CN110467467B - 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法 - Google Patents

一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法 Download PDF

Info

Publication number
CN110467467B
CN110467467B CN201910826944.7A CN201910826944A CN110467467B CN 110467467 B CN110467467 B CN 110467467B CN 201910826944 A CN201910826944 A CN 201910826944A CN 110467467 B CN110467467 B CN 110467467B
Authority
CN
China
Prior art keywords
sic
rgo
ceramic
silicon carbide
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910826944.7A
Other languages
English (en)
Other versions
CN110467467A (zh
Inventor
姚荣迁
郑艺浓
林舒宇
廖亮
韩宇宸
钟磊
钟跃进
李凌杰
庄堃
黄雯燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Desheng Changzhou Electronic Technology Co ltd
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910826944.7A priority Critical patent/CN110467467B/zh
Publication of CN110467467A publication Critical patent/CN110467467A/zh
Application granted granted Critical
Publication of CN110467467B publication Critical patent/CN110467467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法,涉及陶瓷材料制备。所述块体碳化硅聚合物先驱体陶瓷命名为3D‑SiC(rGO)陶瓷,由β‑SiC、SiOxCy、SiO2、rGO和游离碳组成,其中β‑SiC纳米晶弥散分布于复合rGO的SiOxCy/Cfree无定形相中,SiO2晶粒镶嵌于β‑SiC/SiOxCy/Cfree基体中。该陶瓷以自制改性聚合物先驱体聚碳硅烷‑乙烯基三乙氧基硅烷‑氧化石墨烯为原料,与该先驱体裂解后获得的SiC(rGO)p粉末按比例混合、球磨、再裂解制得。具有较高陶瓷产率和较低线性收缩率,硬度和断裂韧性表现好,微观结构均匀致密,较少孔隙、微裂纹和界面,实用性和可靠性强。

Description

一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
技术领域
本发明涉及陶瓷材料制备,尤其是涉及一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法。
背景技术
碳化硅陶瓷作为先进结构陶瓷材料,具有硬度高、耐腐蚀、耐磨损、导热性好、化学性质稳定等突出特点,可在高温、高功率、高频率等苛刻条件下正常工作,目前已广泛应用于工业生产中,在能源、电子、化工、国防、冶金、航空航天等领域具有广阔的发展前景。
块体碳化硅陶瓷的传统制备方法有无压烧结、热压烧结、热等静压烧结、反应烧结等。中国专利ZL 201810338310.2公开一种高强度碳化硅陶瓷的制备方法,将碳化硅粉体和碳化硅纤维作为原料,通过真空处理消除浆料中的气泡,在1500~1800℃温度下烧结1~5h,可制得强度优异的碳化硅陶瓷材料。中国专利ZL 201810304703.1公开一种反应烧结注浆成型碳化硅陶瓷的制备方法,采用气流磨生产的粒型完整饱满的碳化硅微粉以及新型高效的粘结剂为原料,通过球磨、搅拌、压力铸模、烧结等步骤,制备出密度高、游离硅残留低且分布均匀的碳化硅陶瓷。然而以上方法在产品机械性能、耐腐蚀性能、形状多样性等方面具有一定的局限性,且存在成本较高、难以大批量生产等问题。
先驱体转化法凭借制得的陶瓷产品机械性能优异、热稳定性良好、化学性质稳定等优点受到了越来越多的关注。相较于传统陶瓷的制备,先驱体转化法可以从分子水平对聚合物先驱体进行结构设计,无需添加烧结助剂,保证了陶瓷的强度、韧性等机械性能,而且烧结温度明显低于传统烧结方法,在制备性能优异、结构复杂多样的碳化硅陶瓷方面具有极大的应用价值。中国专利ZL 201910045268.X公开一种以先驱体溶液纺丝制备碳化硅纳米线的方法,以硅溶液、酚醛树脂、聚乙烯醇为原料制备先驱体溶液,通过静电纺丝得到碳化硅纳米线。中国专利ZL 201611223996.8公开一种通过载体浸渍聚碳硅烷溶液后交联、裂解,制备近化学计量比碳化硅涂层的方法。目前,先驱体转化法在制备一维、二维碳化硅材料方面工艺已相对成熟,且产品性能表现良好,但是在制备块状碳化硅陶瓷的相关研究中却面临陶瓷难以成形、失重明显、体积收缩及游离碳残留较多等诸多阻碍,其中块体成形困难的问题尤为突出。由于先驱体有机基团含量高,在裂解的过程中会产生大量气体,导致大尺寸的单片和块体陶瓷产生裂纹、气孔等缺陷,破坏了块体碳化硅陶瓷的完整性。本申请人在中国专利CN 108129151 A中公开一种利用氧化石墨烯-乙烯基三乙氧基硅烷-聚碳硅烷先驱体高温热解制备石墨烯/碳化硅纳米复合结构单片陶瓷的方法,突破了成形难的瓶颈,但是所得单片陶瓷收缩率较大,陶瓷产率较低,断裂韧性较差,在微观尺度上还存在着较多孔洞和缺陷,影响陶瓷的综合性能。
发明内容
本发明的目的在于针对现有技术存在的上述不足,提供低收缩率、高机械强度的一种块体碳化硅聚合物先驱体陶瓷。
本发明的另一目的在于提供高陶瓷产率的一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法。
所述块体碳化硅聚合物先驱体陶瓷命名为3D-SiC(rGO)陶瓷,由β-SiC、SiOxCy、SiO2、rGO和游离碳组成,其中β-SiC纳米晶弥散分布于复合rGO的SiOxCy/Cfree无定形相中,SiO2晶粒镶嵌于β-SiC/SiOxCy/Cfree基体中。该陶瓷以自制改性聚合物先驱体聚碳硅烷-乙烯基三乙氧基硅烷-氧化石墨烯(PCS-VTES-GO,简称PVG)为原料,与该先驱体裂解后获得的SiC(rGO)p粉末按一定比例混合、球磨、再裂解制得。
所述块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,包括以下步骤:
1)先驱体PVG的合成与裂解获得SiC(rGO)p陶瓷颗粒:
将PCS粉末、VTES与适量卡斯特催化剂溶解于二甲苯中得二甲苯溶液,并将GO粉末分散于纯净水中得水溶液;将二甲苯溶液和水溶液混合,对混合液水浴加热并用磁力搅拌器搅拌,反应后静置,取上层液体旋蒸并研磨,获得先驱体PVG粉末。将上述PVG粉末(在氩气气氛保护下于坩埚中高温裂解,获得裂解SiC(rGO)p陶瓷颗粒;
2)裂解陶瓷/先驱体共混体系再裂解工艺制备3D-SiC(rGO)陶瓷:
将裂解SiC(rGO)p陶瓷颗粒和步骤1)获得的先驱体PVG粉末按比例混合于玛瑙球磨罐中,加入玛瑙磨球和酒精,球磨后获得灰黑色SiC(rGO)p/PVG共混体系粉末,随后将SiC(rGO)p/PVG共混体系粉末模压成型获得SiC(rGO)p/PVG素坯,将SiC(rGO)p/PVG素坯置于氩气气氛管式炉内高温烧结,随炉冷却后即得黑色3D-SiC(rGO)陶瓷。
在步骤1)中,所述PCS、GO的质量比优选为100︰1,所述卡斯特催化剂、VTES的体积比为1︰(2~4),所述二甲苯以及纯净水用量为15~25mL;所述水浴加热温度为50~70℃,反应时间为25~35min;所述高温裂解温度为1200℃,保温时间为1~2min;氩气流速为100mL/min。
在步骤2)中,所述裂解SiC(rGO)p陶瓷颗粒和先驱体PVG粉末的质量比可为10︰(2~10),所述混合物和玛瑙球的质量比可为1︰(3~5),球磨时间可为8~10h;所述模压成型时,所施压力可为40MPa,保压时间可为20s;所述高温烧结的温度可为1200℃,保温时间可为4~6min;氩气的流速可为100mL/min。
与现有技术相比,本发明的有益效果如下:
(1)制备的3D-SiC(rGO)陶瓷具有较高的陶瓷产率和较低的线性收缩率,能够保证陶瓷结构完整性以及成分均一性。
(2)制备的3D-SiC(rGO)陶瓷表现出优异的力学性能,尤其是硬度和断裂韧性表现均较好,是一种轻质高强的结构陶瓷材料,可应用于多种复杂工况。
(3)制备的3D-SiC(rGO)陶瓷微观结构均匀致密,较少孔隙、微裂纹和界面,实用性和可靠性较强。
附图说明
图1为3D-SiC(rGO)p0.6、3D-SiC(rGO)p0.7、3D-SiC(rGO)p0.8陶瓷样品实物图。其中,p0.6、p0.7和p0.8分别代表SiC(rGO)p陶瓷颗粒的质量分数为60%、70%和80%,即SiC(rGO)p陶瓷颗粒和先驱体PVG粉末质量比分别为6︰4、7︰3和8︰2。
图2为3D-SiC(rGO)p0.6、3D-SiC(rGO)p0.7、3D-SiC(rGO)p0.8陶瓷线性收缩率以及陶瓷产率与SiC(rGO)p陶瓷颗粒添加量的关系。在图2中纵坐标分别为线性收缩率(%)和陶瓷产率(%),横坐标为SiC(rGO)p陶瓷颗粒的添加比例(%)。
图3为系列陶瓷表面扫描电镜(SEM)图,其中(a),(b)对应3D-SiC(rGO)p0.6;(c),(d)对应3D-SiC(rGO)p0.7;(e),(f)对应3D-SiC(rGO)p0.8
图4为3D-SiC(rGO)p0.6、3D-SiC(rGO)p0.7、3D-SiC(rGO)p0.8陶瓷的红外(FTIR)图谱。图4中的横坐标为波数(cm-1)。
图5为3D-SiC(rGO)p0.6、3D-SiC(rGO)p0.7、3D-SiC(rGO)p0.8陶瓷的X射线衍射(XRD)图谱。图5中的横坐标为2θ(°)。
图6为3D-SiC(rGO)p0.6、3D-SiC(rGO)p0.7、3D-SiC(rGO)p0.8陶瓷的拉曼(Raman)图谱。在图6中的横坐标为拉曼位移(cm-1)。
具体实施方式
以下实施例将结合附图对本发明做进一步说明。
本发明所述的3D-SiC(rGO)陶瓷在样品实物图(图1)中具有如下特征:陶瓷样品呈现黑色,表面光滑致密,无肉眼可见的裂纹或者孔洞出现,圆片形状保持完好。本发明所述的3D-SiC(rGO)陶瓷在陶瓷线性收缩率以及陶瓷产率与SiC(rGO)p陶瓷颗粒添加量的关系图(图2)中具有如下特征:随着SiC(rGO)p陶瓷颗粒添加量的增加,3D-SiC(rGO)陶瓷产率提高、线性收缩率下降。本发明所述的3D-SiC(rGO)陶瓷在扫描电镜(SEM)图(图3)中具有如下特征:SiC(rGO)p0.6陶瓷表面最为致密、平整,随着SiC(rGO)p陶瓷颗粒添加量的增多,3D-SiC(rGO)陶瓷表面的孔洞、微裂纹以及颗粒增多。本发明所述的3D-SiC(rGO)陶瓷在红外(FTIR)谱图(图4)中具有如下特征:1020cm-1、1080cm-1存在分别归属于Si–C–Si键、Si–O–Si键的吸收峰,其强度随先驱体PVG含量的下降而明显减弱,而Si–C(780cm-1)的吸收峰强度几乎无变化。本发明所述的3D-SiC(rGO)陶瓷在X射线衍射(XRD)图(图5)中具有如下特征:在2θ角为35.6°、60.1°和71.7°处存在β-SiC(rGO)的(111)、(220)和(311)衍射峰,20.9°和26.6°处的衍射峰则归属于SiO2的(100)和(011)晶面,强度基本不受SiC(rGO)p陶瓷颗粒含量影响。所述3D-SiC(rGO)陶瓷在拉曼光谱(Raman)图(图6)中具有如下特征:在1350cm-1和1600cm-1处分别存在特征峰归属于无定形碳和单晶石墨的E2gC-C的伸缩对称振动,裂解陶瓷/先驱体共混体系再裂解技术对陶瓷中游离碳的存在形式和含量几乎没有影响。所述3D-SiC(rGO)陶瓷还具备如下特征:随着SiC(rGO)p陶瓷填料含量的增加,最终烧成的目标陶瓷的产率提高、收缩率下降。
以下给出具体实施例。
实施例1
1、将1g相对分子量为1426g/mol的PCS粉末溶解于20mL二甲苯中,向其中加入1mLVTES和适量卡斯特催化剂,得到金黄色透明液体;
2、将0.01g的GO粉末分散于20mL纯净水中,之后与步骤1中的二甲苯溶液混合;
3、取步骤2中的混合溶液于60℃水浴加热,并用磁力搅拌器搅拌反应30min,静置后取上层液体旋蒸并研磨,得到先驱体PVG固体粉末;
4、将先驱体PVG粉末置于坩埚中,在流速100mL/min的氩气气氛中裂解,裂解温度1200℃,升温速度4℃/min,保温时间1min,得到裂解SiC(rGO)p陶瓷颗粒;
5、取质量比为6︰4的裂解SiC(rGO)p陶瓷颗粒及其先驱体PVG粉末,获得SiC(rGO)p0.6/PVG混合物,再与玛瑙磨球按质量比1︰4的比例加入玛瑙球磨罐中,以少量酒精为介质进行9h湿磨,得到灰黑色SiC(rGO)p0.6/PVG共混体系;
6、取0.5g步骤5得到的共混体系粉末倒入圆形模具中,在40MPa压力下保压20s,脱模后获得SiC(rGO)p0.6/PVG素坯;
7、将步骤6中所得SiC(rGO)p0.6/PVG素坯放入氩气气氛管式炉内,流速100mL/min,热解温度1200℃,升温速度4℃/min,保温5min,随炉冷却后最终得到SiC(rGO)p0.6黑色陶瓷圆片。
8、对步骤7中所得SiC(rGO)p0.6进行测试和计算得到,其线性收缩率为5.00%,陶瓷产率为94.49%。
实施例2
1、将1g相对分子量为1426g/mol的PCS粉末溶解于20mL二甲苯中,向其中加入1mL的VTES和适量卡斯特催化剂,得到金黄色透明液体;
2、将0.01g的GO粉末分散于20mL纯净水中,之后与步骤1中的二甲苯溶液混合;
3、取步骤2中的混合溶液于60℃水浴加热,并用磁力搅拌器搅拌反应30min,静置后取上层液体旋蒸并研磨,得到先驱体PVG固体粉末;
4、将先驱体PVG粉末置于坩埚中,在流速100mL/min的氩气气氛中裂解,裂解温度1200℃,升温速度4℃/min,保温时间1min,得到裂解SiC(rGO)p陶瓷颗粒;
5、取质量比为7︰3的裂解SiC(rGO)p陶瓷颗粒及其先驱体PVG粉末,获得SiC(rGO)p0.7/PVG混合物,再与玛瑙磨球按质量比1︰4的比例加入玛瑙球磨罐中,以少量酒精为介质进行9h湿磨,得到灰黑色SiC(rGO)p0.7/PVG共混体系;
6、取0.5g步骤5得到的共混体系粉末倒入圆形模具中,在40MPa压力下保压20s,脱模后获得SiC(rGO)p0.7/PVG素坯;
7、将步骤6中所得SiC(rGO)p0.6/PVG素坯放入氩气气氛管式炉内,流速100mL/min,热解温度1200℃,升温速度4℃/min,保温5min,随炉冷却后最终得到SiC(rGO)p0.7黑色陶瓷圆片。
8、对步骤7中所得SiC(rGO)p0.7进行测试和计算得到,其线性收缩率为3.13%,陶瓷产率为96.67%。
实施例3
1、将1g相对分子量为1426g/mol的PCS粉末溶解于20mL二甲苯中,向其中加入1mLVTES和适量卡斯特催化剂,得到金黄色透明液体;
2、将0.01g的GO粉末分散于20mL纯净水中,之后与步骤1中的二甲苯溶液混合;
3、取步骤2中的混合溶液于60℃水浴加热,并用磁力搅拌器搅拌反应30min,静置后取上层液体旋蒸并研磨,得到先驱体PVG固体粉末;
4、将先驱体PVG粉末置于坩埚中,在流速100mL/min的氩气气氛中裂解,裂解温度1200℃,升温速度4℃/min,保温时间1min,得到裂解SiC(rGO)p陶瓷颗粒;
5、取质量比为8︰2的裂解SiC(rGO)p陶瓷颗粒及其先驱体PVG粉末,获得SiC(rGO)p0.8/PVG混合物,再与玛瑙磨球按质量比1︰4的比例加入玛瑙球磨罐中,以少量酒精为介质进行9h湿磨,得到灰黑色SiC(rGO)p0.8/PVG共混体系;
6、取0.5g步骤5得到的共混体系粉末倒入圆形模具中,在40MPa压力下保压20s,脱模后获得SiC(rGO)p0.8/PVG素坯;
7、将步骤6中所得SiC(rGO)p0.8/PVG素坯放入氩气气氛管式炉内,流速100mL/min,热解温度1200℃,升温速度4℃/min,保温5min,随炉冷却后最终得到SiC(rGO)p0.6黑色陶瓷圆片。
8、对步骤7中所得SiC(rGO)p0.8进行测试和计算得到,其线性收缩率为1.25%,陶瓷产率为98.21%。
本发明以PCS、VTES、GO为原料,采用裂解陶瓷/先驱体共混体系再裂解工艺,将裂解后的SiC(rGO)p陶瓷颗粒作为惰性填料,其先驱体PVG粉末作为粘结剂,二者球磨形成共混体系并模压成型后再裂解,可以获得轻质高强的3D-SiC(rGO)陶瓷。由于惰性填料在先驱体裂解过程中,质量和体积基本不发生变化且不与先驱体及其裂解产物发生化学反应,通过调节SiC(rGO)p陶瓷颗粒的质量分数,可有效解决先驱体法制备块体碳化硅陶瓷时体系收缩率较大、孔隙率高等问题,改善陶瓷性能。实验证明,本发明显著提高了块体碳化硅聚合物先驱体陶瓷的陶瓷产率和断裂韧性,大幅度降低其收缩率,明显减少陶瓷的表面孔隙,可以满足实际应用中对陶瓷复杂结构的需求,有利于碳化硅聚合物先驱体陶瓷的规模化生产和广泛应用。

Claims (8)

1.一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于所述块体碳化硅聚合物先驱体陶瓷为3D-SiC-(rGO)陶瓷,由β-SiC、SiO x C y 、SiO2、rGO和游离碳组成,其中β-SiC纳米晶弥散分布于复合rGO的SiO x C y /C free 无定形相中,SiO2晶粒镶嵌于β-SiC/SiO x C y /C free 基体中;
所述制备方法包括以下步骤:
1)先驱体PVG的合成与裂解获得SiC-(rGO)p陶瓷颗粒:
将PCS粉末、VTES与适量卡斯特催化剂溶解于二甲苯中得二甲苯溶液,并将GO粉末分散于纯净水中得水溶液;将二甲苯溶液和水溶液混合,对混合液水浴加热并用磁力搅拌器搅拌,反应后静置,取上层液体旋蒸并研磨,获得先驱体PVG粉末;将上述PVG粉末在氩气气氛保护下于坩埚中高温裂解,获得裂解SiC-(rGO)p陶瓷颗粒;
2)裂解陶瓷/先驱体共混体系再裂解工艺制备3D-SiC-(rGO)陶瓷:
将裂解SiC-(rGO)p陶瓷颗粒和步骤1)获得的先驱体PVG粉末按比例混合于玛瑙球磨罐中,加入玛瑙磨球和酒精,球磨后获得灰黑色SiC-(rGO)p/PVG共混体系粉末,随后将SiC-(rGO)p/PVG共混体系粉末模压成型获得SiC-(rGO)p/PVG素坯,将SiC-(rGO)p/PVG素坯置于氩气气氛管式炉内高温烧结,随炉冷却后即得黑色3D-SiC-(rGO)陶瓷;
所述裂解SiC-(rGO)p陶瓷颗粒和先驱体PVG粉末的质量比为10︰(2~10);所述混合物和玛瑙球的质量比为1︰(3~5)。
2.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤1)中,所述PCS、GO的质量比为100︰1;所述卡斯特催化剂、VTES的体积比为1︰(2~4)。
3.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤1)中,所述水浴加热温度为50~70℃,反应时间为25~35min。
4.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤1)中,所述高温裂解温度为1200℃,保温时间为1~2min;氩气流速为100mL/min。
5.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤2)中,球磨时间为8~10h。
6.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤2)中,所述模压成型时,所施压力为40MPa,保压时间为20s。
7.如权利要求1所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法,其特征在于在步骤2)中,所述高温烧结的温度为1200℃,保温时间为4~6min;氩气的流速为100mL/min。
8.如权利要求1~7任一项所述一种块体碳化硅聚合物先驱体陶瓷的共混再裂解制备方法制备得到的块体碳化硅聚合物先驱体陶瓷。
CN201910826944.7A 2019-09-03 2019-09-03 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法 Active CN110467467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910826944.7A CN110467467B (zh) 2019-09-03 2019-09-03 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910826944.7A CN110467467B (zh) 2019-09-03 2019-09-03 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法

Publications (2)

Publication Number Publication Date
CN110467467A CN110467467A (zh) 2019-11-19
CN110467467B true CN110467467B (zh) 2020-10-02

Family

ID=68514638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910826944.7A Active CN110467467B (zh) 2019-09-03 2019-09-03 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法

Country Status (1)

Country Link
CN (1) CN110467467B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454061B (zh) * 2020-04-07 2021-10-01 厦门大学 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN111848172B (zh) * 2020-07-24 2021-09-28 厦门大学 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法
CN114315364A (zh) * 2020-09-30 2022-04-12 山东硅纳新材料科技有限公司 一种先驱体加入纳米Si粉制备净SiC陶瓷的方法
CN114874020B (zh) * 2022-05-13 2022-12-06 厦门大学 一种碳纤维增强碳化硅陶瓷基多孔复合材料及其制备方法
CN115745614B (zh) * 2022-11-29 2023-06-30 厦门大学 一种纳米金属增韧碳化硅陶瓷材料及其制备方法
CN115894069B (zh) * 2022-11-29 2023-07-14 厦门大学 一种多孔碳化硅高温隔热瓦及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202416A (ja) * 2009-02-27 2010-09-16 Japan Atomic Energy Agency ケイ素系ポリマーから炭化ケイ素材料を合成する方法
CN108129151B (zh) * 2017-12-31 2020-02-18 厦门大学 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法

Also Published As

Publication number Publication date
CN110467467A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
US10364193B2 (en) Method for synthesizing high-purity ultrafine ZrC—SiC composite powder
CN111454061B (zh) 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN108285355B (zh) 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN108129151B (zh) 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法
CN1210204C (zh) 一种制备碳化硅的方法
CN106498225B (zh) 碳纳米管‑氧化铝混杂增强镁铝合金复合材料的制备方法
CN111848172B (zh) 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法
CN107721429B (zh) 碳化锆-碳化硅复合粉体材料及其制备方法
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN113718370A (zh) 一种中空碳化硅纤维的制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN112125680A (zh) 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
JP2011251904A (ja) 炭素源の存在下でセラミック粉末を製造するための方法および得られる粉末とその使用
Li et al. In-situ fabrication of lightweight SiC (Al, rGO) bulk ceramics derived from silicon oxycarbide for aerospace components
CN110042468A (zh) 一种微米碳化锆晶须的制备方法
CN113149014A (zh) 采用有机碳源制备碳化硼粉体的方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN117534495A (zh) 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法
CN107778011A (zh) 一种石墨烯复合SiC木质陶瓷材料的制备方法
CN110963812A (zh) 碳纳米管增韧碳化硅陶瓷的制备方法
CN102976325A (zh) 气相裂解法制备β-SiC超细微粉工艺
CN114394834A (zh) 一种碳化硼基纳米复合粉体的制备方法
CN110697725B (zh) 一种二硅酸锂晶须的制备方法
CN1754976A (zh) 铝/钇/锆三元复合氧化物纳米结构团聚体粉末及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220530

Address after: 213000 floor 2, building 1, No. 502, Changting Road, West Taihu science and Technology Industrial Park, Changzhou City, Jiangsu Province

Patentee after: Zhongke Desheng (Changzhou) Electronic Technology Co.,Ltd.

Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422

Patentee before: XIAMEN University