CN110544656B - 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法 - Google Patents

利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法 Download PDF

Info

Publication number
CN110544656B
CN110544656B CN201910885207.4A CN201910885207A CN110544656B CN 110544656 B CN110544656 B CN 110544656B CN 201910885207 A CN201910885207 A CN 201910885207A CN 110544656 B CN110544656 B CN 110544656B
Authority
CN
China
Prior art keywords
micro
nanowire
crystalline
led
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910885207.4A
Other languages
English (en)
Other versions
CN110544656A (zh
Inventor
余林蔚
李澄
董泰格
严江
黄凯
张�荣
王军转
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201910885207.4A priority Critical patent/CN110544656B/zh
Publication of CN110544656A publication Critical patent/CN110544656A/zh
Application granted granted Critical
Publication of CN110544656B publication Critical patent/CN110544656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68309Auxiliary support including alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及一种利用超可拉伸晶态纳米线实现Micro‑LED巨量转移的方法,包括以下步骤:利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;利用光刻、电子束直写或者掩膜板技术定义台阶边缘,以及与Micro‑LED接触固定的区域,利用干法或湿法刻蚀工艺刻蚀绝缘介质层形成弹簧状垂直台阶侧壁;并沿着台阶刻蚀制作引导通道;在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层;升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;本发明方法突破了长期以来限制微发光二极管的大规模制备和巨量转移的问题。

Description

利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法
技术领域
本发明涉及一种利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,尤其是涉及到利用现代干湿刻蚀工艺的方法,制备大规模可引导可拉伸结构的纳米线用于巨量转移的方法。
背景技术
Micro-LED,或者微发光二极管,即LED微缩技术,具体是将LED微缩化以及阵列化后巨量转移到驱动电路上,从而得到超小间距LED,并且将毫米尺寸的LED缩小到微米级。Micro-LED具备无需背光源、能够自发光的特性,同时其色彩更容易进行准确的调试,有更长的发光寿命和更高的亮度。Micro-LED 制备过程有四大关键技术,包含(1)芯片制备技术,(2)巨量转移技术,(3)键结技术(Bonding),以及(4)彩色化方案。在这些关键技术中,又以巨量转移技术最为困难。所谓巨量转移,就是将已经制备好的LED晶体直接搬移动到驱动电路背板上。
巨量转移是制约Micro-LED产业化应用的最大技术阻碍。技术困难主要包含有以下两个部分:1)所需要转移的器件是LED器件的晶体外延层,并不需要移动制备过程中的衬底,同时由于Micro-LED尺寸极小,在数十微米的尺度,因此需要精细化的操作技术。2)转移的过程涉及到移动数万甚至数十万的LED,传统转移技术远远无法满足未来大量的转移需要。巨量转移目前的方式包括,精准抓取技术,自组装,选择性释放,转印技术等。然而,目前的工艺方法导致成本,数量,良品率都不能满足大规模的应用。目前,几家公司已经宣布在小规模上实现巨量转移,不过,考虑到大规模应用,还有相当的距离。绝大部分的成果制程还是在6吋到8吋晶圆上,以小尺寸的显示应用为主。大尺寸的显示应用目前只能够使用将小的显示屏幕拼贴来完成。
因此,巨量转移技术高效率、良品率和转移精度的高要求,使巨量转移技术成为了微型发光二极管技术研发面临的最大挑战。
发明内容
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种转移技术高、灵活度高、纳米线受柔性衬底约束小、可弛豫空间大的Micro-LED巨量转移的方法。
为了解决以上技术问题,本发明提供一种利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,包括以下步骤:
1)利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;
2)利用光刻、电子束直写或者掩膜板技术定义台阶边缘,以及与Micro-LED接触固定的区域,利用干法或湿法刻蚀工艺刻蚀绝缘介质层形成弹簧状垂直台阶侧壁;并沿着台阶刻蚀制作引导通道;
3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层;
4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;
5)将温度降低到催化金属纳米颗粒熔点以下,将整个结构表面淀积覆盖非晶材料前驱体薄膜层;然后将温度升高至催化金属熔点以上适当温度,对于In,采用350°,使得纳米金属颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线,在三维台阶的引导作用下纳米线将沿台阶生长;
6)剩余的非晶材料前驱体由氢气等离子体、ICP或者RIE刻蚀工艺去除;
7)旋涂一层具有粘性的薄膜,通过腐蚀性液体刻蚀牺牲层,使得晶态纳米线从衬底脱离;
8)将脱离后的纳米线转移到柔性衬底上;
9)将柔性衬底上的纳米线对准切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的三维纳米线与Micro-LED区域进行衔接;
10)利用物理或者化学方法,使晶态纳米线与柔性衬底分离;
11)在自由空间或者液体中,利用晶态纳米线的作用力,拉开各个独立的Micro-LED使其分离,并转移到已经制备好的驱动电路上;
12)利用物理或者化学方法,使Micro-LED与柔性衬底上的超弹性纳米线进行分离。
本发明进一步限定的技术方案是:所述步骤1)中衬底材料为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸(类塑料)。
进一步的, 所述步骤2)中的引导沟道的形状,可以是波浪状,弹簧状,以及可能的三维,二维的骨架结构。
进一步的,所述步骤3)中的催化金属可以是In, Sn, Bi, Ga等金属以及金属合金)。
所述步骤5)中前驱体层为非晶硅a-Si、非晶锗a-Ge、非晶碳a-C或者其他的非晶合金层,以及异质叠层(如a-Ge/a-Si)结构。
进一步的,所述步骤9)中使用的衔接方式,可以是化学的胶水等,也可以是物理键合或者熔融的金属等方式。
进一步的,所述步骤9)中所用的纳米线可以是硅等半导体材料,也可以是金属或者合金材料形成的,拉伸结构,包括但不限于可折叠的弹簧结构。
可进一步的,所述步骤10)与12)中采用的分离方法,包括但不局限于利用化学溶解或物理热处理或者激光剥离等方法。
可进一步的,所述步骤11)中采用的分离方法,除了外力作用的方法,还包括利用外场,例如外加电场,外加磁场,外加温度场等方法,驱动纳米线作为外加骨架,将各个微小Micro-LED进行分离。同时采用的分离方法的环境,可以是在液体中,或者气液界面中,或者真空无重力环境下等。
本发明的有益效果是:本发明与现有技术相比:1)采用现代微加工技术制备出弹簧状引导沟道,在PECVD或者CVD中生长出沟道引导的具有超可拉伸性的晶态纳米线;2)通过光刻蚀技术形成的引导沟道和定位的催化剂区域后可实现纳米线生长的自定位、自定向;3)这种可拉伸纳米线转移到柔性衬底后,受衬底相对约束较小,可驰豫空间较多,从而大大提升了晶态纳米线的可拉伸性,能够更好的改善可拉伸性。4)将此具备超弹性的晶态纳米线与单个Micro LED进行键合和连接,作为外围骨架,在外场或外力的驱动下,通过拉伸形成分离的单个相同间隔的独立器件,并将其转移到驱动电路,可以有效大规模的分离并实现巨量转移过程。本发明方法提高了Micro-LED的巨量转移效率、合格率和可靠性,突破了长期以来限制微发光二极管的大规模制备和巨量转移的问题,为工业化生产和大规模应用微发光二极管铺平了道路;可以广泛的应用于Micro-LED制备以及转移的过程中。
附图说明
图1为本发明实施例1设计的实现4*4 Micro-LED转移的光刻模板。
图2为本发明实施例1利用超可拉伸晶态纳米线实现Micro-LED巨量转移方法的示意图。
图3为本发明实施例1的实验流程示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的说明。
实施例1
本实施例提供一种利用超可拉伸晶态纳米线实现Micro-LED的破片技术和巨量转移方法,如图1-3,图中:1.表示Micro-LED衬底基底,2.表示Micro-LED,3. 表示具有弹性的晶态纳米线,4. 进行外力的拉伸固定区域,5.与Micro-LED固定结合区域。
实现Micro-LED的破片和巨量转移,主要包括以下几个步骤:
1)在衬底上利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层;所述衬底的材料可以为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸(类塑料)。
2)利用光刻、电子束直写或者掩膜板技术定义台阶边缘以及与每个LED进行结合的区域,利用电感耦合等离子体(ICP)刻蚀或者反应离子体刻蚀(RIE)工艺刻蚀介质层形成弹簧状垂直台阶侧壁结构;并沿着台阶刻蚀制作引导通道,所述引导沟道的形状,可以是波浪状,弹簧状,以及可能的三维,二维的骨架结构。
3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层在相应区域中,本实施例中的催化金属采用In,催化金属还可以是Sn, Bi, Ga等金属以及金属合金。
4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的金属纳米颗粒;
5)将温度降低到催化金属颗粒熔点以下,整个结构表面淀积覆盖非晶半导体前驱体薄膜层;然后将温度升高至,使得纳米金属颗粒重新熔化,在其前端开始吸收非晶层,而在后端淀积出晶态的纳米线;由于三维台阶的引导作用,纳米线将沿台阶生长;前驱体薄膜层为非晶硅a-Si、非晶锗a-Ge、非晶碳a-C或者其他的非晶合金层,以及异质叠层如a-Ge/a-Si结构。
6)剩余的非晶半导体前驱体可由氢气等离子体、ICP或者RIE等刻蚀工艺去除;
7)旋涂一层具有一定粘性的薄膜,通过腐蚀性液体例如氢氟酸刻蚀牺牲层刻蚀牺牲层,使得硅晶态纳米线可以从衬底脱离;
8)将脱离后的硅晶态纳米线转移到柔性衬底上,再用溶液将薄膜溶解,即可获得超可拉伸的柔性硅纳米弹簧。
9)将柔性硅纳米弹簧对准需要破片并已经切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的三维纳米线与Micro-LED区域上进行固定结合。其结合方式包括化学胶水,或者物理键合或者熔融的金属等方式,将高弹性纳米线做作为Micro-LED的外围框架。所用的纳米线可以是硅等半导体材料,也可以是金属或者合金材料形成的可拉伸结构。
10)利用物理或者化学方法,使得晶态纳米线与柔性衬底进行分离。本步骤所述的利用物理或化学方法包括但不局限于利用化学溶解或者物理热处理或者激光剥离等方法。
11)在自由空间,或者液体中,利用柔性硅纳米弹簧的作用力,拉开各个独立的Micro-LED,使其分离,并转移到已经制备好的驱动电路上。本步骤除了直接外力作用的方法,还包括利用外场,例如外加电场,外加磁场,外加温度场等方法,驱动纳米线作为外加骨架,将各个微小Micro-LED进行分离。采用的分离方法的环境,可以是在液体中,或者气液界面中,或者真空无重力环境下等。
12)利用物理或者化学方法,使得Micro-LED与柔性衬底上的超弹性纳米线进行分离。本步骤所述的利用物理或化学方法包括但不局限于利用化学溶解或者物理热处理或者激光剥离等方法。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (9)

1.一种利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,包括以下步骤:1)利用PECVD或者PVD工艺在衬底上淀积一层绝缘介质层作为牺牲层;2)利用光刻、电子束直写或者掩膜板技术定义台阶边缘,以及与Micro-LED接触固定的区域,利用干法或湿法刻蚀工艺刻蚀绝缘介质层形成弹簧状垂直台阶侧壁作为引导生长沟道;其特征在于,还包括以下几个步骤:
3)在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层催化金属层;
4)升高温度至催化金属熔点以上,通入还原性气体等离子体进行处理,使催化金属层转变为分离的催化金属纳米颗粒;
5)将温度降低到催化金属纳米颗粒熔点以下,将经步骤4)处理后的衬底表面淀积覆盖非晶材料前驱体薄膜层;然后将温度升高至催化金属纳米颗粒的熔点以上,使得催化金属纳米颗粒重新熔化,在其前端开始吸收非晶材料前驱体薄膜层,而在后端淀积出晶态纳米线,在台阶的引导作用下,晶态纳米线将沿台阶生长;
6)剩余的非晶材料前驱体薄膜层由氢气等离子体、ICP或者RIE刻蚀工艺去除;
7)旋涂一层具有粘性的薄膜,通过腐蚀性液体刻蚀牺牲层,使得晶态纳米线从衬底脱离;
8)将脱离后的晶态纳米线转移到柔性衬底上;
9)将柔性衬底上的晶态纳米线对准切割好的Micro-LED区域上,利用微加工技术中的对准技术,将具有高弹性的晶态纳米线与Micro-LED区域进行衔接;
10)利用物理或者化学方法,使晶态纳米线与柔性衬底分离;
11)在自由空间或者液体中,利用晶态纳米线的作用力,拉开各个独立的Micro-LED使其分离,并转移到已经制备好的驱动电路上;
12)利用物理或者化学方法,使Micro-LED与柔性衬底上的晶态纳米线进行分离。
2.根据权利要求1所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤1)中的衬底材料为晶硅、玻璃、铝箔、氮化硅、氧化硅、碳化硅、蓝宝石、聚酰亚胺或者聚对苯二甲酸。
3.根据权利要求2所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤2)中所述的引导生长沟道的形状为波浪状、弹簧状、三维或二维的骨架结构。
4.根据权利要求3所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤3)中在制备好的台阶一端,通过光刻、蒸发或者溅射工艺,局部淀积一层带状的催化金属层,所述催化金属层为In、 Sn、 Bi或Ga金属及其金属合金。
5.根据权利要求4所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:所述步骤5)中所述的非晶材料前驱体薄膜层为非晶硅a-Si、非晶锗a-Ge、非晶碳a-C、非晶合金层或异质叠层结构。
6.根据权利要求5所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤9)所述的衔接方式为化学的胶水、物理键合或者熔融的金属。
7.根据权利要求6所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤9)中所述的晶态纳米线为硅半导体材料、金属或者金属合金材料形成的可拉伸结构。
8.根据权利要求7所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤10)和步骤12)中采用的分离方法,为化学溶解、物理热处理或者激光剥离方法。
9.根据权利要求8所述的利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法,其特征在于:在步骤11)中采用的分离方法,为外力作用或者外加电场,外加磁场,外加温度场方法,驱动晶态纳米线作为外加骨架,将各个微小Micro-LED进行分离。
CN201910885207.4A 2019-09-19 2019-09-19 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法 Active CN110544656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910885207.4A CN110544656B (zh) 2019-09-19 2019-09-19 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910885207.4A CN110544656B (zh) 2019-09-19 2019-09-19 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

Publications (2)

Publication Number Publication Date
CN110544656A CN110544656A (zh) 2019-12-06
CN110544656B true CN110544656B (zh) 2021-10-26

Family

ID=68713860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910885207.4A Active CN110544656B (zh) 2019-09-19 2019-09-19 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法

Country Status (1)

Country Link
CN (1) CN110544656B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422828B (zh) * 2020-04-01 2021-10-26 南京大学 利用晶态纳米线阵列堆叠制备光学手性器件的方法
US20220199449A1 (en) * 2020-12-23 2022-06-23 Intel Corporation Carrier for microelectronic assemblies having direct bonding
US20220199450A1 (en) * 2020-12-23 2022-06-23 Intel Corporation Carrier for microelectronic assemblies having direct bonding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842943B1 (en) * 2006-04-06 2010-09-29 Samsung Electronics Co., Ltd. Nanowire composite and preparation method thereof
CN105177706A (zh) * 2015-08-17 2015-12-23 南京大学 一种制备高质量柔性单晶硅纳米线的方法
CN106645357A (zh) * 2016-10-17 2017-05-10 南京大学 一种晶体纳米线生物探针器件的制备方法
CN107460542A (zh) * 2017-06-15 2017-12-12 南京大学 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法
CN109911847A (zh) * 2019-03-14 2019-06-21 南京大学 一种通过转移释放获取高密度纳米线阵列的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842943B1 (en) * 2006-04-06 2010-09-29 Samsung Electronics Co., Ltd. Nanowire composite and preparation method thereof
CN105177706A (zh) * 2015-08-17 2015-12-23 南京大学 一种制备高质量柔性单晶硅纳米线的方法
CN106645357A (zh) * 2016-10-17 2017-05-10 南京大学 一种晶体纳米线生物探针器件的制备方法
CN107460542A (zh) * 2017-06-15 2017-12-12 南京大学 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法
CN109234807A (zh) * 2017-06-15 2019-01-18 南京大学 一种可拉伸晶体半导体纳米线及其制备方法
CN109911847A (zh) * 2019-03-14 2019-06-21 南京大学 一种通过转移释放获取高密度纳米线阵列的方法

Also Published As

Publication number Publication date
CN110544656A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN110544656B (zh) 利用超可拉伸晶态纳米线实现Micro-LED巨量转移的方法
US10964583B2 (en) Micro-transfer-printable flip-chip structures and methods
US11024608B2 (en) Structures and methods for electrical connection of micro-devices and substrates
US10395966B2 (en) Micro-transfer-printable flip-chip structures and methods
US10600671B2 (en) Micro-transfer-printable flip-chip structures and methods
CN107851685A (zh) 发光二极管结构体、转印组件及使用转印组件的转印方法
US11527691B2 (en) Structures and methods for electrically connecting printed components
WO2018032621A1 (zh) 微元件的转移方法、装置及电子设备
CN112967984B (zh) 微芯片的巨量转移方法及显示背板
CN102751232B (zh) 利用锗浓缩技术制备SiGe或Ge纳米线的方法
CN104576862B (zh) 一种基于铜衬底的氮化物led垂直芯片及其制备方法
CN113571608A (zh) 一种磁辅助激光图案化Micro-LED巨量转移方法
TW201338148A (zh) 發光二極體元件
JP4866935B2 (ja) 立方晶炭化ケイ素単結晶薄膜の製造方法及び半導体装置
CN112397543A (zh) 一种微型发光二极管的制作方法
Shi et al. Optoelectronic platform and technology
CN110690329B (zh) 一种单端电学接触、单端载流子注入的μLED发光与显示器件及其制备方法
CN102623589A (zh) 一种垂直结构的半导体发光器件制造方法
TW201025673A (en) The method to produce a light emitting device module
CN110120449A (zh) 一种透明柔性显示系统及其制备方法
CN101656282B (zh) 发光二极管装置、使用其的背光模组装置和照明装置
TWI405353B (zh) Method for manufacturing photovoltaic element
TWI575722B (zh) 發光二極體元件
US20220077223A1 (en) Processes, articles and apparatus that incorporate semiconductor switches and drive circuitry on compound semiconductor chiplets
CN112635355A (zh) 一种转移装置、显示背板、Micro LED器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant