CN106478112B - 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法 - Google Patents

一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN106478112B
CN106478112B CN201610900904.9A CN201610900904A CN106478112B CN 106478112 B CN106478112 B CN 106478112B CN 201610900904 A CN201610900904 A CN 201610900904A CN 106478112 B CN106478112 B CN 106478112B
Authority
CN
China
Prior art keywords
powder
composite ceramics
preparation
sintering
high hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610900904.9A
Other languages
English (en)
Other versions
CN106478112A (zh
Inventor
李树丰
潘登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201610900904.9A priority Critical patent/CN106478112B/zh
Publication of CN106478112A publication Critical patent/CN106478112A/zh
Application granted granted Critical
Publication of CN106478112B publication Critical patent/CN106478112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高硬度高韧性B4C‑W2B5复合陶瓷,掺杂相W2B5均匀分布于B4C基体中,其中W2B5和B4C的摩尔比为1:2、1:3、1:4或1:5。该复合陶瓷的制备方法,包括两种,一种以B粉和WC粉为原料,另一种以B粉、C粉和WC粉为原料,采用原位合成的方法制备而成。具体是先将原料粉使用球磨机干磨,得到混合均匀的磨料;然后预压成型;最后置于烧结炉烧结得到。本发明制备的B4C‑W2B5复合陶瓷具有优良的综合性能:致密化温度仅1700℃,硬度为28.8~37.9GPa),断裂韧性为7.8~10.9MPa·mm1/2

Description

一种高硬度高韧性B4C-W2B5复合陶瓷及其制备方法
技术领域
本发明属于复合陶瓷材料技术领域,具体涉及一种高硬度高韧性 B4C-W2B5复合陶瓷,还涉及该复合陶瓷的制备方法。
背景技术
碳化硼(B4C)陶瓷是新型陶瓷中重要的耐磨损和高硬度结构陶瓷材料,是一种重要的工程材料,其硬度仅次于金刚石和立方氮化硼,由于硼与碳都为非金属元素,而且原子半径接近,其结合方式不同于一般间隙化合物,因此碳化硼陶瓷具有高熔点(2450℃)、超高硬度(>30GPa)、低密度(2.52g/cm3),是钢铁的1/3,弹性模量高,为450GPa,其热膨胀系数低,导热率较高,耐磨损和耐腐蚀等许多独特的优异性能,在国防、核能、航空航天、机械、耐磨技术等领域,正日益显示出其广阔的发展应用前景。
但是,纯碳化硼的致密化烧结是极其困难的,由于碳化硼共价键含量很高(93.9%),高于其他结构陶瓷,如SiC(88%),Si3N4(70%)等,加之塑性很差,晶界移动阻力大,固态时表面张力很小,原子激活能高,烧结活化能低,使碳化硼内气孔的消除、晶界和体积扩散的传质机制需在2000℃以上,从而决定了碳化硼是一种极难烧结的陶瓷材料。常压下于2300℃烧结通常只能获得 80%-87%的相对密度,在如此高的温度下烧结,晶粒会快速粗化与长大,不利于气孔的排除,将造成大量的残余气孔使材料致密度受限制,制品力学性能差,另外烧结温度太高,断裂韧性低,不能满足实际应用,因此,决定碳化硼应用的核心问题就是材料的致密化工艺以及降低烧结温度,提高断裂韧性。
目前多数研究者通过添加第二相来增强碳化硼的韧性,如SiCW、TiB2等,采用了无压烧结,热压烧结等方法,但是烧结温度依然较高,致密化温度达到1900℃-2200℃,存在硬度和韧性不能达到平衡,以及成本高的问题。
发明内容
本发明的目的是提供一种高硬度高韧性B4C-W2B5复合陶瓷,其具有高致密度、高硬度、高韧性的特点,解决了现有B4C陶瓷烧结和致密化温度高,但硬度韧性难平衡的问题。
本发明的另一目的是提供上述B4C-W2B5复合陶瓷的制备方法。
本发明所采用的一个技术方案是,一种高硬度高韧性B4C-W2B5复合陶瓷, W2B5均匀分布于B4C基体中,其中W2B5和B4C的摩尔比为1:2~5的范围内。
W2B5和B4C的平均粒径分别约为0.2~0.7μm,0.3~0.6μm.
本发明所采用的另一个技术方案是,上述B4C-W2B5复合陶瓷的制备方法,包括两种,一种以B粉(硼粉)和WC粉为原料,另一种以B(硼粉)粉、C 粉(石墨粉)和WC粉为原料,采用原位合成的方法制备而成。
(1)以B粉(硼粉)和WC粉为原料的制备方法包括以下步骤:
步骤1,按照摩尔比为13:2的比例称取B粉(硼粉)、WC粉,使用球磨机干磨,得到混合均匀的磨料;
步骤2,将混合均匀的磨料预压成型;
步骤3,将预压成型的磨料置于烧结炉中,保证烧结过程中的压强为30 Mpa,首先在1000℃~1200℃范围内保温3~6min,然后在1400~1550℃范围内保温3~6min,最后在1700℃保温5~10min,得到B4C-W2B5复合陶瓷。
(2)以B粉、C粉(石墨粉)和WC粉为原料的制备方法包括以下步骤:
步骤1,按照摩尔比为17∶1∶2、21∶2∶2或25∶3∶2的比例称取B 粉(硼粉)、C粉(石墨粉)和WC粉,使用球磨机干磨,得到混合均匀的磨料;
步骤2,将混合均匀的磨料预压成型;
步骤3,将预压成型的磨料置于烧结炉中,保证烧结压强为30Mpa,首先在1000℃~1200℃范围内保温3~6min,然后在1400~1550℃范围内保温 3~6min,最后在1700℃保温5~10min,得到B4C-W2B5复合陶瓷。
上述两种制备方法都具有以下特点:
步骤1的B粉粒径为10-20μm,C粉采用粒径为10-20μm的石墨粉,WC 粉的粒径<10μm。
步骤2中使用碳化钨球磨罐进行干磨,球料比为(8~12)∶1wt%,球磨时间为10~14小时,转速为150~200转/分钟。
步骤3中,升温速率为:0℃~(1000℃-1200℃)为(100℃~120℃)/min, 1100℃-1550℃为40~60℃/min,1550℃-1700℃为20~25℃/min。
无论采用两原料还是三原料,上述两种制备方法均为原位合成法,其原理为:
(1)(B+C)与(B+WC)均为原位反应,通过以下的热力学计算,温度在298k-2000k之间,吉布斯自由能说明该反应是一种自蔓延放热反应,反应驱动力大,可以利用原位反应放出的热量降低烧结温度,另外,采用原位反应合成的方法,使得B与C,B与W,以及B4C与W2B5之间的界面干净,结合良好,为良好的力学性能垫定了基础。
4B+C=B4C (a)
5B+2WC=W2B5+2C (b)
计算反应式(a)(b)的反应焓以及吉布斯自由能:
ΔH(2200K)1=-81.42kJ/mol (c)
ΔH(2200K)2=-508.86kJ/mol (d)
在298K~2000K,从热力学的计算可看出,在这个温度范围内,反应的吉布斯自由能是小于零,且反应式放热反应,且反应式可以进行的。
(2)B+C原位反应可以调节B与C的比例,控制生成物中不含C。
B+C+WC→W2B5+B4C+C
采用原位合成方法的优点是:可以调节B与C的比例,进而控制反应过程中生成的C全部反应,使终产物中不含C,进而可得到力学性能较好的复合材料。而传统的直接采用B4C原粉烧结,其产物中就会生成一定量的C,且不可控制,这样会影响复合材料的相关性能。
本发明的有益效果是,该发明采用了原位合成的制备方法,利用其反应放出的热量降低烧结温度,本发明在1700℃下烧结,即可达到100%致密,而传统的烧结方法及原粉烧结,致密化烧结温度在1900~2200℃。且该方法使得 B4C与W2B5之间的界面干净,结合良好,为良好的力学性能奠定了基础,本发明制备的B4C-W2B5复合陶瓷具有优良的综合性能:致密化温度仅1700℃,高硬度(28.8~37.9GPa),高断裂韧性(7.8~10.9MPa·mm1/2)。
附图说明
图1为本发明的B4C-W2B5复合陶瓷不同WC含量下的XRD(X射线衍射图);图中,(a)B4C(b)4B4C+W2B5(c)3B4C+W2B5(d)2B4C+W2B5
图2为本发明的B4C-W2B5复合陶瓷的扫描电镜显微(SEM)照片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,但本发明并不限于这些实施例。
实施例1
根据所需要烧结试样尺寸为Φ20mm×22mm,称取粒径为10-20μmB粉(硼粉)10.36g,粒径<10μm的WC粉28.88g(摩尔比为13:2),并将其混合放入碳化钨球磨罐中,加入碳化钨磨球,球料比为10∶1wt%,在PM100行星式球磨机上球磨12小时,转速为200转/分钟,每隔1小时休息20分钟,防止球磨时间过长而导致球磨罐发热每4个小时用药勺将粘在球磨罐及磨球上的粉末分离下来。将球磨好的混合粉末装填到尺寸为Φ20..4mm×40mm的石墨模具中,石墨磨具的内壁需要垫一层0.2mm的石墨纸,且石墨压头的两端也需垫上石墨纸,防止烧结过程中试样粘到石墨模具内壁和压头上,然后用手动压片机压实,再将压实好的粉和石墨磨具放进LABOX-330型放电等离子烧结炉中烧结,烧结温度为1700℃,采用三步保温法1100℃(保温3min)-1550℃ (保温3min)-1700℃(保温10min)的烧结参数,烧结压强为30MPa,。升温速率为:0-1100℃为100℃/min,1100℃-1550℃为50℃/min,1500℃-1700℃为25℃/min。烧结完成之后,再使用手动压片机将试样脱模,得到B4C-W2B5复合陶瓷。该材料中W2B5和B4C的摩尔比为1:2。
本实施例的反应方式为:
13B+2WC=W2B5+2B4C (1)
实施例2
根据所需要烧结试样尺寸为Φ20mm×22mm,称取与实施例1相同的B (硼粉)粉10.36g,WC粉28.88g(摩尔比为13:2),然后重复实施例1的操作步骤,其中,操作参数为:球料比为8∶1wt%,球磨13小时,转速180转 /分钟;采用三步保温法1000℃(保温5min)-1400℃(保温5min)-1700℃(保温6min)的烧结参数,烧结压强为30MPa。升温速率为:0-1000℃为120℃ /min,1000℃-1400℃为50℃/min,1400℃-1700℃为25℃/min。经上述步骤得到B4C-W2B5复合陶瓷。该材料中W2B5和B4C的摩尔比为1:2。
本实施例的反应方式为:
13B+2WC=W2B5+2B4C (1)
实施例3
根据所需要烧结试样尺寸为Φ20mm×22mm,称取与实施例1相同的B (硼粉)粉10.36g,WC粉28.88g(摩尔比为13:2),然后重复实施例1的操作步骤,其中,操作参数为:球料比为12∶1wt%,球磨14小时,转速150 转/分钟;采用三步保温法1200℃(保温5min)-1450℃(保温5min)-1700℃ (保温10min)的烧结参数,烧结压强为30MPa。升温速率为:0-1200℃为 100℃/min,1200℃-1450℃为50℃/min,1450℃-1700℃为20℃/min。经上述步骤得到B4C-W2B5复合陶瓷。该材料中W2B5和B4C的摩尔比为1:2。
本实施例的反应方式为:
13B+2WC=W2B5+2B4C (1)
实施例4
根据所需要烧结试样尺寸为Φ20mm×22mm,称取与实施例1相同的B 粉(硼粉)10.61g,粒径为10-20μm的C粉(石墨粉)0.693g,WC粉22.35g (摩尔比为17:1:2),然后重复实施例1的操作步骤,其中,操作参数为:球料比为8∶1wt%,球磨13小时,转速180转/分钟;采用三步保温法1000℃ (保温3min)-1400℃(保温3min)-1700℃(保温10min)的烧结参数,烧结压强为30MPa。升温速率为:0-1000℃为120℃/min,1000℃-1400℃为50℃ /min,1400℃-1700℃为25℃/min。经上述步骤得到B4C-W2B5复合陶瓷。该材料中W2B5和B4C的摩尔比为1:3。本实施例的反应方式为:
17B+C+2WC=W2B5+3B4C (2)
实施例5
根据所需要烧结试样尺寸为Φ20mm×22mm,称取与实施例4相同的B 粉(硼粉)10.75g,C粉(石墨粉)1.138g,WC粉18.55g(摩尔比为21:2:2),然后重复实施例1的操作步骤,球料比为8∶1wt%,球磨13小时,转速180 转/分钟;采用三步保温法1000℃(保温5min)-1400℃(保温5min)-1700℃ (保温6min)的烧结参数,烧结压强为30MPa。升温速率为:0-1000℃为120℃ /min,1000℃-1400℃为50℃/min,1400℃-1700℃为25℃/min。经上述步骤得到B4C-W2B5复合陶瓷,该材料中W2B5和B4C的摩尔比为1:4。本实施例的反应方式为:
21B+2C+2WC=W2B5+4B4C (3)
实施例6
根据所需要烧结试样尺寸为Φ20mm×22mm,称取与实施例4相同的B 粉(硼粉)11.27g,C粉(石墨粉)1.253g,WC粉16.34g(摩尔比为25:3:2),然后重复实施例1的操作步骤,其中,操作参数为:球料比为12∶1wt%,球磨14小时,转速150转/分钟;采用三步保温法1200℃(保温5min)-1450℃ (保温5min)-1700℃(保温10min)的烧结参数,烧结压强为30MPa。升温速率为:0-1200℃为100℃/min,1200℃-1450℃为50℃/min,1450℃-1700℃为20℃/min。经上述步骤得到B4C-W2B5复合陶瓷。该材料中W2B5和B4C的摩尔比为1:5。本实施例的反应方式为:
25B+3C+2WC=W2B5+5B4C (4)
对比例
按照实施例1的方法,以11.45g B粉(硼粉)和3.18g C粉(石墨粉)为原料,制备出B4C陶瓷。
采用XRD-7000型X射线衍射仪和JSM-6700F型场发射扫描电子显微镜观察实施例产物的物相和微观结构,实施例1的XRD图见图1,由图中可看出随着WC含量增加,出现了W2B5的衍射峰,但是B4C的衍射峰明显降低,这是因为B4C相对W2B5为轻元素,衍射强度低,因此B4C的衍射峰降低。其SEM图见图2,由图中可看出本发明复合陶瓷微观结构由黑色的基体B4C和灰色的W2B5组成,且均匀的分布,W2B5和B4C的粒径分别约为0.36um和 0.38um。所有实施例的W2B5和B4C的粒径范围为0.2~0.7μm,0.3~0.6μm。。
将实施例1、4、5、6的B4C-W2B5复合陶瓷和对比例的B4C陶瓷经线切割加工为2mm×4mm×20mm,中间缺口为2mm的条状试样,通过SANS万能试验机对样品进行性能测试,加工剩余的试样进行硬度等试验;采用阿基米德排水法进行密度测试;采用三点弯曲法测试条样断裂韧性;以B4C陶瓷为对照组进行性能对比,B4C-W2B5复合陶瓷和B4C陶瓷的致密度、硬度、断裂韧性结果见表1。
表1 B4C-W2B5复合陶瓷和B4C陶瓷的性能结果
由以上结果可知,通过上述比例,采用放电等离子烧结,三步保温法制备B4C-W2B5复合陶瓷,可得到性能优异的复合陶瓷,特别地,当B4C:W2B5摩尔比为4:1时,综合性能最优异,硬度为37.9GPa,断裂韧性可达到 7.8MPa·mm1/2,与相同方法烧结制备的B4C相比,性能得到了很大的提升。

Claims (8)

1.一种高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,以硼粉和WC粉为原料,包括以下步骤:
步骤1,按照摩尔比为13:2的比例称取硼粉和WC粉,使用球磨机干磨,得到混合均匀的磨料;
步骤2,将混合均匀的磨料预压成型;
步骤3,将预压成型的磨料置于烧结炉中,保证烧结压强为30MPa,首先在1000℃~1200℃范围内保温3~6min,然后在1400~1550℃范围内保温3~6min,最后在1700℃保温5~10min,得到B4C-W2B5复合陶瓷;
所述制备的B4C-W2B5复合陶瓷中W2B5和B4C的摩尔比为1:2、1:3、1:4或1:5;
所述制备的B4C-W2B5复合陶瓷中W2B5和B4C的平均粒径分别为0.2~0.7μm和0.3~0.6μm。
2.根据权利要求1所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述硼粉粒径为10-20μm,WC粉的粒径<10μm。
3.根据权利要求1所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述干磨的球料比为(8~12)∶1wt%,球磨时间为10~14小时,转速为150~200转/分钟。
4.根据权利要求1所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述烧结的升温速率为:0℃~1100℃为(100℃~120℃)/min,1100℃~1550℃为40℃~50℃/min,1550℃~1700℃为20℃~25℃/min。
5.一种高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,以硼粉、石墨粉和WC粉为原料,包括以下步骤:
步骤1,按照摩尔比为17∶1∶2、21∶2∶2或25∶3∶2的比例称取硼粉、石墨粉和WC粉,使用球磨机干磨,得到混合均匀的磨料;
步骤2,将混合均匀的磨料预压成型;
步骤3,将预压成型的磨料置于烧结炉中,保证烧结压力为30MPa,首先在1000℃~1200℃范围内保温3~6min,然后在1400~1550℃范围内保温3~6min,最后在1700℃保温5~10min,得到B4C-W2B5复合陶瓷。
6.根据权利要求5所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述硼粉粒径为10-20μm,WC粉的粒径<10μm。
7.根据权利要求5所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述干磨的球料比为(8~12)∶1wt%,球磨时间为10~14小时,转速为150~200转/分钟。
8.根据权利要求5所述的高硬度高韧性B4C-W2B5复合陶瓷的制备方法,其特征在于,所述烧结的升温速率为:0℃~1100℃为(100℃~120℃)/min,1100℃~1550℃为40℃~50℃/min,1550℃~1700℃为20℃~25℃/min。
CN201610900904.9A 2016-10-17 2016-10-17 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法 Active CN106478112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610900904.9A CN106478112B (zh) 2016-10-17 2016-10-17 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610900904.9A CN106478112B (zh) 2016-10-17 2016-10-17 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN106478112A CN106478112A (zh) 2017-03-08
CN106478112B true CN106478112B (zh) 2019-07-23

Family

ID=58269538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610900904.9A Active CN106478112B (zh) 2016-10-17 2016-10-17 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106478112B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116202A (zh) * 2019-12-18 2020-05-08 南京理工大学 一种放电等离子反应烧结碳化硼-硼化钛材料的方法
CN112142473A (zh) * 2020-09-29 2020-12-29 东北大学 一种b4c基双层陶瓷复合材料及其制备方法
CN113353899B (zh) * 2021-05-24 2022-09-23 南京大学 一种氮化硼纳米管的制备方法、氮化硼纳米管及其应用
CN113636842B (zh) * 2021-07-29 2023-02-10 安徽工业大学科技园有限公司 一种高熵二硼化物-碳化硼复相陶瓷、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670408A (en) * 1984-09-26 1987-06-02 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Process for the preparation of carbide-boride products
US4963516A (en) * 1987-07-28 1990-10-16 Ngk Insulators, Ltd. SiC complex sintered bodies and production thereof
CN102050626A (zh) * 2009-11-10 2011-05-11 望城县铜官彭氏雅陶文化传播有限公司 一种陶瓷喷砂嘴制造方法
CN105367057A (zh) * 2014-08-19 2016-03-02 中国科学院上海硅酸盐研究所 一种高致密碳化硼复相陶瓷材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670408A (en) * 1984-09-26 1987-06-02 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Process for the preparation of carbide-boride products
US4963516A (en) * 1987-07-28 1990-10-16 Ngk Insulators, Ltd. SiC complex sintered bodies and production thereof
CN102050626A (zh) * 2009-11-10 2011-05-11 望城县铜官彭氏雅陶文化传播有限公司 一种陶瓷喷砂嘴制造方法
CN105367057A (zh) * 2014-08-19 2016-03-02 中国科学院上海硅酸盐研究所 一种高致密碳化硼复相陶瓷材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites co-doped with tungsten carbide and pyrolytic carbon;Jie Yin等;《Journal of the European Ceramic Society》;20130505(第33期);第1647-1654页

Also Published As

Publication number Publication date
CN106478112A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
Huang et al. In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering
Zollfrank et al. Microstructure evolution and reaction mechanism of biomorphous SiSiC ceramics
CN106478112B (zh) 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
Mashhadi et al. Effect of Al addition on pressureless sintering of B4C
Rehman et al. Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid
Perevislov Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials
CN102219536B (zh) 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
Perevislov et al. High density boron carbide ceramics
Xu et al. Study on in-situ synthesis of ZrB2 whiskers in ZrB2–ZrC matrix powder for ceramic cutting tools
Adibpur et al. Co-reinforcing of ZrB2–SiC ceramics with optimized ZrC to Cf ratio
Nguyen et al. Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics
AU2014397407A1 (en) Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite
Yan et al. Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing
CN106431417B (zh) 一种高硬度高韧性b4c-w2b5-c复合陶瓷及其制备方法
Feng et al. Effect of oxygen content on the sintering behaviour and mechanical properties of SiC ceramics
Reddy et al. Densification and mechanical properties of CrB2+ MoSi2 based novel composites
Liu et al. In situ synthesis of ZrB2–MoSi2 platelet composites: Reactive hot pressing process, microstructure and mechanical properties
He et al. In situ synthesis and mechanical properties of bulk Ti3SiC2/TiC composites by SHS/PHIP
Rahman et al. Mechanical characterization of fine grained silicon carbide consolidated using polymer pyrolysis and spark plasma sintering
Zamharir et al. Effect of co-addition of WC and MoSi2 on the microstructure of ZrB2–SiC–Si composites
CN101555136B (zh) 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法
Mehr et al. Mechanical and thermal properties of low temperature sintered silicon carbide using a preceramic polymer as binder
Kozekanan et al. Thermodynamic and phase analysis of SiC-nano/microB4C-C composites produced by pressureless sintering method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant