片段的尿嘧啶和胸腺嘧啶含量高100%-150%。
25.一种核酸,该核酸包含具有编码至少一种松弛素融合蛋白的开放阅读框的RNA多核苷酸。
26.如权利要求1所述的核酸,其中该松弛素融合蛋白包括免疫球蛋白(Ig)片段。
27.如权利要求26所述的核酸,其中该Ig片段是可变链片段。
28.如权利要求26所述的核酸,其中该Ig片段是恒定链片段。
29.如权利要求26所述的核酸,其中该Ig片段是可变轻链片段。
30.如权利要求29所述的核酸,其中该可变轻链片段是VLκIgG区。
31.一种多肽,该多肽包含松弛素-VL融合蛋白,其中松弛素与可变轻链片段融合。
32.如权利要求31所述的多肽,其中该可变轻链片段是VLκIgG区。
33.如权利要求32所述的多肽,其中该松弛素通过接头与该VLκIgG区连接。
34.一种治疗有需要的受试者的与松弛素相关的障碍的方法,该方法包括向该受试者给予治疗有效量的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,以治疗与松弛素相关的该障碍。
35.如权利要求34所述的方法,其中治疗与松弛素相关的该障碍的方法涉及单次给予该RNA多核苷酸。
36.如权利要求34所述的方法,其中治疗与松弛素相关的该障碍的方法进一步包括给予每周一剂。
37.如权利要求34所述的方法,其中将该RNA多核苷酸配制在可电离脂质纳米粒子中。
38.如权利要求34所述的方法,其中该RNA多核苷酸是在如权利要求1-24中任一项所述的组合物中。
39.如权利要求34所述的方法,其中与松弛素相关的该障碍选自下组,该组由以下组成:伴有心脏功能障碍的急性冠状动脉综合征,与实体器官如肺、肾脏、肝脏、心脏的移植相关的缺血再灌注,包括肾的心肺旁路器官保护,和角膜愈合,慢性心力衰竭,急性心力衰竭,糖尿病性肾病,NASH,心房颤动,心脏纤维化,糖尿病伤口愈合和肝硬化。
40.一种治疗有需要的受试者的心力衰竭的方法,该方法包括向该受试者给予治疗有效量的包含编码松弛素多肽的开放阅读框(ORF)的RNA多核苷酸,以治疗该心力衰竭。
41.如权利要求40所述的方法,其中该方法涉及单次给予该RNA多核苷酸。
42.如权利要求40所述的方法,其中该方法进一步包括给予每周一剂。
43.如权利要求40所述的方法,其中该方法进一步包括给予每两周一剂。
44.如权利要求40所述的方法,其中该方法进一步包括给予每三周一剂。
45.如权利要求40所述的方法,其中该方法进一步包括给予每月一剂。
46.如权利要求40所述的方法,其中该RNA多核苷酸是在如权利要求1-24中任一项所述的组合物中。
47.如权利要求46所述的方法,其中相对于不存在可电离脂质的情况下单独的RNA多核苷酸的治疗指数,与该可电离脂质一起给予该RNA多核苷酸增加了该组合物中RNA多核苷酸的治疗指数。
48.如权利要求47所述的方法,其中该组合物中RNA多核苷酸的治疗指数大于10:1。
49.如权利要求47所述的方法,其中该组合物中RNA多核苷酸的治疗指数大于50:1。
50.如权利要求34-49中任一项所述的方法,其中在向该受试者给药后,该RNA多核苷酸处于展现药代动力学(PK)曲线的剂型,该药代动力学(PK)曲线包括:a)给药后约30至约240分钟时的Tmax;以及b)持续时间为约60至约240分钟的至少50%Cmax的血浆药物(由RNA多核苷酸产生的松弛素多肽)浓度平稳期。
51.如权利要求34-49中任一项所述的方法,其中在向该受试者给药后,实现相对于基线水平的至少25%的循环松弛素增加。
52.如权利要求34-49中任一项所述的方法,其中在向该受试者给药后,实现相对于基线水平的至少50%的循环松弛素增加。
53.如权利要求50-52中任一项所述的方法,其中达到该循环松弛素水平持续2小时长达7天。
54.如权利要求53所述的方法,其中达到该循环松弛素水平持续长达5天。
55.如权利要求53所述的方法,其中达到该循环松弛素水平持续长达3天。
56.如权利要求50所述的方法,其中在向该受试者给药后,该剂型展现PK曲线,其中在该血浆药物浓度平稳期的约5至7天内从血浆中清除至少约90%的药物。
57.如权利要求34-55中任一项所述的方法,其中该RNA多核苷酸以25和100微克之间的剂量存在。
58.如权利要求34-55中任一项所述的方法,其中该方法包括向该受试者给予0.001mg/kg和0.005mg/kg之间的单剂量的该RNA多核苷酸。
59.一种包含mRNA的药物组合物,该mRNA包含编码人松弛素多肽的开放阅读框(ORF),其中该组合物当作为单次静脉内剂量给予时足以减少以下的尿排泄:
(i)BNP的N-末端激素原(NT-proBNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与参考NT-proBNP排泄水平相比减少至少2倍、至少5倍、至少10倍、至少20倍或至少50倍。
60.一种包含mRNA的药物组合物,该mRNA包含编码人松弛素多肽的开放阅读框(ORF),其中该组合物当作为单次静脉内剂量给予时足以减少以下的血清水平:
(i)B型利尿钠肽(BNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时内,与正常BNP血清水平相比减少到至少10倍内、至少5倍内、至少2倍内、至少1.5倍内、至少1.4倍内、至少1.3倍内、至少1.2倍内或至少1.1倍内,
(ii)胱抑素C,在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与正常胱抑素C血清水平相比减少到至少10倍内、至少5倍内、至少2倍内或至少1.5倍内,和/或
(iii)BNP的N-末端激素原(NT-proBNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与正常NT-proBNP血清水平相比减少到至少10倍内、至少5倍内、至少2倍内或至少1.5倍内。
61.一种包含mRNA的药物组合物,该mRNA包含编码人松弛素多肽的开放阅读框(ORF),其中该组合物当作为单次静脉内剂量给予时足以:
(i)在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,将血浆松弛素活性水平维持在正常生理水平或超生理水平,和/或
(ii)在给药后至少24小时、至少48小时、至少72小时或至少96小时,将血浆松弛素活性水平维持在该正常血浆松弛素活性水平的50%或更多。
62.一种包含mRNA的药物组合物,该mRNA包含编码人松弛素多肽的开放阅读框(ORF),其中该组合物当作为单次静脉内剂量给予时足以:
(i)在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,相对于参考未经治疗的受试者改善肾功能,如通过血清肌酸酐和/或肾小球滤过率(GFR)测量的,和/或
(ii)在给药后12小时、1天、2天、3天、4天或5天内预防心力衰竭恶化,和/或
(iii)在给药后1天、30天、60天、120天或180天内预防心血管死亡。
63.如权利要求59-62中任一项所述的药物组合物,将该药物组合物给予需要治疗或预防心血管疾病的人类受试者。
64.如权利要求59-62中任一项所述的药物组合物,该药物组合物用于治疗、预防或延迟人类受试者中心血管疾病体征或症状的发作。
65.一种用于治疗心血管疾病的方法,该方法包括向需要治疗的人类受试者给予包含编码人松弛素多肽的开放阅读框(ORF)的mRNA,使得该松弛素多肽以足以减少以下的尿排泄的水平产生:
(i)BNP的N-末端激素原(NT-proBNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与参考NT-proBNP排泄水平相比减少至少2倍、至少5倍、至少10倍、至少20倍或至少50倍。
66.一种用于治疗心血管疾病的方法,该方法包括向需要治疗的人类受试者给予包含编码人松弛素多肽的开放阅读框(ORF)的mRNA,使得该松弛素多肽以足以减少以下的血清水平的水平产生:
(i)B型利尿钠肽(BNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时内,与正常BNP血清水平相比减少到至少10倍内、至少5倍内、至少2倍内或至少1.5倍内,
(ii)胱抑素C,在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与正常胱抑素C血清水平相比减少到至少10倍内、至少5倍内、至少2倍内或至少1.5倍内,和/或
(iii)BNP的N-末端激素原(NT-proBNP),在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,与正常NT-proBNP血清水平相比减少到至少10倍内、至少5倍内、至少2倍内或至少1.5倍内。
67.一种用于治疗心血管疾病的方法,该方法包括向需要治疗的人类受试者给予包含编码人松弛素多肽的开放阅读框(ORF)的mRNA,使得该松弛素多肽以足以进行以下的水平产生:
(i)在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,将血浆松弛素活性水平维持在正常生理水平或超生理水平,和/或
(ii)在给药后至少24小时、至少48小时、至少72小时或至少96小时,将血浆松弛素活性水平维持在该正常血浆松弛素活性水平的50%或更多。
68.一种用于治疗心血管疾病的方法,该方法包括向需要治疗的人类受试者给予包含编码人松弛素多肽的开放阅读框(ORF)的mRNA,使得该松弛素多肽以足以进行以下的水平产生:
(i)在给药后至少24小时、至少48小时、至少72小时、至少96小时或至少120小时,相对于参考未经治疗的受试者改善肾功能,如通过血清肌酸酐和/或肾小球滤过率(GFR)测量的,和/或
(ii)在给药后12小时、1天、2天、3天、4天或5天内预防心力衰竭恶化,和/或
(iii)在给药后1天、30天、60天、120天或180天内预防心血管死亡。
69.如权利要求68所述的方法,其中该松弛素多肽以足以在给药后180天内预防心血管死亡的水平产生。
70.如前述权利要求中任一项所述的药物组合物或方法,其适于以多个单一单位剂量给予。
71.如前述权利要求中任一项所述的药物组合物或方法,其中该给药是约每天一次、约每周一次、约每周两次、约每周三次、约每周四次、约每周六次、约每两周一次或约每月一次。
72.如权利要求64-65中任一项所述的药物组合物或如权利要求66-71中任一项所述的方法,其中该心血管疾病是临床上明显的(外显的)心血管疾病。
73.如权利要求64-65中任一项所述的药物组合物或如权利要求66-71中任一项所述的方法,其中该心血管疾病是临床上症状前的(潜伏的)心血管疾病。
74.如前述权利要求中任一项所述的药物组合物或方法,其中该松弛素多肽活性水平足以预防急性发作的发生和/或足以治疗急性发作。
75.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA包含至少一个经化学修饰的核碱基、糖、主链或其任何组合。
76.如权利要求75所述的药物组合物或方法,其中该至少一个经化学修饰的核碱基选自下组,该组由以下组成:假尿嘧啶(ψ)、N1-甲基假尿嘧啶(m1ψ)、2-硫代尿嘧啶(s2U)、4'-硫代尿嘧啶、5-甲基胞嘧啶、5-甲基尿嘧啶、5-甲氧基尿嘧啶及其任何组合。
77.如权利要求75或76所述的药物组合物或方法,其中至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约99%或100%的尿嘧啶或胸腺嘧啶是经化学修饰的。
78.如权利要求75至77中任一项所述的药物组合物或方法,其中至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约99%或100%的鸟嘌呤是经化学修饰的。
79.如权利要求75至78中任一项所述的药物组合物或方法,其中至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约99%或100%的胞嘧啶是经化学修饰的。
80.如权利要求75至79中任一项所述的药物组合物或方法,其中至少约25%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%、至少约99%或100%的腺嘌呤是经化学修饰的。
81.如前述权利要求中任一项所述的药物组合物或方法,其中该松弛素多肽是具有松弛素活性的野生型变体、衍生物或突变体。
82.如前述权利要求中任一项所述的药物组合物或方法,其中该ORF是经序列优化的。
83.如前述权利要求中任一项所述的药物组合物或方法,其中相对于编码该松弛素多肽的核苷酸序列的理论最小尿嘧啶或胸腺嘧啶含量的该ORF的尿嘧啶或胸腺嘧啶含量(%UTM或%TTM)在约100%和约150%之间。
84.如权利要求83所述的药物组合物或方法,其中该%UTM或%TTM在约105%和约145%之间、约105%和约140%之间、约110%和约140%之间、约110%和约145%之间、约115%和约135%之间、约105%和约135%之间、约110%和约135%之间、约115%和约145%之间或约115%和约140%之间。
85.如前述权利要求中任一项所述的药物组合物或方法,其中相对于相应的野生型ORF的尿嘧啶或胸腺嘧啶含量的该ORF的尿嘧啶或胸腺嘧啶含量(%UWT或%TWT)小于100%。
86.如权利要求85所述的药物组合物或方法,其中该%UWT或%TWT小于约95%、小于约90%、小于约85%、小于80%、小于79%、小于78%、小于77%、小于76%、小于75%、小于74%或小于73%。
87.如前述权利要求中任一项所述的药物组合物或方法,其中相对于该ORF中的总核苷酸含量的该ORF中的尿嘧啶或胸腺嘧啶含量(%UTL或%TTL)小于约50%、小于约40%、小于约30%或小于约19%。
88.如权利要求87所述的药物组合物或方法,其中该%UTL或%TTL小于约19%。
89.如前述权利要求中任一项所述的药物组合物或方法,其中相对于编码该松弛素多肽的核苷酸序列的理论最大鸟嘌呤含量的该ORF的鸟嘌呤含量(%GTMX)是至少69%、至少70%、至少75%、至少约80%、至少约85%、至少约90%、至少约95%或约100%。
90.如权利要求89所述的药物组合物或方法,其中该%GTMX在约70%和约80%之间、约71%和约79%之间、约71%和约78%之间或约71%和约77%之间。
91.如前述权利要求中任一项所述的药物组合物或方法,其中相对于编码该松弛素多肽的核苷酸序列的理论最大胞嘧啶含量的该ORF的胞嘧啶含量(%CTMX)是至少59%、至少60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或约100%。
92.如权利要求91所述的药物组合物或方法,其中该%CTMX在约60%和约80%之间、约62%和约80%之间、约63%和约79%之间或约68%和约76%之间。
93.如前述权利要求中任一项所述的药物组合物或方法,其中相对于编码该松弛素多肽的核苷酸序列中的理论最大G/C含量的该ORF的鸟嘌呤和胞嘧啶含量(G/C)(%G/CTMX)是至少约81%、至少约85%、至少约90%、至少约95%或约100%。
94.如权利要求93所述的药物组合物或方法,其中该%G/CTMX在约80%和约100%之间、约85%和约99%之间、约90%和约97%之间或约91%和约96%之间。
95.如前述权利要求中任一项所述的药物组合物或方法,其中相对于相应的野生型ORF中的G/C含量的该ORF中的G/C含量(%G/CWT)是至少102%、至少103%、至少104%、至少105%、至少106%、至少107%、至少110%、至少115%或至少120%。
96.如前述权利要求中任一项所述的药物组合物或方法,其中该ORF与SEQ ID NO:9至33、301至323或340至346具有至少95%、至少96%、至少97%、至少98%、至少99%或100%序列同一性。
97.如前述权利要求中任一项所述的药物组合物或方法,其中该药物组合物进一步包含递送剂。
98.如权利要求97所述的药物组合物或方法,其中该递送剂包括类脂质、脂质体、阳离子脂质体/DNA复合物(lipoplex)、脂质纳米粒子、聚合化合物、肽、蛋白质、细胞、纳米粒子模拟物、纳米管或缀合物。
99.如权利要求97或98所述的药物组合物或方法,其中该脂质纳米粒子或递送剂包含选自下组的脂质,该组由以下组成:3-(二十二烷基氨基)-N1,N1,4-三十二烷基-1-哌嗪乙胺(KL10)、N1-[2-(二十二烷基氨基)乙基]-N1,N4,N4-三十二烷基-1,4-哌嗪二乙胺(KL22)、14,25-二十三烷基-15,18,21,24-四氮杂-三十八烷(KL25)、1,2-二亚油烯基氧基-N,N-二甲基氨基丙烷(DLin-DMA)、2,2-二亚油烯基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)、三十七烷-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯(DLin-MC3-DMA)、2,2-二亚油烯基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLin-KC2-DMA)、1,2-二油烯基氧基-N,N-二甲基氨基丙烷(DODMA)、(13Z,165Z)-N,N-二甲基-3-壬基二十二烷-13-16-二烯-1-胺(L608)、2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA)、(2R)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2R))、(2S)-2-({8-[(3β)-胆甾-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八烷-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA(2S))及其任何组合。
100.如权利要求99所述的药物组合物或方法,其中该脂质纳米粒子是DLin-MC3-DMA。
101.如权利要求97或98所述的药物组合物或方法,其中该脂质纳米粒子或递送剂包含具有化学式(I)的化合物
或其盐或立体异构体,其中
R1选自下组,该组由以下组成:C5-30烷基、C5-20烯基、-R*YR"、-YR"和-R"M'R';
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基、C2-14烯基、-R*YR"、-YR"和-R*OR",或者R2和R3连同它们所附接的原子一起形成杂环或碳环;
R4选自下组,该组由以下组成:C3-6碳环、-(CH2)nQ、-(CH2)nCHQR、-CHQR、-CQ(R)2和未取代的C1-6烷基,其中Q选自碳环、杂环、-OR、-O(CH2)nN(R)2、-C(O)OR、-OC(O)R、-CX3、-CX2H、-CXH2、-CN、-N(R)2、-C(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)C(O)N(R)2、-N(R)C(S)N(R)2、-N(R)R8、-O(CH2)nOR、-N(R)C(=NR9)N(R)2、-N(R)C(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、-N(OR)C(O)R、-N(OR)S(O)2R、-N(OR)C(O)OR、-N(OR)C(O)N(R)2、-N(OR)C(S)N(R)2、-N(OR)C(=NR9)N(R)2、-N(OR)C(=CHR9)N(R)2、-C(=NR9)N(R)2、-C(=NR9)R、-C(O)N(R)OR和-C(R)N(R)2C(O)OR,并且每个n独立地选自1、2、3、4和5;
每个R5独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R6独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、-S-S-、芳基基团和杂芳基基团;
R7选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
R8选自下组,该组由以下组成:C3-6碳环和杂环;
R9选自下组,该组由以下组成:H、CN、NO2、C1-6烷基、-OR、-S(O)2R、-S(O)2N(R)2、C2-6烯基、C3-6碳环和杂环;
每个R独立地选自下组,该组由以下组成:C1-3烷基、C2-3烯基和H;
每个R'独立地选自下组,该组由以下组成:C1-18烷基、C2-18烯基、-R*YR"、-YR"和H;
每个R"独立地选自下组,该组由以下组成:C3-14烷基和C3-14烯基;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个Y独立地是C3-6碳环;
每个X独立地选自下组,该组由以下组成:F、Cl、Br和I;并且m选自5、6、7、8、9、10、11、12和13;并且
条件是,当R4是-(CH2)nQ、-(CH2)nCHQR、-CHQR或-CQ(R)2时,则(i)Q不是-N(R)2,当n是1、2、3、4或5时;或者(ii)Q不是5元、6元或7元杂环烷基,当n是1或2时。
102.如权利要求101所述的药物组合物或方法,其中该递送剂包含具有化学式(IA)的化合物:
或其盐或立体异构体,其中
l选自1、2、3、4和5;
m选自5、6、7、8和9;
M1是键或M';
R4是未取代的C1-3烷基或-(CH2)nQ,其中Q是OH、-NHC(S)N(R)2或-NHC(O)N(R)2、-NHC(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)R8、-NHC(=NR9)N(R)2、-NHC(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、杂芳基或杂环烷基;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-P(O)(OR')O-、-S-S-、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基和C2-14烯基。
103.如权利要求101至102中任一项所述的药物组合物或方法,其中m是5、7或9。
104.如权利要求101至103中任一项所述的药物组合物或方法,其中该化合物具有化学式(II)
或是其盐或立体异构体,其中
l选自1、2、3、4和5;
M1是键或M';
R4是未取代的C1-3烷基或-(CH2)nQ,其中n是2、3或4,并且Q是OH、-NHC(S)N(R)2或-NHC(O)N(R)2、-N(R)C(O)R、-N(R)S(O)2R、-N(R)R8、-NHC(=NR9)N(R)2、-NHC(=CHR9)N(R)2、-OC(O)N(R)2、-N(R)C(O)OR、杂芳基或杂环烷基;
M和M'独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-P(O)(OR')O-、-S-S-、芳基基团和杂芳基基团;并且
R2和R3独立地选自下组,该组由以下组成:H、C1-14烷基和C2-14烯基。
105.如权利要求101至104中任一项所述的药物组合物或方法,其中M1是M'。
106.如权利要求105所述的药物组合物或方法,其中M和M'独立地是-C(O)O-或-OC(O)-。
107.如权利要求101至106中任一项所述的药物组合物或方法,其中l是1、3或5。
108.如权利要求101所述的药物组合物或方法,其中该化合物选自下组,该组由以下组成:化合物1至化合物232、其盐和立体异构体及其任何组合。
109.如权利要求108所述的药物组合物或方法,其中该化合物选自下组,该组由以下组成:化合物1至化合物232、其盐和立体异构体及其任何组合。
110.如权利要求109所述的药物组合物或方法,其中该化合物是化合物18、其盐或立体异构体或其任何组合。
111.如权利要求97或98所述的药物组合物或方法,其中该递送剂包含具有化学式(III)的化合物
或其盐或立体异构体,其中
环A是
t是1或2;
A1和A2各自独立地选自CH或N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2、R3、R4和R5独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自下组,该组由以下组成:-C(O)O-、-OC(O)-、-OC(O)O-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、芳基基团和杂芳基基团;
X1、X2和X3独立地选自下组,该组由以下组成:键、-CH2-、-(CH2)2-、-CHR-、-CHY-、-C(O)-、-C(O)O-、-OC(O)-、-C(O)-CH2-、-CH2-C(O)-、-C(O)O-CH2-、-OC(O)-CH2-、-CH2-C(O)O-、-CH2-OC(O)-、-CH(OH)-、-C(S)-和-CH(SH)-;
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且
每个R"独立地选自下组,该组由以下组成:C3-12烷基和C3-12烯基,
其中当环A是时,则
i)X1、X2和X3中至少一个不是-CH2-;和/或
ii)R1、R2、R3、R4和R5中至少一个是-R"MR'。
112.如权利要求111所述的药物组合物或方法,其中该化合物具有化学式:
113.如权利要求111至112中任一项所述的药物组合物或方法,其中该递送剂包含具有化学式(IV)的化合物
或其盐或立体异构体,其中
A1和A2各自独立地选自CH或N,并且A1和A2中至少一个是N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2、R3、R4和R5独立地选自下组,该组由以下组成:C6-20烷基和C6-20烯基;
其中当环A是时,则
i)R1、R2、R3、R4和R5是相同的,其中R1不是C12烷基、C18烷基或C18烯基;
ii)R1、R2、R3、R4和R5中仅一个选自C6-20烯基;
iii)R1、R2、R3、R4和R5中至少一个与R1、R2、R3、R4和R5中至少一个其他项具有不同数目的碳原子;
iv)R1、R2和R3选自C6-20烯基,并且R4和R5选自C6-20烷基;或
v)R1、R2和R3选自C6-20烷基,并且R4和R5选自C6-20烯基。
114.如权利要求113所述的药物组合物或方法,其中该化合物具有化学式(IVa):
(IVa)。
115.如权利要求111至114中任一项所述的药物组合物或方法,其中该递送剂包含具有化学式(V)的化合物
或其盐或立体异构体,其中
A3是CH或N;
A4是CH2或NH;并且A3和A4中至少一个是N或NH;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
R1、R2和R3独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、芳基基团和杂芳基基团;
X1和X2独立地选自下组,该组由以下组成:-CH2-、-(CH2)2-、-CHR-、-CHY-、-C(O)-、-C(O)O-、-OC(O)-、-C(O)-CH2-、-CH2-C(O)-、-C(O)O-CH2-、-OC(O)-CH2-、-CH2-C(O)O-、-CH2-OC(O)-、-CH(OH)-、-C(S)-和-CH(SH)-;
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且
每个R"独立地选自下组,该组由以下组成:C3-12烷基和C3-12烯基。
116.如权利要求115所述的药物组合物或方法,其中该化合物具有化学式(Va):
117.如权利要求111至114中任一项所述的药物组合物或方法,其中该递送剂包含具有化学式(VI)的化合物:
或其盐或立体异构体,其中
A6和A7各自独立地选自CH或N,其中A6和A7中至少一个是N;
Z是CH2或不存在,其中当Z是CH2时,虚线(1)和(2)各自表示单键;并且当Z不存在时,虚线(1)和(2)都不存在;
X4和X5独立地选自下组,该组由以下组成:-CH2-、-(CH2)2-、-CHR-、-CHY-、-C(O)-、-C(O)O-、-OC(O)-、-C(O)-CH2-、-CH2-C(O)-、-C(O)O-CH2-、-OC(O)-CH2-、-CH2-C(O)O-、-CH2-OC(O)-、-CH(OH)-、-C(S)-和-CH(SH)-;
R1、R2、R3、R4和R5各自独立地选自下组,该组由以下组成:C5-20烷基、C5-20烯基、-R"MR'、-R*YR"、-YR"和-R*OR";
每个M独立地选自下组,该组由以下组成:-C(O)O-、-OC(O)-、-C(O)N(R')-、-N(R')C(O)-、-C(O)-、-C(S)-、-C(S)S-、-SC(S)-、-CH(OH)-、-P(O)(OR')O-、-S(O)2-、芳基基团和杂芳基基团;
每个Y独立地是C3-6碳环;
每个R*独立地选自下组,该组由以下组成:C1-12烷基和C2-12烯基;
每个R独立地选自下组,该组由以下组成:C1-3烷基和C3-6碳环;
每个R'独立地选自下组,该组由以下组成:C1-12烷基、C2-12烯基和H;并且每个R"独立地选自下组,该组由以下组成:C3-12烷基和C3-12烯基。
118.如权利要求111至117中任一项所述的药物组合物或方法,其中该递送剂包含选自下组的化合物,该组由以下组成:化合物233至化合物342。
119.如权利要求119至118中任一项所述的药物组合物或方法,其中该mRNA包含微RNA(miR)结合位点。
120.如权利要求119所述的药物组合物或方法,其中该mRNA包含至少两个不同的微RNA(miR)结合位点,其中该微RNA在造血谱系的免疫细胞或表达TLR7和/或TLR8并分泌促炎细胞因子和/或趋化因子的细胞中表达,并且其中该mRNA包含一个或多个经修饰的核碱基。
121.如权利要求120所述的药物组合物或方法,其中该mRNA包含在造血谱系的免疫细胞中丰富的微RNA的至少一个第一微RNA结合位点,并且至少一个第二微RNA结合位点属于内皮细胞中丰富的微RNA。
122.如权利要求119-121中任一项所述的药物组合物或方法,其中该mRNA包含多个拷贝的第一微RNA结合位点和至少一个拷贝的第二微RNA结合位点。
123.如权利要求119-122中任一项所述的药物组合物或方法,其中该mRNA包含相同微RNA的第一和第二微RNA结合位点。
124.如权利要求123所述的药物组合物或方法,其中这些微RNA结合位点属于相同微RNA的3p和5p臂。
125.如权利要求119-124中任一项所述的药物组合物或方法,其中该微RNA选自下组,该组由以下组成:miR-126、miR-142、miR-144、miR-146、miR-150、miR-155、miR-16、miR-21、miR-223、miR-24、miR-27、miR-26a或其任何组合。
126.如权利要求125所述的药物组合物或方法,其中该微RNA选自下组,该组由以下组成:miR126-3p、miR-142-3p、miR-142-5p、miR-155或其任何组合。
127.如权利要求119所述的药物组合物或方法,其中至少一个微RNA结合位点是miR-126结合位点。
128.如权利要求119所述的药物组合物或方法,其中至少一个微RNA结合位点是miR-142结合位点。
129.如权利要求123所述的药物组合物或方法,其中一个微RNA结合位点是miR-126结合位点,并且该第二微RNA结合位点是针对选自下组的微RNA,该组由以下组成:miR-142-3p、miR-142-5p、miR-146-3p、miR-146-5p、miR-155、miR-16、miR-21、miR-223、miR-24和miR-27。
130.如权利要求123所述的药物组合物或方法,其包含至少一个miR-126-3p结合位点和至少一个miR-142-3p结合位点。
131.如权利要求123所述的药物组合物或方法,其包含至少一个miR-142-3p结合位点和至少一个142-5p结合位点。
132.如权利要求119-131中任一项所述的药物组合物或方法,其中这些微RNA结合位点位于该mRNA的5'UTR、3'UTR或5'UTR和3'UTR两者中。
133.如权利要求132所述的药物组合物或方法,其中这些微RNA结合位点位于该mRNA的3'UTR中。
134.如权利要求132所述的药物组合物或方法,其中这些微RNA结合位点位于该mRNA的5'UTR中。
135.如权利要求132所述的药物组合物或方法,其中这些微RNA结合位点位于该mRNA的5'UTR和3'UTR两者中。
136.如权利要求132所述的药物组合物或方法,其中至少一个微RNA结合位点位于紧邻该mRNA的编码区的终止密码子的3'UTR中。
137.如权利要求132所述的药物组合物或方法,其中至少一个微RNA结合位点位于该mRNA的编码区的终止密码子下游70-80个碱基的3'UTR中。
138.如权利要求132所述的药物组合物或方法,其中至少一个微RNA结合位点位于紧接该mRNA的编码区的起始密码子之前的5'UTR中。
139.如权利要求132所述的药物组合物或方法,其中至少一个微RNA结合位点位于该mRNA的编码区的起始密码子之前15-20个核苷酸的5'UTR中。
140.如权利要求132所述的药物组合物或方法,其中至少一个微RNA结合位点位于该mRNA的编码区的起始密码子之前70-80个核苷酸的5'UTR中。
141.如权利要求132所述的药物组合物或方法,其中该mRNA包含多个拷贝的相同微RNA结合位点,所述微RNA结合位点彼此紧邻或者有小于5、5-10、10-15或15-20个核苷酸的间隔区。
142.如权利要求132所述的药物组合物或方法,其中该mRNA包含位于3'UTR中的多个拷贝的相同微RNA结合位点,其中该第一微RNA结合位点紧邻终止密码子,并且该第二和第三微RNA结合位点位于该第一微RNA结合位点下游30-40个碱基处。
143.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA是经充分修饰的。
144.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA包含假尿苷(ψ)、假尿苷(ψ)和5-甲基-胞苷(m5C)、1-甲基-假尿苷(m1ψ)、1-甲基-假尿苷(m1ψ)和5-甲基-胞苷(m5C)、2-硫代尿苷(s2U)、2-硫代尿苷和5-甲基-胞苷(m5C)、5-甲氧基-尿苷(mo5U)、5-甲氧基-尿苷(mo5U)和5-甲基-胞苷(m5C)、2'-O-甲基尿苷、2'-O-甲基尿苷和5-甲基-胞苷(m5C)、N6-甲基-腺苷(m6A)或N6-甲基-腺苷(m6A)和5-甲基-胞苷(m5C)。
145.如权利要求59-143中任一项所述的药物组合物或方法,其中该mRNA包含假尿苷(ψ)、N1-甲基假尿苷(m1ψ)、2-硫代尿苷、4'-硫代尿苷、5-甲基胞嘧啶、2-硫代-1-甲基-1-脱氮-假尿苷、2-硫代-1-甲基-假尿苷、2-硫代-5-氮杂-尿苷、2-硫代-二氢假尿苷、2-硫代-二氢尿苷、2-硫代-假尿苷、4-甲氧基-2-硫代-假尿苷、4-甲氧基-假尿苷、4-硫代-1-甲基-假尿苷、4-硫代-假尿苷、5-氮杂-尿苷、二氢假尿苷、5-甲氧基尿苷或2'-O-甲基尿苷或其组合。
146.如权利要求59-143中任一项所述的药物组合物或方法,其中该mRNA包含1-甲基-假尿苷(m1ψ)、5-甲氧基-尿苷(mo5U)、5-甲基-胞苷(m5C)、假尿苷(ψ)、α-硫代-鸟苷或α-硫代-腺苷或其组合。
147.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA进一步包含5'末端帽。
148.如权利要求147所述的药物组合物或方法,其中该5'末端帽包含帽0、帽1、ARCA、肌苷、N1-甲基-鸟苷、2'-氟-鸟苷、7-脱氮-鸟苷、8-氧代-鸟苷、2-氨基-鸟苷、LNA-鸟苷、2-叠氮基鸟苷、帽2、帽4、5'甲基G帽或其类似物。
149.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA进一步包含聚-A区。
150.如权利要求123所述的药物组合物或方法,其中该聚-A区的长度为至少约10、至少约20、至少约30、至少约40、至少约50、至少约60、至少约70、至少约80或至少约90个核苷酸。
151.如权利要求123所述的药物组合物或方法,其中该聚-A区的长度为约10至约200、约20至约180、约50至约160、约70至约140或约80至约120个核苷酸。
152.如前述权利要求中任一项所述的药物组合物或方法,其中该松弛素多肽与一种或多种异源多肽融合。
153.如前述权利要求中任一项所述的药物组合物或方法,其中该mRNA包含:(i)5'-末端帽;(ii)5'-UTR;(iii)编码该松弛素多肽的ORF;(iv)3'-UTR;以及(v)聚-A区。
154.如权利要求153所述的药物组合物或方法,其中该3'-UTR包含miRNA结合位点。
155.一种如前述权利要求中任一项所述的经纯化的mRNA。
156.一种包含如前述权利要求中任一项所述的mRNA的宿主细胞。
157.如权利要求156所述的宿主细胞,其中该宿主细胞是真核细胞。
158.一种包含如前述权利要求中任一项所述的mRNA的载体。
159.一种制备mRNA的方法,该方法包括酶促地或化学地合成如前述权利要求中任一项所述的mRNA。
CN201780044882.3A 2016-05-18 2017-05-18 编码松弛素的多核苷酸 Active CN109640962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210756560.4A CN115837014A (zh) 2016-05-18 2017-05-18 编码松弛素的多核苷酸

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662338470P 2016-05-18 2016-05-18
US62/338470 2016-05-18
PCT/US2017/033411 WO2017201340A2 (en) 2016-05-18 2017-05-18 Polynucleotides encoding relaxin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210756560.4A Division CN115837014A (zh) 2016-05-18 2017-05-18 编码松弛素的多核苷酸

Publications (2)

Publication Number Publication Date
CN109640962A true CN109640962A (zh) 2019-04-16
CN109640962B CN109640962B (zh) 2022-07-19

Family

ID=60326232

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780044882.3A Active CN109640962B (zh) 2016-05-18 2017-05-18 编码松弛素的多核苷酸
CN202210756560.4A Pending CN115837014A (zh) 2016-05-18 2017-05-18 编码松弛素的多核苷酸

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210756560.4A Pending CN115837014A (zh) 2016-05-18 2017-05-18 编码松弛素的多核苷酸

Country Status (12)

Country Link
US (2) US10730924B2 (zh)
EP (1) EP3458034A4 (zh)
JP (2) JP7088911B2 (zh)
KR (2) KR20230074598A (zh)
CN (2) CN109640962B (zh)
AU (1) AU2017268394A1 (zh)
BR (1) BR112018073683A2 (zh)
CA (1) CA3024500A1 (zh)
IL (1) IL263079B1 (zh)
MA (1) MA45051A (zh)
SG (1) SG11201810256XA (zh)
WO (1) WO2017201340A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264842A (zh) * 2021-07-21 2021-08-17 江苏普瑞康生物医药科技有限公司 一种脂质化合物及包含其的脂质载体、核酸脂质纳米粒组合物和药物制剂
WO2022112855A1 (en) * 2020-11-27 2022-06-02 Guangzhou Ribobio Co., Ltd Lipid compound and the composition thereof
CN115389756A (zh) * 2022-10-24 2022-11-25 首都医科大学附属北京安贞医院 一种预测房颤发生风险的检测试剂盒及其应用
CN116655486A (zh) * 2022-05-19 2023-08-29 仁景(苏州)生物科技有限公司 长链烷基酯胺类化合物及其制备方法和在核酸递送方面的应用
WO2023222081A1 (zh) * 2022-05-19 2023-11-23 仁景(苏州)生物科技有限公司 长链烷基酯胺类脂质化合物及其制备方法和在核酸递送方面的应用

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
AU2014329452B2 (en) 2013-10-03 2019-06-20 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
SG11201608798YA (en) 2014-04-23 2016-11-29 Modernatx Inc Nucleic acid vaccines
US11007260B2 (en) 2015-07-21 2021-05-18 Modernatx, Inc. Infectious disease vaccines
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
WO2017031232A1 (en) 2015-08-17 2017-02-23 Modernatx, Inc. Methods for preparing particles and related compositions
AU2016324310B2 (en) 2015-09-17 2021-04-08 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
SI3718565T1 (sl) 2015-10-22 2022-08-31 Modernatx, Inc. Cepiva za respiratorni virus
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
AU2016342376A1 (en) 2015-10-22 2018-06-07 Modernatx, Inc. Sexually transmitted disease vaccines
CN108472309A (zh) 2015-10-22 2018-08-31 摩登纳特斯有限公司 用于水痘带状疱疹病毒(vzv)的核酸疫苗
CA3002922A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
WO2017099823A1 (en) 2015-12-10 2017-06-15 Modernatx, Inc. Compositions and methods for delivery of therapeutic agents
JP7114465B2 (ja) 2015-12-22 2022-08-08 モデルナティエックス インコーポレイテッド 薬剤の細胞内送達のための化合物および組成物
US10465190B1 (en) 2015-12-23 2019-11-05 Modernatx, Inc. In vitro transcription methods and constructs
BR112018073683A2 (pt) 2016-05-18 2019-02-26 Modernatx, Inc. polinucleotídeos codificadores de relaxina
SG11201901941YA (en) 2016-09-14 2019-04-29 Modernatx Inc High purity rna compositions and methods for preparation thereof
WO2018075980A1 (en) 2016-10-21 2018-04-26 Modernatx, Inc. Human cytomegalovirus vaccine
US11583504B2 (en) 2016-11-08 2023-02-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
MA46766A (fr) 2016-11-11 2019-09-18 Modernatx Inc Vaccin antigrippal
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
US11384352B2 (en) 2016-12-13 2022-07-12 Modernatx, Inc. RNA affinity purification
EP3582790A4 (en) 2017-02-16 2020-11-25 ModernaTX, Inc. VERY POWERFUL IMMUNOGENIC COMPOSITIONS
AU2018234692B2 (en) 2017-03-15 2022-06-02 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
MA47787A (fr) 2017-03-15 2020-01-22 Modernatx Inc Vaccin contre le virus respiratoire syncytial
CA3055653A1 (en) * 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
MA52262A (fr) 2017-03-15 2020-02-19 Modernatx Inc Vaccin à large spectre contre le virus de la grippe
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
WO2018170270A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Varicella zoster virus (vzv) vaccine
DK3596042T3 (da) 2017-03-15 2022-04-11 Modernatx Inc Krystalformer af aminolipider
WO2018170347A1 (en) 2017-03-17 2018-09-20 Modernatx, Inc. Zoonotic disease rna vaccines
WO2018187590A1 (en) 2017-04-05 2018-10-11 Modernatx, Inc. Reduction or elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
EP3638215A4 (en) 2017-06-15 2021-03-24 Modernatx, Inc. RNA FORMULATIONS
CN111315362A (zh) * 2017-06-15 2020-06-19 传染病研究所 纳米结构脂质载剂和稳定乳剂以及其用途
EP3668977A4 (en) 2017-08-18 2021-04-21 Modernatx, Inc. HPLC ANALYTICAL PROCESSES
EP3668971B1 (en) 2017-08-18 2024-04-10 ModernaTX, Inc. Rna polymerase variants
WO2019036685A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. METHODS FOR HPLC ANALYSIS
MX2020002348A (es) 2017-08-31 2020-10-08 Modernatx Inc Métodos de elaboración de nanopartículas lipídicas.
MA50253A (fr) 2017-09-14 2020-07-22 Modernatx Inc Vaccins à arn contre le virus zika
EP3746090A4 (en) 2018-01-29 2021-11-17 ModernaTX, Inc. RSV RNA Vaccines
US20200080106A1 (en) 2018-06-06 2020-03-12 Massachusetts Institute Of Technology Circular rna for translation in eukaryotic cells
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
JP2022521094A (ja) 2019-02-20 2022-04-05 モデルナティエックス インコーポレイテッド 共転写キャッピング用rnaポリメラーゼバリアント
US11851694B1 (en) 2019-02-20 2023-12-26 Modernatx, Inc. High fidelity in vitro transcription
AU2020280105A1 (en) 2019-05-22 2022-01-20 Massachusetts Institute Of Technology Circular RNA compositions and methods
TW202120536A (zh) 2019-07-31 2021-06-01 美商美國禮來大藥廠 鬆弛素(relaxin)類似物及其使用方法
MX2022003269A (es) 2019-09-19 2022-07-04 Modernatx Inc Compuestos lipidicos de cola ramificada y composiciones para la administracion intracelular de agentes terapeuticos.
ES2961245T3 (es) 2019-12-04 2024-03-11 Orna Therapeutics Inc Composiciones y métodos de ARN circular
WO2021213924A1 (en) 2020-04-22 2021-10-28 BioNTech SE Coronavirus vaccine
MX2022013770A (es) * 2020-05-08 2023-04-03 Harvard College Relaxinas modificadas y metodos de uso de las mismas.
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
US20220090201A1 (en) * 2020-09-04 2022-03-24 University Of Kentucky Research Foundation Clinical assessment of cerebral vasospasm risk following aneurysmal subarachnoid hemorrhage
JP6860739B1 (ja) * 2020-11-20 2021-04-21 ジェイ−ネットワーク,インコーポレイテッド 表皮内の抗酸化物質の発現増強剤
US20230242474A1 (en) * 2020-11-27 2023-08-03 Guangzhou Ribobio Co., Ltd Lipid compound and the composition thereof
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
AU2022336209A1 (en) 2021-09-03 2024-01-18 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids
WO2023056044A1 (en) * 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
WO2023073228A1 (en) 2021-10-29 2023-05-04 CureVac SE Improved circular rna for expressing therapeutic proteins
WO2023144330A1 (en) 2022-01-28 2023-08-03 CureVac SE Nucleic acid encoded transcription factor inhibitors
WO2023227608A1 (en) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016549A2 (en) * 1995-11-03 1997-05-09 Regeneron Pharmaceuticals, Inc. Molecular cloning and characterization of molecules related to relaxin and the insulin family of ligands
CN1968717A (zh) * 2004-03-30 2007-05-23 延世大学工业教产学协力团 含有松驰素基因的基因送递系统和使用松驰素的药物组合物
CN102712935A (zh) * 2009-11-04 2012-10-03 不列颠哥伦比亚大学 含有核酸的脂质粒子及相关的方法
CN104411338A (zh) * 2012-04-02 2015-03-11 现代治疗公司 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145962A (en) 1982-08-12 1992-09-08 Howard Florey Institute Of Experimental Physiology And Medicine Human pro relaxin polypeptides
US5320953A (en) 1982-08-12 1994-06-14 Howard Florey Institute Of Experimental Physiology And Medicine Process for synthesizing human H1-prorelaxin, H1-relaxin and fusion proteins thereof
US5053488A (en) 1982-08-12 1991-10-01 Howard Florey Institute Of Experimental Physiology & Medicine Molecular cloning and characterization of a gene sequence coding for human relaxin
ES8603579A1 (es) 1982-08-12 1985-12-16 Florey Howard Inst Un procedimiento para producir un vector de transferencia de adn.
US5179195A (en) 1982-12-13 1993-01-12 Howard Florey Institute Of Experimental Physiology And Medicine Human relaxin polypeptides
US5023321A (en) 1982-12-13 1991-06-11 Howard Florey Institute Of Experimental Physiology & Medicine Molecular cloning and characterization of a further gene sequence coding for human relaxin
NZ206534A (en) 1982-12-13 1988-05-30 Florey Howard Inst Molecular cloning and characterisation of gene sequence coding for human relaxin
EP0204401A1 (en) 1985-04-09 1986-12-10 Biogen, Inc. Method of improving the yield of polypeptides produced in a host cell by stabilizing mRNA
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5681702A (en) 1994-08-30 1997-10-28 Chiron Corporation Reduction of nonspecific hybridization by using novel base-pairing schemes
JP2002508299A (ja) 1997-09-19 2002-03-19 セクイター, インク. センスmRNA治療
US6924365B1 (en) 1998-09-29 2005-08-02 Transkaryotic Therapies, Inc. Optimized messenger RNA
ES2340499T3 (es) 2001-06-05 2010-06-04 Curevac Gmbh Arnm de antigeno tumoral estabilizado con un contenido de g/c aumentado.
AUPR814401A0 (en) * 2001-10-08 2001-11-01 Howard Florey Institute Of Experimental Physiology And Medicine Human 3 relaxin
US20050222064A1 (en) 2002-02-20 2005-10-06 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
EP1781593B1 (en) 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
JP2008526875A (ja) * 2005-01-07 2008-07-24 グラクソ グループ リミテッド 新規使用
LT2578685T (lt) 2005-08-23 2019-06-10 The Trustees Of The University Of Pennsylvania Rnr, apimančios modifikuotus nukleozidus ir jų panaudojimo būdai
US8603457B2 (en) 2005-12-02 2013-12-10 University Of Rochester Nonsense suppression and genetic codon alteration by targeted modification
WO2007087178A2 (en) 2006-01-13 2007-08-02 The Trustees Of The University Of Pennsylvania Vaccines and immunotherapeutics using codon optimized il-15 and methods for using the same
ES2611924T3 (es) 2006-10-03 2017-05-11 Arbutus Biopharma Corporation Formulaciones que contienen lípidos
DE102006051516A1 (de) 2006-10-31 2008-05-08 Curevac Gmbh (Basen-)modifizierte RNA zur Expressionssteigerung eines Proteins
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
US9144546B2 (en) 2007-08-06 2015-09-29 Clsn Laboratories, Inc. Nucleic acid-lipopolymer compositions
WO2009039198A2 (en) 2007-09-17 2009-03-26 The Trustees Of The University Of Pennsylvania Generation of hyperstable mrnas
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
EP2365962B1 (en) 2008-11-07 2017-07-05 Massachusetts Institute of Technology Aminoalcohol lipidoids and uses thereof
KR20220150995A (ko) 2008-11-10 2022-11-11 알닐람 파마슈티칼스 인코포레이티드 치료제 운반용 신규 지질 및 조성물
CA2751342C (en) 2009-01-29 2019-05-07 Alnylam Pharmaceuticals, Inc. Lipid formulations comprising cationic lipid and a targeting lipid comprising n-acetyl galactosamine for delivery of nucleic acid
ES2774192T3 (es) 2009-02-19 2020-07-17 Glaxo Group Ltd Variantes mejoradas de unión de anti-albúmina sérica
CN102405232B (zh) 2009-02-19 2015-08-19 葛兰素集团有限公司 改良的抗血清清蛋白结合变体
CN104873464B (zh) 2009-06-10 2018-06-22 阿布特斯生物制药公司 改进的脂质制剂
US8353800B2 (en) 2009-06-12 2013-01-15 Eaton Corporation Limited slip differential using face gears and a pinion housing
WO2011000106A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Improved cationic lipids and methods for the delivery of therapeutic agents
EP2451475A2 (en) 2009-07-06 2012-05-16 Novartis AG Self replicating rna molecules and uses thereof
CA2768043A1 (en) 2009-07-27 2011-02-10 Auspex Pharmaceuticals, Inc. Cyclopropyl modulators of p2y12 receptor
US8389475B2 (en) 2009-08-10 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Relaxin analogs
PT2506857T (pt) 2009-12-01 2018-05-14 Translate Bio Inc Entrega de arnm para o acréscimo de proteínas e enzimas em doenças genéticas humanas
HUE036684T2 (hu) 2009-12-07 2018-07-30 Univ Pennsylvania Tisztított, módosított RNS-t tartalmazó RNS készítmények sejtek visszaprogramozásához
US20130017223A1 (en) 2009-12-18 2013-01-17 The University Of British Columbia Methods and compositions for delivery of nucleic acids
JP2013515693A (ja) 2009-12-23 2013-05-09 ノバルティス アーゲー 脂質、脂質組成物およびそれらの使用方法
US20110245469A1 (en) * 2010-04-02 2011-10-06 Athena Discovery, Inc. Intermediates formed in biosynthesis of relaxin-fusion proteins with extended in vivo half-lives
EP2558571A4 (en) 2010-04-16 2014-09-24 Immune Disease Inst Inc DELAYED POLYPEPTIDE EXPRESSION FROM MODIFIED SYNTHETIC RNAS AND USES THEREOF
WO2011139911A2 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Lipid formulated single stranded rna
WO2011141704A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc Novel cyclic cationic lipids and methods of use
EP2575767B1 (en) 2010-06-04 2017-01-04 Sirna Therapeutics, Inc. Novel low molecular weight cationic lipids for oligonucleotide delivery
MX343410B (es) 2010-07-06 2016-11-04 Novartis Ag * Emulsiones cationicas de agua en aceite.
US20130171241A1 (en) 2010-07-06 2013-07-04 Novartis Ag Liposomes with lipids having an advantageous pka-value for rna delivery
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
HUE047796T2 (hu) 2010-07-06 2020-05-28 Glaxosmithkline Biologicals Sa RNS bevitele több immunútvonal bekapcsolására
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
WO2012019168A2 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
EP2605789B1 (en) 2010-08-17 2019-06-05 Ambrx, Inc. Modified relaxin polypeptides and their uses
ES2935009T3 (es) 2010-08-31 2023-03-01 Glaxosmithkline Biologicals Sa Liposomas pegilados para la administración de ARN que codifica para inmunógeno
DK4066819T3 (da) 2010-08-31 2023-04-24 Glaxosmithkline Biologicals Sa Små liposomer til levering af RNA, der koder for immunogen
EP2611420B1 (en) 2010-08-31 2019-03-27 GlaxoSmithKline Biologicals SA Lipids suitable for liposomal delivery of protein-coding rna
US8466122B2 (en) 2010-09-17 2013-06-18 Protiva Biotherapeutics, Inc. Trialkyl cationic lipids and methods of use thereof
MX349088B (es) 2010-09-20 2017-07-10 Merck Sharp & Dohme Lípidos catiónicos novedosos de bajo peso molecular para la entrega de oligonucleótidos.
US20120237975A1 (en) 2010-10-01 2012-09-20 Jason Schrum Engineered nucleic acids and methods of use thereof
WO2012075040A2 (en) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
WO2012099755A1 (en) 2011-01-11 2012-07-26 Alnylam Pharmaceuticals, Inc. Pegylated lipids and their use for drug delivery
WO2012116715A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
EP2694660B1 (en) 2011-04-03 2018-08-08 The General Hospital Corporation Efficient protein expression in vivo using modified rna (mod-rna)
EP2710136A4 (en) 2011-05-17 2015-01-21 Moderna Therapeutics Inc MANIPULATED NUCLEIC ACIDS AND USE METHOD FOR NON-HUMAN SPINE
US8691750B2 (en) 2011-05-17 2014-04-08 Axolabs Gmbh Lipids and compositions for intracellular delivery of biologically active compounds
EP4074693A1 (en) 2011-06-08 2022-10-19 Translate Bio, Inc. Cleavable lipids
SI2717893T1 (sl) 2011-06-08 2019-10-30 Translate Bio Inc Sestavki lipidnih nanodelcev in postopki za dostavo mRNA
CA2840552A1 (en) * 2011-07-01 2013-01-10 Bayer Intellectual Property Gmbh Relaxin fusion polypeptides and uses thereof
MX2014000316A (es) 2011-07-08 2014-02-19 Bayer Ip Gmbh Proteinas de fusion liberadoras de relaxina y usos de las mismas.
EP3508220A1 (en) 2011-08-31 2019-07-10 GlaxoSmithKline Biologicals S.A. Pegylated liposomes for delivery of immunogen-encoding rna
US9126966B2 (en) 2011-08-31 2015-09-08 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use thereof
EP3384938A1 (en) 2011-09-12 2018-10-10 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3682905B1 (en) 2011-10-03 2021-12-01 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
KR102011048B1 (ko) 2011-10-18 2019-08-14 다이서나 파마수이티컬, 인크. 아민 양이온성 지질 및 그것의 용도
EA032088B1 (ru) 2011-10-27 2019-04-30 Массачусетс Инститьют Оф Текнолоджи Аминокислотные производные, функционализованные на n-конце, способные образовывать микросферы, инкапсулирующие лекарственное средство
US9579338B2 (en) 2011-11-04 2017-02-28 Nitto Denko Corporation Method of producing lipid nanoparticles for drug delivery
WO2013078199A2 (en) 2011-11-23 2013-05-30 Children's Medical Center Corporation Methods for enhanced in vivo delivery of synthetic, modified rnas
WO2013086373A1 (en) 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipids for the delivery of active agents
EP2791159A4 (en) 2011-12-14 2015-10-14 Moderna Therapeutics Inc MODIFIED NUCLEIC ACIDS, AND SHORT-TERM CARE USES THEREOF
EP2791364A4 (en) 2011-12-14 2015-11-11 Moderna Therapeutics Inc METHODS OF RESPONSE TO A BIOLOGICAL THREAT
WO2013087083A1 (en) 2011-12-15 2013-06-20 Biontech Ag Particles comprising single stranded rna and double stranded rna for immunomodulation
WO2013090601A2 (en) 2011-12-16 2013-06-20 Massachusetts Institute Of Technology Compact nanoparticles for biological applications
RS63244B1 (sr) 2011-12-16 2022-06-30 Modernatx Inc Kompozicije modifikovane mrna
US10322089B2 (en) 2012-03-14 2019-06-18 The Board Of Trustees Of The Leland Stanford Junior University Nanoparticles, nanoparticle delivery methods, and systems of delivery
NO2825156T3 (zh) 2012-03-16 2017-12-23
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
EP2833892A4 (en) 2012-04-02 2016-07-20 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS AND PEPTIDES ASSOCIATED WITH ONCOLOGY
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
JP6561378B2 (ja) * 2012-06-08 2019-08-21 トランスレイト バイオ, インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
US9415109B2 (en) 2012-07-06 2016-08-16 Alnylam Pharmaceuticals, Inc. Stable non-aggregating nucleic acid lipid particle formulations
EP2885419A4 (en) 2012-08-14 2016-05-25 Moderna Therapeutics Inc ENZYMES AND POLYMERASES FOR RNA SYNTHESIS
ES2921623T3 (es) 2012-11-26 2022-08-30 Modernatx Inc ARN modificado terminalmente
EP2929035A1 (en) * 2012-12-07 2015-10-14 Shire Human Genetic Therapies, Inc. Lipidic nanoparticles for mrna delivering
EP2931319B1 (en) 2012-12-13 2019-08-21 ModernaTX, Inc. Modified nucleic acid molecules and uses thereof
US20150315541A1 (en) 2012-12-13 2015-11-05 Moderna Therapeutics, Inc. Modified polynucleotides for altering cell phenotype
AR094147A1 (es) 2012-12-27 2015-07-15 Bayer Pharma Aktiengellschaft Polipeptidos de fusion con actividad de relaxina y sus usos
US9644021B2 (en) * 2013-01-11 2017-05-09 The California Institute For Biomedical Research Bovine fusion antibodies
EP2964234A4 (en) 2013-03-09 2016-12-07 Moderna Therapeutics Inc NON-TRANSLATED HETEROLOGOUS REGIONS FOR MRNA
AU2014239184B2 (en) 2013-03-14 2018-11-08 Translate Bio, Inc. Methods and compositions for delivering mRNA coded antibodies
US20160032316A1 (en) 2013-03-14 2016-02-04 The Trustees Of The University Of Pennsylvania Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014152940A1 (en) * 2013-03-14 2014-09-25 Shire Human Genetic Therapies, Inc. Mrna therapeutic compositions and use to treat diseases and disorders
WO2014144767A1 (en) 2013-03-15 2014-09-18 Moderna Therapeutics, Inc. Ion exchange purification of mrna
DK3019533T3 (da) * 2013-07-11 2020-03-23 Scripps Research Inst Dobbeltspiraliserede immunoglobulinfusionproteiner og sammensætninger deraf
AU2015208837B2 (en) * 2014-01-21 2020-06-18 Anjarium Biosciences Ag Hybridosomes, compositions comprising the same, processes for their production and uses thereof
AU2015246590B2 (en) 2014-04-17 2019-10-17 The Florey Institute Of Neuroscience And Mental Health Modified relaxin B chain peptides
SG11201608798YA (en) 2014-04-23 2016-11-29 Modernatx Inc Nucleic acid vaccines
WO2015164786A1 (en) 2014-04-25 2015-10-29 University Of Massachusetts Recombinant aav vectors useful for reducing immunity against transgene products
CN106661128A (zh) * 2014-06-06 2017-05-10 加州生物医学研究所 构建氨基末端免疫球蛋白融合蛋白的方法及其组合物
PL3766916T3 (pl) * 2014-06-25 2023-02-27 Acuitas Therapeutics Inc. Nowe lipidy i formulacje nanocząstek lipidowych do dostarczania kwasów nukleinowych
WO2016118697A1 (en) 2015-01-21 2016-07-28 Phaserx, Inc. Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells
WO2016164762A1 (en) 2015-04-08 2016-10-13 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor egf-a and intracellular domain mutants and methods of using the same
EP3307305A4 (en) 2015-06-10 2019-05-22 Modernatx, Inc. TARGETED ADAPTIVE VACCINES
US11007260B2 (en) 2015-07-21 2021-05-18 Modernatx, Inc. Infectious disease vaccines
WO2017015457A1 (en) 2015-07-21 2017-01-26 Modernatx, Inc. Ebola vaccine
WO2017020026A1 (en) 2015-07-30 2017-02-02 Modernatx, Inc. Concatemeric peptide epitopes rnas
US20190008887A1 (en) 2015-07-30 2019-01-10 ModernaTX Inc. Multimeric mrna
US20180237849A1 (en) 2015-08-17 2018-08-23 Modernatx, Inc. Rna mapping/fingerprinting
WO2017031232A1 (en) 2015-08-17 2017-02-23 Modernatx, Inc. Methods for preparing particles and related compositions
AU2016324310B2 (en) 2015-09-17 2021-04-08 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
CA3001003A1 (en) 2015-10-05 2017-04-13 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
EP3364949A4 (en) 2015-10-22 2019-07-31 ModernaTX, Inc. ANTICANCER VACCINES
SI3718565T1 (sl) 2015-10-22 2022-08-31 Modernatx, Inc. Cepiva za respiratorni virus
JP2018536023A (ja) 2015-10-22 2018-12-06 モデルナティーエックス, インコーポレイテッド 単純ヘルペスウイルスワクチン
CA3002922A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
SG11201803363YA (en) 2015-10-22 2018-05-30 Modernatx Inc Respiratory syncytial virus vaccine
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
CN108472309A (zh) 2015-10-22 2018-08-31 摩登纳特斯有限公司 用于水痘带状疱疹病毒(vzv)的核酸疫苗
AU2016342376A1 (en) 2015-10-22 2018-06-07 Modernatx, Inc. Sexually transmitted disease vaccines
AU2016342048B2 (en) 2015-10-22 2022-09-08 Modernatx, Inc. Broad spectrum influenza virus vaccine
AU2016343803B2 (en) 2015-10-28 2021-04-29 Acuitas Therapeutics, Inc. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2017099823A1 (en) 2015-12-10 2017-06-15 Modernatx, Inc. Compositions and methods for delivery of therapeutic agents
EP3458108A4 (en) 2016-05-18 2020-04-22 ModernaTX, Inc. POLYNUCLEOTIDES FOR CODING THE TRANSMEMBRANE CONDUCTIVE REGULATOR OF CYSTIC FIBROSE FOR TREATING CYSTIC FIBROSE
BR112018073683A2 (pt) 2016-05-18 2019-02-26 Modernatx, Inc. polinucleotídeos codificadores de relaxina
US20190275170A1 (en) 2016-05-18 2019-09-12 Modernatx, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
SG11201901941YA (en) 2016-09-14 2019-04-29 Modernatx Inc High purity rna compositions and methods for preparation thereof
WO2018075980A1 (en) 2016-10-21 2018-04-26 Modernatx, Inc. Human cytomegalovirus vaccine
RU2765874C2 (ru) 2016-10-26 2022-02-04 МОДЕРНАТиЭкс, ИНК. Матричные рибонуклеиновые кислоты для усиления иммунных ответов и способы их применения
EP3532613A4 (en) 2016-10-26 2020-05-06 ModernaTX, Inc. METHODS AND COMPOSITIONS FOR RNA MAPPING
MA46766A (fr) 2016-11-11 2019-09-18 Modernatx Inc Vaccin antigrippal
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
US11384352B2 (en) 2016-12-13 2022-07-12 Modernatx, Inc. RNA affinity purification
US20180243225A1 (en) 2017-01-25 2018-08-30 Modernatx, Inc. Ebola/marburg vaccines
KR20190120233A (ko) 2017-02-01 2019-10-23 모더나티엑스, 인크. Rna 암 백신
EP3577221A4 (en) 2017-02-01 2020-12-23 ModernaTX, Inc. SECONDARY POLYNUCLEOTIDE STRUCTURE
EP3582790A4 (en) 2017-02-16 2020-11-25 ModernaTX, Inc. VERY POWERFUL IMMUNOGENIC COMPOSITIONS
MA52262A (fr) 2017-03-15 2020-02-19 Modernatx Inc Vaccin à large spectre contre le virus de la grippe
WO2018170270A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Varicella zoster virus (vzv) vaccine
MA47787A (fr) 2017-03-15 2020-01-22 Modernatx Inc Vaccin contre le virus respiratoire syncytial
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
WO2018170347A1 (en) 2017-03-17 2018-09-20 Modernatx, Inc. Zoonotic disease rna vaccines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016549A2 (en) * 1995-11-03 1997-05-09 Regeneron Pharmaceuticals, Inc. Molecular cloning and characterization of molecules related to relaxin and the insulin family of ligands
CN1968717A (zh) * 2004-03-30 2007-05-23 延世大学工业教产学协力团 含有松驰素基因的基因送递系统和使用松驰素的药物组合物
CN102712935A (zh) * 2009-11-04 2012-10-03 不列颠哥伦比亚大学 含有核酸的脂质粒子及相关的方法
CN104411338A (zh) * 2012-04-02 2015-03-11 现代治疗公司 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112855A1 (en) * 2020-11-27 2022-06-02 Guangzhou Ribobio Co., Ltd Lipid compound and the composition thereof
CN113264842A (zh) * 2021-07-21 2021-08-17 江苏普瑞康生物医药科技有限公司 一种脂质化合物及包含其的脂质载体、核酸脂质纳米粒组合物和药物制剂
CN113264842B (zh) * 2021-07-21 2022-03-01 苏州科锐迈德生物医药科技有限公司 一种脂质化合物及包含其的脂质载体、核酸脂质纳米粒组合物和药物制剂
US11690922B2 (en) 2021-07-21 2023-07-04 Purecodon (Hong Kong) Biopharma Ltd. Lipid compound as well as lipid carrier, nucleic acid lipid nanoparticle composition and pharmaceutical preparation containing same
CN116655486A (zh) * 2022-05-19 2023-08-29 仁景(苏州)生物科技有限公司 长链烷基酯胺类化合物及其制备方法和在核酸递送方面的应用
WO2023222081A1 (zh) * 2022-05-19 2023-11-23 仁景(苏州)生物科技有限公司 长链烷基酯胺类脂质化合物及其制备方法和在核酸递送方面的应用
CN115389756A (zh) * 2022-10-24 2022-11-25 首都医科大学附属北京安贞医院 一种预测房颤发生风险的检测试剂盒及其应用
CN115389756B (zh) * 2022-10-24 2023-02-17 首都医科大学附属北京安贞医院 一种预测房颤发生风险的检测试剂盒及其应用

Also Published As

Publication number Publication date
US10730924B2 (en) 2020-08-04
KR20190026670A (ko) 2019-03-13
MA45051A (fr) 2019-03-27
KR102533456B1 (ko) 2023-05-17
EP3458034A4 (en) 2020-01-01
JP2019516409A (ja) 2019-06-20
BR112018073683A2 (pt) 2019-02-26
IL263079A (en) 2018-12-31
CN115837014A (zh) 2023-03-24
CA3024500A1 (en) 2017-11-23
SG11201810256XA (en) 2018-12-28
RU2018142589A (ru) 2020-06-18
JP7088911B2 (ja) 2022-06-21
US20200354429A1 (en) 2020-11-12
EP3458034A2 (en) 2019-03-27
KR20230074598A (ko) 2023-05-30
US20180371047A1 (en) 2018-12-27
WO2017201340A3 (en) 2018-02-08
AU2017268394A1 (en) 2019-01-03
JP7459172B2 (ja) 2024-04-01
IL263079B1 (en) 2024-01-01
WO2017201340A2 (en) 2017-11-23
CN109640962B (zh) 2022-07-19
RU2018142589A3 (zh) 2020-09-18
JP2022124489A (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
JP7459172B2 (ja) リラキシンをコードするポリヌクレオチド
JP7210287B2 (ja) Ii型シトルリン血症の治療のためのシトリンをコードするポリヌクレオチド
US20230112986A1 (en) Polynucleotides encoding porphobilinogen deaminase for the treatment of acute intermittent porphyria
US11649461B2 (en) Polynucleotides encoding α-galactosidase A for the treatment of Fabry disease
US20230398074A1 (en) Nucleic Acid-Based Therapy of Muscular Dystrophies
US11001861B2 (en) Polynucleotides encoding galactose-1-phosphate uridylyltransferase for the treatment of galactosemia type 1
JP7065036B2 (ja) メチルマロニルCoAムターゼをコードするポリヌクレオチド
JP2022500443A (ja) 進行性家族性肝内胆汁うっ滞障害を処置するための修飾mRNA
US20190298657A1 (en) Polynucleotides Encoding Acyl-CoA Dehydrogenase, Very Long-Chain for the Treatment of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency
CN109195621A (zh) 编码白细胞介素12(il12)的多核苷酸及其用途
US20170202979A1 (en) Terminal modifications of polynucleotides
US20170362605A1 (en) Terminal modifications of polynucleotides
EP3458104A1 (en) Polynucleotides encoding porphobilinogen deaminase for the treatment of acute intermittent porphyria
CN110201187A (zh) 经修饰的核苷、核苷酸和核酸组合物
JP2022500436A (ja) 糖原病を処置するためのグルコース−6−ホスファターゼをコードするポリヌクレオチド
JP2022500444A (ja) クリグラー−ナジャー症候群の治療のためのウリジン二リン酸グリコシルトランスフェラーゼ1ファミリー、ポリペプチドa1をコードするポリヌクレオチド

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant