CN109075067A - 电子束等离子体工艺形成的类金刚石碳层 - Google Patents

电子束等离子体工艺形成的类金刚石碳层 Download PDF

Info

Publication number
CN109075067A
CN109075067A CN201780027603.2A CN201780027603A CN109075067A CN 109075067 A CN109075067 A CN 109075067A CN 201780027603 A CN201780027603 A CN 201780027603A CN 109075067 A CN109075067 A CN 109075067A
Authority
CN
China
Prior art keywords
diamond
carbon layer
electron beam
plasma
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780027603.2A
Other languages
English (en)
Inventor
杨扬
露西·陈
杰·周
卡提克·雷马斯瓦米
肯尼思·S·柯林斯
斯里尼瓦斯·D·内曼尼
殷正操
刘菁菁
史蒂文·莱恩
贡萨洛·蒙罗伊
詹姆斯·D·卡达希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN109075067A publication Critical patent/CN109075067A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/3233Discharge generated by other radiation using charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

提供用于形成具有期望的膜密度、机械强度及光学膜性质的类金刚石碳层的方法。在一个实施方式中,形成类金刚石碳层的方法包括下列步骤:在设置于处理腔室中的基板的表面上方产生电子束等离子体,以及在该基板的该表面上形成类金刚石碳层。所述类金刚石碳层由电子束等离子体工艺形成,其中类金刚石碳层作为半导体应用中的蚀刻工艺中的硬模层。所述类金刚石碳层可通过以下步骤形成:轰击设置在处理腔室中的含碳电极,以在设置于处理腔室中的基板的表面上方的含碳气体混合物中产生次级电子束,和在基板的表面上由该气体混合物的元素形成类金刚石碳层。

Description

电子束等离子体工艺形成的类金刚石碳层
背景
技术领域
本公开内容涉及集成电路的制造,和用于在基板上形成具高蚀刻选择性、高膜密度和良好机械强度的类金刚石碳(diamond like carbon)层的工艺。更具体而言,本公开内容涉及一种使用电子束等离子体工艺来制造类金刚石碳层的工艺,以在基板上形成具有高蚀刻选择性、良好机械强度、低应力和期望的膜透光度(transparency)的类金刚石碳层以供半导体应用。
背景技术
集成电路已发展成为可于单个芯片(chip)上包含数百万个晶体管、电容器和电阻器的复杂的器件。在芯片设计的发展中,持续地需要更快的电路以及更高的电路密度。对更快速的电路及更高的电路密度的需求增强了对用于制造此种集成电路的材料相应需求。特别是,当集成电路部件的尺寸缩小至亚微米(sub-micron)等级时,其需要使用低阻值的导电材料(例如,铜)还有低介电常数的绝缘材料(介电常数约低于4),以从此种部件获得适当的电性能。
对于更高集成电路密度的需求亦产生了对于用在集成电路部件的制造的工艺序列的需求。举例而言,在使用传统光刻蚀技术的工艺序列中,可在设置在基板上的多个材料层的堆叠上方形成能量敏感抗蚀剂层。将能量敏感抗蚀剂层暴露于图案的图像,以形成光刻胶掩模。其后,使用蚀刻工艺将掩模图案转移至堆叠的一或多个材料层。可选择蚀刻工艺中使用的化学蚀刻剂,使得对堆叠的材料层的蚀刻选择性大于对能量敏感抗蚀剂的掩模的蚀刻选择性。亦即,化学蚀刻剂以比蚀刻能量敏感抗蚀剂快得多的速率来蚀刻材料堆叠的一或多个层。堆叠的一或多个材料层相对于抗蚀剂的蚀刻选择性可避免能量敏感抗蚀剂在完成图案转移之前被耗尽。因此,高选择性蚀刻剂能提升精确的图案转移。
由于用来形成半导体器件的结构的几何形状限制与技术上的极限相抵触,因此变得越来越难以满足对于用来制造具有小临界尺寸及高深宽比的结构的精确图案转移的需求。举例而言,为了控制图案分辨率,已将能量敏感抗蚀剂的厚度减小。由于受到化学蚀刻剂侵蚀,这样薄的抗蚀剂层(例如,小于约 )可能不足以在图案转移步骤期间掩蔽下方材料层。称作硬模层的中间层(例如,氧氮化硅、碳化硅或碳膜),通常用于能量敏感抗蚀剂层与下方材料层之间,由于中间层对化学蚀刻剂具有更大的抗性,而有助于图案转移。当蚀刻材料来形成具有大于约5:1的深宽比和/或小于约50nm的临界尺寸的结构时,用以将图案转移至材料的硬模层会暴露于侵蚀性蚀刻剂达一段颇长的时间。在长时间暴露于侵蚀性蚀刻剂之后,没有足够蚀刻抗性的硬模层可能会发生膜性质上的改变,导致图案转移不精确并失去维度控制(dimensional control)。
进一步,被选用作为硬模层的材料与设置在膜堆叠中的相邻层的材料的相似度,也可能造成这些层之间的相似蚀刻性质,因而造成蚀刻期间的不良选择性。硬模层与相邻层之间的不良选择性可造成硬模层具有不均匀、锥状且变形的轮廓,从而导致不良的图案转移和无法进行精确结构维度控制。
此外,所沉积的膜和/或硬模层中的相对松散的膜结构(例如,非晶膜结构)也可能造成低的膜机械强度和低的硬度,导致因侵蚀性蚀刻剂在蚀刻工艺期间的攻击所致的硬模层不能在整个蚀刻工艺中存续。膜硬模或膜机械强度不足可能会不利地影响后续工艺中的图案转移精确度。
因此,本案所属技术领域需要一种具有期望的膜性质的改良的硬模层,以供后续光刻蚀工艺和蚀刻工艺所用。
发明内容
提供形成具有期望的膜密度、机械强度以及光学膜性质的类金刚石碳层的方法。在一个实施方式中,形成类金刚石碳层的方法可包括下列步骤:在设置于处理腔室中的基板的表面上方产生电子束等离子体;以及在设置于处理腔室中的基板的表面上形成类金刚石碳层。
在另一实施方式中,硬模层包含类金刚石层,该类金刚石层由电子束等离子体工艺形成。类金刚石碳层在半导体应用中充当蚀刻工艺中的硬模层。
在又一实施方式中,一种类金刚石碳层的方法可包括下列步骤:轰击设置在处理腔室中的含碳电极,以在设置于处理腔室中的基板的表面上方的含碳气体混合物中产生次级电子(secondary electron)束;和在处理腔室中的基板的表面上形成类金刚石碳层。
附图说明
以上简要概述的本公开内容的上述详述特征可以被获得并被详细理解的方式,以及本公开内容的更特定描述可以通过参照实施方式来获得,且实施方式绘示于附图中。
图1描绘沉积装置的一个实例的示意图,可在该沉积装置中使用电子束等离子体技术来施行本公开内容的实施方式;
图2描绘沉积装置的另一个实例之示意图,可在该沉积装置中使用电子束等离子体技术来施行本公开内容的实施方式;
图3描绘膜形成工艺的一个实施方式的流程图;和
图4A至4B描绘基板结构的一系列示意性截面图,该基板结构包括根据图3的方法形成在基板上的类金刚石碳层。
为了便于理解,已经尽可能使用相同的附图标号标示图式中共通的相同元件。考虑到,一个实施方式的元件和特征在没有进一步描述下可有利地并入至其它实施方式中。
然而,应当注意,附图仅绘示此公开内容的示例性实施方式,因而并不应视为对本公开内容的范围的限制,因为本公开内容可允许其它等同有效的实施方式。
具体实施方式
本公开内容的实施方式提供用于形成类金刚石碳层的方法,所形成的类金刚石碳层具有期望的膜性质,例如膜透光度、机械强度、膜硬度及低应力。在一个实施方式中,类金刚石碳层适合用作硬模层。可通过电子束等离子体沉积工艺获得具有期望膜性质的类金刚石碳层。电子束等离子体可就沉积碳层提供所需的次级电子束,以形成具有相对强的键合结构和机械强度的类金刚石膜结构。由电子束等离子体形成的类金刚石碳层可维持低应力水平,同时具有期望范围内的膜密度。类金刚石碳层具有光学膜性质,例如期望范围的折射率(n)及吸收系数(k),因而有利于光刻图案化工艺。
图1描绘具有真空腔室主体的电子束等离子体腔室,真空腔室主体界定了腔室100,腔室100包括圆柱形的侧壁102。腔室100可由电网滤波器(grid filter)104分隔为上腔室100a与下腔室100b。因为在缺少施加偏置电压的情况下而于其中缺乏实质电场,所以下腔室100b为漂移空间(drift space)。天花板106覆盖上腔室100a,并支撑电极108。在一个实施方式中,电极108可由工艺相容性材料所形成,例如硅、碳、碳化硅化合物或是氧化硅化合物。在替代的实施方式中,电极108可由金属氧化物形成,例如氧化铝、氧化钇或氧化锆。天花板106和电极108可为盘型。电极108的底部表面面对电网滤波器104,并暴露于上腔室100a的内部。在一个实施方式中,绝缘体或电介质环109围绕电极108。
在本文所描绘的一个特定实施方式中,电极108可由含碳材料制成,含碳材料可在类金刚石碳层沉积工艺期间协助提供碳源。因此,在进行数次类金刚石碳层沉积制程之后,电极108可能被消耗掉。通过受轰击而从电极108消耗的材料,从电极108移出的材料可能有助于形成高膜密度的类金刚石碳层。因此,可进行周期性替换电极108,以确保工艺可靠度和再现性。
在下腔室100b中用于支撑基板111(例如,工件)的工件支撑基座110具有工件支撑表面110a,工件支撑表面110a面对电网滤波器104且可由举升伺服器(servo)112在轴方向上移动。在一个实施方式中,工件支撑基座110可包括绝缘盘(insulating puck)195、工件电极196和夹持电压供应器(chucking voltage supply)199,绝缘盘195形成工件支撑表面110a,工件电极196位在绝缘盘195内部,而夹持电压供应器199连接至工件电极196。此外,位在绝缘盘195下方的基底层194具有内部通道107,用以循环来自循环供应器198的热介质(如,液体)。循环供应器198可作为散热器或作为热源。
可透过阻抗匹配124经由RF馈送导体(feed conductor)123,将RF源功率产生器120和较低频率RF源功率产生器122耦接至电极108,RF源功率产生器120具有VHF频率(例如,160MHz),而较低频率RF源功率产生器122具有低于VHF范围或低于HF范围的频率(例如,在MF或LF范围中,举例而言,2MHz)。在一个实施方式中,阻抗匹配124适于在RF源功率产生器120及122的不同频率下提供阻抗匹配,也适于进行滤波以将功率产生器彼此隔离。可由控制器126独立地控制RF源功率产生器120、122的输出功率级(power level)。如将于下文中详述,来自RF源功率产生器120、122的功率耦接至电极108。在一个实施方式中,天花板106具导电性,且与电极108电气接触,而来自阻抗匹配124的功率透过天花板106传导至电极108。
在一个实施方式中,侧壁102可由金属形成并接地。在一个实施方式中,在上腔室100a内部的接地的内表面的表面积为电极108的表面积的至少两倍。在一个实施方式中,腔室100内部的接地的内表面可涂布有工艺相容性材料,例如,硅、碳、碳化硅化合物或氧化硅化合物。在替代的实施方式中,腔室100内部的接地的内表面可涂布有诸如氧化铝、氧化钇或氧化锆之类的材料。
在一个实施方式中,可由两个分别受到控制的VHF功率产生器120a及120b取代RF源功率产生器120。VHF功率产生器120a具有在VHF频带的较低部分(例如,30MHz至150MHz)中的输出频率,而VHF功率产生器120b具有在VHF频带的较高部分(例如,150MHz至300MHz)中的输出频率。控制器126可通过选择VHF功率产生器120a及120b的输出功率级之间的比例,来操控等离子体离子密度。在有这两个VHF功率产生器120a及120b的情况下,可通过选择上腔室100a的间隙(介于电极108与电网滤波器104之间的距离)来控制上腔室100a中的径向等离子体均匀性,使得由较低VHF频率本身在上方腔室100a中产生等离子体离子密度的边缘高的径向分布(edge-high radial distribution),且由较高VHF频率本身产生等离子体离子密度的中心高的径向分布(center-high radial distribution)。通过这样的选择,可接着将两个VHF功率产生器120a、120b的功率级设定在使等离子体离子密度的径向分布均匀性最佳化的比例。
在一个实施方式中,天花板106为电极108的支架,并包括绝缘层150,绝缘层150包括面向电极108的夹持电极152。DC夹持电压供应器154可经由馈送导体155耦接至夹持电极152,以静电方式将电极108夹持至天花板106。DC阻隔电容器(DC blocking capacitor)156可与阻抗匹配124的输出串联连接。控制器126可控制DC夹持电压供应器154。在一个实施方式中,来自阻抗匹配124的RF馈送导体123可连接至电极支架或天花板106,而不是被直接连接至电极108。在这样的实施方式中,来自RF馈送导体123的RF功率可从电极支架电容式耦接至电极108。在一个实施方式中,上方气体注入器130经由第一阀132将处理气体提供至上腔室100a内。在一个实施方式中,下方气体注入器134经由第二阀136将处理气体提供至下腔室100b内。可从处理气体供应器阵列138通过阀阵列140供应气体,举例而言,阀阵列140可以包含第一阀132及第二阀136。在一个实施方式中,进入上腔室和下腔室100a、100b的气体物质与气体流率可被独立地控制。控制器126可以操控阀阵列140。在一个实施方式中,可将惰性气体供应至上腔室100a内,并将处理气体供应至下腔室100b内。可选择惰性气体流速,以实质上避免气体从下腔室100b到上腔室100a的对流或扩散,以提供上腔室100a的实质化学隔离效果。
在一个实施方式中,可由各种主体工艺(bulk process)及表面工艺在上腔室100a中生成等离子体,所述工艺包括对顶部电子发射(electron-emitting)电极108的内部表面的高能离子轰击。电极108的离子轰击能量与等离子体密度为RF功率产生器120和122二者的函数。电极108的离子轰击能量可实质上由来自RF功率产生器122的较低频率功率控制,而上腔室100a中的等离子体密度可实质上由来自RF功率产生器120的VHF功率控制(强化)。可从电极108的内部表面发射高能次级电子。来自发射表面的高能电子流可能包括电子束,且可能具有实质垂直于该电极108的内部表面的方向,及接近电极108的离子轰击能量的射束能量,所述能量一般可在自约10eV至5000eV的范围内,例如至少大于100eV。不同工艺的碰撞断面(collision cross section)取决于电子能量。在低能量下,用于激发(以及在分子气体中离解(dissociation))的横截面大于用于离子化的横截面,而在高能量下情况正好相反。可针对各种不同的非弹性电子碰撞工艺有利地选择(多个)RF功率级。
在一个实施方式中,侧壁102中的侧窗170面向上腔室100a,且由一材料(诸如石英或氧化铝)形成,可透过侧窗170以电感方式耦接RF功率。电感线圈天线172围绕侧窗170,并由可选的RF功率产生器174经由阻抗匹配176所驱动。远程等离子体源197可将等离子体物质引入下腔室100b。在具有可选的RF源功率产生器174和线圈天线172的实施方式中,上腔室100a中的等离子体密度可实质上由来自RF功率产生器174的RF功率控制(强化)。在一个实例中,可选的RF源功率产生器174和线圈天线172可协助提供轰击能量,以溅射材料离开电极108,因而有助于将材料安顿(lodging)在设置于工件支撑基座110上的基板111的表面上。
在一个实施方式中,电网滤波器104为平坦盘型且可与侧壁102同轴。电网滤波器104由多个开口104-1的阵列形成。在一个实施方式中,电网滤波器104的轴向厚度T与所述多个开口104-1的直径-d,可经选择以促进高能引导射束电子通过电网滤波器104的流动,同时阻挡非射束(低能量)电子及等离子体离子通过电网滤波器104的流动,且电网滤波器孔面积对整体电网滤波器面积的比例可被最大化。高能电子流(电子束)可通过电网滤波器104至下腔室100b,且可由在下腔室100b中的各种电子冲击工艺来生成等离子体。
由电子束在下腔室100b中生成的等离子体可以具有与上腔室100a中的等离子体不同的性质。电网滤波器104可充当将上腔室100a与下腔室100b彼此实质电气隔离的滤波器。在一个实施方式中,电网滤波器104可由导电性或半导性材料形成,且可连接至接地或可为电气浮接(electrically floating)。在另一实施方式中,电网滤波器104可由非导电性材料所形成。在一个实施方式中,电网滤波器104可涂布有工艺相容性材料,例如,硅、碳、碳化硅化合物或氧化硅化合物。在替代的实施方式中,电网滤波器104可涂布有诸如氧化铝、氧化钇或氧化锆之类的材料。在一个实施方式中,在上腔室100a中生成的等离子体可具有高电子密度及/或高电子温度,并具有冲击在电极108上的高能量离子。
电子束的至少一部分,其包括由电极表面的高能离子轰击所致的从电极108发射的次级电子流,可透过电网滤波器104传播并进入下腔室100b,于下腔室100b中生成低电子温度等离子体,且所述等离子体的等离子体密度取决于射束能量及射束流还有其它因素,例如,压力及气体成分。一旦离开下腔室100b的等离子体区域,高能束电子可撞击在基板111或工件支撑基座110上。留下来的等离子体可立即将由电子束流所产生的表面电荷放电。
在需要较高电子束流或较高电子束密度的某些实施方式中,如图2所示,可移除或去掉电网滤波器104,以协助从电极108发射的次级电子束流以较快的速率抵达基板111或工件支撑基座110上。或者,可出于任何工艺考量或需求,而如图2所示移除或去掉处理腔室100中的电网滤波器104。
在一个实施方式中,可将负电性或电子附着气体(electron-attaching)(例如,氯)供给至腔室内,将RF和/或VHF功率施加至电极108,视情况将RF功率施加至线圈天线172,视情况将远程等离子体源(RPS)功率施加至远程等离子体源(RPS)197,在上腔室100a中产生等离子体,并在电极108上相对于接地且相对于等离子体发展加速电压。所形成的电极108的高能离子轰击可产生从电极表面放射的次级电子,所述次级电子构成来自电极表面的电子束流。电网滤波器104容许电子束的至少一部分传播通过电网滤波器104并进入下腔室100b,同时避免非射束电子与等离子体离子的至少一部分通过电网滤波器104,并于下腔室100b中生成低电子温度等离子体。在下腔室100b中,于诸如氯的负电子气体中所产生的低电子温度等离子体可能产生高度负电性的(electronegtive)等离子体,且所述等离子体的负离子密度远高于正离子的电子密度及趋近密度(approaching density)。这样的等离子体通常被称为离子对离子等离子体(ion-ion plasma)。
可视情况地使用实质轴向引导的磁场来协助引导电子束,所述磁场实质上平行于电子束,以改善波束传输通过上腔室100a、电网滤波器104和/或下腔室100b。可将低频率偏置电压或低重复频率的任意波形施加至工件支撑基座110(例如,至工件电极196),以选择性地或替代地从所述等离子体提取正离子和/或负离子,并将这些离子加速至期望的能量水平,以冲击基板111的表面来进行蚀刻、清洗、沉积或其它的材料修饰。可将(a)在上腔室100a中生成、(b)在下腔室100b中由电子束生成、(c)通过将偏置电压施加至工件支撑基座110而生成或(d)由远程等离子体源(RPS)197生成的自由基对流或扩散至基板111并参与工件表面上的反应。
在另一实施方式中,可将诸如氦或氩之类的相对惰性的气体供给至上腔室100a内,并将诸如六氟化硫或氟化碳或类似的负电性或电子附着气体供应到下腔室100b中,将RF和/或VHF功率施加至电极108,视情况将RF功率施加至线圈天线172,视情况将RPS功率施加至RPS 197,在上腔室100a中产生等离子体,并在电极108上相对于接地且相对于等离子体发展加速电压。所形成的电极108的高能离子轰击可产生从电极表面放射的次级电子,所述次级电子构成来自电极表面的电子束流。电网滤波器104容许电子束的至少一部分传播通过电网滤波器104并进入下腔室100b,同时避免非射束电子与等离子体离子的至少一部分通过电网滤波器104,并于下腔室100b中生成低电子温度等离子体。
在下方等离子体腔室中,于负电性的气体中所产生的低电子温度等离子体可能产生高度负电性的等离子体,且所述等离子体的负离子密度远高于正离子的电子密度及趋近密度,通常将这样的等离子体称为离子对离子等离子体(ion-ion plasma)。
在一个实施方式中,电网滤波器104可为气体分配板,所述气体分配板具有内部气体通道105a及气体注入出口105b。内部气体通道105a可耦接至阀阵列140。
在一个实施方式中,可透过阻抗匹配144将RF偏压功率产生器142耦接至工件支撑基座110的工件电极196。在进一步的实施方式中,波形修整处理器(waveform tailoringprocessor)147可连接于阻抗匹配144的输出与工件电极196之间。波形修整处理器147可将RF偏压功率产生器142所产生的波形改变为期望波形。靠近基板111的等离子体的离子能量受到波形修整处理器147的控制。在一个实施方式中,在各个RF循环的某部分期间,可将波形修整处理器147产生的波形中的振幅保持在与期望的离子能量水平对应的水平。控制器126可控制波形修整处理器147。
在一个实施方式中,磁铁160可围绕腔室100。在一个实施方式中,磁铁可包含分别与上腔室100a和下腔室100b相邻的一对磁铁160-1、160-2。在一个实施方式中,该对磁铁160-1、160-2可提供适于局限从上腔室100a传播至下腔室100b的电子束的轴向磁场。
在一个实施方式中,高能电子至基板111的流动可受磁场阻挡,所述磁场在介于电网滤波器104与基板111之间的区域中具有主要径向分量(即,横切电子束流方向)。所述磁场可由磁铁160-1或160-2之一产生,或由另一磁铁或另一组磁铁产生。
在一个实施方式中,用于在天花板106内部导引热传导液体或介质的内部通道178可连接至热介质循环供应器180。热介质循环供应器180可作为散热器或热源。电极108与天花板106之间的机械接触足以维持电极108与天花板106之间高的热传导。在图1的实施方式中,由DC夹持电压供应器154所提供的静电夹持力可调节所述机械接触的力量。
图3图解根据此公开内容的一个实施方式的用于形成类金刚石碳层的方法300的流程图。图4A至4B为图示了根据方法300形成类金刚石碳层的序列的截面示意图,所述类金刚石碳层可用做硬模层。
方法300通过将基板111提供到处理腔室中而始于操作302,如图4A所示,基板111具有设置于其上的材料层402,处理腔室可以是如图1或2中所描绘的电子束等离子体处理腔室100。基板111可具有实质平坦的表面、非平整表面,或者具有形成于基板上的结构。在一个实施方式中,材料层402可为膜堆叠的一部分,在针对逻辑或存储器器件(诸如NAND结构)的前端或后端工序中,膜堆叠可用来形成栅极结构(gate structure)、接触结构(contact structure)、互连结构(interconnection structure)或浅沟槽隔离(shallowtrench isolation;STI)结构。在其中不存在材料层402的实施方式中,方法300可直接形成于基板111中。
在一个实施方式中,材料层402可为包括氧化硅层和/或氮化硅层的重复层的膜堆叠,膜堆叠可用来形成NAND结构的栅极结构。或者,材料层402可为用来形成栅极电极的硅材料。在又一实施方式中,材料层402可包括氧化硅层、沉积在硅层上的氧化硅。在又一实施方式中,材料层402可包括用以制造半导体器件的其它介电材料的一或多个层。合适的介电层实例可包括:氧化硅、氮化硅、氧氮化硅、碳化硅或符合需求的任何合适的低-k或多孔介电材料。在另外的实施方式中,材料层402不包括任何金属层。
在操作304,将气体混合物供应至电子束等离子体处理腔室100内,以准备用来在基板111上形成类金刚石碳层404,如图4B所示。气体混合物可从处理气体供应器138供应,通过阀阵列140至气体注入器130、134,以分别流入电子束等离子体处理腔室100。
气体混合物包括至少一种碳氢化合物及惰性气体。在一个实施方式中,碳氢化合物具有化学式CxHy,其中x具有介于1与12之间的范围,且y具有介于4与26之间的范围。更具体而言,举例而言,脂肪族碳氢化物可包括:烷类,诸如甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷等;烯类,诸如丙烯、乙烯、丙烯、丁烯、戊烯等;二烯类,诸如己二烯、丁二烯、异戊二烯(isoprene)、戊二烯(pentadiene)等;炔类,诸如乙炔、乙烯乙炔等。举例而言,脂环烃碳氢化物可包括:环丙烷、环丁烷、环戊烷、环戊二烯、甲苯等。举例而言,芳香族碳氢化物可包括:苯、苯乙烯、甲苯、二甲苯、吡啶、乙苯、苯乙酮、苯甲酸甲酯、乙酸苯酯、苯酚、甲酚、呋喃等。此外,可利用α-萜品烯(alpha-terpinene)、异丙基甲苯(cymene)、1,1,3,3,-四甲基丁苯(1,1,3,3,-tetramethylbutylbenzene)、叔丁基醚(t-butylether)、叔丁基乙烯(t-butylethylene)、甲基-丙烯酸甲酯及叔丁基糠基醚(t-butylfurfurylether)。此外,也可选用α-萜品烯、异丙基甲苯、1,1,3,3,-四甲基丁苯、叔丁基醚、叔丁基乙烯、甲基-丙烯酸甲酯及叔丁基糠基醚。在示例性实施方式中,碳氢化合物为丙烯、乙炔、乙烯、丙烯、丁烯、甲苯、α-萜品烯。
或者,一或多种额外的碳氢化合物可与存在于供应至处理腔室的气体混合物中的碳氢化合物混合。可使用两种或更多种碳氢化合物的混合物来沉积非晶碳材料。
在特定的实施方式中,碳氢化合物包括甲烷(CH4)。在另一实施方式中,碳氢化合物包括甲烷(CH4),和以下物质中的至少一种:丙烯(C3H6)、乙炔(C2H2)或乙烯(C2H4)。
可将诸如氩(Ar)或氦(He)之类的惰性气体与气体混合物一起供应至处理腔室100内。也可依需求使用其它载气(诸如氮(N2)、氧气(O2)、一氧化碳(CO)、氧化氮(NO)、氢(H2)、氨(NH3)、氢(H2)与氮(N2)的混合物或前述气体的组合)来控制类金刚石碳层的密度和沉积速率。氢或氮的添加可被用来控制所沉积的类金刚石碳层的氢比例(例如,碳对氢比例)。存在于类金刚石碳层中的氢比例可提供对层性质的控制,例如,对反射率、透光度及密度的控制。
在一个实施方式中,可将诸如氩(Ar)或氦(He)气体之类的惰性气体与诸如甲烷(CH4)之类的碳氢化合物一起供应至处理腔室内,以沉积类金刚石碳层。在气体混合物中提供的惰性气体可协助控制所沉积的层的光学性质和机械性质,例如类金刚石碳层404的折射率(n)及吸收系数(k)、硬度、密度及弹性模量(elastic modulus)。
在一个实施方式中,可在气体混合物中以介于约50sccm与约1000sccm之间的速率供应诸如甲烷(CH4)之类的碳氢化合物。可在气体混合物中以介于约10sccm与约1000sccm之间的速率供应诸如Ar或He之类的惰性气体。可在气体混合物中以介于约100sccm与约500sccm之间的速率供应氢气(H2)。可在气体混合物中以介于约0sccm与约200sccm之间的速率供应氧气(O2)。可在气体混合物中以介于约0sccm与约400sccm之间的速率供应氮气(N2)。并且,可在气体混合物中以介于约100sccm与约2000sccm之间的速率供应丙烯(C3H6)、乙炔(C2H2)或乙烯(C2H4)中的至少一种。
在一个实例中,可调整的流量比(flow ratio)及物种可受到控制,并从不同的位置(例如,上方或下方注入器130、134)供应至处理腔室100,以最大化电网滤波器104下方或上方的自由基解离和等离子体密度。举例而言,若期望在上腔室100a中有较高等离子体密度以增加射束电子流(beam electron flux)的话,可经由上方注入器130供应惰性气体(例如Ar或He),惰性气体可强化电极轰击并降低电极108附近的分子气体密度,以增加局部等离子体密度及射束电子流。反之,当期望氢分子的解离(例如,提升所得的膜的纯度)时,可经由注入器130供应含氢气体,以降低局部等离子体密度,但促进氢自由基形成,以排除处理腔室还有所得的类金刚石碳层404中的杂质。
于操作306,在将气体混合物供应至处理腔室内之后,可从RF源功率产生器120、122产生第一RF源功率,并将第一RF源功率施加至电极108,以产生等离子体和次级电子束。来自电极108的次级电子束可产生如上文所述低于100摄氏度的温度下的冷等离子体,冷等离子体可辐照材料层402的表面401,以于其上形成类金刚石层404。此外,也可经由RF源功率产生器174将第二可选RF功率施加至线圈天线172,以加入电感耦合功率。所产生的电感耦合功率可增加对基板的自由基流,并增加对上腔室100a中的电子的离子流入射(或射束流),以产生高密度的射束电子。进一步,电感耦合功率也可降低电极108上的鞘电压(sheath voltage),因此降低射束能量。
在一个实例中,可将RF源功率产生器120、122产生而施加至电极108的第一RF源功率控制在介于1千瓦与约10千瓦之间的范围内。将注意到,RF源功率产生器120、122的频率可介于2MHz与约60MHz之间。可将从RF源功率产生器174产生而施加至线圈天线172的第二源功率(例如,电感耦合功率)控制在介于约1千瓦与约10千瓦之间。施加至线圈天线172的电感耦合功率的频率可介于2MHz与约13MHz之间。在某些实施方式中,可依需求去除或视情况地施加电感耦合功率。例如介于20毫托耳与约20托耳之间的工艺压力,也可用以形成类金刚石碳层404。据信,在沉积工艺期间,次级电子束与所利用的电子束等离子体一起可提供较高的离子轰击,较高的离子轰击可增进来自气体混合物的离子的解离和电子束的能量,以形成具有强健膜结构的类金刚石碳层404。
在沉积期间,可将基板温度控制在介于室温(例如,20摄氏度)与约1000摄氏度之间。可将基板与喷淋头之间的间隔控制在约200密耳(mil)至约1000密耳。
如上文所讨论,从电极108提供的电子束等离子体和次级电子束可由电极鞘(electrode sheath)加速,因此当进入主体等离子体(bulk plasma)时需要额外的能量。这些经加速的电子提供了足够高的能量,以有效率地从分子解离氢,生成足够的氢自由基,以从碳膜(如形成于基板111上的碳膜404)中取出氢杂质,从而形成具高纯度的类金刚石碳层404。经加速的次级射束电子可在基板111(位在电网滤波器104下方的下腔室区域100b处)的上方产生低温等离子体(又称冷等离子体)。因此,产生足够的来自冷等离子体的低能量电子,以有效率地解离处于振动态的氢原子,并生成氢自由基,以增加氢自由基流至基板表面上。
进一步,随着从电极108放射的经加速的次级电子束抵达基板表面,由经加速的次级电子束所携带的高能量,例如,在数百电子伏特(eV)至数千电子伏特(eV)的数量级的能量,可引起表面反应,例如,激发碳sp3表面态(surface state),以在基板111上形成类金刚石碳层404,还可打断弱的(或不期望的)碳sp或sp2键(sp2bond)或甚至C-H键,因而增加可促进类金刚石碳层形成的sp3键,而不是碳结构的非晶态或其它结构。在类金刚石碳层404中键合的碳元素可能大部分形成为sp3碳,且sp3碳具有四个单键指向与其它碳元素键合的四面体的角。非期望的sp2混成碳(hybridized carbon)具有两个单键和一个双键(例如,这三个键指向三角形的角),通常导致膜结构变成非晶态,而不是期望的类金刚石结构。包括在sp3混成碳或sp2混成碳中的氢端基键的数量以及任何缺失或悬空碳键的程度,影响了这些碳原子被连成网络(network)以及被堆积(pack)的紧密程度,因而决定了膜密度和应力。当所有碳原子完全互连时,类金刚石碳层404配置成形成完全sp3混成和零氢含量。在一个实例中,经加速的次级电子束可具有大于100eV的射束能量。
因此,这里所形成的类金刚石碳层404配置成具有大于2.5g/cc的密度。诸如膜透光度的其它膜性质,可在类金刚石碳结构下维持期望的水平。在一个实施方式中,类金刚石碳层404的吸收系数(k)在约633nm的波长下可被控制在介于约0.2与约1.8之间,且在约243nm的波长下可被控制在介于约0.4与约1.3之间,且在约193nm的波长下可被控制在介于约0.3与约0.6之间。类金刚石碳层404可具有介于约10nm与约300nm之间的厚度408。
进一步,从电极108至基板表面的经加速的(如,快速的)电子轰击也可有助于释放所得的类金刚石碳层404的应力,因而形成具有期望低应力水平的类金刚石碳层404,例如介于小于800百万-帕斯卡(MPa)压应力(compressive)之间的应力水平,例如介于约800百万-帕斯卡(MPa)压应力与约100百万-帕斯卡(MPa)压应力之间的应力水平。
如上文所讨论,经加速的次级电子可有助于从CH4提取氢,以形成氢自由基,氢自由基可有助于从所得的膜结构排除杂质。进一步,经由电网滤波器104通往下腔室的次级电子的一部分可成为低电子温度等离子体,例如,所谓的冷等离子体。低电子温度通常具有小于1eV的低电子能量,例如,小于0.5eV。这样具有低能量电子的低电子温度等离子体可解离氢分子,以增加氢自由基流至基板表面上。在沉积工艺期间利用的冷等离子体可将基板支撑基座维持在低温范围下,例如,低于100摄氏度,而不需要如常规需求的那样使用昂贵且复杂的温度控制。在常规实践中,通常需要由加热的基板支撑基座而引起的高基板温度,以将足以破坏氢分子的热能提供给电子,从而提取并提供氢自由基。然而,这样的高温工艺通常会产生高的膜应力,高的膜应力则可能在后续光刻工艺期间引起基板翘曲、基板弓起(bow)或聚焦深度问题。因此,通过利用低基板温度工艺,形成具有低应力水平以及高膜密度的产物类金刚石碳层404,而可促进后续工艺期间的良好蚀刻及光刻工艺控制。
于操作308,在以操作304及306所调控工艺参数进行沉积工艺之后,接着在基板111上形成类金刚石碳层404。在期望高纯度类金刚石碳层404(具有低sp2或sp键合结构)的情况下,可进行可选的后处理工艺,以有助于从所得的类金刚石碳层404排除非期望的杂质。在沉积期间,可能无法避免形成非期望的氢键合、碳sp、碳sp2杂质。因此,可视情况地进行后处理工艺,以协助排除杂质。在一个实施方式中,后处理工艺可为使用Ar等离子体的电子束等离子体处理工艺。等离子体处理可为在电子束处理腔室中进行的电子束(例如,e-射束(e-beam))等离子体处理。可在图1所描绘之处理腔室100中原位(in-situ)进行操作304、306及308的沉积工艺和电子束处理工艺的后处理,而不破坏真空。
在后处理工艺期间,可用的处理气体包括惰性气体,例如Ar或He。在示例性实施方式中,所用的处理气体为Ar气体。
在半导体器件制造工艺中的金属化工艺之前,方法300有益于前端工序(frontend process;FEOL)中所用的工艺。由于类金刚石碳层的蚀刻选择性,以类金刚石碳层作为蚀刻工艺期间的硬模层是理想的。合适的前端工序(FEOL)可包括栅极制造应用、接触结构应用、浅沟槽隔离(STI)工艺等。在也可使用类金刚石碳层作为蚀刻终止层(etch stoplayer)或作为针对不同工艺目的的不同膜的实施方式中,可调整膜的机械或光学性质以符合特定工艺需求。
因此,由电子束等离子体沉积工艺提供了一种用于形成具有期望密度和光学膜性质二者以及具有低应力的类金刚石碳层的方法。所述方法可有利地提供具有诸如低应力及高密度的期望机械性质、以及高蚀刻选择性及膜透光度的类金刚石碳层。并且,可通过氧剥除(oxygen strip)或灰化(ashing)处理容易地自基板移去类金刚石碳层。经改良的类金刚石碳层的机械性质可为后续蚀刻工艺提供高的膜选择性和品质,同时为后续光刻工艺维持期望范围的膜平坦度、应力水平及膜光学性质,诸如折射率(n)及吸收系数(k)。
虽然前述针对本公开内容的实施方式,但在不背离本公开内容的基本范围的情况下可设计出其它的和进一步的实施方式,本公开内容的范围由随附的权利要求书来确定。

Claims (15)

1.一种形成类金刚石碳层的方法,包含下列步骤:
在设置于处理腔室中的基板的表面上方产生电子束等离子体;和
在设置于所述处理腔室中的所述基板的所述表面上形成类金刚石碳层。
2.如权利要求1所述的方法,其中产生所述电子束等离子体的步骤进一步包含下列步骤:
施加第一RF源功率至电极,所述电极设置于所述处理腔室中;和
轰击所述电极,以将次级电子及次级电子束流提供至所述基板的所述表面。
3.如权利要求1所述的方法,其中提供所述电子束等离子体的步骤进一步包含下列步骤:
在产生所述电子束等离子体的同时供应气体混合物至所述处理腔室,其中所述气体混合物包括碳氢化合物。
4.如权利要求3所述的方法,其中所述碳氢化合物选自由CH4、C3H6、C2H2及C2H4所组成的群组。
5.如权利要求2所述的方法,轰击所述电极以提供次级电子及次级电子束流的步骤进一步包含下列步骤:
将具有小于1eV的低电子能量的次级电子提供至所述基板的所述表面。
6.如权利要求5所述的方法,其中提供低电子能量的步骤进一步包含下列步骤:
将基板温度维持在低于100摄氏度。
7.如权利要求2所述的方法,其中所述次级电子束流承载大于100eV的电子束能量。
8.如权利要求1所述的方法,其中所述类金刚石碳层具有大于2.5g/cc的膜密度,且所述类金刚石碳层具有小于800百万-帕斯卡(MPa)压应力(compressive)的膜应力。
9.如权利要求2所述的方法,其中施加所述第一RF源功率的步骤进一步包含下列步骤:
施加第二RF功率至天线线圈,所述天线线圈设置成邻近所述处理腔室。
10.如权利要求2所述的方法,其中施加所述第一RF源功率的步骤进一步包含下列步骤:
施加远程等离子体源至所述处理腔室。
11.如权利要求2所述的方法,其中所述电极由碳材料制造。
12.如权利要求1所述的方法,进一步包含下列步骤:
于所述类金刚石碳层上进行后电子束处理工艺。
13.如权利要求12所述的方法,其中所述后电子束处理工艺包括惰性气体处理工艺。
14.如权利要求1所述的方法,其中所述类金刚石碳层作为蚀刻工艺中的硬模层。
15.一种硬模层,包含类金刚石碳层,所述类金刚石碳层是由电子束等离子体工艺所形成,其中所述类金刚石碳层在用于半导体应用时充当蚀刻工艺中的硬模层。
CN201780027603.2A 2016-06-28 2017-06-01 电子束等离子体工艺形成的类金刚石碳层 Pending CN109075067A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/195,640 2016-06-28
US15/195,640 US10249495B2 (en) 2016-06-28 2016-06-28 Diamond like carbon layer formed by an electron beam plasma process
PCT/US2017/035434 WO2018004973A1 (en) 2016-06-28 2017-06-01 Diamond like carbon layer formed by an electron beam plasma process

Publications (1)

Publication Number Publication Date
CN109075067A true CN109075067A (zh) 2018-12-21

Family

ID=60677044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780027603.2A Pending CN109075067A (zh) 2016-06-28 2017-06-01 电子束等离子体工艺形成的类金刚石碳层

Country Status (7)

Country Link
US (2) US10249495B2 (zh)
EP (1) EP3475971A4 (zh)
JP (1) JP2019521253A (zh)
KR (1) KR102165733B1 (zh)
CN (1) CN109075067A (zh)
TW (1) TWI695901B (zh)
WO (1) WO2018004973A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832430A (zh) * 2021-09-29 2021-12-24 太原理工大学 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法
CN114807893A (zh) * 2021-01-19 2022-07-29 圆益Ips股份有限公司 薄膜形成方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640608B2 (ja) * 2016-03-02 2020-02-05 東京エレクトロン株式会社 基板処理装置
US10410883B2 (en) * 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
CN117524848A (zh) 2017-06-08 2024-02-06 应用材料公司 用于硬掩模及其他图案化应用的高密度低温碳膜
WO2019015899A1 (en) * 2017-07-17 2019-01-24 Asml Netherlands B.V. APPARATUS AND METHOD FOR DETERMINING INFORMATION
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
KR20190020921A (ko) * 2017-08-22 2019-03-05 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
JP7002921B2 (ja) * 2017-11-10 2022-01-20 東京エレクトロン株式会社 基板処理方法及び基板処理装置
WO2019143474A1 (en) * 2018-01-18 2019-07-25 Applied Materials, Inc. Etching apparatus and methods
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
KR20200130490A (ko) 2018-04-09 2020-11-18 어플라이드 머티어리얼스, 인코포레이티드 패터닝 애플리케이션들을 위한 탄소 하드 마스크들 및 이와 관련된 방법들
KR20200130745A (ko) * 2018-04-10 2020-11-19 어플라이드 머티어리얼스, 인코포레이티드 고온 비정질 탄소 증착의 두꺼운 막 증착 동안의 자발적 아킹의 해결
SG11202009289PA (en) 2018-05-03 2020-11-27 Applied Materials Inc Pulsed plasma (dc/rf) deposition of high quality c films for patterning
CN112219260A (zh) * 2018-06-11 2021-01-12 玛特森技术公司 用于处理工件的氢反应性核素的生成
US11158507B2 (en) 2018-06-22 2021-10-26 Applied Materials, Inc. In-situ high power implant to relieve stress of a thin film
US11114306B2 (en) * 2018-09-17 2021-09-07 Applied Materials, Inc. Methods for depositing dielectric material
KR20210066936A (ko) * 2018-10-26 2021-06-07 어플라이드 머티어리얼스, 인코포레이티드 패터닝 애플리케이션들을 위한 고밀도 탄소 막들
KR20210094118A (ko) * 2018-12-17 2021-07-28 어플라이드 머티어리얼스, 인코포레이티드 광학 디바이스 제작을 위한 이온 빔 소스
WO2020154244A1 (en) * 2019-01-23 2020-07-30 Lam Research Corporation Substrate processing system including dual ion filter for downstream plasma
KR20210118198A (ko) * 2019-02-11 2021-09-29 어플라이드 머티어리얼스, 인코포레이티드 펄스형 pvd에서의 플라즈마 수정을 통한 웨이퍼들로부터의 입자 제거를 위한 방법
WO2020242799A1 (en) 2019-05-24 2020-12-03 Applied Materials, Inc. Substrate processing chamber
CN114008761A (zh) 2019-07-01 2022-02-01 应用材料公司 通过优化等离子体耦合材料来调节膜特性
US20210082692A1 (en) * 2019-09-17 2021-03-18 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer
US11043387B2 (en) * 2019-10-30 2021-06-22 Applied Materials, Inc. Methods and apparatus for processing a substrate
KR102393733B1 (ko) * 2020-05-07 2022-05-06 한국세라믹기술원 반도체용 다이아몬드 박막 제조방법
US11664226B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density carbon films for hardmasks and other patterning applications
US11664214B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications
US11404263B2 (en) * 2020-08-07 2022-08-02 Applied Materials, Inc. Deposition of low-stress carbon-containing layers
US11421324B2 (en) 2020-10-21 2022-08-23 Applied Materials, Inc. Hardmasks and processes for forming hardmasks by plasma-enhanced chemical vapor deposition
JP2023012621A (ja) * 2021-07-14 2023-01-26 東京エレクトロン株式会社 成膜方法及びプラズマ処理装置
US20230064100A1 (en) * 2021-09-01 2023-03-02 Applied Materials, Inc. Process and apparatus to remove metal-containing films from a chamber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315889A (ja) * 1996-05-30 1997-12-09 Komatsu Ltd ダイヤモンド薄膜形成装置およびダイヤモンド薄膜形成方法
JP2000265277A (ja) * 1999-03-12 2000-09-26 Nichimen Denshi Koken Kk 電子ビームプラズマを用いる膜生成方法
EP1109196A1 (en) * 1999-12-13 2001-06-20 Axcelis Technologies, Inc. Diamond-like coated components in an ion implanter for reducing x-ray emissions
JP2010024476A (ja) * 2008-07-16 2010-02-04 Plasma Ion Assist Co Ltd ダイヤモンドライクカーボン及びその製造方法
EP2587518A1 (en) * 2011-10-31 2013-05-01 Hauzer Techno Coating BV Apparatus and Method for depositing Hydrogen-free ta C Layers on Workpieces and Workpiece
US20140263173A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Methods for improving etching resistance for an amorphous carbon film
WO2014143775A1 (en) * 2013-03-15 2014-09-18 Plasmability, Llc Toroidal plasma processing apparatus
US20160053366A1 (en) * 2014-08-22 2016-02-25 Applied Materials, Inc. High power impulse magnetron sputtering process to achieve a high density high sp3 containing layer
US20160064500A1 (en) * 2014-09-03 2016-03-03 Applied Materials, Inc. Nanocrystaline diamond carbon film for 3d nand hardmask application

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514743B1 (fr) * 1981-10-21 1986-05-09 Rca Corp Pellicule amorphe a base de carbone, du type diamant, et son procede de fabrication
JPS6142122A (ja) * 1984-08-02 1986-02-28 Matsushita Electric Ind Co Ltd 硬質炭素被覆膜の製造方法
EP0221531A3 (en) * 1985-11-06 1992-02-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha High heat conductive insulated substrate and method of manufacturing the same
JPH05508266A (ja) 1991-04-03 1993-11-18 イーストマン・コダック・カンパニー GaAsをドライエッチングするための高耐久性マスク
US5352493A (en) 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
JPH05209277A (ja) * 1992-01-30 1993-08-20 Matsushita Electric Ind Co Ltd 薄膜の製膜方法、薄膜の製膜装置およびダイヤモンド薄膜
KR100271244B1 (ko) * 1993-09-07 2000-11-01 히가시 데쓰로 전자빔 여기식 플라즈마장치
US6013980A (en) 1997-05-09 2000-01-11 Advanced Refractory Technologies, Inc. Electrically tunable low secondary electron emission diamond-like coatings and process for depositing coatings
JP2868120B2 (ja) 1997-06-11 1999-03-10 川崎重工業株式会社 電子ビーム励起プラズマ発生装置
DE19826259A1 (de) * 1997-06-16 1998-12-17 Bosch Gmbh Robert Verfahren und Einrichtung zum Vakuumbeschichten eines Substrates
US6320295B1 (en) 1998-11-18 2001-11-20 Mcgill Robert Andrew Diamond or diamond like carbon coated chemical sensors and a method of making same
JP2001279448A (ja) * 2000-03-30 2001-10-10 Tdk Corp プラズマcvd装置
US6936551B2 (en) 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US6900002B1 (en) 2002-11-19 2005-05-31 Advanced Micro Devices, Inc. Antireflective bi-layer hardmask including a densified amorphous carbon layer
CN101580928B (zh) * 2003-02-26 2012-07-18 住友电气工业株式会社 无定形碳膜及其制备方法以及无定形碳膜涂敷的材料
US8119240B2 (en) * 2005-12-02 2012-02-21 United Technologies Corporation Metal-free diamond-like-carbon coatings
US20080153311A1 (en) * 2006-06-28 2008-06-26 Deenesh Padhi Method for depositing an amorphous carbon film with improved density and step coverage
JP2009167512A (ja) * 2008-01-21 2009-07-30 Kobe Steel Ltd 摺動部品用ダイヤモンドライクカーボン皮膜およびその製造方法
US20100189923A1 (en) * 2009-01-29 2010-07-29 Asm Japan K.K. Method of forming hardmask by plasma cvd
JP2010209281A (ja) * 2009-03-12 2010-09-24 Kanagawa Acad Of Sci & Technol 基材の被膜形成方法および装置
JP5433897B2 (ja) * 2009-10-22 2014-03-05 好孝 光田 ダイヤモンドライクカーボン皮膜形成部材及びその製造方法
US9304396B2 (en) * 2013-02-25 2016-04-05 Lam Research Corporation PECVD films for EUV lithography
US9443700B2 (en) * 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation
US10475626B2 (en) 2015-03-17 2019-11-12 Applied Materials, Inc. Ion-ion plasma atomic layer etch process and reactor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315889A (ja) * 1996-05-30 1997-12-09 Komatsu Ltd ダイヤモンド薄膜形成装置およびダイヤモンド薄膜形成方法
JP2000265277A (ja) * 1999-03-12 2000-09-26 Nichimen Denshi Koken Kk 電子ビームプラズマを用いる膜生成方法
EP1109196A1 (en) * 1999-12-13 2001-06-20 Axcelis Technologies, Inc. Diamond-like coated components in an ion implanter for reducing x-ray emissions
JP2010024476A (ja) * 2008-07-16 2010-02-04 Plasma Ion Assist Co Ltd ダイヤモンドライクカーボン及びその製造方法
EP2587518A1 (en) * 2011-10-31 2013-05-01 Hauzer Techno Coating BV Apparatus and Method for depositing Hydrogen-free ta C Layers on Workpieces and Workpiece
US20140263173A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Methods for improving etching resistance for an amorphous carbon film
WO2014143775A1 (en) * 2013-03-15 2014-09-18 Plasmability, Llc Toroidal plasma processing apparatus
US20160053366A1 (en) * 2014-08-22 2016-02-25 Applied Materials, Inc. High power impulse magnetron sputtering process to achieve a high density high sp3 containing layer
US20160064500A1 (en) * 2014-09-03 2016-03-03 Applied Materials, Inc. Nanocrystaline diamond carbon film for 3d nand hardmask application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. NAYAK; H. D. BANERJEE: "Bonding characteristics and optical properties of amorphous carbon/diamond films deposited by an electron beam activated plasma CVD method", 《PHYSICA STATUS SOLIDI (A): APPLIED RESEARCH》 *
MASAHITO BAN; TAKESHI HASEGAWA: "Internal stress reduction by incorporation of silicon in diamond-like carbon films", 《SURFACE AND COATINGS TECHNOLOGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807893A (zh) * 2021-01-19 2022-07-29 圆益Ips股份有限公司 薄膜形成方法
CN113832430A (zh) * 2021-09-29 2021-12-24 太原理工大学 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法
CN113832430B (zh) * 2021-09-29 2023-09-05 太原理工大学 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法

Also Published As

Publication number Publication date
EP3475971A1 (en) 2019-05-01
US20170372899A1 (en) 2017-12-28
JP2019521253A (ja) 2019-07-25
TWI695901B (zh) 2020-06-11
KR20190014123A (ko) 2019-02-11
WO2018004973A1 (en) 2018-01-04
KR102165733B1 (ko) 2020-10-14
US10249495B2 (en) 2019-04-02
TW201809339A (zh) 2018-03-16
US20190228970A1 (en) 2019-07-25
EP3475971A4 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
CN109075067A (zh) 电子束等离子体工艺形成的类金刚石碳层
TWI764008B (zh) 高品質間隙填充的高偏壓沉積
US11043375B2 (en) Plasma deposition of carbon hardmask
CN116171337A (zh) 高蚀刻选择性非晶碳膜
KR102478222B1 (ko) 비정질 탄소 하드마스크 막들의 탄소-수소 함량을 감소시키기 위한 시스템들 및 방법들
KR101516648B1 (ko) 산화물 표면 대신 베어 실리콘 상의 폴리머 막들의 선택적 증착
CN113936997A (zh) 用于硬掩模及其他图案化应用的高密度低温碳膜
US20140263173A1 (en) Methods for improving etching resistance for an amorphous carbon film
KR20160102356A (ko) 10nm 이하의 패터닝을 달성하기 위한 물질 처리
KR20130129146A (ko) 탄소 성막-에칭-애싱 갭 충전 프로세스
US20140273461A1 (en) Carbon film hardmask stress reduction by hydrogen ion implantation
CN112219259A (zh) 用于释放薄膜的应力的原位高功率植入
US10658192B2 (en) Selective oxide etching method for self-aligned multiple patterning
WO2021126365A1 (en) Ribbon beam plasma enhanced chemical vapor deposition system for anisotropic deposition of thin films
Pu Plasma Etch Equipment
US11495454B2 (en) Deposition of low-stress boron-containing layers
US10607852B2 (en) Selective nitride etching method for self-aligned multiple patterning
US11404263B2 (en) Deposition of low-stress carbon-containing layers
Matsuo Reactive ion-beam etching and plasma deposition techniques using electron cyclotron resonance plasmas
TW202213516A (zh) 使用dc疊加rf電漿的硬遮罩沉積

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181221

WD01 Invention patent application deemed withdrawn after publication