CN109626968A - 一种陶瓷基复合材料的制备方法 - Google Patents
一种陶瓷基复合材料的制备方法 Download PDFInfo
- Publication number
- CN109626968A CN109626968A CN201910078354.0A CN201910078354A CN109626968A CN 109626968 A CN109626968 A CN 109626968A CN 201910078354 A CN201910078354 A CN 201910078354A CN 109626968 A CN109626968 A CN 109626968A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- quartz ampoule
- matric composite
- preparation
- ceramic powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/587—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62813—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62836—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于陶瓷基复合材料领域,涉及一种陶瓷基复合材料的制备方法,其特征在于,首先在陶瓷粉末表面原位生长石墨片作为强化相,然后将陶瓷粉末烧结为陶瓷基复合材料的块材。本发明首先将陶瓷粉末置于化学气相沉积装置中,通过调节气体流量、射频功率、沉积温度和时间等参数,实现了石墨片在陶瓷粉末表面的原位可控沉积;将沉积石墨片后的粉末进行致密化成形,即制备出陶瓷基复合材料。本发明提出的原位沉积方法,确保了石墨片在陶瓷基体中的均匀分散,且具有工艺简单、与增材制造技术的兼容性好等优点。
Description
技术领域
本发明属于陶瓷基复合材料领域。
背景技术
陶瓷具有耐高温、高强度、重量轻、抗腐蚀等优异性能,但其致命的弱点是具有脆性,处于应力状态时,易产生裂纹,导致材料失效。改进的方法是在陶瓷基体中添加高强度、高弹性的增强相,阻止裂纹的扩展,从而得到有优良韧性的陶瓷基复合材料,这种材料已广泛应用于火箭发动机喷管、导弹天线罩、航天飞机鼻锥等领域。石墨片具有极其优异的力学、热学和电学特性,杨氏模量高达1060GPa,热导率高达5000Wm-1K-1,载流子迁移率高达200000cm2V-1s-1,其集众多优异性能于一身的特点,为提高复合材料性能提供了广阔的想象空间,有大量工作研究将石墨片作为增强相添加到陶瓷基体材料中,以期提高它们的力学性能。在这些工作中,主要是通过球磨法和液相混合法实现陶瓷粉末和石墨片的均匀混合,这两种方法存在诸多弊端:球磨过程中会产生剧烈的碰撞,破坏增强相纳米材料的晶格结构,降低其增强效果;液相法中,通常需要在陶瓷粉末表面包覆亲水层,来增强其与石墨片的相互作用,然而在后续步骤中这些亲水层难以彻底清除,从而残留杂质相。
发明内容
本发明的目的是:
提出一种在陶瓷粉末中添加石墨片的新方法,使石墨片均匀分散到陶瓷粉末中,克服球磨法和液相混合法的弊端。
本发明的技术方案是:
一种陶瓷基复合材料的制备方法,首先在陶瓷粉末表面原位生长石墨片作为强化相,然后将陶瓷粉末烧结为陶瓷基复合材料的块材。
优选地,在陶瓷粉末表面原位生长石墨片作为强化相的具体步骤为:在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至500℃~900℃;到达指定加热温度后,通入10sccm~40sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为200W~500W;10min~60min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
优选地,将所述陶瓷粉末烧结为陶瓷基复合材料块材的烧结方式为热压烧结或放电等离子体烧结。
优选地,热压烧结条件为:轴向压强20Mpa~50Mpa,温度1200℃~1500℃,时间1h~2h。
优选地,放电等离子体烧结条件为:真空度低于1Pa,轴向压强35Mpa~80Mpa,温度1300℃~1650℃,时间1min~3min。
优选地,所述陶瓷粉末为氧化铝粉或氮化硅粉,其粒径为100nm~100μm。
优选地,所述石墨片的横向尺寸为50nm~5μm。
本发明的有益效果是:
1.由于采用石英管旋转和直接生长的办法,石墨片在陶瓷粉末表面分散均匀且附着力更强、不易团聚。
2.通过优化制备参数,可以控制石墨片的尺寸均一性和晶格完整性;通过调节生长时间控制石墨片的添加量,便于寻找最优添加比例。
3.生产工艺简单并且与增材制造技术的兼容性好,陶瓷粉末经管式炉沉积石墨片后,可直接输送至机床进行3D打印,实现流水化生产。
附图说明
图1为氧化铝粉末的扫描电镜照片,左图为低倍率照片,显示了粉末颗粒的整体形貌,右图为高倍率照片,可清晰分辨出粉末表面沉积的石墨片结构。
图2为氧化铝粉末的光电子能谱和拉曼光谱曲线,证明表面沉积层确实为石墨片。
图3为氮化硅粉末的扫描电镜照片,左图为低倍率照片,显示了粉末颗粒的整体形貌,右图为高倍率照片,可清晰分辨出粉末表面沉积的石墨片结构。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
1.称取5g氧化铝粉末,其粒径为50μm。
2.在石英管底部平铺一薄层粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至900℃;到达指定加热温度后,通入20sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为500W;10min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用放电等离子烧结法成型,条件为:真空度低于1Pa,轴向压强35Mpa,温度1300℃,时间3min。
图1为粉末的扫描电镜照片,左图为低倍率照片,显示了粉末颗粒的整体形貌,右图为高倍率照片,可清晰分辨出粉末表面沉积的石墨片结构,石墨片的横向尺寸为100nm。图2左图为粉末的光电子能谱曲线,在284.8eV处显示很强的C 1s峰,右图为粉末的拉曼光谱曲线,在1353,1590和2697cm-1处有三个特征峰,分别对应于石墨的D峰、G峰和2D峰,这两支曲线证明表面沉积层确实为石墨片。
实施例2
1.称取5g氧化铝粉末,其粒径为100nm。
2.在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至500℃;到达指定加热温度后,通入10sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为300W;60min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用热压烧结法成型,条件为:轴向压强20Mpa,温度1200℃,时间2h。
实施例3
1.称取5g氧化铝粉末,其粒径为10μm。
2.在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至700℃;到达指定加热温度后,通入20sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为200W;30min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用放电等离子烧结法成型,条件为:真空度低于1Pa,轴向压强80Mpa,温度1500℃,时间1min。
实施例4
1.称取5g氮化硅粉末,其粒径为5μm。
2.在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至600℃;到达指定加热温度后,通入40sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为400W;20min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用放电等离子烧结法成型,条件为:真空度低于1Pa,轴向压强50Mpa,温度1650℃,时间2min。
图3为氮化硅粉末的扫描电镜照片,左图为低倍率照片,显示了粉末颗粒的整体形貌,右图为高倍率照片,可清晰分辨出粉末表面沉积的石墨片结构,石墨片的横向尺寸为50nm。
实施例5
1.称取5g氮化硅粉末,其粒径为100μm。
2.在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至800℃;到达指定加热温度后,通入20sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为400W;30min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用热压烧结法成型,条件为:轴向压强35Mpa,温度1500℃,时间1h。
实施例6
1.称取5g氮化硅粉末,其粒径为500nm。
2.在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至700℃;到达指定加热温度后,通入30sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为300W;30min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.利用热压烧结法成型,条件为:轴向压强50Mpa,温度1350℃,时间1h。
Claims (7)
1.一种陶瓷基复合材料的制备方法,其特征在于,首先在陶瓷粉末表面原位生长石墨片作为强化相,然后将陶瓷粉末烧结为陶瓷基复合材料的块材。
2.如权利要求1所述陶瓷基复合材料的制备方法,其特征在于,在陶瓷粉末表面原位生长石墨片作为强化相的具体步骤为:在石英管底部平铺一薄层陶瓷粉末,再将石英管与抽真空装置连接;旋转装置驱动石英管以其中心线为轴旋转;将石英管抽真空至低于10-1Pa后,通入氩气作为保护气体,将石英管加热至500℃~900℃;到达指定加热温度后,通入10sccm~40sccm甲烷气体,打开射频源开始沉积石墨片,射频功率为200W~500W;10min~60min后,关闭射频源及石英管加热,关闭甲烷;待石英管温度降至室温后,取出石英管内的陶瓷粉末。
3.如权利要求1所述陶瓷基复合材料的制备方法,其特征在于,将所述陶瓷粉末烧结为陶瓷基复合材料块材的烧结方式为热压烧结或放电等离子体烧结。
4.如权利要求3所述陶瓷基复合材料的制备方法,其特征在于,热压烧结条件为:轴向压强20Mpa~50Mpa,温度1200℃~1500℃,时间1h~2h。
5.如权利要求3所述陶瓷基复合材料的制备方法,其特征在于,放电等离子体烧结条件为:真空度低于1Pa,轴向压强35Mpa~80Mpa,温度1300℃~1650℃,时间1min~3min。
6.如权利要求1所述陶瓷基复合材料的制备方法,其特征在于,所述陶瓷粉末为氧化铝粉或氮化硅粉,其粒径为100nm~100μm。
7.如权利要求1所述陶瓷基复合材料的制备方法,其特征在于,所述石墨片的横向尺寸为50nm~5μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910078354.0A CN109626968A (zh) | 2019-01-25 | 2019-01-25 | 一种陶瓷基复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910078354.0A CN109626968A (zh) | 2019-01-25 | 2019-01-25 | 一种陶瓷基复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109626968A true CN109626968A (zh) | 2019-04-16 |
Family
ID=66063934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910078354.0A Pending CN109626968A (zh) | 2019-01-25 | 2019-01-25 | 一种陶瓷基复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109626968A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103341674A (zh) * | 2013-06-26 | 2013-10-09 | 哈尔滨工业大学 | 一种陶瓷基复合材料与金属材料的石墨烯辅助钎焊方法 |
CN107824785A (zh) * | 2017-09-29 | 2018-03-23 | 中国航发北京航空材料研究院 | 一种低激光反射率粉末颗粒及制备方法 |
CN108620767A (zh) * | 2018-05-08 | 2018-10-09 | 哈尔滨工业大学 | 一种用于钎焊石英短纤维增强二氧化硅复合材料与Invar合金的复合钎料及其制备方法 |
CN109112334A (zh) * | 2018-09-06 | 2019-01-01 | 中国航发北京航空材料研究院 | 一种在金属中添加介观尺度三维强化相的方法 |
-
2019
- 2019-01-25 CN CN201910078354.0A patent/CN109626968A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103341674A (zh) * | 2013-06-26 | 2013-10-09 | 哈尔滨工业大学 | 一种陶瓷基复合材料与金属材料的石墨烯辅助钎焊方法 |
CN107824785A (zh) * | 2017-09-29 | 2018-03-23 | 中国航发北京航空材料研究院 | 一种低激光反射率粉末颗粒及制备方法 |
CN108620767A (zh) * | 2018-05-08 | 2018-10-09 | 哈尔滨工业大学 | 一种用于钎焊石英短纤维增强二氧化硅复合材料与Invar合金的复合钎料及其制备方法 |
CN109112334A (zh) * | 2018-09-06 | 2019-01-01 | 中国航发北京航空材料研究院 | 一种在金属中添加介观尺度三维强化相的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109678511B (zh) | 一种致密HfC(Si)-HfB2复相陶瓷的制备方法 | |
CN111725380B (zh) | 层状高熵max相陶瓷热电材料及其制备方法 | |
US20070138706A1 (en) | Method for preparing metal ceramic composite using microwave radiation | |
CN110467467B (zh) | 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法 | |
CN109180180B (zh) | 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法 | |
CN110790587B (zh) | 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法 | |
CN102367570B (zh) | 一种制备金刚石-石墨烯复合膜的方法 | |
CN110590404B (zh) | 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法 | |
CN105350294B (zh) | 一种镀碳化硅层的短切碳纤维及其制备方法 | |
CN106588018B (zh) | 一种超高温碳化铪陶瓷纳米粉体的制备方法 | |
CN109180161B (zh) | 一种高纯钛硅化碳/氧化铝复合材料及其制备方法 | |
CN105753476A (zh) | 采用放电等离子烧结制备超高硬度金刚石复合材料的方法 | |
CN110436928A (zh) | 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法 | |
Zheng et al. | CVD synthesis of nanometer SiC coating on diamond particles | |
CN107265416A (zh) | 热解氮化硼材料的制备方法 | |
Li et al. | In-situ fabrication of lightweight SiC (Al, rGO) bulk ceramics derived from silicon oxycarbide for aerospace components | |
CN113402303A (zh) | 基于梯度蒸发模具的CVD-TaxHf1-xC固溶体涂层的制备方法 | |
CN110304933B (zh) | 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法 | |
CN106478112B (zh) | 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法 | |
CN109626968A (zh) | 一种陶瓷基复合材料的制备方法 | |
CN105777172A (zh) | 热模压结合化学气相渗透CVI制备Diamond/SiC复合材料的方法 | |
CN109763108B (zh) | 一种非原位制备HoB2C2陶瓷涂层的方法 | |
CN117586023A (zh) | 一种热压快速烧结制备(ZrxTa1-xB2)-SiC抗氧化陶瓷的方法 | |
CN115894085B (zh) | 一种复合陶瓷涂层材料及其制备方法和应用 | |
Zheng et al. | Effect of deposition temperature and time on microstructure of CVD SiC coating on diamond particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190416 |