CN109427371B - 电源开关、存储器装置和提供电源开关电压输出的方法 - Google Patents

电源开关、存储器装置和提供电源开关电压输出的方法 Download PDF

Info

Publication number
CN109427371B
CN109427371B CN201711122792.XA CN201711122792A CN109427371B CN 109427371 B CN109427371 B CN 109427371B CN 201711122792 A CN201711122792 A CN 201711122792A CN 109427371 B CN109427371 B CN 109427371B
Authority
CN
China
Prior art keywords
supply voltage
voltage
power supply
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711122792.XA
Other languages
English (en)
Other versions
CN109427371A (zh
Inventor
许国原
王兵
林松杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN109427371A publication Critical patent/CN109427371A/zh
Application granted granted Critical
Publication of CN109427371B publication Critical patent/CN109427371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/465Internal voltage generators for integrated circuits, e.g. step down generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1733Controllable logic circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Abstract

本发明阐述一种电源开关、存储器装置和提供电源开关电压输出的方法。所述电源开关包括电压产生器、开关电路、及确认电路。所述电压产生器被配置成将第一电源电压与第二电源电压进行比较并输出所述第一电源电压或所述第二电源电压作为主体电压(Vbulk)。所述开关电路包括一个或多个晶体管,且被配置成:(i)以所述主体电压对所述一个或多个晶体管的主体端子施加偏压;以及(ii)输出所述第一电源电压或所述第二电源电压作为电压输出信号。所述确认电路被配置成输出确认信号,所述确认信号指示所述电压输出信号是否已从所述第一电源电压转变成所述第二电源电压。

Description

电源开关、存储器装置和提供电源开关电压输出的方法
技术领域
本发明的实施例是有关于一种电源开关及电源系统,且特别是有关于一种用于系统芯片的电源开关及电源系统。
背景技术
系统芯片(system on a chip,SOC)是将计算机系统或其他电子系统的各组件组合在单个芯片上的集成电路。系统芯片可在单个衬底上包括数字信号组件、模拟信号组件、及混合信号组件。不同的组件可能需要使用不同的电源电压才能恰当地运作。为以多个电源域运作,系统芯片可能需要以不同的电源电压作为系统的输入。
发明内容
本发明提供一种电源开关,包括电压产生器、开关电路以及确认电路。其中,电压产生器被配置成将第一电源电压与第二电源电压进行比较并输出所述第一电源电压或所述第二电源电压作为主体电压。开关电路,包括一个或多个晶体管且被配置成:以所述主体电压对所述一个或多个晶体管的主体端子施加偏压,以及输出所述第一电源电压或所述第二电源电压作为电压输出信号。以及确认电路,被配置成输出确认信号,所述确认信号指示所述电压输出信号是否已从所述第一电源电压转变成所述第二电源电压。
本发明提供一种存储器装置,包括接口逻辑电路、存储器阵列以及电源接口。其中,存储器阵列耦合到所述接口逻辑电路。电源接口包括:控制逻辑电路,被配置成输出电压控制信号,以及电源开关,被配置成接收第一电源电压及第二电源电压,所述电源开关包括:电压产生器,被配置成将所述第一电源电压与所述第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压;以及开关电路,包括一个或多个p型晶体管,且被配置成以所述主体电压对所述一个或多个p型晶体管的主体端子施加偏压并基于所述电压控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到所述存储器阵列。
本发明提供一种提供电源开关电压输出的方法,包括下列步骤。接收第一电源电压、第二电源电压、及电压控制信号。将所述第一电源电压与所述第二电源电压进行比较,以确定所述第一电源电压及所述第二电源电压中的较高者。以所述第一电源电压及所述第二电源电压中的所述较高者对一个或多个p型晶体管的主体端子施加偏压。以及基于所述电压控制信号而输出所述第一电源电压或所述第二电源电压。
附图说明
结合附图阅读以下详细说明,会最佳地理解本发明的各方面。应注意,根据本行业中的常见惯例,各种特征并非按比例绘制。事实上,为使说明及论述清晰起见,可任意增大或减小各种特征的尺寸。
图1是根据本发明一些实施例所示出的系统芯片的示意图;
图2是根据本发明一些实施例所示出的系统芯片中的存储器装置的示意图;
图3是根据本发明一些实施例所示出的系统芯片中的存储器装置的电源接口的控制逻辑及电源开关的示意图;
图4是根据本发明一些实施例所示出的系统芯片中的存储器装置的电源接口的电压产生器的示意图;
图5A至图5C是根据本发明一些实施例所示出的不同比较器配置的示意图;
图6是根据本发明一些实施例所示出的向系统芯片中的存储器装置的存储器阵列提供的电源电压的示例性时序波形的示意图;
图7是根据本发明一些实施例所示出的系统芯片中的存储器装置的电源接口的确认电路的示意图;
图8是根据本发明一些实施例所示出的用于使存储器装置从第一电源电压转变成第二电源电压的方法流程图;
附图标记说明:
100:系统芯片;
110:控制器装置;
115、118:控制信号;
117:确认信号;
120、130:电源产生器;
125、135:电源电压;
140:存储器装置;
150、160:处理器装置;
210:电源接口;
212:控制逻辑电路;
215:电源开关;
217:电压控制信号;
219:电压输出信号;
220:存储器阵列;
230:接口逻辑电路;
310:电平移位反相器电路;
320:开关电路;
330、414、416、432、710、720、730、740、770:反相器电路;
340、350、433、434、750、760:或非电路;
345、355:输出信号;
360、370、423、424、425、426、427、428、435、436、540、550:p型金属氧化物半导体场效晶体管;
380:电压产生器;
390:确认电路;
410:比较器电路;
412、5600、5601、5602、5603、5604、5605、5606、5607、5608:比较器;
413:比较器输出;
415、417、429:输出;
420:初始化电路;
421、422、510、520、530:n型金属氧化物半导体场效晶体管;
430:主体端子开关;
535:使能信号;
545:电路节点;
560:单级式比较器配置/比较器;
600:时序波形;
800:方法;
810、820、830、840、850:操作;
toverlap0、toverlap1、ttransition0、ttransition1:时间;
Vbulk:电压/主体电压;
Vpre-bulk:电压/主体前电压。
具体实施方式
以下公开内容提供用于实作所提供主题的不同特征的许多不同的实施例或实例。下文阐述组件及构造的具体实例以简化本发明。这些仅为实例且不旨在进行限制。另外,本发明可能在各种实例中重复使用参考编号及/或字母。这种重复使用是出于简洁及清晰的目的,且除非另有指示,否则并不自身表示所论述的各种实施例及/或配置之间的关系。
本发明阐述一种电源开关及电源系统,所述电源开关及电源系统被配置成使向存储器装置的存储器阵列提供的电源电压在第一电源电压与第二电源电压之间转变。使电源电压从第一电源电压转变成第二电源电压(例如,从较低电源电压转变成较高电源电压)的益处尤其在于,存储器阵列中的电路可更快速地运作,从而提高存储器性能。举例来说,所述存储器阵列可包括例如振荡器、放大器及电压产生器等电路。在向这些电路提供更高电源电压的情况下,所述存储器阵列可更快速地运作,从而提高存储器读取与写入性能。
图1是根据本发明一些实施例所示出的系统芯片(system on a chip,SOC)100的示意图。系统芯片100包括控制器装置110、电源产生器120及130、存储器装置140、处理器装置150、以及处理器装置160。系统芯片100可包括处于本发明的精神及范围内的其他组件。为简洁起见,未在图1中示出这些其他组件。
在一些实施例中,系统芯片100可具有多个电源。所述多个电源由电源产生器120及130提供。电源产生器120向存储器装置140提供电源电压125。电源产生器130向存储器装置140、处理器装置150及处理器装置160提供电源电压135。在一些实施例中,电源电压125及135可各自是0.4V、0.6V、0.7V、1.0V、1.2V、1.8V、2.4V、3.3V、或5V。电源电压125及135可具有其他值;这些其他电源电压值处于本发明的精神及范围内。
在一些实施例中,存储器装置140可以在多个功率域中运作,从而需要使用电源电压125及135。控制器装置110向存储器装置140提供控制信号115,以使存储器装置140的存储器阵列可使用电源电压125或电源电压135来运作。下文会参照图2至图7更详细地阐述存储器装置140的所述多个功率域、以及用以指示在存储器装置140中从电源电压125转变成电源电压135的确认信号117。
根据一些实施例,控制器装置110还向电源产生器130提供控制信号118。如下所述,在一些实施例中,电源产生器130可使电源电压135在第一电源电压(例如,0.4V)与第二电源电压(1.0V)之间转变。根据一些实施例,控制信号118可控制电源产生器130使电源电压135在第一电源电压与第二电源电压之间转变。
参照图1,根据一些实施例,存储器装置140可为静态随机存取存储器(staticrandom access memory,SRAM)装置。存储器装置140可为其他类型的存储器装置,例如动态随机存取存储器(dynamic random access memory,DRAM)装置、同步动态随机存取存储器(synchronous DRAM,SDRAM)、闪速存储器装置、磁阻性随机存取存储器(magneto-resistive RAM,MRAM)、相变随机存取存储器、或铁电式随机存取存储器。这些其他类型的存储器装置处于本发明的精神及范围内。
在一些实施例中,处理器装置150及160可为中央处理器(central processingunit,CPU)、图形处理器(graphics processing unit,GPU)、或其组合。处理器装置150及160可为其他类型的处理装置,例如网络处理装置、声音处理装置、或专用集成电路。这些其他类型的处理装置处于本发明的精神及范围内。
图2是根据本发明一些实施例所示出的存储器装置140的示意图。存储器装置140包括电源接口210、存储器阵列220、及接口逻辑电路230。电源接口210接收控制信号115、电源电压125、及电源电压135。电源电压135被提供到接口逻辑电路230。存储器装置140可包括处于本发明的精神及范围内的其他组件。为简洁起见,未在图2中示出这些其他组件。
在一些实施例中,电源接口210包括控制逻辑电路212及电源开关215。根据一些实施例,控制逻辑电路212接收控制信号115(从图1中的控制器装置110)使得存储器阵列220的电源电压从电源电压125转变成电源电压135。举例来说,当控制信号115从逻辑高转变成逻辑低(例如,从“1”转变成“0”)时,来自控制逻辑电路212的电压控制信号217控制电源开关215使电源开关215的电压输出信号219从电源电压125转变成电源电压135,反之亦然。电源开关215接收电源电压125及135。基于电压控制信号217,电源开关215将电压输出信号219(电源电压125或电源电压135)作为电源输入提供到存储器阵列220。
在一些实施例中,在系统芯片100的正常操作下,电源电压125(例如,0.7V)被提供到存储器阵列220。并且,在系统芯片100的正常操作下,电源电压125(例如,0.7V)处于比电源电压135(例如,0.4V)高的电压电平。在某些操作中,系统芯片100可提升电源电压135的电压电平(例如,从0.4V提升到1.0V),以提高系统芯片性能。在一些实施例中,当提升电源电压135时,存储器阵列220的电源电压也可被提升,以提高存储器性能。举例来说,存储器阵列220可将其电源电压提升到与电源电压135相同的电压电平(例如,1.0V)。
提升向存储器阵列220提供的电源电压的益处尤其在于,存储器阵列220中的电路可更快速地运作,从而提高存储器性能。举例来说,存储器阵列220可包括例如振荡器、放大器及电压产生器等电路。在向这些电路提供更高电源电压(例如,电源电压135)的情况下,存储器阵列220可更快速地运作,从而提高存储器读取与写入操作的性能。
图3是根据本发明一些实施例所示出的包括控制逻辑电路212及电源开关215的电源接口210的示意图。控制逻辑电路212包括电平移位反相器电路310。电平移位反相器电路310接收电压Vbulk作为电源电压。如果电平移位反相器电路310在其输入处接收逻辑低信号(例如,0V)作为控制信号115,则电平移位反相器电路310在电压控制信号217处产生逻辑高信号(即,电压Vbulk)作为输出。相反地,如果电平移位反相器电路310在其输入处接收逻辑高信号(例如,电源电压135)作为控制信号115,则电平移位反相器电路310在电压控制信号217处产生接地(例如,0V)作为输出。下文会参照图4更详细地阐述电压Vbulk的产生。
参照图3,电源开关215包括开关电路320、电压产生器380、及确认电路390。在一些实施例中,开关电路320包括反相器电路330、或非(NOR)电路340及350、p型金属氧化物半导体场效晶体管(p-type metal-oxide-semiconductor field-effect-transistor,“PMOSFET”、“PMOS装置”或“p型晶体管”)360及370。
在一些实施例中,基于电压控制信号217的值(例如,逻辑高(例如,电压Vbulk)或接地),开关电路320在电压输出信号219处提供电源电压125或电源电压135作为输出。举例来说,如果电压控制信号217的值为逻辑高(例如,电压Vbulk),则或非电路340的输出信号345将处于逻辑高(例如,电压Vbulk),从而将p型金属氧化物半导体场效晶体管360关断。相反地,或非电路350的输出信号355将处于逻辑低(例如,接地或0V),从而将p型金属氧化物半导体场效晶体管370接通。因此,p型金属氧化物半导体场效晶体管370将电源电压135传递到电压输出信号219。
如果电压控制信号217的值为逻辑低(例如,接地或0V),则或非电路350的输出信号355将处于逻辑高(例如,电压Vbulk),从而将p型金属氧化物半导体场效晶体管370关断。相反地,或非电路340的输出信号345将处于逻辑低(例如,接地或0V),从而将p型金属氧化物半导体场效晶体管360接通。因此,p型金属氧化物半导体场效晶体管360将电源电压125传递到电压输出信号219。
如图3中所示,p型金属氧化物半导体场效晶体管360及370的主体端子(bulkterminal)电连接到电压Vbulk。此外,虽然图3中未示出,但反相器电路330中以及或非电路340及350中的p型金属氧化物半导体场效晶体管的电源端子及主体端子均电连接到电压Vbulk。在一些实施例中,电压Vbulk被设定成电源电压125或电源电压135中的较高者。下文会参照电压产生器380来阐述电压Vbulk的产生。并且,通过将电压Vbulk连接到反相器电路330中、或非电路340及350中、p型金属氧化物半导体场效晶体管360及370中的p型金属氧化物半导体场效晶体管的主体端子,可减少或消除由所述p型金属氧化物半导体场效晶体管中的寄生p-n结二极管产生的电流,从而防止出现闩锁效应(latch-up)。
电压产生器380产生电压Vbulk。图4是根据本发明一些实施例所示出的电压产生器380的示意图。电压产生器380包括比较器电路410、初始化电路420、及主体端子开关430。比较器电路410包括比较器412以及反相器电路414及416。比较器412接收电源电压125(例如,在正端子处)及电源电压135(例如,在负端子处),并将所述两个电源电压彼此进行比较。在一些实施例中,比较器412确定所述两个电源电压中的较高者。根据一些实施例,比较器412可具有低通滤波器响应,且可以在少于1奈秒(ns)的响应时间检测到电源电压125与电源电压135之间的1mV差。虽然图4中未示出,但根据一些实施例,比较器412中以及反相器电路414及416中的p型金属氧化物半导体场效晶体管的电源端子及主体端子均电连接到电源电压125。在一些实施例中,电源电压125的值可介于0.6V与0.8V之间的范围内(例如,0.7V)。
图5A至图5C是根据本发明一些实施例所示出的比较器412的不同配置的示意图。图5A示出比较器412的单级式(single-stage)比较器配置560(在本文中也被称为“比较器560”)。在图5A的右侧上示出比较器560的符号表示。
比较器560包括n型金属氧化物半导体场效晶体管(n-type metal-oxide-semiconductor field-effect-transistor;“NMOSFET”、“NMOS装置”、或“n型晶体管”)510至530以及p型金属氧化物半导体场效晶体管540至550。电源电压125电连接到n型金属氧化物半导体场效晶体管510的栅极端子(例如,比较器560的正输入端子)。电源电压135电连接到n型金属氧化物半导体场效晶体管520的栅极端子(例如,比较器560的负输入端子)。此外,使能信号(enable signal)535电连接到n型金属氧化物半导体场效晶体管530的栅极端子,其中使能信号535通过(例如,以逻辑高电压,例如电源电压125或电源电压135)将n型金属氧化物半导体场效晶体管530接通(n型金属氧化物半导体场效晶体管530充当比较器560的电流源)来启用比较器。
电源电压125及135分别被提供到n型金属氧化物半导体场效晶体管510的栅极端子及n型金属氧化物半导体场效晶体管520的栅极端子。基于对n型金属氧化物半导体场效晶体管510的栅极端子及n型金属氧化物半导体场效晶体管520的栅极端子施加的电压,比较器输出413或电路节点545被拉向接地(例如,0V)。举例来说,如果电源电压125高于电源电压135,则n型金属氧化物半导体场效晶体管510的栅极端子处的“栅极驱动”大于n型金属氧化物半导体场效晶体管520的栅极端子处的栅极驱动,从而为电路节点545(经由n型金属氧化物半导体场效晶体管510及530)比为比较器输出413形成电阻更低的到地(例如,0V)路径。电路节点545被拉向接地(例如,0V),从而将p型金属氧化物半导体场效晶体管550接通并将电源电压125(例如,逻辑高值)传送到比较器输出413。相反地,如果电源电压135高于电源电压125,则n型金属氧化物半导体场效晶体管520的栅极端子处的栅极驱动大于n型金属氧化物半导体场效晶体管510的栅极端子处的栅极驱动,从而为比较器输出413(经由n型金属氧化物半导体场效晶体管520及530)比为电路节点545形成电阻更低的到地(例如,0V)路径。比较器输出413被拉至接近或被拉至接地(例如,0V或逻辑低值)。
图5B示出图4所示比较器412的两级式比较器配置。在一些实施例中,所述两级式比较器配置包括比较器5600至5602。在第一级中,电源电压125电连接到比较器5600及5601的正输入端子。电源电压135电连接到比较器5600及5601的负输入端子。在第二级中,比较器5600的输出电连接到比较器5602的正输入端子。比较器5601的输出电连接到比较器5602的负输入端子。图5B所示两级式比较器配置以与图5A所示单级式比较器配置类似的方式运作:(i)当电源电压125高于电源电压135时,电源电压125(例如,逻辑高值)被传送到比较器输出413;且(ii)当电源电压135高于电源电压125时,比较器输出413被拉至接近或被拉至接地(例如,0V或逻辑低值)。
图5C示出图4所示比较器412的四级式比较器配置。在一些实施例中,所述四级式比较器配置包括比较器5600至5608。在第一级中,电源电压125电连接到比较器5600、5601、5603及5604的正输入端子。电源电压135电连接到比较器5600、5601、5603及5604的负输入端子。在第二级中,比较器5600的输出电连接到比较器5602的正输入端子,比较器5601的输出电连接到比较器5602的负输入端子,比较器5603的输出电连接到比较器5605的正输入端子,且比较器5604的输出电连接到比较器5605的负输入端子。在第三级中,比较器5602的输出电连接到比较器5606及5607的正输入端子,且比较器5605的输出电连接到比较器5606及5607的负输入端子。在第四级中,比较器5606的输出电连接到比较器5608的正输入端子,且比较器5607的输出电连接到比较器5608的负输入端子。图5C所示四级式比较器配置以与图5A所示单级式比较器配置类似的方式运作:(i)当电源电压125高于电源电压135时,电源电压125(例如,逻辑高值)被传送到比较器输出413;且(ii)当电源电压135高于电源电压125时,比较器输出413被拉至接近或被拉至接地(例如,0V或逻辑低值)。
图6是根据本发明一些实施例所示出的电源电压125及电源电压135的示例性时序波形600的示意图。如上所述,参照图1,电源产生器120向存储器装置140提供电源电压125。具体来说,参照图2,在系统芯片100的正常操作下,电源电压125(例如,0.7V)被提供到存储器阵列220。此外,参照图1,电源产生器130向存储器装置140、处理器装置150、及处理器装置160提供电源电压135(例如,0.4V)。
在一些实施例中,参照图1,控制器装置110被配置成经由控制信号118来提升电源电压135(例如,从0.4V提升到1.0V),以提高系统芯片性能。图6示出电源电压135在时间ttransition0从0.4V转变成1.0V,此指示控制信号118(图中未示出)的转变,例如,控制信号118可在时间ttransition0从逻辑低转变成逻辑高。在时间ttransition0,电源电压125保持处于0.7V。在时间ttransition1,电源电压135可从1.0V转变成0.4V,此指示控制信号118的转变,例如,控制信号可在时间ttransition1从逻辑高转变成逻辑低。
参照图4,比较器电路410将电源电压125与电源电压135进行比较。当电源电压125大于电源电压135时(例如,在图6中,从时间=0至时间toverlap0以及从时间toverlap1往后),比较器输出413处于逻辑高(例如,电源电压125)。相反地,如果电源电压125小于电源电压135(例如,在时间toverlap0与时间toverlap1之间),比较器输出413处于逻辑低(例如,接地或0V)。在比较器输出413处为逻辑高(例如,电源电压125)的情况下,反相器电路414的输出415处于逻辑低(例如,接地或0V),且反相器电路416的输出417处于逻辑高(例如,电源电压125)。相反地,在比较器输出413处为逻辑低(例如,接地或0V)的情况下,反相器电路414的输出415处于逻辑高(例如,电源电压125),且反相器电路416的输出417处于逻辑低(例如,接地或0V)。
参照图4,初始化电路420从比较器电路410接收输出415及417。初始化电路420包括n型金属氧化物半导体场效晶体管421及422以及p型金属氧化物半导体场效晶体管423至428。基于输出415及417,初始化电路420产生电压Vpre-bulk,电压Vpre-bulk是基于电源电压125及电源电压135中的较高者。在一些实施例中,电压Vpre-bulk被提供到初始化电路420中的p型金属氧化物半导体场效晶体管423至428的主体端子。根据一些实施例,电压Vpre-bulk也被提供到主体端子开关430中的p型金属氧化物半导体场效晶体管的主体端子,下文会更详细地阐述主体端子开关430。通过为这些p型金属氧化物半导体场效晶体管提供Vpre-bulk(电源电压125或电源电压135中的较高电压),可在电源电压125与电源电压135之间的电压转变期间减少或消除由p型金属氧化物半导体场效晶体管中的寄生p-n结二极管产生的电流,从而防止出现闩锁效应。
如果输出415处于逻辑高(例如,电源电压125)且输出417处于逻辑低(例如,接地或0V),则此种状态指示电源电压135大于电源电压125(例如,在图6中,在时间toverlap0与时间toverlap1之间)。在此种状态下,n型金属氧化物半导体场效晶体管421将p型金属氧化物半导体场效晶体管426及428的栅极端子拉至接地(例如,0V),从而将p型金属氧化物半导体场效晶体管426及428接通。继而,p型金属氧化物半导体场效晶体管428的漏极端子(即,Vpre-bulk)电连接到电源电压135(其大于电源电压125)。此外,在输出417处于逻辑低的情况下,p型金属氧化物半导体场效晶体管424将逻辑高(例如,电源电压135)传递到输出429。
相反地,如果输出415处于逻辑低(例如,接地或0V)且输出417处于逻辑高(例如,电源电压125),则此种状态指示电源电压125大于电源电压135(例如,在图6中,从时间=0至时间toverlap0以及从时间toverlap1往后)。在此种状态下,n型金属氧化物半导体场效晶体管422将p型金属氧化物半导体场效晶体管425及427的栅极端子拉至接地(例如,0V),从而将p型金属氧化物半导体场效晶体管425及427接通。继而,p型金属氧化物半导体场效晶体管427的漏极端子(即,Vpre-bulk)电连接到电源电压125(其大于电源电压135)。此外,在输出417处于逻辑高的情况下,n型金属氧化物半导体场效晶体管422将逻辑低(例如,接地或0V)传递到输出429。
参照图4,主体端子开关430从初始化电路420接收输出429。主体端子开关430包括反相器电路432、或非电路433及434、以及p型金属氧化物半导体场效晶体管435及436。如图4中所示,p型金属氧化物半导体场效晶体管435及436的主体端子电连接到电压Vpre-bulk。此外,虽然图4中未示出,但反相器电路432中及或非电路433至434中的p型金属氧化物半导体场效晶体管的电源端子及主体端子电连接到电压Vpre-bulk。通过为这些p型金属氧化物半导体场效晶体管提供Vpre-bulk(电源电压125或电源电压135中的较高电压),可在电源电压125与电源电压135之间的电压转变期间减少或消除由p型金属氧化物半导体场效晶体管中的寄生p-n结二极管产生的电流,从而防止出现闩锁效应。
如果输出429处于逻辑高(例如,电源电压135),则或非电路434将逻辑低(例如,接地或0V)输出到p型金属氧化物半导体场效晶体管436的栅极端子,从而将p型金属氧化物半导体场效晶体管436接通并将电源电压135提供到主体端子开关430的输出处的电压Vbulk。相反地,如果输出429为逻辑低(例如,接地或0V),则或非电路433将逻辑低(例如,接地或0V)输出到p型金属氧化物半导体场效晶体管435的栅极端子,从而将p型金属氧化物半导体场效晶体管435接通并将电源电压125提供到主体端子开关430的输出处的电压Vbulk
参照图3,电压Vbulk被提供到控制逻辑电路212、开关电路320、及确认电路390。图7是根据本发明一些实施例所示出的确认电路390的示意图。确认电路390包括反相器电路710至740及770以及或非电路750至760。虽然图6中未示出,但反相器电路710至740中及或非电路750至760中的p型金属氧化物半导体场效晶体管的电源端子及主体端子均电连接到电压Vbulk(由电压产生器380产生)。此外,虽然图7中未示出,但反相器电路770中的电源端子及主体端子均电连接到电源电压135。
基于输出信号345(图3所示开关电路320中的或非电路340的输出)及输出信号355(图3所示开关电路320中的或非电路350的输出),确认电路390产生确认信号117,以指示开关电路320已使电压输出信号219(其是存储器阵列220的电源输入)从电源电压125转变成电源电压135。举例来说,如果输出信号345处于逻辑低且输出信号355处于逻辑高,则确认信号117处于逻辑低。在一些实施例中,确认信号117的逻辑低值指示电压输出信号219尚未从电源电压125转变成电源电压135。相反地,如果输出信号345处于逻辑高且输出信号355处于逻辑低,则确认信号117处于逻辑高。在一些实施例中,确认信号117的逻辑高值指示电压输出信号219已从电源电压125转变成电源电压135,例如,当电源电压135大于电源电压125时。
在一些实施例中,参照图1,确认信号117可向控制器装置110指示存储器装置140的存储器阵列(例如,图2所示存储器阵列220)的电源已从电源电压125(例如,0.7V)转变成电源电压135(例如,1.0V)。继而,控制器装置110可向系统芯片100的其他组件(例如,处理器装置150及160)指示存储器装置140的存储器阵列已转变成更高电源电压135且可被存取以进行存储器操作,例如读取存储器操作或写入存储器操作。在向存储器阵列提供更高电源电压135(例如,1.0V)的情况下,存储器阵列中的电路(例如,振荡器、放大器、及电压产生器)可更快速地运作,从而提高存储器性能。
图8是根据本发明一些实施例所示出的用于使存储器装置从第一电源电压转变成第二电源电压的方法800流程图。方法800中所示的操作可例如由图2至图7所示电源开关215执行。可在方法800中执行其他操作。此外,方法800所示操作可以不同的次序来加以执行及/或可有所变化。
在操作810处,由电源开关接收第一电源电压、第二电源电压、及电压控制信号。参照图2,电源开关215接收电源电压125(例如,第一电源电压)、电源电压135(例如,第二电源电压)、及电压控制信号217。
在操作820处,由电源开关将第一电源电压与第二电源电压进行比较,以确定第一电源电压及第二电源电压中的较高者。参照图3,电源开关215包括电压产生器380。参照图4,电压产生器380包括比较器电路410。如上所述,参照图4,比较器电路410包括比较器412,比较器412被配置成将电源电压125(例如,第一电源电压)与电源电压135(例如,第二电源电压)进行比较以确定第一电源电压及第二电源电压中的较高者。
在操作830处,以第一电源电压及第二电源电压中的较高者对电源开关中的一个或多个p型晶体管的主体端子施加偏压。参照图4,初始化电路420产生电压Vpre-bulk,电压Vpre-bulk是基于电源电压125及电源电压135中的较高者(例如,第一电源电压及第二电源电压中的较高者)。在一些实施例中,电压Vpre-bulk被提供到初始化电路420中的p型金属氧化物半导体场效晶体管423至428的主体端子。根据一些实施例,电压Vpre-bulk也被提供到主体端子开关430中的p型金属氧化物半导体场效晶体管的主体端子。电压Vpre-bulk可响应于电源电压135超过电源电压125而从电源电压125转变成电源电压135。通过为这些p型金属氧化物半导体场效晶体管提供电压Vpre-bulk(电源电压125及电源电压135中的较高者),可在电源电压125与电源电压135之间的电压转变期间减少或消除由p型金属氧化物半导体场效晶体管中的寄生p-n结二极管产生的电流,从而防止出现闩锁效应。
在操作840处,基于电压控制信号,由电源开关输出第一电源电压或第二电源电压。参照图3,电源开关215包括开关电路320。在一些实施例中,基于电压控制信号217的值(例如,逻辑高(例如,电压Vbulk)或逻辑低(例如,接地)),开关电路320在电压输出信号219处提供电源电压125或电源电压135作为输出(例如,电源开关的输出)。举例来说,如果电压控制信号217的值为逻辑高,则开关电路320将电源电压135传递到电压输出信号219。相反地,如果电压控制信号217的值为逻辑低(例如,接地或0V),则开关电路320将电源电压125传递到电压输出信号219。
在操作850处,由电源开关输出确认信号,所述确认信号指示电压输出信号从第一电源电压转变成第二电源电压。参照图3,电源开关215包括确认电路390。在一些实施例中,确认电路390产生确认信号117,以指示开关电路320已使电压输出信号219(其是存储器阵列220的电源输入)从电源电压125转变成电源电压135。在一些实施例中,确认信号117的逻辑低值指示电压输出信号219尚未从电源电压125转变成电源电压135。相反地,在一些实施例中,确认信号117的逻辑高值指示电压输出信号219已从电源电压125转变成电源电压135,例如,当电源电压135大于电源电压125时。
本发明阐述电源开关、存储器装置、系统、电源接口及方法实施例,以用于使向所述存储器装置的存储器阵列提供的电源电压在第一电源电压与第二电源电压之间转变。使电源电压从第一电源电压转变成第二电源电压(例如,从较低电源电压转变成较高电源电压)的益处尤其在于,存储器阵列中的电路可更快速地运作,从而提高存储器性能。举例来说,所述存储器阵列可包括例如振荡器、放大器及电压产生器等电路。在向这些电路提供更高电源电压的情况下,所述存储器阵列可更快速地运作,从而提高存储器读取与写入性能。
在一些实施例中,所述电源开关包括电压产生器、开关电路、及确认电路。所述电压产生器被配置成:(i)将第一电源电压与第二电源电压进行比较;以及(ii)输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压(Vbulk)。所述开关电路包括一个或多个p型晶体管,且被配置成:(i)以所述Vbulk对所述一个或多个p型晶体管的主体端子施加偏压;以及(ii)输出所述第一电源电压或所述第二电源电压作为电压输出信号。所述确认电路被配置成输出确认信号,所述确认信号指示所述电压输出信号是否已从所述第一电源电压转变成所述第二电源电压。
在一些实施例中,所述比较器电路被配置成响应于所述第二电源电压超过所述第一电源电压而使所述比较器输出转变。
在一些实施例中,所述初始化电路被配置成响应于所述比较器输出的所述转变而使所述主体前电压从所述第一电源电压转变成所述第二电源电压。
在一些实施例中,所述主体端子开关被配置成响应于所述比较器输出的所述转变而使所述主体电压从所述第一电源电压转变成所述第二电源电压。
在一些实施例中,所述存储器装置包括接口逻辑电路、存储器阵列、及电源接口。所述存储器阵列耦合到所述接口逻辑电路。所述电源接口包括:控制逻辑电路,被配置成输出电压控制信号;以及电源开关,被配置成接收第一电源电压及第二电源电压。所述电源开关包括电压产生器及开关电路。所述电压产生器被配置成将所述第一电源电压与所述第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压(Vbulk)。所述开关电路包括一个或多个p型晶体管,且被配置成以所述Vbulk对所述一个或多个p型晶体管的主体端子施加偏压并基于所述电压控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到所述存储器阵列。
在一些实施例中,所述确认电路包括一个或多个输入,所述一个或多个输入电连接到所述开关电路的相应的一个或多个内部电路节点且被配置成基于所述一个或多个内部电路节点而使所述确认信号转变。
在一些实施例中,所述第一电源电压被提供到所述存储器阵列,且所述第二电源电压被提供到所述接口逻辑电路。
在一些实施例中,所述控制逻辑电路包括被配置成输出所述电压控制信号的电平移位反相器电路。
在一些实施例中,所述比较器电路被配置成响应于所述第二电源电压超过所述第一电源电压而使所述比较器输出转变。
在一些实施例中,所述初始化电路被配置成响应于所述比较器输出的所述转变而使所述主体前电压从所述第一电源电压转变成所述第二电源电压。
在一些实施例中,所述主体端子开关被配置成响应于所述比较器输出的所述转变而使所述主体电压从所述第一电源电压转变成所述第二电源电压。
在一些实施例中,所述方法包括以电源开关接收第一电源电压、第二电源电压、及电压控制信号。所述方法还包括:(i)以所述电源开关将所述第一电源电压与所述第二电源电压进行比较,以确定所述第一电源电压及所述第二电源电压中的较高者;以及(ii)在所述电源开关中以所述第一电源电压及所述第二电源电压中的所述较高者对一个或多个p型晶体管的主体端子施加偏压。所述方法进一步包括以所述电源开关基于所述电压控制信号而输出所述第一电源电压或所述第二电源电压。
在一些实施例中,所述施加偏压包括响应于所述第二电源电压超过所述第一电源电压而使对所述一个或多个p型晶体管的所述主体端子施加的电压转变。
在一些实施例中,所述系统包括控制器装置、第一电源产生器、第二电源产生器、一个或多个处理器装置、及存储器装置。所述控制器装置被配置成输出控制信号。所述第一电源产生器及所述第二电源产生器被配置成分别输出第一电源电压及第二电源电压。所述一个或多个处理器装置被配置成接收所述第二电源电压。所述存储器装置被配置成接收所述第一电源电压及所述第二电源电压以及所述控制信号,且包括:(i)接口逻辑电路,被配置成接收所述第二电源电压;(ii)存储器阵列,耦合到所述接口逻辑电路;以及(iii)电源开关,被配置成接收所述第一电源电压及所述第二电源电压。所述电源开关包括电压产生器及开关电路。所述电压产生器被配置成将所述第一电源电压与所述第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压(Vbulk)。所述开关电路包括一个或多个p型晶体管,且被配置成以所述Vbulk对所述一个或多个p型晶体管的主体端子施加偏压并基于所述控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到所述存储器阵列。
在一些实施例中,所述电源接口包括:(i)控制逻辑电路,被配置成输出电压控制信号;以及(ii)电源开关,被配置成接收第一电源电压及第二电源电压。所述电源开关包括电压产生器及开关电路。所述电压产生器被配置成将所述第一电源电压与所述第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压(Vbulk)。所述开关电路包括一个或多个p型晶体管,且被配置成以所述Vbulk对所述一个或多个p型晶体管的主体端子施加偏压并基于所述电压控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到所述存储器阵列。
在一些实施例中,另一种方法包括以存储器装置接收第一电源电压、第二电源、及控制信号。所述方法还包括:(i)以控制器装置使第二电源电压从低于所述第一电源电压的第一电压转变成高于所述第一电源电压的第二电压;(ii)以所述存储器装置将所述第一电源电压与所述第二电源电压进行比较,以确定所述第一电源电压及所述第二电源电压中的较高者;以及(iii)在所述存储器装置中以所述第一电源电压及所述第二电源电压中的所述较高者对一个或多个p型晶体管的主体端子施加偏压。所述方法进一步包括在所述存储器装置中基于所述控制信号而输出所述第一电源电压或所述第二电源电压。
应了解,具体实施方式部分而非说明书摘要旨在用于解释权利要求书。说明书摘要部分可陈述所设想出的一个或多个而非全部示例性实施例,且因此并非旨在限制所附权利要求书。
上述公开内容概述了若干实施例的特征以使所属领域中的技术人员可更好地理解本发明的各方面。所属领域中的技术人员应了解,他们可易于使用本发明作为基础来设计或修改其他流程及结构以施行本文所介绍实施例的相同目的及/或实现本文所介绍实施例的相同优点。所属领域中的技术人员还应认识到,此种等效构造并不背离本发明的精神及范围,且在不背离本发明的精神及范围的条件下,他们可对本文做出各种改变、替代、及变更。

Claims (20)

1.一种电源开关,其特征在于,包括:
电压产生器,被配置成将第一电源电压与第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压;
开关电路,包括一个或多个晶体管且被配置成:
以所述主体电压对所述一个或多个晶体管的主体端子施加偏压;以及
基于电压控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到存储器阵列;以及
确认电路,被配置成输出确认信号,所述确认信号指示所述电压输出信号是否已从所述第一电源电压转变成所述第二电源电压。
2.根据权利要求1所述的电源开关,其特征在于,所述电压产生器包括:
比较器电路,被配置成将所述第一电源电压与所述第二电源电压进行比较并基于所述比较而产生比较器输出;
初始化电路,被配置成基于所述比较器输出而向所述电压产生器中的一个或多个晶体管提供主体前电压;以及
主体端子开关,被配置成基于所述比较而输出所述主体电压。
3.根据权利要求2所述的电源开关,其特征在于,所述比较器电路被配置成响应于所述第二电源电压超过所述第一电源电压而使所述比较器输出转变。
4.根据权利要求3所述的电源开关,其特征在于,所述初始化电路被配置成响应于所述比较器输出的所述转变而使所述主体前电压从所述第一电源电压转变成所述第二电源电压。
5.根据权利要求3所述的电源开关,其特征在于,所述主体端子开关被配置成响应于所述比较器输出的所述转变而使所述主体电压从所述第一电源电压转变成所述第二电源电压。
6.根据权利要求1所述的电源开关,其特征在于,所述开关电路被配置成:
接收电压控制信号;以及
基于所述电压控制信号而输出所述第一电源电压或所述第二电源电压中的任一者作为所述电压输出信号。
7.根据权利要求1所述的电源开关,其特征在于,所述确认电路包括一个或多个输入,所述一个或多个输入电连接到所述开关电路的相应的一个或多个内部电路节点且被配置成基于所述一个或多个内部电路节点而使所述确认信号转变。
8.一种存储器装置,其特征在于,包括:
接口逻辑电路;
存储器阵列,耦合到所述接口逻辑电路;以及
电源接口,包括:
控制逻辑电路,被配置成输出电压控制信号;以及
电源开关,被配置成接收第一电源电压及第二电源电压,所述电源开关包括:
电压产生器,被配置成将所述第一电源电压与所述第二电源电压进行比较并输出所述第一电源电压及所述第二电源电压中的较高者作为主体电压;以及
开关电路,包括一个或多个p型晶体管,且被配置成以所述主体电压对所述一个或多个p型晶体管的主体端子施加偏压并基于所述电压控制信号而将所述第一电源电压或所述第二电源电压中的任一者作为电压输出信号输出到所述存储器阵列。
9.根据权利要求8所述的存储器装置,其特征在于,所述电源开关进一步包括确认电路,所述确认电路被配置成输出确认信号,所述确认信号指示所述电压输出信号是否已从所述第一电源电压转变成所述第二电源电压。
10.根据权利要求9所述的存储器装置,其特征在于,所述确认电路包括一个或多个输入,所述一个或多个输入电连接到所述开关电路的相应的一个或多个内部电路节点,且其中所述确认电路被配置成基于所述一个或多个内部电路节点而使所述确认信号转变。
11.根据权利要求8所述的存储器装置,其特征在于,所述第一电源电压被提供到所述存储器阵列,且所述第二电源电压被提供到所述接口逻辑电路。
12.根据权利要求8所述的存储器装置,其特征在于,所述控制逻辑电路包括被配置成输出所述电压控制信号的电平移位反相器电路。
13.根据权利要求8所述的存储器装置,其特征在于,所述电压产生器包括:
比较器电路,被配置成将所述第一电源电压与所述第二电源电压进行比较并基于所述比较而产生比较器输出;
初始化电路,被配置成基于所述比较器输出而向所述电压产生器中的一个或多个p型晶体管提供主体前电压;以及
主体端子开关,用以基于所述比较而输出所述主体电压。
14.根据权利要求13所述的存储器装置,其特征在于,所述比较器电路被配置成响应于所述第二电源电压超过所述第一电源电压而使所述比较器输出转变。
15.根据权利要求14所述的存储器装置,其特征在于,所述初始化电路被配置成响应于所述比较器输出的所述转变而使所述主体前电压从所述第一电源电压转变成所述第二电源电压。
16.根据权利要求14所述的存储器装置,其特征在于,所述主体端子开关被配置成响应于所述比较器输出的所述转变而使所述主体电压从所述第一电源电压转变成所述第二电源电压。
17.根据权利要求8所述的存储器装置,其特征在于,所述开关电路被配置成基于所述电压控制信号而输出所述第一电源电压或所述第二电源电压其中一者作为所述电压输出信号。
18.一种提供电源开关电压输出的方法,其特征在于,包括:
由电源开关接收第一电源电压、第二电源电压、及电压控制信号;
由所述电源开关中的电压产生器将所述第一电源电压与所述第二电源电压进行比较,以确定所述第一电源电压及所述第二电源电压中的较高者作为主体电压;
由所述电源开关中的开关电路以所述第一电源电压及所述第二电源电压中的所述较高者作为所述主体电压对所述开关电路中的一个或多个p型晶体管的主体端子施加偏压;以及
由所述开关电路基于所述电压控制信号而将所述第一电源电压或所述第二电源电压作为电压输出信号输出到存储器阵列。
19.根据权利要求18所述的方法,其特征在于,进一步包括输出确认信号,所述确认信号指示是否已发生从所述第一电源电压转变成所述第二电源电压。
20.根据权利要求18所述的方法,其特征在于,所述施加偏压包括响应于所述第二电源电压超过所述第一电源电压而使对所述一个或多个p型晶体管的所述主体端子施加的电压转变。
CN201711122792.XA 2017-08-30 2017-11-14 电源开关、存储器装置和提供电源开关电压输出的方法 Active CN109427371B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762552008P 2017-08-30 2017-08-30
US62/552,008 2017-08-30
US15/720,387 US10921839B2 (en) 2017-08-30 2017-09-29 Switchable power supply
US15/720,387 2017-09-29

Publications (2)

Publication Number Publication Date
CN109427371A CN109427371A (zh) 2019-03-05
CN109427371B true CN109427371B (zh) 2022-08-30

Family

ID=65434251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711122792.XA Active CN109427371B (zh) 2017-08-30 2017-11-14 电源开关、存储器装置和提供电源开关电压输出的方法

Country Status (4)

Country Link
US (2) US10921839B2 (zh)
KR (1) KR102050013B1 (zh)
CN (1) CN109427371B (zh)
TW (1) TWI661294B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921839B2 (en) 2017-08-30 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Switchable power supply
CN109871067B (zh) * 2017-12-01 2022-12-06 宏碁股份有限公司 转轴模块与电子装置
KR20220130504A (ko) * 2021-03-18 2022-09-27 에스케이하이닉스 주식회사 비휘발성 메모리 장치의 데이터 입출력 속도를 개선하기 위한 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728940A (zh) * 2009-12-31 2010-06-09 苏州市华芯微电子有限公司 自动获取最大电压源的电路
CN102291103A (zh) * 2011-07-05 2011-12-21 浙江大学 动态体偏置型c类反相器及其应用
CN102446537A (zh) * 2010-10-13 2012-05-09 台湾积体电路制造股份有限公司 读出放大器的偏移补偿

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528458A (en) 1984-01-06 1985-07-09 Ncr Corporation Self-diagnostic redundant modular power supply
KR0127318B1 (ko) 1994-04-13 1998-04-02 문정환 백바이어스전압 발생기
KR100316065B1 (ko) 1999-12-21 2001-12-12 박종섭 전압강하 변환회로
US6418075B2 (en) 2000-07-21 2002-07-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor merged logic and memory capable of preventing an increase in an abnormal current during power-up
KR100419871B1 (ko) 2001-06-28 2004-02-25 주식회사 하이닉스반도체 반도체 메모리 장치의 내부전압 발생 회로
US7663426B2 (en) * 2004-12-03 2010-02-16 Ati Technologies Ulc Method and apparatus for biasing circuits in response to power up conditions
US20070055908A1 (en) 2005-09-06 2007-03-08 Honda Elesys Co., Ltd. Redundant power supply circuit and motor driving circuit
US7697365B2 (en) * 2007-07-13 2010-04-13 Silicon Storage Technology, Inc. Sub volt flash memory system
US8164378B2 (en) * 2008-05-06 2012-04-24 Freescale Semiconductor, Inc. Device and technique for transistor well biasing
US7936632B2 (en) * 2008-09-19 2011-05-03 Hynix Semiconductor Inc. Semiconductor device including an internal circuit receiving two different power supply sources
KR101559908B1 (ko) * 2009-01-20 2015-10-15 삼성전자주식회사 반도체 메모리 장치의 내부전압 발생회로
KR20140025936A (ko) * 2012-08-23 2014-03-05 삼성전자주식회사 직류/직류 컨버터, 이를 포함하는 전자기기 및 직류/직류 컨버전 방법
KR20140082179A (ko) 2012-12-24 2014-07-02 에스케이하이닉스 주식회사 반도체 장치의 전원 회로
TWI468886B (zh) 2013-03-28 2015-01-11 Acbel Polytech Inc Redundant power supply system
US9280429B2 (en) 2013-11-27 2016-03-08 Sandisk Enterprise Ip Llc Power fail latching based on monitoring multiple power supply voltages in a storage device
KR20160059525A (ko) 2014-11-18 2016-05-27 에스케이하이닉스 주식회사 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치
KR20160118026A (ko) * 2015-04-01 2016-10-11 에스케이하이닉스 주식회사 내부전압 생성회로
US9960596B2 (en) * 2015-04-15 2018-05-01 Qualcomm Incorporated Automatic voltage switching circuit for selecting a higher voltage of multiple supply voltages to provide as an output voltage
TWI540421B (zh) 2015-10-23 2016-07-01 光寶電子(廣州)有限公司 不斷電電力供應系統及方法
JP6769130B2 (ja) * 2016-06-22 2020-10-14 セイコーエプソン株式会社 電源回路、回路装置、表示装置及び電子機器
JP6767225B2 (ja) * 2016-09-29 2020-10-14 ルネサスエレクトロニクス株式会社 半導体装置
US10921839B2 (en) 2017-08-30 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Switchable power supply
US10673338B2 (en) * 2017-09-08 2020-06-02 Samsung Electronics Co., Ltd. Voltage converter and operating method of voltage converter
US11201613B2 (en) * 2018-07-31 2021-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Driver circuit and method of operating the same
CN111327278B (zh) * 2020-04-10 2023-10-13 上海兆芯集成电路股份有限公司 输出级电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728940A (zh) * 2009-12-31 2010-06-09 苏州市华芯微电子有限公司 自动获取最大电压源的电路
CN102446537A (zh) * 2010-10-13 2012-05-09 台湾积体电路制造股份有限公司 读出放大器的偏移补偿
CN102291103A (zh) * 2011-07-05 2011-12-21 浙江大学 动态体偏置型c类反相器及其应用

Also Published As

Publication number Publication date
KR102050013B1 (ko) 2020-01-08
CN109427371A (zh) 2019-03-05
US20210157350A1 (en) 2021-05-27
TWI661294B (zh) 2019-06-01
US10921839B2 (en) 2021-02-16
KR20190024537A (ko) 2019-03-08
US20190064866A1 (en) 2019-02-28
US11592856B2 (en) 2023-02-28
TW201913287A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
US9257190B2 (en) Level shifter
US7710182B2 (en) Reliable level shifter of ultra-high voltage device used in low power application
US11592856B2 (en) Switchable power supply
KR20010049227A (ko) 레벨조정회로 및 이를 포함하는 데이터 출력회로
US20070188194A1 (en) Level shifter circuit and method thereof
JP2011147038A (ja) 半導体装置及びこれを備えるデータ処理システム
US10200038B2 (en) Bootstrapping circuit and unipolar logic circuits using the same
CN104142702A (zh) 输出电路以及电压信号输出方法
US10186958B2 (en) Input-output circuits
US9054700B2 (en) Apparatus and methods of driving signal for reducing the leakage current
US9177622B2 (en) Supply independent delayer
US9064552B2 (en) Word line driver and related method
US7598791B2 (en) Semiconductor integrated apparatus using two or more types of power supplies
KR20220067490A (ko) 지연 회로
US20230288950A1 (en) Switchable power supply
US8456216B2 (en) Level shifter
JP2001044819A (ja) 高電圧出力インバーター
US11621705B2 (en) Semiconductor integrated circuit device and level shifter circuit
US8723581B1 (en) Input buffers
TWI448076B (zh) 可承載高電壓之輸出緩衝器
KR101893388B1 (ko) 전압 스위칭 회로
JP2011147037A (ja) 半導体装置及びこれを備えるデータ処理システム
US20150162912A1 (en) Level shifter
JP2000261304A (ja) 半導体装置
JPH01112815A (ja) 半導体集積回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant