CN109613070A - 一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用 - Google Patents

一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用 Download PDF

Info

Publication number
CN109613070A
CN109613070A CN201910001499.0A CN201910001499A CN109613070A CN 109613070 A CN109613070 A CN 109613070A CN 201910001499 A CN201910001499 A CN 201910001499A CN 109613070 A CN109613070 A CN 109613070A
Authority
CN
China
Prior art keywords
hetero
junctions
titanium carbide
ammonia gas
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910001499.0A
Other languages
English (en)
Other versions
CN109613070B (zh
Inventor
李晓干
何婷婷
彭勃
林仕伟
李欣宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910001499.0A priority Critical patent/CN109613070B/zh
Publication of CN109613070A publication Critical patent/CN109613070A/zh
Application granted granted Critical
Publication of CN109613070B publication Critical patent/CN109613070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供了一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用,属于纳米材料技术领域。该氨气气体传感器主要由气敏材料和加热基板组成,工作温度为室温。所述气敏材料涂覆在所述加热基板表面,涂覆厚度为1μm~100μm;所述气敏材料成分为碳化钛和二氧化锡形成的异质结复合纳米材料。本发明采用水热法获得一种新型异质结复合纳米材料,原材料获取方便、制备异质结过程简单,是一种设备投资小,工艺流程简单的二维半导体异质结制备方案。

Description

一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺 及应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用。
背景技术
气体传感器是一种将某种气体体积分数转化成对应电信号的转换器,根据电信号的强弱就可以得到环境中待测气体存在情况等信息。疾病的早期预防是最好的治疗方法,大多数人对这种方法感兴趣,因为它实质上有助于健康的生活。在疾病恶化之前进行早期的疾病检测很可能会提供更多的机会,可以增加患者生存的可能性。早期预防的一个很有希望的尝试是从呼吸、心率和皮肤对人体进行持续的生理监测。值得注意的是,在人类呼吸中发现了大约200种化合物,其中一些化合物是身体健康状况的信号。例如,丙酮来自糖尿病患者,氨来自肺部疾病患者。因此,在包括成本和可用性在内的许多方面,使用分析呼吸的气体检测将是一种实用的保健方法。
为了更加实用,传感器应该配备一些其他功能,如可移植性和可穿戴性,许多研究人员努力开发具有这种功能的电子产品。便携式和可穿戴电子硬件应该具有天生的适应性。此外,系统应该能够在低温下运行,而不需要额外的电源进行实际部署。然而,普通的气体检测设备是在硅晶片和铟锡氧化物(ITO)涂层玻璃等固体基片上制造的,因此不能集成到可穿戴电子设备中。另外,大多数商业化金属氧化物传感器组成的SnO2、ZnO或在NiO的最佳工作温度普遍高于100℃,这严重限制了他们适应嵌入式监控系统。因此,有必要在柔性基板上探索具有良好室温感知能力的新材料。
近年来,有研究表明利用二维半导体材料制成的气体传感器可以实现较低温度下工作,如利用过渡金属碳化物或氮化物(MXene)制成的氨气气体传感器的最佳工作温度在室温条件下,同时该传感器对氨气也有着较好的选择性。也有研究表明,对二维类石墨烯材料通过水热原位复合和自然沉积的方法合成的与金属氧化物的复合材料的气敏特性得到加强,可有效的提升气体传感器的灵敏度,延长元件使用寿命。
因此,制备出一种工艺步骤简单,成本低且对氨气的选择性高、稳定性好以及可恢复性强的一种新型氨气传感器成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的在于提供一种对氨气气体的响应值高、选择性好、稳定性强,且能够在室温条件下工作的一种新型氨气传感器及其制备方法。
本发明的技术方案:
一种基于二维MXene/SnO2异质结的氨气气体传感器,主要由气敏材料和加热基板组成,所述气敏材料涂覆在所述加热基板表面,涂覆厚度为1μm~100μm;所述气敏材料成分为碳化钛和二氧化锡形成的异质结复合纳米材料。
所述碳化钛和二氧化锡异质结复合纳米材料是通过水热法在片状碳化钛表面生长颗粒状二氧化锡构成。
所述碳化钛为片状,其尺寸为3um~5um。
所述加热基板为正面带有纯金电极的氧化铝基板,背面带有发热电阻丝,发热温度可达350℃。
一种基于二维MXene/SnO2异质结的氨气气体传感器的制备工艺,步骤如下:
工作原理:本发明氨气气体传感器为电阻型半导体气体传感器,主要利用半导体接触气体时其阻值的改变来检测气体的成分或浓度。待测气体接触半导体表面而被吸附时,被吸附的分子首先在物体表面自由扩散,失去运动能量,一部分分子被蒸发掉,另一部分残留分子产生热分解吸附在物体表面。本发明氨气传感器工作最佳温度为室温,半导体的功函数大于吸附氨气分子的亲和力,则器件将从吸附分子中夺走电子,使得载流子数目发生变化,传感器的实时监测信号是传感器电阻值的变化。
步骤一,制备碳化钛:将氟化锂添加进6mol/L~12mol/L的盐酸溶液中,再加入钛碳化铝粉末搅拌,完成搅拌后洗涤混合物并离心,直到上层清液的PH达到5.5~7,将固体残余物分散并进行真空过滤,将得到的碳化钛添加到去离子水中,进行冰浴超声并离心,将最后得到的粉末进行干燥;
步骤二,制备碳化钛和二氧化锡异质结:将步骤一中的得到碳化钛粉末分散至去离子水中进行超声,完成超声后的溶液加入五水合四氯化锡晶体,所取的碳化钛与五水合四氯化锡的摩尔比为1:2~4:1,将混合溶液搅拌后转移到反应釜,置于马弗炉中,升温速度2~6℃/min,反应温度为160℃~200℃,反应时间为3h~16h,降温速度2~6℃/min,将所得产物用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,干燥后得到氨气气体传感器。
步骤一中,超声功率为240W~260W,超声时间为1h;所述步骤二中,水热反应温度为180℃,反应时间为12h最佳。
所述碳化钛优选多层片状结构。
本发明利用碳化钛和二氧化锡异质结复合纳米材料制作的氨气传感器工作温度为室温。
本发明的有益效果:
1.本发明采用水热法获得一种新型异质结复合纳米材料,原材料获取方便、制备异质结过程简单,是一种设备投资小,工艺流程简单的二维半导体异质结制备方案。
2.本发明复合材料表面均匀分布二氧化锡颗粒,与碳化钛部分发生接触,二者之间会产生异质结,可以引导电子堆积在表面材料上,强化材料的气敏选择性能,碳化钛与二氧化锡之间的电子迁移有助于促进材料表面额外的氧吸附,从而改善低温环境下气敏性能。此本发明复合材料具有化学性质稳定,对氨气气敏性能良好的优点。
3.本发明所用异质结材料是通过控制原材料的不同比例、水热反应时间、温度等因素综合考虑所得,将大幅提高材料与被测气体分子的结合效能,由此提高气敏性能,使传感器工作所需温度下降,可以在室温条件下工作,因此不需要将器件加热至高温进行测试,减缓了材料在较高温环境下工作导致的材料老化与损坏。
附图说明
图1为本发明碳化钛和二氧化锡异质结复合纳米材料扫描电镜微观形貌图。
图2为本发明氨气传感器对10ppm、30ppm、50ppm氨气的响应对比图。
图3为本发明传感器在工作温度为室温的条件下对几种挥发性气体(50ppm)的响应对比图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
一种基于MXene/SnO2异质结的氨气气体传感器,由气敏材料和加热基板组成,所述气敏材料涂覆在所述基板表面,涂覆厚度为100μm。所述气敏材料的原料配比为TiC:SnCl4·5H2O为1:2形成的碳化钛和二氧化锡异质结复合纳米材料。制备方法包括以下步骤:
步骤一,制备碳化钛:将2g氟化锂加入20ml的9mol/L的盐酸中,在35℃的条件下用磁力搅拌器搅拌24h,在搅拌过程中2g钛碳化铝是在几分钟内缓慢地添加到溶液中,完成搅拌后用去离子水洗涤混合物并离心,直到上层清液的PH达到6,将固体残余物用去离子水分散并进行真空过滤,将得到的碳化钛添加到100mL去离子水中,进行冰浴超声,将溶液在3500rpm的条件下离心1h,将最后得到的粉末放置在干燥箱中60℃干燥6h。
步骤二,将步骤一中的得到碳化钛粉末(70mg)分散至40mL去离子水中,经过1h的超声后,加入四氯化锡晶体(246.8mg),室温条件下搅拌1h,将混合溶液转移到50mL的反应釜中,在180℃的条件下进行水热反应12h,用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,放置在干燥箱中60℃干燥6h,得到氨气气体传感器。
图1给出了实施例1制备的碳化钛和二氧化锡异质结复合纳米材料扫描电镜微观形貌图,所制备的复合材料具有明显的颗粒状二氧化锡。
实施例2
一种基于MXene/SnO2异质结的氨气气体传感器,由气敏材料和加热基板组成,所述气敏材料涂覆在所述基板表面,涂覆厚度为100μm。所述气敏材料的原料配比为TiC:SnCl4·5H2O为1:1形成的碳化钛和二氧化锡异质结复合纳米材料。制备方法包括以下步骤:
步骤一,制备碳化钛:将2g氟化锂加入20ml的9mol/L的盐酸中,在35℃的条件下用磁力搅拌器搅拌24h,在搅拌过程中2g钛碳化铝是在几分钟内缓慢地添加到溶液中,完成搅拌后用去离子水洗涤混合物并离心,直到上层清液的PH达到6,将固体残余物用去离子水分散并进行真空过滤,将得到的碳化钛添加到100mL去离子水中,进行冰浴超声,将溶液在3500rpm的条件下离心1h,将最后得到的粉末放置在干燥箱中60℃干燥6h。
步骤二,将步骤一中的得到碳化钛粉末(70mg)分散至40mL去离子水中,经过1h的超声后,加入四氯化锡晶体(147mg),室温条件下搅拌1h,将混合溶液转移到50mL的反应釜中,在180℃的条件下进行水热反应12h,用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,放置在干燥箱中60℃干燥6h,得到氨气气体传感器。
实施例3
一种基于MXene/SnO2异质结的氨气气体传感器,由气敏材料和加热基板组成,所述气敏材料涂覆在所述基板表面,涂覆厚度为100μm。所述气敏材料的原料配比为TiC:SnCl4·5H2O为2:1形成的碳化钛和二氧化锡异质结复合纳米材料。制备方法包括以下步骤:
步骤一,制备碳化钛:将2g氟化锂加入20ml的9mol/L的盐酸中,在35℃的条件下用磁力搅拌器搅拌24h,在搅拌过程中2g钛碳化铝是在几分钟内缓慢地添加到溶液中,完成搅拌后用去离子水洗涤混合物并离心,直到上层清液的PH达到6,将固体残余物用去离子水分散并进行真空过滤,将得到的碳化钛添加到100mL去离子水中,进行冰浴超声,将溶液在3500rpm的条件下离心1h,将最后得到的粉末放置在干燥箱中60℃干燥6h。
步骤二,将步骤一中的得到碳化钛粉末(70mg)分散至40mL去离子水中,经过1h的超声后,加入四氯化锡晶体(73.5mg),室温条件下搅拌1h,将混合溶液转移到50mL的反应釜中,在180℃的条件下进行水热反应12h,用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,放置在干燥箱中60℃干燥6h,得到氨气气体传感器。
实施例4
一种基于MXene/SnO2异质结的氨气气体传感器,由气敏材料和加热基板组成,所述气敏材料涂覆在所述基板表面,涂覆厚度为100μm。所述气敏材料的原料配比为TiC:SnCl4·5H2O为3:1形成的碳化钛和二氧化锡异质结复合纳米材料。制备方法包括以下步骤:
步骤一,制备碳化钛:将2g氟化锂加入20ml的9mol/L的盐酸中,在35℃的条件下用磁力搅拌器搅拌24h,在搅拌过程中2g钛碳化铝是在几分钟内缓慢地添加到溶液中,完成搅拌后用去离子水洗涤混合物并离心,直到上层清液的PH达到6,将固体残余物用去离子水分散并进行真空过滤,将得到的碳化钛添加到100mL去离子水中,进行冰浴超声,将溶液在3500rpm的条件下离心1h,将最后得到的粉末放置在干燥箱中60℃干燥6h。
步骤二,将步骤一中的得到碳化钛粉末(70mg)分散至40mL去离子水中,经过1h的超声后,加入四氯化锡晶体(49mg),室温条件下搅拌1h,将混合溶液转移到50mL的反应釜中,在180℃的条件下进行水热反应12h,用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,放置在干燥箱中60℃干燥6h,得到氨气气体传感器。
实施例5氨气传感器性能测试
将实施例2所制备传感器置于空气气氛下,工作温度为室温,然后引入NH3气体分子。通过万用表测量传感器在空气和在以空气为背景的不同浓度NH3氛围下的电阻变化,作为传感器的信号。以实施例2制备出的氨气传感器为例对照附图加以说明,图给出了所制备的传感器在约为10ppm、30ppm、50ppm的NH3氛围下,传感器电阻的变化情况。传感器经过几分钟后(大约5min),传感器电阻变化(即感应信号)达到峰值的90%。图给出了所制备的传感器对于乙醇、甲醇等几种挥发性气体与NH3在室温下的响应对比,可以发现该传感器对NH3的响应是其他气体的数倍。
传感器的应用
本发明利用碳化钛和二氧化锡异质结复合纳米材料制作的氨气传感器工作温度为室温(25℃),可以实现材料与硅基微电子相集成。因此,本发明的电极基板可以选用硅基微热板,将碳化钛和二氧化锡异质结复合纳米材料涂覆在硅基微热板上制作成具有加热功耗低、热量损耗小、热响应时间快、与CMOS工艺兼容、易于与其他微电子器件集成等优点的微热板型氨气气体传感器。

Claims (9)

1.一种基于二维MXene/SnO2异质结的氨气气体传感器,其特征在于,所述的氨气气体传感器主要由气敏材料和加热基板组成,所述气敏材料涂覆在所述加热基板表面,涂覆厚度为1μm~100μm;所述气敏材料成分为碳化钛和二氧化锡形成的异质结复合纳米材料。
2.根据权利要求1所述的氨气气体传感器,其特征在于,所述碳化钛和二氧化锡异质结复合纳米材料是通过水热法在片状碳化钛表面生长颗粒状二氧化锡构成。
3.根据权利要求1或2所述的氨气气体传感器,其特征在于,所述碳化钛为片状,其尺寸为3um~5um。
4.根据权利要求1或2所述的氨气气体传感器,其特征在于,所述加热基板为正面带有纯金电极的氧化铝基板,背面带有发热电阻丝,发热温度达350℃。
5.根据权利要求3所述的氨气气体传感器,其特征在于,所述加热基板为正面带有纯金电极的氧化铝基板,背面带有发热电阻丝,发热温度达350℃。
6.一种基于二维MXene/SnO2异质结的氨气气体传感器的制备工艺,其特征在于,步骤如下:
步骤一,制备碳化钛:将氟化锂添加进6mol/L~12mol/L的盐酸溶液中,再加入钛碳化铝粉末搅拌,完成搅拌后洗涤混合物并离心,直到上层清液的PH达到5.5~7,将固体残余物分散并进行真空过滤,将得到的碳化钛添加到去离子水中,进行冰浴超声并离心,将最后得到的粉末进行干燥;
步骤二,制备碳化钛和二氧化锡异质结:将步骤一中的得到碳化钛粉末分散至去离子水中进行超声,完成超声后的溶液加入五水合四氯化锡晶体,所取的碳化钛与五水合四氯化锡的摩尔比为1:2~4:1,将混合溶液搅拌后转移到反应釜,置于马弗炉中,升温速度2~6℃/min,反应温度为160℃~200℃,反应时间为3h~16h,降温速度2~6℃/min,将所得产物用去离子水洗涤若干遍,再取分散液涂覆到所述加热基板表面,干燥后得到氨气气体传感器。
7.根据权利要求6所述的制备工艺,其特征在于,步骤一中,超声功率为240W~260W,超声时间为1h。
8.根据权利要求6或7所述的制备工艺,其特征在于,步骤二中,水热反应温度为180℃,反应时间为12h。
9.一种基于二维MXene/SnO2异质结的氨气气体传感器,其工作温度为室温。
CN201910001499.0A 2019-01-02 2019-01-02 基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用 Active CN109613070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910001499.0A CN109613070B (zh) 2019-01-02 2019-01-02 基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910001499.0A CN109613070B (zh) 2019-01-02 2019-01-02 基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用

Publications (2)

Publication Number Publication Date
CN109613070A true CN109613070A (zh) 2019-04-12
CN109613070B CN109613070B (zh) 2021-04-20

Family

ID=66016113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910001499.0A Active CN109613070B (zh) 2019-01-02 2019-01-02 基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用

Country Status (1)

Country Link
CN (1) CN109613070B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095509A (zh) * 2019-05-27 2019-08-06 电子科技大学 Ti3C2Tx/聚苯胺复合薄膜氨气传感器及其制备方法与应用
CN110687170A (zh) * 2019-11-12 2020-01-14 大连理工大学 一种基于紫外光波段的TiO2/SnO2气体传感器及制备方法
CN110970563A (zh) * 2019-12-16 2020-04-07 安徽大学 一种多维异质结导电网状复合薄膜、制备方法及钙钛矿太阳能电池
CN111272831A (zh) * 2020-02-24 2020-06-12 大连理工大学 基于MXene/SnO2异质结的无源无线氨气气体传感器及制备方法
CN111307883A (zh) * 2020-03-19 2020-06-19 中国石油大学(华东) 基于聚苯胺-碳化钒的氨气传感器制备方法及其检测系统和应用
WO2020242387A1 (en) * 2019-05-29 2020-12-03 Nanyang Technological University Porous nanosheets for effective adsorption of small molecules and volatile organic compounds
CN114113243A (zh) * 2021-12-08 2022-03-01 大连理工大学 基于MXene/In2O3氨气传感器及制备方法
CN115308271A (zh) * 2022-08-10 2022-11-08 南方科技大学 基于SnO2/Ti3C2Tx复合物的气体敏感材料及其制备方法与应用、气体传感器
CN115656055A (zh) * 2022-07-29 2023-01-31 山东大学 AuNPs/Ta2C MXene@PMMA/TFBG传感探头及其制备方法与应用
RU2804013C1 (ru) * 2023-05-11 2023-09-26 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Датчик влажности и газоаналитический мультисенсорный чип на основе максеновой структуры двумерного карбида титана-ванадия

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462702A (zh) * 2009-01-05 2009-06-24 四川大学 含晶粒生长抑制剂的纳米晶碳氮化钛粉末及其制备方法
CN102205951A (zh) * 2011-04-13 2011-10-05 新疆大学 一种制备氮化铝和氮化镓纳米棒异质结的方法
CN103245699A (zh) * 2013-05-11 2013-08-14 天津大学 一种室温检测氮氧化物气敏元件的制备方法
CN103257158A (zh) * 2013-04-26 2013-08-21 河南理工大学 p-n型纳米CuO/α-Fe2O3复合半导体材料的制备及其作为气体敏感材料的应用
CN103901081A (zh) * 2014-03-19 2014-07-02 中国矿业大学 ZnO-In2O3纳米半导体晶体气敏材料制备方法
CN103985563A (zh) * 2014-04-10 2014-08-13 东南大学 一种锂插层二氧化锰-氮化钛纳米管复合材料及其制备方法与应用
CN104183823A (zh) * 2014-08-29 2014-12-03 华中师范大学 基于三维碳球框架结构的SnO2、MnO或Mn3O4基复合材料及其制备方法
JP5643511B2 (ja) * 2006-09-28 2014-12-17 スミスズ ディテクション インコーポレイティド マルチ検出器によるガス同定システム
CN105181755A (zh) * 2015-08-24 2015-12-23 大连理工大学 氨气传感器及其制备工艺
CN105597765A (zh) * 2016-02-26 2016-05-25 大连理工大学 一种In2O3/ZnFe2O4纳米异质结复合光催化材料及其制备方法
CN105651828A (zh) * 2016-01-19 2016-06-08 武汉工程大学 基于聚苯胺/二氧化锡复合纳米纤维的气敏传感器及其制备方法
CN106706718A (zh) * 2016-12-08 2017-05-24 东北大学 一种三层结构敏感层酞菁气敏传感器及其制备方法
CN106744645A (zh) * 2016-11-30 2017-05-31 庞倩桃 一种气体传感器及其制备方法
CN106841067A (zh) * 2017-01-17 2017-06-13 大连理工大学 一种基于选择性波段的气体传感器及其检测方法
CN108717072A (zh) * 2018-05-15 2018-10-30 大连理工大学 一种光激发的甲醛气体传感器及其制备工艺
CN108872325A (zh) * 2018-06-14 2018-11-23 大连理工大学 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643511B2 (ja) * 2006-09-28 2014-12-17 スミスズ ディテクション インコーポレイティド マルチ検出器によるガス同定システム
CN101462702A (zh) * 2009-01-05 2009-06-24 四川大学 含晶粒生长抑制剂的纳米晶碳氮化钛粉末及其制备方法
CN102205951A (zh) * 2011-04-13 2011-10-05 新疆大学 一种制备氮化铝和氮化镓纳米棒异质结的方法
CN103257158A (zh) * 2013-04-26 2013-08-21 河南理工大学 p-n型纳米CuO/α-Fe2O3复合半导体材料的制备及其作为气体敏感材料的应用
CN103245699A (zh) * 2013-05-11 2013-08-14 天津大学 一种室温检测氮氧化物气敏元件的制备方法
CN103901081A (zh) * 2014-03-19 2014-07-02 中国矿业大学 ZnO-In2O3纳米半导体晶体气敏材料制备方法
CN103985563A (zh) * 2014-04-10 2014-08-13 东南大学 一种锂插层二氧化锰-氮化钛纳米管复合材料及其制备方法与应用
CN104183823A (zh) * 2014-08-29 2014-12-03 华中师范大学 基于三维碳球框架结构的SnO2、MnO或Mn3O4基复合材料及其制备方法
CN105181755A (zh) * 2015-08-24 2015-12-23 大连理工大学 氨气传感器及其制备工艺
CN105651828A (zh) * 2016-01-19 2016-06-08 武汉工程大学 基于聚苯胺/二氧化锡复合纳米纤维的气敏传感器及其制备方法
CN105597765A (zh) * 2016-02-26 2016-05-25 大连理工大学 一种In2O3/ZnFe2O4纳米异质结复合光催化材料及其制备方法
CN106744645A (zh) * 2016-11-30 2017-05-31 庞倩桃 一种气体传感器及其制备方法
CN106706718A (zh) * 2016-12-08 2017-05-24 东北大学 一种三层结构敏感层酞菁气敏传感器及其制备方法
CN106841067A (zh) * 2017-01-17 2017-06-13 大连理工大学 一种基于选择性波段的气体传感器及其检测方法
CN108717072A (zh) * 2018-05-15 2018-10-30 大连理工大学 一种光激发的甲醛气体传感器及其制备工艺
CN108872325A (zh) * 2018-06-14 2018-11-23 大连理工大学 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EUNJI LEE等: "《Room Temperature Gas Sensing of Two-Dimensional Titanium》", 《ACS APPL. MATER. INTERFACES》 *
QIANQIAN LIN等: "《Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature》", 《SENSORS AND ACTUATORS B:CHEMICAL》 *
SEON JOON KIM等: "《Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio》", 《ACS NANO》 *
刘喜斌等: "《新型过渡金属碳化物二维纳米材料的制备方法研究》", 《湘潭大学自然科学学报》 *
赵阳阳等: "《TiO2与还原氧化石墨烯复合材料的气敏性能研究》", 《第十四届全国敏感元件与传感器学术会议》 *
邹慧燕等: "《MXenes在电化学传感及储能领域的研究进展》", 《化学传感器》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095509A (zh) * 2019-05-27 2019-08-06 电子科技大学 Ti3C2Tx/聚苯胺复合薄膜氨气传感器及其制备方法与应用
WO2020242387A1 (en) * 2019-05-29 2020-12-03 Nanyang Technological University Porous nanosheets for effective adsorption of small molecules and volatile organic compounds
CN110687170A (zh) * 2019-11-12 2020-01-14 大连理工大学 一种基于紫外光波段的TiO2/SnO2气体传感器及制备方法
CN110970563A (zh) * 2019-12-16 2020-04-07 安徽大学 一种多维异质结导电网状复合薄膜、制备方法及钙钛矿太阳能电池
CN110970563B (zh) * 2019-12-16 2022-08-30 安徽大学 一种多维异质结导电网状复合薄膜、制备方法及钙钛矿太阳能电池
CN111272831A (zh) * 2020-02-24 2020-06-12 大连理工大学 基于MXene/SnO2异质结的无源无线氨气气体传感器及制备方法
CN111272831B (zh) * 2020-02-24 2021-10-15 大连理工大学 基于MXene/SnO2异质结的无源无线氨气气体传感器及制备方法
CN111307883B (zh) * 2020-03-19 2021-12-28 中国石油大学(华东) 基于聚苯胺-碳化钒的氨气传感器制备方法及其检测系统和应用
CN111307883A (zh) * 2020-03-19 2020-06-19 中国石油大学(华东) 基于聚苯胺-碳化钒的氨气传感器制备方法及其检测系统和应用
CN114113243A (zh) * 2021-12-08 2022-03-01 大连理工大学 基于MXene/In2O3氨气传感器及制备方法
CN114113243B (zh) * 2021-12-08 2023-10-20 大连理工大学 基于MXene/In2O3氨气传感器及制备方法
CN115656055A (zh) * 2022-07-29 2023-01-31 山东大学 AuNPs/Ta2C MXene@PMMA/TFBG传感探头及其制备方法与应用
CN115308271A (zh) * 2022-08-10 2022-11-08 南方科技大学 基于SnO2/Ti3C2Tx复合物的气体敏感材料及其制备方法与应用、气体传感器
RU2804013C1 (ru) * 2023-05-11 2023-09-26 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Датчик влажности и газоаналитический мультисенсорный чип на основе максеновой структуры двумерного карбида титана-ванадия

Also Published As

Publication number Publication date
CN109613070B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN109613070A (zh) 一种基于二维MXene/SnO2异质结的氨气气体传感器、制备工艺及应用
CN108872325A (zh) 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用
CN104777157B (zh) 一种无酶ecl葡萄糖传感器
CN108802133A (zh) 一种检测胃癌肿瘤标志物夹心型免疫传感器的制备方法及应用
CN108760833B (zh) 一种用于检测丙酮气体的敏感材料及其制备方法
CN111392690B (zh) 一种基于薄膜热电器件供电的压力传感系统及其制备方法
CN109521063A (zh) 花瓣状SnSe2的二氧化氮气体传感器
CN106549079A (zh) 一种紫外光探测器及其制备方法
CN106093163B (zh) La0.8Sr0.2CoO3为敏感电极的CeO2基混成电位型丙酮传感器、制备方法及其应用
CN110346438B (zh) 一种基于PbS/Co3O4复合物信号减弱型光电化学免疫传感器的制备方法
CN105181755B (zh) 氨气传感器及其制备工艺
Durai et al. A Wearable PVA Film Supported TiO2 Nanoparticles Decorated NaNbO3 Nanoflakes‐Based SERS Sensor for Simultaneous Detection of Metabolites and Biomolecules in Human Sweat Samples
CN105911111A (zh) In-Sn复合氧化物半导体乙醇传感器制备及其应用
CN106442671A (zh) 一种基于BiOBr/Ag2S复合材料无标记胰岛素传感器的制备方法
CN110108759A (zh) 一种基于聚苯胺/半导体金属氧化物纳米复合薄膜的呼吸氨气传感器及其制备方法
Wei et al. Enzyme-free electrochemical sensor for the determination of hydrogen peroxide secreted from MCF-7 breast cancer cells using calcined indium metal-organic frameworks as efficient catalysts
CN110243881A (zh) 一种基于rGO-SnO2纳米复合材料的NO2气敏元件及其制备方法
CN105004712B (zh) 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法
CN114235907B (zh) 用于非小细胞肺癌cyfra21-1检测的电化学发光免疫传感器及检测方法
CN106596674B (zh) 一种氧化锌纳米棒-石墨烯纳米片复合材料的制备
CN106116426B (zh) 一种亲水型吸波材料及其制备方法
CN112708150B (zh) 用于循环肿瘤细胞的捕获及定点释放的水凝胶体系
CN110057887A (zh) 导电聚合物插层的金属氧化物混合凝胶的制备方法及其应用
CN107705952B (zh) 一种热敏电阻CuO-GO自组装氢气还原复合电极的制备方法
CN111272831B (zh) 基于MXene/SnO2异质结的无源无线氨气气体传感器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant