CN109112334A - 一种在金属中添加介观尺度三维强化相的方法 - Google Patents

一种在金属中添加介观尺度三维强化相的方法 Download PDF

Info

Publication number
CN109112334A
CN109112334A CN201811040960.5A CN201811040960A CN109112334A CN 109112334 A CN109112334 A CN 109112334A CN 201811040960 A CN201811040960 A CN 201811040960A CN 109112334 A CN109112334 A CN 109112334A
Authority
CN
China
Prior art keywords
metal
graphite flake
scale
powder
meso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811040960.5A
Other languages
English (en)
Inventor
陈冬生
周海涛
刘大博
罗飞
田野
罗炳威
祁洪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201811040960.5A priority Critical patent/CN109112334A/zh
Publication of CN109112334A publication Critical patent/CN109112334A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明是一种在金属中添加介观尺度三维强化相的方法,该方法首先将金属基合金粉末置于等离子体化学气相沉积真空装置中,通入甲烷气体,调节甲烷气体流量、真空装置压强、射频功率、加热温度和沉积时间,得到原位生长三维石墨片的石墨片/金属基复合材料粉末,随后对石墨片/金属基复合材料粉末进行致密化成形,最后通过热处理,制备出石墨片/金属基复合材料。该方法能够保证石墨片与金属基体具有良好结合力的前提下,使三维介观尺度的石墨片在金属基体中均匀分散,解决了石墨片在金属基体中难以均匀分散且结合力差的问题,实现了石墨片增强增韧金属的目的。利用本发明制备三维介观尺度石墨片增强金属基复合材料,工艺简单、高效,适合工业化生产。

Description

一种在金属中添加介观尺度三维强化相的方法
技术领域
本发明是一种在金属中添加介观尺度三维强化相的方法,属于金属基材料增强制备技术。
背景技术
金属基复合材料是以金属及合金为基体,通过与高性能的增强纤维、晶须、颗粒等增强相复合而成的复合材料。与传统金属或合金相比,金属基复合材料具有高比强度、耐磨性好、高温性能好、耐腐蚀、抗氧化和良好的疲劳性能等优势。
通过调控增强相在金属基体中的分布状态可以有效地提高金属基复合材料的综合性能,进而实现具有更加增强与增韧效果的复合材料组织结构。单层石墨烯或多层石墨烯(石墨片)具有优异的电学、热学及力学性能,且化学性能稳定,成为复合材料的理想增强体。目前在金属中添加石墨烯或石墨片增强相的方法主要有球磨和湿混法,但都存在生产效率低,容易引入杂质的问题,在后期的粉末冶金中也很难改善增强相在金属基体中的分布状态。
等离子辅助化学气相沉积是在低压化学气相沉积进行的同时,利用辉光放电产生的等离子体对沉积过程进行调控,具有沉积温度低、速率高的特点,容易获得均匀、质量高的薄膜。目前利用该种等离子辅助化学气相沉积的方法在金属粉末表面沉积石墨片,该方法制备的金属基复合粉末表面包覆的石墨片与金属基体的结合力强。
发明内容
本发明正是针对上述现有技术状况而设计提供了一种在金属中添加介观尺度三维强化相的方法,其目的是不仅使三维介观尺度强化相在金属中能够均匀分散,而且使强化相与金属基体具有良好的界面结构和结合力,从而保证强化相增强增韧金属的目的。
本发明的目的是通过以下技术方案来实现的:
该种在金属中添加介观尺度三维强化相的方法,其特征在于:该方法的步骤如下:
步骤一、将金属或合金粉末进行超声波清洗烘干后转移到石墨坩埚里,然后将坩埚放入等离子体化学气相沉积真空装置炉管正中间,将该装置抽真空至不低于1×10-2Pa后通入甲烷气体,甲烷气体流量为20sccm~40sccm,调节抽真空速度控制装置内压强为100Pa~500Pa,然后开动射频源,射频源功率为100W~400W,同时加热并升温到400℃~800℃,进行石墨片沉积,沉积时间为10min~120min,沉积结束后关闭射频源,停止通入甲烷气体,通入氩气,在氩气气氛下冷却至室温,制备出原位生长的的具有介观尺度的石墨片/金属基复合材料粉末;
步骤二、将步骤一制备的石墨片/金属基复合材料粉末进行致密化成形;
步骤三、将步骤二得到的致密化成形后的石墨片/金属基复合材料放入炉子进行固溶时效热处理,得到添加介观尺度三维强化相的金属基复合材料。
步骤一中所述金属或合金粉末为铜或铜合金粉末、镍或镍合金粉末、钛或钛合金粉末,粉末的形状为球形或片状,最大粒径尺寸为亚微米或微米级。
步骤二中的致密化成形工艺为放电等离子烧结、热等静压或激光选区熔融。
采用放电等离子烧结工艺的参数为:所用模具的材质为石墨,真空度不低于1×10-3Pa,升温速度为50~100℃/min,轴向压力为25~40MPa,烧结温度为800℃~1100℃,烧结时间为5~20min。
采用热等静压工艺时,对真空封焊后装有石墨片/金属基复合材料粉末的不锈钢包套进行预处理,该预处理为在900℃~1100℃条件下保温2~4h,热等静压工艺的参数为:加热温度为900℃~1200℃,压力100Pa~200Pa,保温3~4h。
激光选区熔融的工艺参数为:所用的金属或合金粉末为球形粉末,激光功率为1000~3000W,送粉速度为5~7g/mm,扫描速度为2~4mm/s。
本发明技术方案通过通过离子体辅助化学气相沉积的方法在金属或合金粉末表面原位生长介观尺度的三维石墨片,不同于现有技术在金属基复合粉末表面形成包覆的石墨片,该种三维结构的石墨片具有更大的增强增韧效果,解决了现有的球磨或湿混法中石墨片与金属基粉末难于均匀混合,且石墨片与金属基体结合力差的问题,具体表现在:
1.本发明技术方案通过等离子体辅助化学气相沉积的原位生长的三维石墨片在金属或合金粉末表面形成均匀介观尺度的三维石墨片,石墨片与金属或合金粉末的界面结合力强、不易剥落,且在后期粉末冶金中石墨片不会团聚,解决了用传统方法在金属中添加石墨片易于团聚的问题;
2.本发明技术方案通过控制放电等离子烧结、热等静压或激光选区熔融参数,能够得到更加高致密度的石墨片/金属基复合材料,不仅使介观尺度三维石墨片在金属基体中能够均匀分散,而且保留了原位生长的介观尺度三维石墨片与金属基体间自然的界面结构,石墨片与金属基体没有间隙,且结合力强;
3.按照本发明提供的技术方案制备的石墨片/金属基复合材料较传统的金属基材料,不仅提高了强度,而且大幅度提升了塑性;
4.本发明提供的技术方法简单、高效,适合于工业生产。
附图说明
图1为实施例1中的镍基合金粉末颗粒的扫描电镜图片
图2为实施例1中的原位生长三维石墨片后的石墨片/镍基复合材料颗粒的扫描电镜图片
图3为实施例1中石墨片/镍基复合材料的透射电镜明场像图片
具体实施方式
以下结合附图和实施例对本发明的技术实施方式进行更加详细的说明:
实施例一:
制备一种添加介观尺度三维强化相的金属基复合材料的方法,该方法的步骤如下:
步骤一、将100g粉末粒度50-200μm的镍基合金粉末进行超声波清洗烘干后转移到石墨坩埚里,所述的镍基合金的化学成分及重量百分比为:Cr19.15%、Fe17.95%、Nb5.12%、Mo3.15%、Ti0.97%、Al0.48%、Co≤0.09、C≤0.05,余量为Ni,镍基合金粉末的扫描电镜照片如图1所示。然后将坩埚放入等离子体化学气相沉积真空装置炉管正中间,将该装置抽真空至不低于1×10-2Pa后通入甲烷气体,甲烷气体流量为30sccm,调节抽真空速度控制装置内压强为300Pa,然后开动射频源,射频源功率为350W,同时加热并升温到700℃,进行石墨片沉积,沉积时间为30min,沉积结束后关闭射频源,停止通入甲烷气体,通入氩气,在氩气气氛下冷却至室温,制备出原位生长的的具有介观尺度的石墨片/镍基复合材料粉末,如图2所示,图中可见具有介观尺度的三维石墨片均匀覆盖在镍基合金粉末表面;
步骤二、将步骤一制备的石墨片/金属基复合材料粉末进行放电等离子烧结致密化成形,参数为:所用模具的材质为石墨,真空度不低于1×10-3Pa,升温速度为50℃/min,轴向压力为30MPa,烧结温度为1050℃,烧结时间为10min;
步骤三、将步骤二得到的致密化成形后的石墨片/金属基复合材料放入炉子进行固溶时效热处理,固溶热处理参数为:950℃保温60min﹢空冷,时效热处理参数为:720℃保温480min,然后炉温以50℃/h的速度降到620℃,再在620℃保温480min,空冷,得到添加介观尺度三维强化相的镍基复合材料。
对制备出的原位生长的介观尺度三维石墨片的石墨片/镍基复合材料进行表征和性能测试。图3给出了石墨片/镍基复合材料的透射电镜明场像图片,石墨片与镍基合金基体具有清晰和良好的界面结构。表1给出了在相同条件下用放电等离子烧结设备制备的镍基合金和石墨片/镍基复合材料在25℃和650℃条件下的拉伸测试结果,结果表明石墨片/镍基复合材料比相同条件制备的镍基合金强度要提升15%,延伸率提升40%。
表1
实施例二:
制备一种添加介观尺度三维强化相的金属基复合材料的方法,该方法的步骤如下:
步骤一、将100g粉末粒度50-200μm的镍基合金粉末进行超声波清洗烘干后转移到石墨坩埚里,所述的镍基合金的化学成分及重量百分比为:Cr19.15%、Fe17.95%、Nb5.12%、Mo3.15%、Ti0.97%、Al0.48%、Co≤0.09、C≤0.05,余量为Ni。然后将坩埚放入等离子体化学气相沉积真空装置炉管正中间,将该装置抽真空至不低于1×10-2Pa后通入甲烷气体,甲烷气体流量为30sccm,调节抽真空速度控制装置内压强为300Pa,然后开动射频源,射频源功率为300W,同时加热并升温到800℃,进行石墨片沉积,沉积时间为20min,沉积结束后关闭射频源,停止通入甲烷气体,通入氩气,在氩气气氛下冷却至室温,制备出原位生长的的具有介观尺度的石墨片/镍基复合材料粉末;
步骤二、将步骤一制备的石墨片/金属基复合材料粉末放入不锈钢包套,对真空封焊后装有石墨片/金属基复合材料粉末的不锈钢包套进行预处理,该预处理为在1050℃条件下保温4h,热等静压工艺的参数为:加热温度为1200℃,压力200Pa,保温4h;
步骤三、将步骤二得到的致密化成形后的石墨片/金属基复合材料放入炉子进行固溶时效热处理,固溶热处理参数为:1100℃保温120min﹢空冷,时效热处理参数为:720℃保温480min,然后炉温以50℃/h的速度降到620℃,再在620℃保温480min,空冷,得到添加介观尺度三维强化相的镍基复合材料。
对制备出的原位生长的介观尺度三维石墨片的石墨片/镍基复合材料进行表征和性能测试。结果表明石墨片/镍基复合材料比相同条件制备的镍基合金强度要提升10%,延伸率提升30%。
实施例三
制备一种添加介观尺度三维强化相的金属基复合材料的方法,该方法的步骤如下:
步骤一、将100g粉末粒度50-200μm的球形镍基合金粉末进行超声波清洗烘干后转移到石墨坩埚里,所述的镍基合金的化学成分及重量百分比为:Cr19.15%、Fe17.95%、Nb5.12%、Mo3.15%、Ti0.97%、Al0.48%、Co≤0.09、C≤0.05,余量为Ni。然后将坩埚放入等离子体化学气相沉积真空装置炉管正中间,将该装置抽真空至不低于1×10-2Pa后通入甲烷气体,甲烷气体流量为30sccm,调节抽真空速度控制装置内压强为300Pa,然后开动射频源,射频源功率为300W,同时加热并升温到750℃,进行石墨片沉积,沉积时间为20min,沉积结束后关闭射频源,停止通入甲烷气体,通入氩气,在氩气气氛下冷却至室温,制备出原位生长的的具有介观尺度的石墨片/镍基复合材料粉末;
步骤二、将步骤一制备的石墨片/金属基复合材料粉末进行激光选区熔融,参数为:激光功率为1000~3000W,送粉速度为5~7g/mm,扫描速度为2~4mm/s;
步骤三、将步骤二得到的致密化成形后的石墨片/金属基复合材料放入炉子进行固溶时效热处理,固溶热处理参数为:1100℃保温120min﹢空冷,时效热处理参数为:720℃保温480min,然后炉温以50℃/h的速度降到620℃,再在620℃保温480min,空冷,得到添加介观尺度三维强化相的镍基复合材料。
对制备出的原位生长的介观尺度三维石墨片的石墨片/镍基复合材料进行表征和性能测试。结果表明石墨片/镍基复合材料比相同条件制备的镍基合金强度要提升15%,延伸率提升35%。。
以上实施例仅用以对本发明的技术方案进行说明而非对其限制,参照上述实施例可以对本发明的具体实施方式进行修改或等同替换,这些未脱离本发明精神和范围的任何修改或等同替换均在本发明的权利要求保护范围之内。

Claims (6)

1.一种在金属中添加介观尺度三维强化相的方法,其特征在于:该方法的步骤如下:
步骤一、将金属或合金粉末进行超声波清洗烘干后转移到石墨坩埚里,然后将坩埚放入等离子体化学气相沉积真空装置炉管正中间,将该装置抽真空至不低于1×10-2Pa后通入甲烷气体,甲烷气体流量为20sccm~40sccm,调节抽真空速度控制装置内压强为100Pa~500Pa,然后开动射频源,射频源功率为100W~400W,同时加热并升温到400℃~800℃,进行石墨片沉积,沉积时间为10min~120min,沉积结束后关闭射频源,停止通入甲烷气体,通入氩气,在氩气气氛下冷却至室温,制备出原位生长的的具有介观尺度的石墨片/金属基复合材料粉末;
步骤二、将步骤一制备的石墨片/金属基复合材料粉末进行致密化成形;
步骤三、将步骤二得到的致密化成形后的石墨片/金属基复合材料放入炉子进行固溶时效热处理,得到添加介观尺度三维强化相的金属基复合材料。
2.根据权利要求1所述的在金属中添加介观尺度三维强化相的方法,其特征在于:步骤一中所述金属或合金粉末为铜或铜合金粉末、镍或镍合金粉末、钛或钛合金粉末,粉末的形状为球形或片状,最大粒径尺寸为亚微米或微米级。
3.根据权利要求1所述的在金属中添加介观尺度三维强化相的方法,其特征在于:步骤二中的致密化成形工艺为放电等离子烧结、热等静压或激光选区熔融。
4.根据权利要求3所述的在金属中添加介观尺度三维强化相的方法,其特征在于:采用放电等离子烧结工艺的参数为:所用模具的材质为石墨,真空度不低于1×10-3Pa,升温速度为50~100℃/min,轴向压力为25~40MPa,烧结温度为800℃~1100℃,烧结时间为5~20min。
5.根据权利要求3所述的在金属中添加介观尺度三维强化相的方法,其特征在于:采用热等静压工艺时,对真空封焊后装有石墨片/金属基复合材料粉末的不锈钢包套进行预处理,该预处理为在900℃~1100℃条件下保温2~4h,热等静压工艺的参数为:加热温度为900℃~1200℃,压力100Pa~200Pa,保温3~4h。
6.根据权利要求3所述的在金属中添加介观尺度三维强化相的方法,其特征在于:激光选区熔融的工艺参数为:所用的金属或合金粉末为球形粉末,激光功率为1000~3000W,送粉速度为5~7g/mm,扫描速度为2~4mm/s。
CN201811040960.5A 2018-09-06 2018-09-06 一种在金属中添加介观尺度三维强化相的方法 Pending CN109112334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811040960.5A CN109112334A (zh) 2018-09-06 2018-09-06 一种在金属中添加介观尺度三维强化相的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811040960.5A CN109112334A (zh) 2018-09-06 2018-09-06 一种在金属中添加介观尺度三维强化相的方法

Publications (1)

Publication Number Publication Date
CN109112334A true CN109112334A (zh) 2019-01-01

Family

ID=64858778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811040960.5A Pending CN109112334A (zh) 2018-09-06 2018-09-06 一种在金属中添加介观尺度三维强化相的方法

Country Status (1)

Country Link
CN (1) CN109112334A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626968A (zh) * 2019-01-25 2019-04-16 中国航发北京航空材料研究院 一种陶瓷基复合材料的制备方法
CN110405207A (zh) * 2019-08-14 2019-11-05 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN116607039A (zh) * 2023-07-21 2023-08-18 成都先进金属材料产业技术研究院股份有限公司 一种石墨烯增强tc4钛基复合材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483641A (zh) * 2015-12-28 2016-04-13 哈尔滨工业大学 一种原位生长石墨烯增强铜基电接触材料的制备方法
CN105779823A (zh) * 2015-12-30 2016-07-20 中国航空工业集团公司北京航空材料研究院 一种镍基粉末高温烯合金的制备方法
CN107824785A (zh) * 2017-09-29 2018-03-23 中国航发北京航空材料研究院 一种低激光反射率粉末颗粒及制备方法
CN107824786A (zh) * 2017-11-02 2018-03-23 中国科学院过程工程研究所 核壳结构碳包覆钛及钛合金复合粉体及其制备方法
CN108034930A (zh) * 2017-11-22 2018-05-15 华中科技大学 一种石墨烯/金属复合材料及三维石墨烯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483641A (zh) * 2015-12-28 2016-04-13 哈尔滨工业大学 一种原位生长石墨烯增强铜基电接触材料的制备方法
CN105779823A (zh) * 2015-12-30 2016-07-20 中国航空工业集团公司北京航空材料研究院 一种镍基粉末高温烯合金的制备方法
CN107824785A (zh) * 2017-09-29 2018-03-23 中国航发北京航空材料研究院 一种低激光反射率粉末颗粒及制备方法
CN107824786A (zh) * 2017-11-02 2018-03-23 中国科学院过程工程研究所 核壳结构碳包覆钛及钛合金复合粉体及其制备方法
CN108034930A (zh) * 2017-11-22 2018-05-15 华中科技大学 一种石墨烯/金属复合材料及三维石墨烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖纬汗: "3D打印石墨烯/Inconel 718复合材料的组织与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626968A (zh) * 2019-01-25 2019-04-16 中国航发北京航空材料研究院 一种陶瓷基复合材料的制备方法
CN110405207A (zh) * 2019-08-14 2019-11-05 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN110405207B (zh) * 2019-08-14 2021-07-20 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN116607039A (zh) * 2023-07-21 2023-08-18 成都先进金属材料产业技术研究院股份有限公司 一种石墨烯增强tc4钛基复合材料制备方法

Similar Documents

Publication Publication Date Title
CN111451491B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN107096924A (zh) 一种可用于三维打印的球形金属基稀土纳米复合粉末的制备方法及产品
CN109112334A (zh) 一种在金属中添加介观尺度三维强化相的方法
CN103639408B (zh) 一种以氢化钛铝合金粉末短流程制备钛铝金属间化合物的方法
CN104313380A (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
WO2020133680A1 (zh) 一种超短周期高强度-高延展性镍铝青铜合金及制备方法
CN112144007B (zh) 一种原位反应生成的梯度耐磨涂层的制备方法
CN107747018B (zh) 一种FeMnCoCrAlRu高熵合金及其制备方法
CN111254304B (zh) 一种原位自生钛镍合金骨架增强钛基复合材料的制备方法
CN111778424A (zh) 一种有效可控的具有多极孔结构的骨架的制备方法
CN109897985A (zh) 三维连续石墨烯/铜复合材料及其制备方法
CN107937748A (zh) 一种以大电流电阻烧结制备钨钼铜复合材料的方法
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN110029292A (zh) 一种石墨烯层改性c涂层纤维增强钛基复合材料的制备方法
CN109207762A (zh) 一种以微波烧结制备钨钼铜复合材料的方法
CN112705717A (zh) 原位生成氮化物增强高熵合金基粉体材料的制备方法
CN109434119A (zh) 一种高韧性MXene相掺杂钼合金的制备方法
CN112008087A (zh) 一种提高碳纳米材料增强镍基高温合金综合性能的方法
CN111943678A (zh) 一种HfxZr1-xC陶瓷固溶体纳米线及制备方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN108531780A (zh) 一种石墨烯增强镍铝合金基复合材料的制备方法
CN107779650B (zh) 一种镍铝青铜合金材料及其制备方法
CN107010961B (zh) SiC纤维的连续化烧成方法及其装置
CN102392150A (zh) 一种快速烧结制备Ti-24Nb-4Zr-7.9Sn合金的方法
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101

RJ01 Rejection of invention patent application after publication