CN109234807B - 一种可拉伸晶体半导体纳米线及其制备方法 - Google Patents

一种可拉伸晶体半导体纳米线及其制备方法 Download PDF

Info

Publication number
CN109234807B
CN109234807B CN201810614845.8A CN201810614845A CN109234807B CN 109234807 B CN109234807 B CN 109234807B CN 201810614845 A CN201810614845 A CN 201810614845A CN 109234807 B CN109234807 B CN 109234807B
Authority
CN
China
Prior art keywords
nanowire
stretchable
substrate
silicon
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810614845.8A
Other languages
English (en)
Other versions
CN109234807A (zh
Inventor
余林蔚
薛兆国
董泰阁
王军转
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to EP18817489.0A priority Critical patent/EP3640374A4/en
Priority to PCT/CN2018/091544 priority patent/WO2018228543A1/zh
Publication of CN109234807A publication Critical patent/CN109234807A/zh
Priority to US16/714,724 priority patent/US20200118818A1/en
Application granted granted Critical
Publication of CN109234807B publication Critical patent/CN109234807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种可拉伸晶体半导体纳米线及其制备方法,所述可拉伸晶体半导体纳米线具有细长的主体,所述纳米线直径在20‑200纳米之间,所述纳米线为为晶态无机半导体结构。所述可拉伸晶体半导体纳米线为弯曲结构,在轴向方向具有多个可拉伸单元,所述多个可拉伸单元依次连接,从而形成可拉伸晶体半导体纳米线。本发明采用IP‑SLS等方法在PECVD中生长沟道台阶引导的纳米线,并利用现代微加工技术进行制作成弹簧结构晶体纳米线阵列。由于此类纳米线与引导沟道截面可以有效调节,可以进一步进行剥离和转移到其他柔性衬底之上。本发明制备弹簧结构晶体纳米线的方法在柔性电子领域、传感器的应用方面有着广阔的前景。

Description

一种可拉伸晶体半导体纳米线及其制备方法
优先权声明
本申请是2017年6月15日提交的CN201710450420.3(公开号CN107460542A)的部分延续申请,且要求其优先权,其全部内容特此通过引用方式并入本文。
技术领域
本发明涉及柔性可拉伸电子和器件领域,涉及在衬底上利用沟道引导平面纳米线生长技术,通过微加工工艺,制作形成具有柔性和可拉伸性质的弹簧结构晶体纳米线的制作方法。尤其是沟道引导自定位自定向生长、转移、电学集成的平面半导体纳米线制备的弹簧结构晶体纳米线的方法。
背景技术
随着当代电子显示产业的发展,柔性和可拉伸电子器件(尤其是显示器件)因为更易满足实际应用需求以及本身灵活的材料特性,在现代科技、国民经济和日常生活中的方方面面扮演着越来越重要的角色,在该研究领域里,材料的生长制备技术有着重要的地位。
液-液相-固相(SLS)生长机制:SLS生长的机理类似于VLS机制,与VLS机制的区别仅在于,在VLS机制生长过程中,所需的原材料由气相提供;而在SLS机制生长过程中,所需的原料是从溶液中提供的,一般来说,此方法中常用低熔点金属(如In、Sn或Bi等)作为助溶剂(fluxdroplet),相当于VLS机制中的催化剂。
硅基材料因为广泛的工业基础,成熟的工艺和半导体制备技术,又由于人体构造的碳基材料属性相似,对人体无害,且纳米级硅材料易降解,将硅基纳米科技和柔性可拉伸电子领域相结合,将取得巨大的效用。
可拉伸晶体纳米线弹簧结构的材料的生长是柔性和可拉伸电子器件的基础,现有技术未有很好的方法去解决。
发明内容
针对上述问题,本发明的目的是,提供一种可拉伸晶体半导体纳米线及其制备方法。尤其是沿特定引导沟道定向生长、转移和集成方法制备平面半导体纳米线器件。
根据本发明的一个方面,本发明提供了一种可拉伸晶体半导体纳米线:
所述可拉伸晶体半导体纳米线具有细长的主体,所述纳米线直径在20-200纳米之间,所述纳米线为为晶态无机半导体结构。
所述可拉伸晶体半导体纳米线为弯曲结构,在轴向方向具有多个可拉伸单元,所述多个可拉伸单元依次连接,从而形成可拉伸晶体半导体纳米线。
进一步地,可拉伸晶体半导体纳米线的可拉伸单元为圆弧形、半圆形、半跑道形、Z形、V形、M形中的一种或多种组合。
进一步地,其最大拉伸状态下的长度大于自然状态下长度的1.5倍,最好为2倍以上,优选为2.7倍。
在一个实施例中,生长出晶体纳米线,所述纳米线是Si,SiGe,Ge或GaAs等单晶纳米线。
根据本发明的又一个方面,本发明提供了可拉伸晶体半导体纳米线的制备方法,包括如下步骤:
1)采用包括玻璃、二氧化硅片或者硅片衬底,去除衬底表面残余;
2)在衬底表面刻蚀一定深度的台阶,进而沿台阶刻蚀制作特定的引导沟道;
3)通过平面纳米线引导生长方法,使晶体纳米线精确地沿着所述引导沟道生长,在引导沟道一端蒸镀淀积催化金属薄膜块,作为金属液滴的形成初始点和纳米线的起始位置;
4)在PECVD系统中利用包括氢气的还原性等离子体处理金属薄膜,去除表面的氧化层,并使之形成直径在几十纳米到一个微米之间的纳米金属催化颗粒;
5)淀积覆盖一层适当厚度的非晶半导体层作为前驱体介质;
6)在真空中或者非氧化性气氛中退火生长,温度在250℃以上,使得金属液滴开始顺着引导台阶运动,吸收非晶层并沿途淀积出晶态的纳米线结构。
进一步地,步骤1)中硅片为表面覆盖二氧化硅或者氮化硅等介质层的P型或者N型单晶或者多晶硅片,玻璃为普通玻璃或者石英玻璃,聚合物可为能承受一定高温(>350℃)处理,与真空环境相兼容的柔性聚合物;所述二氧化硅衬底厚度大于250nm。
进一步地,步骤5)包括:再次使用PECVD系统覆盖一层适当厚度(几纳米到几百纳米)的非晶半导体层作为前驱体介质层;对于生长晶硅、晶锗或者晶态锗硅合金纳米线,相应采用非晶硅、非晶锗和非晶锗硅层作为前驱体;而对于其它半导体材料则采用相应的非晶材料薄膜作为前驱体。
在一个实施例中,还包括步骤7):通过光刻和蒸镀技术制备电极。
在一个实施例中,还包括以下步骤:
步骤8)通过刻蚀液体,使得纳米线和衬底脱离;
步骤9)把脱离的弹簧纳米线阵列转移到柔性衬底上,所使用的柔性衬底可以是任意具有拉伸性质的衬底。
生长所用衬底可以是P型或者N型单晶硅衬底,表面有二氧化硅层;可以是P型或者N型多晶硅片,表面有二氧化硅层;也可以是普通玻璃,石英玻璃等非晶体衬底。
通过光刻刻蚀方法制作引导沟道;其中刻蚀方法用湿法刻蚀:氢氧化钾(KOH)、氢氧化钠(NaOH)等碱性腐蚀体系,也可以是氢氟酸+硝酸(HF+HNO3)、氢氟酸+硝酸+醋酸(HF+HNO3+CH3COOH)等酸性腐蚀体系,还可以是乙二胺邻苯二酚(EthyleneDiaminePyrocatechol)等体系;或者采用干法刻蚀,即利用ICP-RIE进行刻蚀。
金属电极使用PT(12nm)-AL(80nm)体系,可以是Ti-Au体系,是Ni金属,金属接触均使用快速热退火过程提高接触性能。可使用热蒸发系统、磁控溅射系统或者电子束蒸发系统。
利用刻蚀液体腐蚀衬底表面,使得弹簧结构晶体纳米线与衬底脱离,方便完成转移。
弹簧结构晶体纳米线是具有高度可拉伸性的柔性高性能器件。
本发明的有益效果
本发明采用IP-SLS等方法在PECVD中生长沟道台阶引导的纳米线,并利用现代微加工技术进行制作成弹簧结构晶体纳米线阵列。IP-SLS方法可以生长平面纳米线,结合台阶沟道引导技术就可以生长出高质量、特定形状的平面半导体单晶纳米线阵列。通过光刻蚀技术形成的引导沟道和定位的催化剂区域后就可实现纳米线生长的自定位、自定向。由于此类纳米线与引导沟道截面可以有效调节,可以进一步进行剥离(如腐蚀法剥离)和转移到其他柔性衬底之上。由于纳米线阵列两端有电极连接,可以方便的进行器件的集成和使用。本发明制备弹簧结构晶体纳米线的方法在柔性电子领域、传感器的应用方面有着广阔的前景。
本发明首次利用平面纳米线可引导生长的特性,成果展示了超柔性纳米线沟道线形设计和可拉伸的晶态半导体纳米线结构。以晶硅为例,晶硅本身不可拉伸也易碎,晶硅薄膜无法直接应用于可拉伸电子器件应用。通过此发明技术,可以将现有成熟的晶硅半导体技术工艺拓展到新兴的柔性电子应用领域,为大幅提升柔性电子器件的器件特性和稳定性提供关键技术基础。
附图说明
图1为弹簧结构晶体纳米线制备过程流程图;
图2为弹簧结构晶体纳米线阵列设计示意图;图2中,弹簧结构晶体纳米线阵列设计示意图,其中蓝色(深色)区域为催化剂区域(a)(b)(c)(d)分别表示四种不同的弹簧形曲线;
图3为弹簧结构晶体纳米线SEM形貌图;图3中,弹簧结构晶体纳米线SEM形貌图,(a)(b)(c)(d)分别表示四种不同的比例。
图4为弹簧结构晶态硅纳米线电学性能图。
图5(a)和(b)为举例的一种可拉伸硅纳米线的原位SEM力学拉伸和同步电学测试,图5(c)为同步电位测试结果图;图5(d)和(e)为此可拉伸硅纳米线被拉伸到弹性形变极限270%并可以完全恢复的过程SEM图。
具体实施方式
为使本发明的目的、技术方案、作用和优点更加明白,以下结合具体实例,对本发明进行进一步的详细解说。
如图2所示,本发明提供了一种可拉伸晶体半导体纳米线,所述可拉伸晶体半导体纳米线具有细长的主体。所述可拉伸晶体半导体纳米线为弯曲结构,在轴向方向具有多个可拉伸单元,所述多个可拉伸单元依次连接,从而形成可拉伸晶体半导体纳米线。
进一步地,所述纳米线直径在20-200纳米之间,所述纳米线为为晶态无机半导体结构。
如图2所示,晶体纳米线阵列设计示意图,其中,蓝色(深色)区域为催化剂区域(a)(b)(c)(d)分别表示四种不同的弹簧形曲线;从图可知,所述纳米线为弯曲结构,在轴向方向具有多个相互连接的可拉伸单元,所述可拉伸单元为圆弧形、半圆形、半跑道形中的一个或多个。
进一步地,可拉伸晶体半导体纳米线的可拉伸单元为圆弧形、半圆形、半跑道形,也可以为Z形、V形、M形(未示出),或其中的一种或多种组合。
进一步地,其最大拉伸状态下的长度大于自然状态下长度的1.5倍,最好为2倍以上,优选为2.7倍。
在一个实施例中,生长出晶体纳米线,所述纳米线是Si,SiGe,Ge或GaAs等单晶纳米线。
生长所用衬底可以是P型或者N型单晶硅衬底,表面有二氧化硅层;可以是P型或者N型多晶硅片,表面有二氧化硅层;也可以是普通玻璃,石英玻璃等非晶体衬底。
图3为弹簧结构晶体纳米线SEM形貌图,实际制备出的弹簧结构晶体纳米线SEM形貌图,(a)(b)可拉伸单元为圆弧形结构、(c)(d)可拉伸单元为半跑道形结构。(a)(b)(c)(d)分别表示四种不同的比例。
图4为制备出的弹簧结构晶态硅纳米线的电学性能图。
如图5(a)(b)为举例,在原位扫描电镜中,在机械探针的操作下,力学拉伸其中一种硅纳米线并对其进行同步电学测试。测试结果如图5(c)所示,表明在硅纳米线拉伸弹性形变的过程中,电学性质稳定。
如图5(d)(e)所示,此种硅纳米线可以被力学拉伸到极限,其最大拉伸状态下的长度大于自然状态下长度的270%下,仍保持弹性形变,释放后,可以恢复原形。
根据本发明的又一个方面,如附图1所示,本发明提供了一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法,其特征步骤包括:
1)以玻璃、二氧化硅片或者硅片等衬底,对玻璃、二氧化硅片或者硅片等衬底进行标准化清洗,去除表面有机物和金属残余;
2)利用光刻技术(或表面图案刻蚀技术)在衬底表面刻蚀一定深度的台阶,此引导台阶的线形可以自由方便地设计和定义;为了实现可拉伸的柔性晶态半导体沟道结构,将台阶线形设计成非直线的弯曲的弹簧或zigzag蛇形沟道形阵列,在衬底上通过光刻刻蚀技术制作出深度约150±10nm(不超过350nm)弹簧形的引导沟道阵列,以及更为空间弛豫的单线连通的分形弯曲二维分布结构等;
3)通过平面纳米线引导生长方法,使直径约120±10nm直径的晶体纳米线精确地沿着所述引导沟道生长,形成纳米线弹簧阵列;即通过光刻lift-off或者掩模板技术,在引导沟道一端蒸镀淀积催化金属薄膜块,作为金属液滴的形成初始点和纳米线的起始位置;
4)在PECVD系统中利用氢气等还原性等离子体处理金属薄膜,去除表面的氧化层,并使之形成直径在几十纳米到一个微米之间的纳米金属催化颗粒;
5)淀积覆盖一层适当厚度的非晶半导体层作为前驱体介质;
6)在真空中或者非氧化性气氛中退火(温度在250℃以上)生长,使得金属液滴开始顺着引导台阶运动,吸收非晶层并沿途淀积出晶态的纳米线结构;
7)通过光刻和蒸镀技术在纳米线弹簧阵列的两端处制备电极;
8)通过刻蚀液体使得纳米线弹簧和衬底脱离;
9)把脱离的弹簧纳米线阵列转移到柔性衬底上,即可制作出可拉伸的纳米线弹簧,可以广泛应用于柔性电子领域。柔性纳米线弹簧或相关结构可被转移到柔性可拉伸聚合物衬底上(通过样品表面旋涂一层薄膜,并配合牺牲层腐蚀转移,以及直接利用纳米机械手选择操纵)。
进一步地,步骤(1)中其特征所述衬底可为硅片、玻璃、陶瓷片以及可耐高温到350℃的聚合物衬底。所述二氧化硅衬底为普通二氧化硅衬底,厚度大于250nm。硅片还可为表面覆盖二氧化硅或者氮化硅等介质层的P型或者N型单晶或者多晶硅片,玻璃为普通玻璃或者石英玻璃,聚合物可为能承受一定高温(>350℃)处理,与真空环境相兼容的柔性聚合物。
进一步地,步骤3)中,再次使用光刻对准技术在沟道的位置上催化剂区域,通过平面纳米线引导生长方法,使直径约130±10nm直径的晶体纳米线精确地沿着所述引导沟道生长,形成弹簧形状的纳米线;蒸镀In,Sn金属,在于引导沟道特定位置形成几十纳米的金属膜图案;在PECVD系统中利用等离子体处理技术,在350℃、功率2-5W时进行处理,使金属膜缩球形成直径在几百纳米到几微米之间的准纳米催化颗粒;再次使用PECVD系统覆盖一层适当厚度的非晶硅(几纳米到几百纳米)的非晶硅作为前驱体介质层;在真空氛围下,350℃环境中退火,利用IP-SLS生长模式,使得纳米线从催化剂区域沿着引导沟道生长,形成并获得弹簧结构的纳米线。
进一步地,步骤(3)中其特征所述催化金属可为低熔点金属铟、锡、镓、铅、铋等,以及它们的合金和氧化物材料,及与所生长的晶态纳米线材料相匹配的金、银、铜等贵金属。
进一步地,步骤(2)中其特征步骤包括:首先使用光刻技术在光刻胶层定义平面纳米线的引导台阶线形,然后利用反应等离子体(RIE)或者感应等离子体(ICP)刻蚀技术将图形向下刻蚀到衬底之中,其刻蚀深度在几个到几百纳米范围;
在一个实施例中,通过光刻刻蚀方法制作引导沟道;其中刻蚀方法用湿法刻蚀:氢氧化钾(KOH)、氢氧化钠(NaOH)等碱性腐蚀体系,也可以是氢氟酸+硝酸(HF+HNO3)、氢氟酸+硝酸+醋酸(HF+HNO3+CH3COOH)等酸性腐蚀体系,还可以是乙二胺邻苯二酚(EthyleneDiaminePyrocatechol)等体系;或者采用干法刻蚀,即利用ICP-RIE进行刻蚀。
在一个实施例中,生长出其中弹簧形晶体纳米线,纳米线为Si,Ge,SiGe,GaAs等晶体材料。使用任意具有拉伸性质的形状结构,晶体纳米线直径在20-180nm。
进一步地,步骤(3)中其特征步骤包括:利用光刻或者掩模板技术,采用金属催化层通过热蒸发、磁控溅射、电子束溅射、脉冲激光溅射和原子层淀积等工艺,蒸镀铟、锡等催化金属层薄膜,使之形成几个微米的金属膜区域,并在引导沟道特定起始位置与引导台阶交叉。
进一步地,步骤(4)中包括:在PECVD系统中利用等离子体处理技术,在200℃到450℃范围内、功率0.2-100瓦之间进行处理,使金属膜缩球形成直径在几十纳米到几个微米之间的纳米催化颗粒;
进一步地,步骤(5)中其特征步骤包括:再次使用PECVD系统覆盖一层适当厚度(几纳米到几百纳米)的非晶半导体层作为前驱体介质层。对于生长晶硅、晶锗或者晶态锗硅合金纳米线,相应采用非晶硅、非晶锗和非晶锗硅层作为前驱体。而对于其它半导体材料则采用相应的非晶材料薄膜作为前驱体。
进一步地,步骤(6)中:针对不同半导体材料,平面纳米线的生长温度选择在300℃到600℃之间。纳米线生长过程可在惰性气体、还原性气体或者真空条件下进行。
进一步地,步骤(7)中:所生长的平面纳米线线形由引导台阶边缘所控制,可以获得可编程设计的非直线弯曲弹簧或zigzag蛇形沟道,以及单线连通的分形弯曲二维分布结构,从而实现可拉伸的晶硅半导体纳米线沟道。
在又一个实施例中,基于平面纳米线的线形设计和引导生长技术,实现晶态半导体(包括硅、锗等)可拉伸电子器件的制备方法。利用常规光刻、刻蚀技术,或者其它模板和表面加工技术,在玻璃或者晶硅衬底上制作特定形貌的引导台阶,以非晶态薄膜(利用非晶硅、非晶锗以及其它非晶态无机半导体材料)作为前驱体,利用金属(铟、锡、镓、铋等)催化颗粒吸收非晶薄膜,在顺延引导台阶运动的过程中,生长出对应的平面晶态(单质或者合金)纳米线结构。由于引导台阶可以自由编程设计,故而可以定制线形(line-shape)完全可控、规则的晶态纳米线阵列,进而制备出具有超可拉伸性的晶态半导体纳米线结构。此技术可实现具有高可拉伸性的晶硅等晶态半导体材料纳米沟道,保持了晶体半导体材料的优异电学可调制以及器件稳定特性,故而可以实现高性能的柔性半导体电子应用(例如可拉伸逻辑晶体管,显示控制和驱动器件,传感和人造皮肤等新兴领域)。
具体而言,一种弹簧结构的晶体纳米线的生长、转移的技术。是特定沟道下的定向生长、转移的方法,其步骤如下:
1)通过酸碱热溶液或者分别通过丙酮、酒精、去离子水超声处理对覆盖氧化层的晶体衬底进行处理,去除表面附着的杂质,暴露出晶体洁净表面。
2)利用光刻刻蚀技术定义弹簧结构的引导生长沟道阵列,再次使用光刻对准技术在沟道的特定位置上定义催化剂区域。利用光刻技术(或表面图案刻蚀技术)形成一定深度的引导台阶;
3)通过光刻lift-off或者掩模板技术,在引导沟道一端蒸镀淀积催化金属薄膜块;蒸镀In,Sn金属,通过liftoff,使之仅存在于引导沟道特定位置形成几十纳米的金属膜图案;
4)在PECVD系统中利用等离子体处理技术,在350℃、功率2-5W时进行处理,使金属膜缩球形成直径在几百纳米到几微米之间的准纳米催化颗粒;
5)再次使用PECVD系统覆盖一层适当厚度的非晶硅(几纳米到几百纳米)的非晶硅作为前驱体介质层。
6)在真空中或者非氧化性气氛中退火(温度在280℃以上)生长,使得金属液滴开始顺着引导台阶运动,吸收非晶层并沿途淀积出晶态的纳米线结构;尤其是在真空氛围下,350℃环境中退火,利用IP-SLS生长模式,使得纳米线从催化剂区域沿着特定引导沟道生长,形成并获得弹簧状的纳米线。
7)再次利用光刻对准技术和金属蒸镀技术,在纳米线弹簧阵列的两端搭上电极。
8)使用HF对样品表面进行刻蚀,使得纳米线和衬底脱离。
9)把与衬底脱离的纳米线弹簧阵列转移到柔性衬底上。柔性纳米线弹簧或相关结构可被转移到柔性可拉伸聚合物衬底上(通过样品表面旋涂一层薄膜,并配合牺牲层腐蚀转移,以及直接利用纳米机械手选择操纵)。
进一步地,通过光刻刻蚀制作出深度约200nm的引导沟道,弹簧结构的引导沟道(见图1),其中弹簧结构可以是任意具有可拉伸性质的弯曲形态,节点与节点之间的距离可以为200nm~50um。沟道的刻蚀方法可用湿法刻蚀:氢氧化钾(KOH)、氢氧化钠(NaOH)等碱性体系,也可以是氢氟酸+硝酸(HF+HNO3)、氢氟酸+硝酸+醋酸(HF+HNO3+CH3COOH)等酸性体系,还可以是乙二胺邻苯二酚(EthyleneDiaminePyrocatechol)等体系;也可以是干法刻蚀体系,利用ICP-RIE进行刻蚀。
进一步地,转移步骤使用的刻蚀液体可以是任意能腐蚀二氧化硅而缓慢或者不腐蚀晶体纳米线的液体。转移所使用的柔性衬底可以是任意具有拉伸性质的衬底。
进一步地,平面生长的纳米线可以是Si,SiGe,Ge,GaAs等平面单晶纳米线阵列,直径分布在20~200nm之间。
进一步地,利用光刻蒸镀技术制作金属电极,可使用热蒸发系统、电子束蒸发系统和磁控溅射系统等,金属电极接触使用PT(12nm)-AL(80nm)体系,可以是Ti-Au体系,可以是Ni金属,金属电极接触均使用快速热退火过程提高接触性能。
一个更具体的实时例:300nmSiO2氧化层衬底上弹簧结构晶体纳米线制备,包括以下步骤:
1)采用300nmSiO2氧化层衬底(经表面氧化的硅片),分别使用丙酮、酒精、去离子水超声处理,去除衬底表面附着的杂质。硅片可采用纯单晶或多晶硅硅片。
2)通过有掩膜光刻技术在衬底表面定义弹簧结构图案,使用ICP-RIE刻蚀在表面形成沟道,清洗光刻胶之后形成生物探针沟道的阵列。
3)在PECVD系统中,在1-50W功率下利用等离子体处理技术使之形成直径在几百纳米到几个微米之间的纳米催化颗粒;350℃的温度下形成直径在几百纳米的纳米催化颗粒。
4)继续在PECVD系统中覆盖一层适当厚度的非晶硅层作为前驱体介质层;300℃-400℃下覆盖一层适当厚度的非晶硅层。真空中或者氢气、氮气等非氧化性气氛中退火在400℃下,催化液滴被激活后可以吸收周围的非晶硅,从而可以诱导生长出平面硅纳米线,同时纳米线会沿着引导沟道侧壁定向生长,形成所需的沟道。
5)在氢气氛围中利用等离子体处理表面残余的非晶硅15分钟直至表面颜色恢复正常色泽。
6)再次使用光刻定义电极图案,使用电子束蒸发技术,蒸镀12nm钛和60nm金,之后清洗掉的光刻胶和残余的金属。
7)使用PMMA旋涂在衬底表面,再使用4%浓度的HF溶液刻蚀衬底,使PMMA薄膜带着晶态纳米线弹簧阵列和衬底脱离。
8)使用PDMS薄膜把和衬底脱离的PMMA薄膜和上面的弹簧结构晶体纳米线捞起来,再使用溶剂把PMMA薄膜溶解,弹簧结构晶体纳米线就转移到了柔性衬底PDMS上。
如上所述,可较好地实现本发明。对于本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对这些实施例进行变化、修改、替换、整合和变型仍落入本发明的保护范围内。本发明中未进行特殊说明或限定的部分,均采用现有技术实施。

Claims (8)

1.一种可拉伸晶体半导体纳米线,其特征在于:所述纳米线具有细长的主体,所述纳米线直径在20-200纳米之间;
所述纳米线为精确地沿着衬底上刻蚀出的引导沟道侧壁定向生长而成的规则的晶态无机半导体结构;
所述纳米线为弯曲结构,在轴向方向具有多个可拉伸单元,所述多个可拉伸单元依次连接,从而形成可拉伸晶体半导体纳米线;
所述可拉伸单元为圆弧形、半圆形、半跑道形、Z形、V形、M形中的一种或多种组合;
所述纳米线最大拉伸状态下的长度大于自然状态下长度的2倍以上。
2.根据权利要求1所述的可拉伸晶体半导体纳米线,其特征在于:所述纳米线最大拉伸状态下的长度为自然状态下长度的2.7倍。
3.根据权利要求1-2任一项所述的可拉伸晶体半导体纳米线,其特征在于:所述纳米线是Si,SiGe,Ge或GaAs单晶纳米线。
4.一种如权利要求1所述的可拉伸晶体半导体纳米线,其特征在于,其制备方法包括如下步骤:
1)采用包括聚合物、玻璃、二氧化硅片或者硅片衬底,去除衬底表面残余;
2)在衬底表面刻蚀一定深度的台阶,进而沿台阶刻蚀制作出特定的引导沟道;
3)通过平面纳米线引导生长方法,使晶体纳米线精确地沿着所述引导沟道生长,在引导沟道一端蒸镀淀积催化金属薄膜,作为金属液滴的形成初始点和纳米线的起始位置;
4)在PECVD系统中利用包括氢气的还原性等离子体处理金属薄膜,去除表面的氧化层,并使之形成直径在几十纳米到一个微米之间的纳米金属催化颗粒;
5)淀积覆盖一层适当厚度的非晶半导体层作为前驱体介质;
6)在真空中或者非氧化性气氛中退火生长,温度在250℃以上,使得金属液滴开始顺着引导台阶运动,吸收非晶层并沿途淀积出晶态的纳米线结构。
5.根据权利要求4所述的可拉伸晶体半导体纳米线,其特征在于,其制备方法的步骤1)中硅片为表面覆盖二氧化硅或者氮化硅介质层的P型或者N型单晶或者多晶硅片,玻璃为普通玻璃或者石英玻璃,聚合物为能承受>350℃的高温处理,与真空环境相兼容的柔性聚合物;所述二氧化硅衬底厚度大于250nm。
6.根据权利要求4所述的可拉伸晶体半导体纳米线,其特征在于,其制备方法的步骤5)包括:再次使用PECVD系统覆盖一层适当厚度的非晶半导体层作为前驱体介质层;对于生长晶硅、晶锗或者晶态锗硅合金纳米线,相应采用非晶硅、非晶锗和非晶锗硅层作为前驱体;而对于其它半导体材料则采用相应的非晶材料薄膜作为前驱体。
7.根据权利要求4所述的可拉伸晶体半导体纳米线,其特征在于,其制备方法还包括步骤7):通过光刻和蒸镀技术制备电极。
8.根据权利要求7所述的可拉伸晶体半导体纳米线,其特征在于,其制备方法还包括以下步骤:步骤8)通过刻蚀液体,使得纳米线和衬底脱离;步骤9)把脱离的纳米线转移到柔性衬底上,所使用的柔性衬底可以是任意具有拉伸性质的衬底。
CN201810614845.8A 2017-06-15 2018-06-14 一种可拉伸晶体半导体纳米线及其制备方法 Active CN109234807B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18817489.0A EP3640374A4 (en) 2017-06-15 2018-06-15 EXTENSIBLE CRYSTALLINE SEMICONDUCTOR ANODI WIRE AND PRODUCTION METHOD THEREFOR
PCT/CN2018/091544 WO2018228543A1 (zh) 2017-06-15 2018-06-15 一种可拉伸晶体半导体纳米线及其制备方法
US16/714,724 US20200118818A1 (en) 2017-06-15 2019-12-14 Stretchable crystalline semiconductor nanowire and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017104504203 2017-06-15
CN201710450420.3A CN107460542A (zh) 2017-06-15 2017-06-15 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN109234807A CN109234807A (zh) 2019-01-18
CN109234807B true CN109234807B (zh) 2020-09-01

Family

ID=60543809

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710450420.3A Pending CN107460542A (zh) 2017-06-15 2017-06-15 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法
CN201810614845.8A Active CN109234807B (zh) 2017-06-15 2018-06-14 一种可拉伸晶体半导体纳米线及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710450420.3A Pending CN107460542A (zh) 2017-06-15 2017-06-15 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法

Country Status (3)

Country Link
US (1) US20200118818A1 (zh)
EP (1) EP3640374A4 (zh)
CN (2) CN107460542A (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228543A1 (zh) 2017-06-15 2018-12-20 南京大学 一种可拉伸晶体半导体纳米线及其制备方法
CN109650330A (zh) * 2018-05-31 2019-04-19 南京大学 基于可编程纳米线为模板实现大面积石墨烯纳米带阵列的制备方法
CN108920000A (zh) * 2018-06-30 2018-11-30 昆山国显光电有限公司 显示面板及其制作方法
CN109280903B (zh) * 2018-10-24 2020-10-20 中国科学院上海微系统与信息技术研究所 高密度锗纳米线的制备方法
CN109876297B (zh) * 2019-03-06 2021-04-30 南京大学 一种植入式光电心脏起搏器及其制备方法
CN109850843B (zh) * 2019-03-14 2021-01-15 南京大学 一种悬空纳米线机械手批量制备方法
CN109911847A (zh) * 2019-03-14 2019-06-21 南京大学 一种通过转移释放获取高密度纳米线阵列的方法
CN109950393B (zh) * 2019-03-14 2021-09-10 南京大学 一种可堆叠大面积制备的纳米线交叉点阵列阻变存储器件结构的制备方法
CN111724676B (zh) * 2019-03-21 2022-09-02 昆山工研院新型平板显示技术中心有限公司 可拉伸导线及其制作方法和显示装置
CN111916338B (zh) * 2019-05-08 2023-07-25 京东方科技集团股份有限公司 一种硅基纳米线、其制备方法及薄膜晶体管
CN110544656B (zh) * 2019-09-19 2021-10-26 南京大学 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法
CN110767537B (zh) * 2019-11-05 2022-06-21 南京大学 一种制备三维超可拉伸晶态纳米线的方法
EP3839644A1 (fr) * 2019-12-20 2021-06-23 Nivarox-FAR S.A. Composant horloger flexible, notamment pour mecanisme oscillateur, et mouvement d'horlogerie comportant un tel composant
CN111704101A (zh) * 2020-05-13 2020-09-25 中国科学院微电子研究所 一种柔性传感器及其制备方法
CN111693444B (zh) * 2020-06-24 2021-09-28 南京大学 一种用于细胞力学检测的弹簧纳米线探测器及其检测方法
CN113247860B (zh) * 2020-06-24 2022-06-21 南京大学 一种嵌入式跨表面生长三维纳米线螺旋结构的制备方法
CN111785635A (zh) * 2020-07-16 2020-10-16 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板和显示装置
CN111952322B (zh) * 2020-08-14 2022-06-03 电子科技大学 一种具有周期可调屈曲结构的柔性半导体薄膜及制备方法
CN112730945B (zh) * 2020-12-21 2023-05-09 上海交通大学 基于自加热非晶锗热电阻的柔性mems流速传感器
CN114113186B (zh) * 2021-11-15 2024-05-10 哈工大机器人创新中心有限公司 一种纳米线可控弯曲方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443893C (zh) * 2005-12-29 2008-12-17 上海交通大学 基于一维纳米材料的微气体传感器的制造方法
KR101533455B1 (ko) * 2006-04-06 2015-07-03 삼성전자주식회사 나노와이어 복합체 및 그의 제조방법
CN101475206B (zh) * 2009-01-13 2010-06-02 东华大学 一种微通道中生长可控分布ZnO纳米棒的制备方法
CN105177706A (zh) * 2015-08-17 2015-12-23 南京大学 一种制备高质量柔性单晶硅纳米线的方法
CN105239156A (zh) * 2015-09-15 2016-01-13 南京大学 一种外延定向生长、转移和集成平面半导体纳米线的方法
CN106645357B (zh) * 2016-10-17 2019-06-28 南京大学 一种晶体纳米线生物探针器件的制备方法

Also Published As

Publication number Publication date
US20200118818A1 (en) 2020-04-16
CN107460542A (zh) 2017-12-12
EP3640374A4 (en) 2020-07-22
EP3640374A1 (en) 2020-04-22
CN109234807A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN109234807B (zh) 一种可拉伸晶体半导体纳米线及其制备方法
CN101567230B (zh) 透明导电薄膜的制备方法
US8334216B2 (en) Method for producing silicon nanostructures
US8683611B2 (en) High resolution AFM tips containing an aluminum-doped semiconductor nanowire
TW201105571A (en) Method for fabricating hollow nanotube structure
CN110767537B (zh) 一种制备三维超可拉伸晶态纳米线的方法
WO2019180267A1 (en) Method and substrate for patterned growth on nanoscale structures
CN109650330A (zh) 基于可编程纳米线为模板实现大面积石墨烯纳米带阵列的制备方法
CN103378236A (zh) 具有微构造的外延结构体
CN105161617A (zh) 一种平面结构的阻变存储器及其制备方法
CN107086180A (zh) 一种单根纳米线多通道复用薄膜晶体管器件的制备方法
CN106645357B (zh) 一种晶体纳米线生物探针器件的制备方法
CN109850843B (zh) 一种悬空纳米线机械手批量制备方法
KR20070050333A (ko) 다공성 글래스 템플릿을 이용한 나노와이어의 제조방법 및이를 이용한 멀티프로브의 제조방법
CN110752157A (zh) 三维悬空环栅结构半导体场效应晶体管器件的制备方法及其产品
CN111446363B (zh) 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法
US9691849B2 (en) Ultra-long silicon nanostructures, and methods of forming and transferring the same
WO2018228543A1 (zh) 一种可拉伸晶体半导体纳米线及其制备方法
US10147789B2 (en) Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
CN111180392A (zh) 基于绝缘体上硅大批量获得大尺寸单晶硅纳米膜的方法
KR20070104034A (ko) 전계방출용 팁의 제조방법, 이에 의해 제조된 전계방출용팁 및 이를 포함하는 소자
CN109911847A (zh) 一种通过转移释放获取高密度纳米线阵列的方法
CN205193157U (zh) 纳米线巨压阻特性测量装置
Pan et al. Fabrication of the Highly Ordered Silicon Nanocone Array With Sub-5 nm Tip Apex by Tapered Silicon Oxide Mask
Poudineh et al. Formation of highly ordered silicon nanowires by a high-speed deep etching

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant