CN109073089A - 用于机械系统的预测诊断的系统和方法 - Google Patents
用于机械系统的预测诊断的系统和方法 Download PDFInfo
- Publication number
- CN109073089A CN109073089A CN201780022317.7A CN201780022317A CN109073089A CN 109073089 A CN109073089 A CN 109073089A CN 201780022317 A CN201780022317 A CN 201780022317A CN 109073089 A CN109073089 A CN 109073089A
- Authority
- CN
- China
- Prior art keywords
- mechanical sealing
- sealing system
- interface
- slidingly sealed
- api standard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3492—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/005—Sealing rings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/32—Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
- G01N29/326—Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise compensating for temperature variations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4436—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/48—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C3/00—Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/022—Liquids
- G01N2291/0226—Oils, e.g. engine oils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Signal Processing (AREA)
- Mechanical Sealing (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Sealing Devices (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
提供一种用于监测机械密封件的预测诊断系统。所述系统自主地检测机械密封件的滑动密封界面内的润滑损耗,所述系统包含:润滑损耗故障模式逻辑模块,其被配置成监测由一个或多个传感器感测的数据并诊断与所述滑动密封界面内的润滑损耗相关的状况;和多个其它故障模式逻辑模块,其被配置成监测由所述一个或多个传感器感测的数据并诊断与已知在机械密封系统中发生的特定类型的机械故障相关的状况,所述润滑损耗故障模式逻辑模块被配置成确定在与所述滑动密封界面内的润滑损耗相关的状况的所述诊断期间启用所述多个其它故障模式逻辑模块中的哪些。
Description
相关申请
本申请要求2016年2月23日提交的美国临时申请第62/298,814号、2016年2月23日提交的美国临时申请第62/298,839号、2016年2月23日提交的美国临时申请第62/298,848号、2016年2月23日提交的美国临时申请第62/298,851号、2016年3月2日提交的美国临时申请第62/302,458号以及2016年3月2日提交的美国临时申请第62/302,451号的权益,所述申请中的每一个以全文引用的方式并入本文中。
技术领域
本公开大体上涉及机械密封系统。更具体地说,本公开涉及被配置成检测操作状况、提供机械密封系统的实时稳定性评定及预测诊断的系统。
背景技术
机械密封件是一种装置,其被配置成在例如泵、混合器等的装置的静态外壳与旋转轴之间提供密封界面以用于抑制所述装置内的流体逸出和/或外部污染物进入所述装置。机械密封件用于广泛多种工业应用、处理介质和操作条件,其中必须密封旋转轴与静态外壳之间的间隙。
参考图1,描绘了现有技术的机械密封件100的横截面视图。在此描绘中,机械密封件100被配置成抑制流体流和污染物通过固定外壳104与旋转轴106之间的间隙102。机械密封件100大体上包括环状固定环108(也称为主环)和环状旋转环110(也称为配对环)、一对密封件或封盖112、114(其大体上是但当然不限于弹性密封元件,例如O形环)以及偏置构件116。虽然图1中所描绘的机械密封件100包括单对密封环108和110,但是本领域已知的各种机械密封件可包括其它密封界面,例如美国专利第8,857,818号(其被让与给本申请的申请人)中所公开的双重密封实施例,所述专利的内容以引用的方式并入本文中。
在操作时,环状固定环108保持相对于外壳104固定在适当位置。封盖112位于环状固定环108与外壳104之间,以抑制这些组件之间的流体流。环状旋转环110随旋转轴106旋转。封盖114位于环状旋转环110与旋转轴106之间,以抑制这些组件之间的流体流。
环状固定环108和环状旋转环110都包含平滑接触密封面109、111,由此形成滑动密封界面118。因此,机械密封件100的使用使得径向间隙102—流体通常会从中逸出—通过垂直于旋转轴106的平坦滑动密封界面118来密封,并且因此更容易密封。
偏置构件116,例如一个或多个盘簧和/或波纹管布置,可位于旋转轴106上的凸台120与封盖114和/或环状旋转环110之间,以将浮动环状旋转环110朝向环状固定环108推动。以这种方式,偏置构件116通过适应较小轴偏转、因轴承公差引起的轴移动和因制造公差引起的未垂直对准来帮助维持接触密封面109、111之间的接触。
因为环状旋转环110相对于环状固定环108旋转,所以在操作期间,密封面109、111上自然存在一些磨损。具体来说,在存在摩擦和热量产生的情况下可能加速滑动密封界面118的磨损。密封面109、111的过度磨损最终导致机械密封件100的故障。
为减慢磨损速率,常将通常被称为润滑流体或隔离流体的润滑剂引入到密封界面118中。润滑流体可以是待密封的流体,或其可以是引入到密封界面118中的另一隔离流体。在另一实例中,密封界面可通过干燥气体润滑,例如所密封产品的蒸气、空气或氮气。维持恰当的膜厚度和润滑剂在密封界面118内的流量是最小化密封面109、111的磨损的重要方面。因此,在这些类型的机械密封件中,精确控制密封面109、111的几何形状和间隙102的宽度,因为其在确定膜厚度和润滑剂的流量中起到重要作用。
更先进的机械密封系统可以包含多个机械密封件,例如双重(dual/double)机械密封件。这类机械密封系统可能具备多于一种润滑流体。举例来说,在一些双重密封系统中,第一机械密封件通过所密封产品的蒸气来润滑,且第二机械密封件用与所密封产品相容的另一液体或气体润滑。在一些情况下,第二机械密封件的润滑流体可以维持在较高压力下,以进一步最小化所密封产品到大气的泄漏。
因此,机械密封系统不仅可以包含机械密封件自身,还可以包含密封件支撑系统,例如外部储液槽、用于液体润滑密封件的囊状或活塞式蓄压器和用于气体润滑密封件的气体调节单元(gas conditioning unit;GCU)的气体处理单元(gas treatment unit;GTU)。这些单元可以包含提供润滑流体的适当过滤、流量管理、加热、冷却和其它调节的组件。机械密封系统还可以包含适当管理密封件以及外壳和/或安装相关机械密封件的装置上的流体流量所需的管道、管件和其它连接单元。
如同所有机械系统一样,环状固定环108和环状旋转环110最终将磨损且需要替换。在一些情况下,机械密封件100的组件将一直到达其使用寿命的终点。在其它情况下,某些条件将加速机械密封件100内的组件的磨损。这些条件中的一些包含密封组件的错误安装或不当密封件选择、密封面在操作期间由于轴向未对准或不当装载而打开、闪蒸(引起密封件的脉动泄漏和颤振的液体到蒸气的转变)、空穴或可引起润滑剂薄膜塌陷的环境条件。
旋转设备的高效操作和维护对于最大化生产能力和最小化停机时间而言是极其重要的。此外,出人意料的灾难性设备故障可能导致人员受伤。幸运的是,在多数情况下,机械密封系统将在灾难性故障之前开始出现危险迹象,且在一些情况下,指示组件的剩余使用寿命。
常规设备监测最常受定期视察设备以观察噪声和泄漏并以加速计采集振动读数的人影响。随后可以将所收集信息与设备上的历史数据进行比较,以检测趋势,从而指示机械密封件100的总体稳定性。在以下中论述用于状况监测和诊断的各种方法:国际标准组织(International Standards Organization;ISO)17359:2011,《机器的状况监测和诊断—一般准则(CONDITION MONITORING AND DIAGNOSTICS OF MACHINES—GENERALGUIDELINES)》;和ISO 13381-1:2015,《机器的状况监测和诊断—预测(CONDITIONMONITORING AND DIAGNOSTICS OF MACHINES—PROGNOSTICS)》所述方法的内容以引用的方式并入本文中。
这个过程的一个问题是所涉及的时间和劳动成本。另一个问题是并非一直监测设备,由此可能发生例如闪蒸、空穴和某些环境状况的负面影响而无警告。
更先进的监测系统可以采用能够实时监测设备和机械密封件100的一个或多个传感器。这些传感器可以包含例如温度传感器、压力传感器和加速计。这类传感器可以是侵入式的,需要在固定外壳104内永久或暂时插入探针或传感器,或其可以是非侵入式的并且能够检测来自固定外壳104或机械密封系统的其它组件外部的感测数据。这类系统尤其适用于待监测的设备处于危险位置或对这类设备的接近通常受阻的应用。这类系统的实例公开于美国专利第6,082,737号和第6,325,377号;以及美国专利公开第2013/0275056号和第2014/0161587号(全部让与本申请的申请人),所述专利的内容以引用的方式并入本文中。
例如以下中所公开的其它系统可进一步提供对安装相关机械密封件的装置的监测:例如美国专利第8,651,801号和第9,145,783号(让与本申请的申请人),所述美国专利的内容以引用的方式并入本文中,所述装置例如泵、混合器等等。这类先进的监测系统可以响应于监测到的状况提供对机械密封件、密封件支撑系统或其它组件的有限量的控制。举例来说,监测系统包含控制算法,其被配置成通过调整机械密封系统的某些操作参数来自动减轻机械密封件功能失常的影响。
在一些情况下,安装监测系统的各种传感器以辅助识别一个或多个先前识别的机械密封系统可能发生故障的方式。机械密封系统可能发生故障的各种方式可以通过称为故障模式和影响分析(Failure Modes and Effects Analysis;FMEA)的过程来确定。FMEA是用于识别机械密封系统中的所有可能故障的分步方法。术语“故障模式”是指机械密封系统可能故障的方式或模式,故障意味着可能不利地影响机械密封系统的性能和/或耐久性的任何类型的错误或缺陷。
一旦已经识别出机械密封系统的可能故障模式,就通过称为“影响分析”的过程来分析故障模式的影响,以便了解识别出的故障模式的后果。基于影响分析,根据故障模式的后果的严重度、可能发生的频率和可以检测到的难易程度来对其进行优先排序。
FMEA的总体目的是从最高优先级故障模式开始采取措施来消除或减少故障。因此,通常在设计阶段期间使用FMEA来避免预料到的故障模式;然而,其也可以用于操作期间。在以下中论述FMEA:国际电工委员会(International Electrotechnical Commission;IEC)标准60812:2006:《用于系统可靠性的分析技术—故障模式和影响分析(FMEA)的过程(ANALYSIS TECHNIQUES FOR SYSTEM RELIABILITY—PROCEDURE FOR FAILURE MODE ANDEFFECTS ANALYSIS)》,所述标准的内容以引用的方式并入本文中。
当特定机械密封系统的FMEA显示出高优先级故障模式时,可以通过先进的监测系统监测某些操作状况,以辅助确定故障模式是正在发生还是即将发生。具体来说,机械密封系统领域的专家,例如设计师、工程师或技术人员,可以基于其经验针对与高优先级故障模式相关的给定操作状况设置特定阈值或限制。其后,在操作期间,如果超出所监测状况的阈值或限制,那么可以警示操作者。
令人遗憾的是,在一些情况下,已证明通过先进的监测系统的单独的个别传感器提供的信息不足以用于作出关于机械密封系统的总体稳定性的结论性决定。举例来说,超出预定义阈值或限制的特定操作状况可以指示特定故障模式正在发生,但基于其它操作状况,所超出的阈值或限制也可能指示完全不同类型的故障或事件。已知复杂的机械密封系统由于多个相关原因而经历故障。因此,迄今研发的先进监测系统可能需要操作人员对所监测的机械密封系统具备必要的知识水平,以便恰当地诊断机械密封系统的故障和整体稳定性。
操作人员具有能够抽象地推理并可能从其经验中提取信息的优点,但操作人员的效率可能因其不能消化大量传感器数据而受阻碍。举例来说,在一些情况下,操作人员可能在无意中忽略了相关数据,导致不当的诊断。在其它情况下,对于作出关于机械密封系统的稳定性的决定的延迟可能会导致无法避免即将发生的故障的情形,而提早作出决定则可能采取纠正措施来避免故障。
此外,安装和操作这类机械密封系统的成本可能过高。首先,监测高优先级故障模式的状况可能需要专门设计用于待监测的机械密封系统的定制先进监测系统。尤其是当待监测的设备是独特的或非标准的,或当特定环境状况要求针对特定应用调适系统时需要如此。其次,先进监测系统的操作者必须具有必要的知识,以便恰当地诊断潜在故障,所述操作者通常要求更高的薪资。
因此,本行业需要一种使得能够构建经过调适多定制先进监测机械密封系统且自主地在改进的可靠性和增加的速度下操作,由此降低操作期间由操作人员一直监测机械密封系统的需求的系统和方法。
发明内容
本公开的实施例满足本行业对于自主的先进监测机械密封系统和方法的需求,所述系统和方法提供改进的可靠性和增加的速度,由此降低操作期间由具有机械密封系统的必要知识的操作人员一直监测机械密封系统以便恰当地诊断潜在故障的需求。本公开的一个实施例包含多个预制的故障模式逻辑模块。每个故障模式逻辑模块可以被配置成监测由多个传感器感测的数据并诊断与已知在机械密封系统中发生的一种特定类型的机械故障相关的状况。通过使用多个故障模式逻辑模块,可以诊断大量特定类型的机械故障。可以基于实际上在机械密封系统中发生每个特定类型的机械故障的发生可能性来启用多个故障模式逻辑模块中的选择故障模式逻辑模块。
为了确定应为系统启用多个故障模式逻辑模块中的哪些,可以例如通过FMEA来评估机械密封系统,以确定最可能发生哪些特定类型的机械故障。其后,可以启用或停用多个预制的故障模式逻辑模块中的每一个,以适合个别客户需求、特定环境状况和/或机械密封系统的特定应用。此外,因为预先构建了故障模式逻辑模块,使得可以在需要时启用所述模块,所以这类系统的安装可以用安装从头开始建构的系统的价格的一小部分完成。
每个启用的故障模式逻辑模块可采用逻辑和/或人工智能算法,所述算法被配置成检测并分析一个或多个操作状况,以用于预测特定类型的故障以及大体上提供对机械密封系统的实时稳定性评定。举例来说,启用的故障模式逻辑模块可以使用关于在其分析状况时启用了哪些其它故障模式逻辑模块(即,最可能发生哪些特定类型的机械故障)的知识,所述状况与所述启用的故障模式逻辑模块被设计用以诊断的特定类型的机械故障相关。因此,每个故障模式逻辑模块可以包括一组规则,所述规则使得先进监测系统能够在不需要操作人员对监测待机械密封系统具有必要知识水平来恰当地诊断故障和机械密封系统的整体稳定性的情况下恰当地诊断故障并作出关于机械密封系统的整体稳定性的结论性决定。因此,在一个实施例中,通过一组复杂的规则,故障模式逻辑模块被配置成执行先前不可通过先进监测机械密封系统执行的功能。
本公开的一个实施例提供一种监测机械密封系统以便自主诊断机械密封件的滑动密封界面内的润滑损耗的方法,所述方法包含:感测接近机械密封件的声发射数据;确立所感测的声发射数据的基准状况;感测滑动密封界面内或近端的润滑流体的温度;确立滑动密封界面内或近端的润滑流体的所感测温度的基准状况;确定机械密封系统是否被配置成诊断提供到滑动密封界面的润滑流体的低流量;确定所感测底声发射数据是否超过所感测的声发射数据的确立基准状况;确定滑动密封界面内或近端的润滑流体的所感测温度是否超过滑动密封界面内或近端的润滑流体的所感测温度的确立基准状况;确定机械密封系统是否被配置成诊断润滑流体的压力反向;确定机械密封件是否被配置成诊断接近滑动密封界面的空穴;以及向用户发送检测到滑动密封界面内的润滑损耗的通知。
在一个实施例中,所述方法进一步包括评估机械密封系统,以确定机械密封系统关于以下中的至少一个的故障可能性:滑动密封界面内的润滑损耗、提供到滑动密封界面的润滑流体的低流量、滑动密封界面近端的润滑流体的压力反向和接近滑动密封界面发生的空穴。在一个实施例中,所述方法进一步包括调适机械密封系统,以诊断具有确定的高发生可能性的机械密封系统故障相关的操作状况,以便适合个别客户需求、特定环境状况和/或机械密封系统的特定应用。
在一个实施例中,所述方法进一步包括启用机械密封系统内的润滑损耗故障模式逻辑模块,其中润滑损耗故障模式逻辑模块被配置成诊断与滑动密封界面内的润滑损耗相关的状况。在一个实施例中,所述方法进一步包括启用润滑流体低流量故障模式逻辑模块、润滑流体压力反向故障模式逻辑模块和滑动密封界面内空穴故障模式逻辑模块中的至少一个。
在一个实施例中,发送到用户的通知指示滑动密封界面内的润滑损耗的严重度。在一个实施例中,通知包含建议消息,其被配置成为用户提供指南以便寻找故障和/或采取适当措施来弥补滑动密封界面内的润滑损耗。在一个实施例中,所述方法进一步包括启动计时器,以确定在通知用户之后经过的时间。在一个实施例中,实施方法进一步包括在经过的时间超过预定义时间段的情况下发送报警消息。在一个实施例中,预定义时间段为30分钟或更短。在一个实施例中,警报消息包含机械密封件的估计剩余使用寿命。
本公开的一个实施例提供一种机械密封系统,其被配置成自主地检测机械密封件的滑动密封界面内的润滑损耗。所述机械密封系统可以包含机械密封件、一个或多个传感器、润滑损耗故障模式逻辑模块和多个其它故障模式逻辑模块。机械密封件可以具有固定外壳与旋转轴之间的滑动密封界面。一个或多个传感器可以被配置成感测接近机械密封件的声发射数据和滑动密封界面内或接近所述界面的润滑流体的温度。润滑损耗故障模式逻辑模块可以被配置成监测由一个或多个传感器感测的数据并诊断与滑动密封界面内的润滑损耗相关的状况。多个其它故障模式逻辑模块可以被配置成监测通过一个或多个传感器感测的数据并诊断与已知在机械密封系统中发生的特定类型对机械故障相关的状况。多个其它故障模式逻辑模块可以包含润滑流体低流量故障模式逻辑模块、润滑流体压力反向故障模式逻辑模块和/或接近滑动密封界面的空穴故障模式逻辑模块中的至少一个。可以基于每个故障模式逻辑模块的相应特定类型的机械故障实际上在机械密封系统内发生的可能性启用多个故障模式逻辑模块中的选择故障模式逻辑模块。润滑损耗故障模式逻辑模块可以被配置成确定在与滑动密封界面内的润滑损耗相关的状况的诊断期间启用多个其它故障模式逻辑模块中的哪些。
在一个实施例中,启用多个故障模式逻辑模块中的选择故障模式逻辑模块以用于调适机械密封系统以便适合个别客户需求、特定环境状况和/或所述机械密封件的特定应用。在一个实施例中,基于机械密封系统的评估启用多个故障模式逻辑模块中的选择故障模式逻辑模块,以确定机械密封系统的关于以下中的至少一个的故障可能性:滑动密封界面内的润滑损耗、提供到滑动密封界面的润滑流体的低流量、滑动密封界面近端的润滑流体的压力反向和/或接近机械密封系统的滑动密封界面发生的空穴。
本公开的一个实施例提供一种机械密封系统,其具有调适成适合个别客户需求、特定环境状况和/或特定应用的可定制预测诊断子系统。机械密封系统可以包含机械密封件、多个感测装置和多个故障模式逻辑模块。机械密封件可安装在固定外壳与可旋转轴之间。多个感测装置可以被配置成感测接近机械密封件的压力、温度、转速、振动和声发射中的至少一个。多个故障模式逻辑模块各自可以被配置成监测由多个感测装置中的一个或多个感测的与已知在机械密封件中发生的特定类型的机械故障相关的数据,并向用户提供关于实际上在机械密封系统中发生特定类型的机械故障的通知,通过用户接口提供给用户。通过用户接口选择性地启用多个故障模式逻辑模块中的某些故障模式逻辑模块,以用于调适所述预测诊断系统以便适合个别客户需求、特定环境状况和/或机械密封系统的特定应用。
在一个实施例中,特定类型的机械故障是机械密封件的滑动密封界面内的润滑损耗、滑动密封界面内的润滑流体的低流量、滑动密封界面近端的润滑流体的压力反向和/或接近滑动密封界面发生的空穴中的至少一个。
在一个实施例中,机械密封系统是以下中的至少一个:符合API标准01、API标准02、API标准11、API标准12、API标准13、API标准14、API标准21、API标准23、API标准31、API标准32、API标准41、API标准52、API标准53A、API标准53B、API标准53C、API标准54、API标准62、API标准65A、API标准65B、API标准66A、API标准66B、API标准72、API标准74、API标准75和/或API标准76的系统或其组合。在一个实施例中,机械密封系统可操作地连接到泵。在一个实施例中,机械密封件包含引入润滑流体的至少一个滑动密封界面。在一个实施例中,机械密封系统进一步包含润滑流体调节单元,所述润滑流体调节单元包含热交换器和囊状蓄压器。
在一个实施例中,多个感测装置中的至少一个包含以下中的至少一个:被配置成监测泵的声发射的传感器,被配置成监测泵的振动和/或转速的传感器;被配置成监测泵的温度的传感器;被配置成监测离开滑动密封界面的润滑流体的温度和/或压力的传感器;被配置成监测进入滑动密封界面的润滑流体的温度和/或压力的传感器,被配置成监测滑动密封界面的声发射的传感器,被配置成监测滑动密封界面中或近端的润滑流体的温度和/或压力的传感器,被配置成监测囊状蓄压器近端的润滑流体的温度和/或压力的传感器,和/或被配置成监测热交换器近端的润滑流体的温度和压力的传感器。
在一个实施例中,多个感测装置可操作地连接到一个或多个数据集合器,所述数据集合器被配置成接收并处理由多个感测装置中的一个或多个感测的数据且将由多个感测装置中的一个或多个感测的数据传输到一个或多个服务器。在一个实施例中,多个感测装置可操作地连接到一个或多个数据集合器,所述数据集合器被配置成接收并处理由多个感测装置中的一个或多个感测的数据且将由多个感测装置中的一个或多个感测的数据传输到一个或多个服务器,其中由一个或多个多个感测装置感测的数据以无线方式传输到一个或多个服务器。
在一个实施例中,通知包含非正式通知、警示通知、警报通知、跳闸通知和被配置成为用户提供指南以便寻找故障并对现存状况采取适当措施的建议消息中的至少一个。
本公开的一个实施例提供一种机械密封系统,其被配置成在操作期间检测操作状况并向用户提供实时稳定性评定。所述机械密封系统可以包含旋转装置、机械密封件、润滑流体调节单元、多个传感器和多个故障模式逻辑模块。旋转装置可以包含固定外壳和旋转轴。机械密封可以被配置成在旋转装置的旋转轴中的固定外壳之间提供滑动密封界面。润滑流体调节单元可以被配置成将润滑流体引入到滑动密封界面中。多个传感器可以被配置成感测机械密封件的操作状况。多个故障模式逻辑模块可以被配置成监测所感测的操作状况并借助于通知通过用户接口向用户提供关于机械密封系统中发生特定类型的机械故障的可能性的反馈。可以启用或停用多个故障模式逻辑模块中的每一个,以适合个别客户需求、特定环境状况和/或机械密封系统的特定应用。
本公开的一个实施例提供一种机械密封系统,其具有被配置成将机械密封件的所监测状况以无线方式传达到远离机械密封件近端的潜在危险操作环境的区域的预测诊断子系统。所述机械密封系统可以包含机械密封件、一个或多个感测装置、位于远端的服务器和数据集合器。机械密封件可以安装在可旋转轴中的固定外壳之间。一个或多个感测装置可以被配置成感测接近机械密封件的压力、温度、转速、振动和/或声发射中的至少一个。位于远端的服务器可以被配置成收集并分析由一个或多个感测装置感测的数据。数据集合器可以被配置成将由一个或多个感测装置感测的数据以无线方式传达到位于远端的服务器。数据集合器可以包含防爆壳体、一个或多个传感器输入端、信号处理器和输出接口。一个或多个传感器输入端可以被配置成接收由一个或多个感测装置感测的数据。信号处理器可以被配置成将由一个或多个感测装置感测的数据转化成数字信号。输出接口可以被配置成将数字信号以无线方式传输到服务器。
在一个实施例中,数据集合器可以被配置成实时接收由一个或多个感测装置感测的数据。在一个实施例中,防爆壳体可以适用于用于爆炸性环境的设备(Appareils destinés à être utilisés en Atmosphères Explosibles;ATEX)区1环境内。在一个实施例中,壳体可以是防水的。在一个实施例中,壳体可由铝构成。
在一个实施例中,数据集合器可以包含齐纳二极管,其被配置成限制流入潜在危险操作环境的电能。在一个实施例中,数据集合器可以包含总共十四个传感器输入端。在一个实施例中,传感器输入端可包含压力和/或温度传感器的八个输入端、振动传感器的三个输入端、声发射传感器的两个输入端和转速传感器的一个输入端。
在一个实施例中,信号处理器被配置成处理由一个或多个感测装置感测的数据,以减少将由输出接口传输的数据的量。在一个实施例中,数据集合器进一步包括存储器,所述存储器被配置成存储由一个或多个感测装置感测的数据。在一个实施例中,输出接口至少在计划时间、随机时间和/或通过服务器的请求将数字数据传输到服务器。
本公开的一个实施例提供一种机械密封系统,其被配置成在操作期间检测操作状况并向用户提供实时稳定性评定。所述机械密封系统可以包含机械密封件、多个传感器、服务器和数据集合器。机械密封件可以具有旋转装置的固定外壳与旋转轴之间的滑动密封界面。多个传感器可以被配置成感测机械密封系统的操作状况。服务器可以被配置成收集并分析所感测的操作状况。数据集合器可以被配置成将由一个或多个感测装置感测的数据以无线方式传达到位于远端的服务器。数据集合器可以包含防爆壳体、一个或多个传感器输入端、信号处理器和输出接口。一个或多个传感器输入端可以被配置成接收所感测的操作状况。信号处理器可以被配置成将所感测的操作状况转化成数字信号。输出接口可以被配置成将数字信号以无线方式传输到服务器。
在实施例中,至少部分基于在机械系统处于稳态时收集的感测数据来确定用于与感测值比较的阈值。在实施例中,可以基于由本设计和机械密封系统的已知操作环境确定的预期参数调整用于比较的阈值。在实施例中,可以至少部分基于积分密封性能模拟算法来确定用于比较的阈值。在实施例中,可以在无需在机械系统处于稳态时收集的感测数据的情况下确定用于比较的阈值。
以上发明内容并不打算描述本公开的每个所示实施例或每一种实施方案。附图和以下详细描述更具体地例示了这些实施例。
附图说明
结合附图来考虑本公开的各种实施例的以下详细描述,能够更充分地理解本公开,在附图中:
图1是描绘现有技术的机械密封件的部分横截面视图。
图2是描绘根据本公开的实施例的机械密封系统的部分横截面正视图。
图2A是描绘根据本公开的实施例的图2机械密封系统的一部分的部分横截面正视细节图。
图3是描绘根据本公开的实施例的预测诊断子系统的示意图。
图4是描绘根据本公开的实施例的数据集合器的框图。
图5A到图5B是描绘根据本公开的实施例的服务器的框图。
图6是描绘根据本公开的实施例的润滑损耗故障模式算法的流程图。
图7A到图7B描绘根据本公开的实施例的控制板通知和建议。
图8描绘根据本公开的实施例的一种操作预测诊断服务器的方法。
图9描绘根据本公开的实施例的一种检测机械密封系统中的稳态状况的方法。
图10描绘根据本公开的实施例的使得机械密封系统能够在确立稳态状况之前监测和警示操作者瞬态模式中的危急状况的方法。
虽然本公开的实施例容许各种修改和替代形式,但其细节借助于实例在图式中示出且将予以详细描述。然而,应理解,并不意图将本公开限制于所描述的特定实施例。相反地,意图涵盖属于如由所附权利要求书定义的本公开的精神和范围内的所有修改、同等物和替代例。
具体实施方式
参考图1,描绘了根据现有技术的机械密封件100。机械密封件100的细节描述于上文背景技术部分中。在其它实施例中,机械密封件100可以是符合美国石油工业(AmericanPetroleum Industry;API)标准682的密封件。美国石油工业标准表示油和天然气工业在环境保护、声音工程和操作实践与安全、可更换设备与材料方面的集体智慧。API标准计划由美国国家标准协会(American National Standards Institute;ANSI)认证,且API标准中的多个已经纳入州和联邦法规。
参考图2,描绘了根据本公开的实施例的包含机械密封件100的机械密封系统200。在这个实施例中,将机械密封系统200描绘为符合美国石油工业(API)标准53B的系统。其它涵盖的机械密封系统200包含符合API标准01、API标准02、API标准11、API标准12、API标准13、API标准14、API标准21、API标准23、API标准31、API标准32、API标准41、API标准52、API标准53A、API标准53B、API标准53C、API标准54、API标准62、API标准65A、API标准65B、API标准66A、API标准66B、API标准72、API标准74、API标准75和API标准76的系统或其组合,例如API标准11和API标准52的组合。API标准和机械密封管道规划的其它细节可在JOHN CRANE《机械密封管道规划袖珍指南(Mechanical Seal Piping Plans,Pocket Guide)》(第4版)(2016)中找到,其内容以引用的方式并入本文中。
在一个实施例中,机械密封系统可以包含旋转机器204,例如离心泵。旋转机器204可以包含外壳206。外壳206可以限定被配置成容纳叶轮210的内部隔室208。内部隔室208可以与抽吸喷嘴212和排放喷嘴214流体连通。叶轮210能可操作地连接到旋转轴216,所述旋转轴能可操作地连接到驱动机构(未描绘)。
可通过一个或多个机械密封件100抑制流体泄漏和/或污染物到内部隔室208的流体中的引入。如图2中所描绘,机械密封系统200包含两个机械密封件100A/100B。在这个实施例中,内侧密封件100A可以定位在内部隔室208近端,而外侧密封件100B可以定位在润滑流体入口和出口近端。
由内侧和外侧密封件100A/100B的滑动密封界面118产生的热和摩擦可以通过引入润滑流体来冷却和润滑。润滑流体可以在润滑入口218处进入机械密封件100且在润滑出口220处离开机械密封件100A/100B。在离开机械密封件100A/100B后,润滑流体可以穿过导管222到达热交换器224。在一个实施例中,热交换器224可以被配置成通过与冷却流体(例如水或空气)热传递来冷却润滑流体。导管222可以包含一个或多个事件226和一个或多个润滑排放连接228
流体压力可以通过囊状蓄压器230施加到热交换器224的出口处的润滑流体。来自外部来源的压力可以通过囊状充注连接232施加到囊状蓄压器230。囊状蓄压器230可以包含囊状充注连接232近端的例如一个或多个规格形式的压力和/或温度指示器234。加压润滑流体可以通过过阀门236进入导管238中。导管238可以进一步包含阀控润滑剂填充连接240。
冷却和加压润滑流体可以通过导管242进入润滑入口218。导管242可以进一步包含被配置成提供对冷却和加压润滑流体的状况的视觉指示的一个或多个温度、压力和/或流量指示器244。
在一个实施例中,机械密封系统200可以包含被配置成使得能够实时监测机械密封系统200的一个或多个传感器202。这些传感器202可以是侵入式或非侵入式的。举例来说,在一个实施例中,一个或多个传感器202可以嵌入机械密封件100中,例如美国专利第8,651,801号(先前以引入的方式并入)的干式密封布置中所描绘的传感器。如图2中所描绘,这些传感器可以包含:被配置成监测旋转机器的声发射的传感器202A;被配置成监测旋转机器的振动和/或转速的传感器202B;被配置成监测旋转机器的温度的传感器202C;被配置成监测离开滑动密封界面的润滑流体的温度和/或压力(可替代地称为流出隔离流体出口温度和/或压力)的传感器202D;被配置成监测进入滑动密封界面的润滑流体的温度和/或压力(可替代地称为流入隔离流体入口温度和/或压力)的传感器202E;被配置成监测滑动密封界面的声发射的传感器202F;被配置成监测滑动密封界面中或近端的润滑流体的温度和/或压力(可替代地称为隔离流体温度和压力)的传感器202G;被配置成监测囊状蓄压器近端的润滑流体的温度和/或压力的传感器202H;以及被配置成监测热交换器近端的润滑流体的温度和压力的传感器202I。还涵盖其它传感器202及其组合。
参考图3,机械密封系统200可以进一步包含预测诊断子系统300,其被配置成监测机械密封系统200的整体稳定性并提供对即将发生的故障的指示。可以包含一个或多个传感器202来作为预测诊断系统300的组件。举例来说,在预测诊断系统300的一个实施例中,一个或多个传感器202能可操作地连接到一个或多个数据集合器302。数据集合器可以被配置成接收并处理由一个或多个传感器202感测的数据,且将感测数据传输到一个或多个服务器304。服务器304可以使用感测数据来确定关于机械密封系统200的稳定性,并向例如工厂分布式控制系统(Plant Distributed Control System;DCS)的控制系统306和本地操作者或用户308提供警示、通知和/或建议消息。在一个实施例中,本地操作者308可以是本地硬接线和/或无线接口或远程和/或基于网络的接口。在一个实施例中,服务器304可以与被配置成将数据传达到远程用户308的网络307连通。预测诊断系统300的组件之间的各种通信链路可以是有线或无线的。
参考图4,描绘了根据本公开的实施例的数据集合器302的框图。数据集合器302可以被配置成从传感器202实时接收数据且将感测数据传输到服务器304。在一个实施例中,数据集合器302包含在壳体402内,所述壳体可以用于遮蔽数据集合器302的内部组件以免受其操作环境的通常严酷的环境状况影响。举例来说,壳体402可以是防爆的和/或适用于用于爆炸性环境的设备(ATEX)区1环境内(即,由与呈气体、蒸气或薄雾形式的危险物质与空气的混合物组成的爆炸性大气可能偶尔在正常操作期间产生的场所)。在实施例中,防爆壳体402可以含有内部爆炸,以避免点燃周围大气。壳体402也可以提供例如防水或防火环境保护。在一个实施例中,壳体402可以由铝构成。在其它实施例中,可使用提供足够环境保护的其它材料。
在一个实施例中,数据集合器302可以包括电力输入端(未图示)。在一个实施例中,电力输入端可以接收24伏直流电(DC)。同样涵盖其它电力输入端。在一个实施例中,数据集合器302可以包含安全二极体(未示出),例如能够限制通过数据集合器302流入危险环境的电能的齐纳二极管。
在一个实施例中,传感器输入接口404可以是可操作地连接到一个或多个传感器202的有线或无线接口。数据获取引擎406可以包含高速数据获取板,并且可以被配置成从传感器输入接口404接收原始信号。在一个实施例中,数据获取引擎406可以支持与十四个传感器202连通的十四个传感器通道。举例来说,在一个实施例中,支持的传感器通道可以包含用于本领域中已知的标准传感器的八个4到20毫安通道、用于振动传感器的三个通道、用于声发射传感器的两个通道和用于转速计或转速传感器的一个通道,所述标准传感器例如压力传感器或温度传感器。
信号处理引擎408可以将由数据获取引擎406接收的模拟数据转化成数字信号。在一个实施例中,信号处理引擎408进行进一步信号处理以减小待从数据集合器302传输的数据的体积或量。
在一个实施例中,来自信号处理引擎408的数字信号可以在存储器410内列队,以用于通过输出接口412分批传输到服务器304。在一个实施例中,输出接口412可以在定期时间、随机时间或通过来自服务器304的请求提供数字信号。在一个实施例中,输出接口412可以包括:有线以太网连接,通过WiFi或其它商用现成无线电的无线连接,或例如通用串行总线(USB)、并联或其它直接线缆连接的其它直接有线连接。因为数据集合器302实体地被配置成耐受恶劣环境,所以系统300的其它组件,例如服务器304和客户端306,可以位于危险工作环境内或外的安全区域中。
参考图5A,根据本公开的实施例描绘了描绘服务器304的组件的框图。在一个实施例中,服务器304可以包括信号输入引擎502、用户接口504、故障模式跟踪器接口506、存储器508和一个或多个故障模式跟踪器510。
信号输入引擎502可以接收由一个或多个数据集合器302提供的数据。在一个实施例中,由信号输入引擎502持续接收来自一个或多个数据集合器302的传感器数据。在其它实施例中,信号输入引擎502周期性地查询一个或多个数据集合器302。在另一实施例中,如果预定义状况发生,一个或多个数据集合器302将传感器数据推送到信号输入引擎502。
存储器508可以被配置成暂时或永久存储由信号输入端502接收的数据以及产生于预测诊断系统300中的其它数据,例如产生于故障模式跟踪器接口506或用户接口504的数据。
用户接口504可以包括与服务器304直接连接的输入和输出装置和/或一个或多个远程客户端接口,例如网络客户端、移动应用程序或其它接口以提供操作者与服务器304的交互。在一个实施例中,用户接口504可以包括允许编程控制服务器304和/或与服务器交互的应用程序编程接口。在一个实施例中,用户接口504可以将警示、稳定性状况的通知和/或建议推送到工厂DCS 306和/或本地或远程用户/操作者308。
故障模式跟踪器接口506可以被配置成使得能够注册和启用一个或多个故障模式跟踪器510并且与启用的故障模式跟踪器510通信。每个故障模式跟踪器510可以被配置成检测并分析一个或多个操作状况,以便预测一个或多个预期类型的故障以及大体上提供机械密封系统200的实时稳定性评定。在每个预测诊断系统300中注册和启用的特定故障模式跟踪器510可以视所监测的机械密封系统200的特定系统需求和环境状况而定。
如图5A中所描绘,在一个实施例中,预测诊断系统300可以包含润滑剂损耗故障模式跟踪器510A、低/无流量故障模式跟踪器510B、反压故障模式跟踪器510C和/或空穴故障模式跟踪器510D。同样涵盖其它故障模式跟踪器510。因此,选择故障模式跟踪器510的注册和启用使得能够针对机械密封系统200调适或定制预测诊断系统300以独特地适合个别客户需求、特定环境状况或系统200的特定应用。
参考图5B,每个故障模式跟踪器510可以被配置成通过故障模式跟踪器接口506与服务器接口518之间的连通接收传感器数据。在一些情况下,所接收的传感器数据可以包含时间元素,以表示在一段时间内接收到的传感器数据,其可称为追踪信号512。在一个实施例中,故障模式跟踪器510可以被配置成将追踪信号512与根据故障模式逻辑模块516的一个或多个预定义阈值514进行比较。警示、通知、建议和/或其它数据可以通过故障模式逻辑模块516来产生,其随后可通过服务器接口518传输回服务器304。在一个实施例中,故障模式跟踪器可以布置在一个或多个独立位置,借此故障模式跟踪器接口506和服务器接口518被配置成通过网络或直接通信链路通信。
故障模式跟踪器510包封个别故障模式的逻辑和阈值准则,使得服务器304能够仅配置有给定机械密封系统200的适当故障模式。在一个实施例中,可以在安装时或在启动机械密封系统200期间在服务器304上启用故障模式跟踪器510。在一个实施例中,可以在任何时间启用或停用故障模式跟踪器510。在一个实施例中,可以从服务器304或通过本地或在远程网络位置存储的配置文件接收配置细节。在一个实施例中,服务器304可以提供使得操作者能够提供、修改或删除配置细节的用户接口元件。在一个实施例中,服务器304可以在任何时间从一个或多个故障模式跟踪器510请求启用和/或状况状态。
例如泵系统200的复杂系统可能由于多个相关原因而经历故障。任何机械密封系统200的潜在故障对于所述密封系统的设计和操作环境而言可能都是特定的。本公开的实施例可以使用FMEA或其它诊断或预测分析的结果,以识别潜在故障。另外,由于分析了涉及具有类似属性的密封系统的实际故障或其它事件,所以可以作出关于任何给定密封系统的较好预测。
参考图6,根据本公开的实施例描绘了描绘通过润滑损耗故障模式跟踪器510A的故障模式逻辑模块516来执行的算法的流程图。在6000处,稳态传感器数据通过故障模式跟踪器接口506来传输并且通过服务器接口518来接收。结合图8到图9论述关于确立稳态传感器数据的其它细节。
在润滑损耗故障模式跟踪器510A的一个实施例中,所接收的稳态数据可以包含(传感器202F的)声发射信号和隔离流体温度信号(例如,传感器202D、202E和/或202G)。传感器数据可以进一步包含时间元素,以表示在一段时间内接收到的传感器数据,其可以被编译或保存为追踪信号512。可以将追踪信号512传达到故障模式逻辑模块516。
在一个实施例中,故障模式跟踪器接口506进一步将预测诊断系统300内的故障模式跟踪器510A到故障模式跟踪器510D的启用状态传达到每个启用的故障模式跟踪器510。举例来说,在润滑损耗故障模式跟踪器510A的一个实施例中,故障模式跟踪器接口506将是否已启用低/无流量故障模式跟踪器510B、反压故障模式跟踪器510C和空穴故障模式跟踪器510D传达到服务器接口518。
在6002处,确定是否已启用低/无流量故障模式跟踪器510B。如果已启用低/无流量故障模式跟踪器510B,那么在6004,将所接收的密封件声发射信号的振幅与确立的基准密封件声发射信号的振幅进行比较。如果所接收的密封件声发射信号的振幅小于或等于确立的基准密封件声发射信号的振幅,那么在6006处,确定未检测到界面润滑损耗故障模式,并且重复6000。
如果所接收的密封件声发射信号的振幅大于确立的基准密封件声发射信号的振幅,那么在6008处,确定是否已启用空穴故障模式跟踪器510D。如果已启用空穴故障模式跟踪器510D,那么在6010处,确定未检测到界面润滑损耗故障模式,并且重复6000。如果尚未启用空穴故障模式跟踪器510D,那么在6018处,确定检测到界面润滑损耗故障模式。
返回6002,如果尚未启用低/无流量故障模式跟踪器510B,那么在6012处,将所接收的密封件声发射信号的振幅与确立的基准密封件声发射信号的振幅进行比较。如果所接收的密封件声发射信号的振幅小于或等于确立的基准密封件声发射信号的振幅,那么在6010处,确定未检测到界面润滑损耗故障模式,并且重复6000。
如果所接收的密封件声发射信号的振幅大于确立的基准密封件发射信号的振幅,那么在6014处,将所接收的隔离流体温度与确立的隔离流体温度基准进行比较,并且在6016处,确定是否已启用反压跟踪器510C。在一个实施例中,这些措施同时进行。如果所接收的隔离流体温度小于或等于确立的隔离流体温度基准或尚未启用反压跟踪器510C,那么在6010处,确定未检测到界面润滑损耗故障模式,并且重复6000。
如果所接收的隔离流体温度大于确立的隔离流体温度基准并且尚未启用反压跟踪器510C,那么算法进行到6008以确定是否已启用空穴故障模式跟踪器510D。如果已启用空穴故障模式跟踪器510D,那么在6010处,确定未检测到界面润滑损耗故障模式,并且重复6000。如果尚未启用空穴故障模式跟踪器510D,那么在6018处,确定检测到界面润滑损耗故障模式。
如果确定检测到界面润滑损耗故障模式,那么在6020处,将通知和/或建议消息发送给用户。在6022处,启动计时器以确定自从在6020发送通知和/或建议消息之后经过的时间。如果经过的时间超过预定义时限并且未采取适当措施和/或所述状况持续,那么在6024处,并且将警报消息发送给用户。在一个实施例中,预定义时限可以是30分钟,但是同样涵盖其它预定义时限。在一个实施例中,警报消息可以指示密封面的剩余使用寿命。如果在预定义时限内采取了适当措施和/或检测到界面润滑损耗故障模式的状况消失,那么重复6000。
应理解,本文传授内容的方法中所使用的个别步骤可以按任何次序执行和/或同时执行,只要传授内容可行。在一个实施例中,可以使用其它比较。举例来说,当待比较的值相等时,在合理公差值内,可以将值视为第一值小于第二值(如上文所描述)或大于第二值。
在一个实施例中,通知可以包括可以为用户或操作者提供指南以便寻找故障和/或采取适合于现存状况的措施的信息通知、警示通知、警报通知、跳闸通知和/或建议消息。通知可以进一步指示所报告状况和/或故障的严重度。在一个实施例中,通知可以通过工厂DCS 306传送和/或通过例如移动电话、便携式电子装置、电子邮件或其它方法的各种系统来传送到本地或远程操作者308。在一个实施例中,通知的传送方法可以基于通知的严重度而变化。
在一个实施例中,用户接口504可以使得一个或多个用户能够配置优选通知位置和型式。用户接口504可以包括一个或多个画面,每个画面包括一个或多个视觉元件,包含文字、图形、菜单、窗口、用户输入栏和/或其它用户接口元件。
参考图7A到图7B,根据本公开的实施例描绘控制板通知和建议702。在一个实施例中,控制板702可以由用户定制。用户选择区域704可以显示当前登陆的用户并且使得能够选择不同用户。控制板702可以进一步包含菜单706,使得能够在一个或多个画面702之间导航。
图7A中描绘提供多个密封系统的状况监测信息的概述的控制板画面。导航窗格708包含显示根据位置分组的多个密封系统和相关联装置的树状图。在一个实施例中,可以使用其它组织方案,并且可以由用户选择。在一个实施例中,仅报告有效警示的那些密封系统显示在导航窗格708中。如图7A中所描绘,装置的选择可以显示概述画面710,其可以提供与所选装置相关的每个密封系统的状况的概述。概述区域712可以显示关于所监测的密封系统(或其它资产)的概述信息。报告区域714可以使得用户能够以例如微文字处理软件(Microsoft Word)或便携式文件格式(Portable Document Format;PDF)的用户所选格式下载报告。同样涵盖其它格式。筛选区域716可以使得用户能够筛选所显示的资产以便简化视图。
细节区域718可以显示由概述画面710所显示的资产的密封细节720。密封细节720可以包含密封度量值,例如正常运行时间和位置。如果存在,那么密封细节720还可以包含关于每个密封件的通知722。细节区域718可以进一步包含每个密封件的状态指示器724。如图7A中所描绘,状态指示器724可以呈红灯元件,其中绿色指示不存在问题,且黄色和/或红色指示存在不同严重度的通知。状态指示器724还可以包含区别状态级别的图标,例如绿色的核选标记,和指示红色严重级别的“×”。
图7B描绘根据本公开的实施例的所选密封系统的稳定性评定视图726。在一个实施例中,稳定性评定视图726可以通过在概述画面710或导航窗格708上选择密封系统来获取。稳定性评定视图726可以包含状态指示器724。稳定性评定视图726还可以包含稳定性评定综述728,其可以包含任何当前通知的简要概述。如果可获得预测信息,那么稳定性评定视图726可以包含预测730,和基于有效通知的推荐措施732。稳定性评定视图726可以进一步包含一个或多个状态指示器734,呈现由一个或多个故障模式跟踪器510提供的状态指示。在一个实施例中,无效故障模式跟踪器可以呈现为灰色,例如734c。在一个实施例中,可以提供稳定性趋势736,其可以包含在一段时间内的稳定性指示和通知。
参考图8,根据本公开的实施例描绘了一种操作预测诊断服务器304的方法。在8002处,例如从用户接口504或存储器508接收预测诊断系统300配置。预测诊断系统300配置信息可以包含例如待监测和跟踪的机械密封系统200的环境状况和其它属性,包含机械密封件100的类型和位置以及各种传感器202的类型和位置。预测诊断系统300配置信息可以进一步包含用于每个机械密封系统200的一个或多个故障模式跟踪器510的指配和/或注册以及待由每个故障模式跟踪器510监测或跟踪的个别传感器202的绘图和/或指定。
在8004处,监测一个或多个传感器202的稳态状况,其中由每个相应传感器202测量的状况保持在预定义正常操作公差窗口内。关于在8004处监测稳态状况的其它细节公开于图9和随附文本中。在8008处,可以将在8004处确立的稳态状况用于确立一组阈值。在一个实施例中,可以将确立的基线和阈值存储在存储器514内的故障模式跟踪器510中。
在8010处,可以将来自一个或多个传感器202的数据传达到一个或多个指配的和/或注册的故障模式跟踪器510。一个或多个故障模式跟踪器510可以将传感器数据与确立的一组阈值进行比较,并且在8012处,需要时,一个或多个故障模式跟踪器510可以发出已超出特定阈值的警示或通知。
故障模式跟踪器510可以将通知推送到故障模式跟踪器接口506。在8014处,可以将通知传达给用户,和/或在8016处,可以将调节机械密封系统200的建议传达给用户。在一个实施例中,可以通过用户接口504将调节机械密封系统200的通知和/或建议传达给用户。举例来说,在一个实施例中,可以由控制板702传达警示、通知和/或建议(如图7A到图7B所描绘)。
基于在8012、8014和/或8016处指示的状况,一个或多个指配和/或注册的故障模式跟踪器510可以比较传感器数据,以确立基准状况,从而在8018处确定稳态监测传感器状况是否已中断。如果监测的传感器状况保持处于稳态,那么可以重复8010。虽然稳态继续,但是可以在8010处无限地将数据传输到故障模式跟踪器510。或者,如果监测的传感器状况不再处于稳态,那么可以重复8004以便确立一组新的基准和/或一组新的阈值。
参考图9,根据本公开的实施例描绘了监测传感器数据的稳态的步骤8004。在9002处,在预定义的监测周期内监测信号数据。在一个实施例中,监测周期为30分钟。在其它实施例中,监测周期可能比30分钟更长或更短。在9004、9006、9008、9010和9012处,评估由一个或多个传感器202感测的各种所监测状况,以确定其在监测周期期间是否反常。在一个实施例中,监测的信号可以是旋转轴的旋转速度(传感器202B测量)、腔室压力(即,滑动密封界面的两侧上的润滑流体的压力)(通过传感器202D和传感器202E测量)、隔离物压力(即,滑动密封界面内或近端的润滑流体的压力)(通过传感器202G测量)和急流温度(即,离开机械密封件的润滑流体的温度)(通过传感器202D测量)、声发射(通过传感器202F测量)。可以按需要监测另外的信号。
在一个实施例中,信号9004、9006、9008、9010和9012中的每一个的稳态可以通过核实所监测状况在监测周期期间是否保持在所监测状况的计算移动平均量的10%内来确定。在其它实施例中,可以采用确定所监测状况是否保持在预定义正常操作公差窗口内的其它方法。
如果信号9004、9006、9008、9010和9012中的任一个不稳定,那么在9016处,认为在监测周期期间未实现稳态,并且可以重新开始9002。或者,如果所有信号9004、9006、9008、9010和9012稳定,那么在9014处,机械密封系统200可以被视为处于稳态。
因此,处于稳态,机械密封系统200等待直到所感测的状况“稳定”以获得对于机械密封件正在操作的负荷状况独特的基准数据为止。基准数据随后用于确立或调整进行机械密封系统200的稳定性评定所需的阈值。
在实施例中,阈值可以至少部分地基于例如本领域中已知的渐次混合(或积分)密封性能模拟算法来确定。密封性能模拟算法可以产生一组或多组预期参数。在实施例中,如果可获得预期参数,那么故障模式模块可以将预期参数与基准数据进行比较,以便确定阈值。所述积分使得能够考虑到与如由密封性能模拟算法建模的理论上理想的系统与系统的实际运行状况的检测偏差来确定阈值。
参考图10,根据本公开的实施例描绘一种方法,所述方法使得系统200能够在到达稳态状况之前或在可以确立新稳态状况之前的工作循环中的变化期间监测和警示操作者瞬态模式中的危急状况。虽然一些故障模式逻辑模块与阈值的存在独立地起作用,但是其它故障模式逻辑模块视确立的阈值而警示操作者超出安全操作限制的操作。在瞬态模式中,基准数据不可用于调整阈值;相反,机械密封系统200利用预定义阈值以便提供对机械密封件稳定性的估计。
在9050处,在预定义监测周期内监测信号数据。在9052处,确定机械密封件和泵是否处于稳态。如果机械密封件和泵处于稳态,那么在9054处,机械密封系统200进入稳态诊断模式。在9056处,可以基于获取的数据和负荷调整阈值进行稳定性评定,其中阈值可以例如通过图9中所描绘的过程确立。其后,在9058处,可以将系统评定输出传送给用户。
或者,如果机械密封件和泵不处于稳态,那么在9060处,机械密封系统200进入瞬态诊断模式。在9062处,可以基于预定义阈值进行稳定性评定。其后,在9058处,可以将系统评定输出传送给用户。
应理解,本文传授内容的方法中所使用的个别步骤可以按任何次序执行和/或同时执行,只要传授内容可行。此外,应理解,本文传授内容的设备和方法可以包含任何数目或全部的所描述实施例,只要传授内容可行。
在一个实施例中,预测诊断系统300和/或其组件或子系统可以包含计算装置、微处理器、模块和可以是任何接受数字数据作为输入的可编程装置、被配置成根据指令或算法处理输入并提供结果作为输出的其它计算机或计算装置。在一个实施例中,本文中所论述的计算和其它这类装置可以是、包括、含有或连接到被配置成执行计算机程序的指令的中央处理单元(central processing unit;CPU)。本文中所论述的计算和其它这类装置因而被配置成执行基础算术、逻辑和输入/输出操作。
本文中所论述的计算和其它装置可以包含存储器。存储器可以根据所连接计算装置或处理器的需要包括易失性或非易失性存储器,以便不仅提供执行指令或算法的空间,而且还提供存储指令本身的空间。在一个实施例中,易失存储器可以包含例如随机存取存储器(RAM)、动态随机存取存储器(DRAM)或静态随机存取存储器(SRAM)。在一个实施例中,非易失性存储器可以包含例如只读存储器、快闪存储器、铁电RAM、硬盘、软盘、磁带或光盘存储装置。前述列举决不限制可以使用的存储器类型,因为这些实施例仅借助于实例给出并且不打算限制本公开的范围。
在一个实施例中,系统或其组件可以包括或包含各种模块或引擎,所述模块或引擎中的每一个被构建、编程、配置或以其它方式适配成自主地执行功能或一组功能。如本文中所使用的术语“引擎”被定义为使用硬件(例如通过专用集成电路(ASIC)或现场可编程门阵列(FPGA))或以硬件与软件的组合(例如通过微处理器系统和适配引擎以实施特定功能的一组程序指令)实施的现实装置、组件或组件布置,所述程序指令(在正执行时)将微处理器系统转化成专用装置。引擎还可以实施为以上两种的组合,其中某些功能由硬件单独促成,而其它功能由硬件与软件的组合促成。在某些实施方案中,引擎中的至少一部分和(在一些情况下)全部可以在一个或多个计算平台的处理器上执行,所述计算平台由硬件(例如,一个或多个处理器,例如存储器或驱动存储装置的数据存储装置,例如网络接口装置、视频装置、键盘、鼠标或触摸屏装置的输入/输出设备等)构成,所述硬件执行操作系统、系统程序和应用程序,同时也在适当时使用多任务、多线程、分布式(例如,丛集、端对端、云端等)处理或其它这类技术实施引擎。因此,每个引擎可以以各种可实体地实现的配置来实现,并且通常不应限于本文中例示的任何特定实施方案,除非明确指出这类限制。另外,引擎自身可以由多于一个子引擎构成,所述子引擎中的每一个可以独立地被看作一个引擎。此外,在本文中所描述的实施例中,各种引擎中的每一个对应于所定义的自主功能;然而,应理解,在其它涵盖的实施例中,每个功能可以分布到多于一个引擎。同样,在其它涵盖的实施例中,多种所定义的功能可以由单个引擎实施,所述单个引擎可能与其它功能一起执行所述多种功能,或不同于本文实例中所特别示出的而分布在一组引擎中。
已经在本文中描述系统、装置和方法的各种实施例。这些实施例仅借助于实例给出并且不打算限制所要求发明的范围。此外,应了解,已经描述的实施例的各种特征可以按不同方式组合以产生大量额外的实施例。此外,虽然已经针对所公开的实施例描述了各种材料、尺寸、形状、配置和位置,但是可以在不超出所要求发明的范围的情况下利用除所公开内容之外的其它内容。
相关领域中的普通技术人员将认识到,实施例可以包括比上述任何个别实施例中所示的特征少的特征。本文中所描述的实施例不打算作为可以组合各种特征的方式的穷尽性呈现。因此,实施例的特征组合并非相互排斥的;相反,实施例可以包括选自不同个别实施例的不同个别特征的组合,如本领域的普通技术人员所理解。此外,除非另外指出,否则关于一个实施例所描述的元件可以实施在其它实施例中,即使在这类实施例中未描述时也是如此。虽然权利要求书中的从属权利要求可以提及与一项或多项其它权利要求的特定组合,但是其它实施例还可以包含所述从属权利要求与每一项其它从属权利要求的主题的组合,或者一个或多个特征与其它从属或独立权利要求的组合。本文中提出了这类组合,除非声明特定组合并非所期望的。此外,即使权利要求不直接从属于任何其它独立权利要求,仍希望包含所述权利要求在独立权利要求中的特征。
此外,在说明书中对“一个实施例”、“实施例”或“一些实施例”的引用意味着结合实施例描述的特定特征、结构或特性包含于传授内容的至少一个实施例中。短语“在一个实施例中”在说明书中的各处的出现不一定都指同一实施例。
上述文献的任何以引用方式的并入受到限制,以使得与本文中的明确公开内容相反的主题不会被并入到本文中。上述文献的任何以引用方式的并入进一步受到限制,以使得文献中所包含的权利要求不会以引用的方式并入本文中。上述文献的任何以引用方式的并入进一步受到限制,以使得除非明确包含于本文中,否则文献中所提供的任何定义不会以引用的方式并入本文中。
出于解释权利要求书的目的,除非权利要求中叙述了特定术语“用于……的装置”或“用于……的步骤”,否则明确地希望不引用35U.S.C.章节112第六段的条款。
Claims (66)
1.一种监测机械密封系统以便自主地诊断机械密封件的滑动密封界面内的润滑损耗的方法,所述方法包括:
感测接近所述机械密封件的声发射数据;
确立所述感测的声发射数据的基准状况;
感测滑动密封界面近端的润滑流体的温度;
确立所述滑动密封界面近端的所述润滑流体的所述感测温度的基准状况;
确定所述机械密封系统是否被配置成诊断提供到所述滑动密封界面的润滑流体的低流量;
确定所述感测的声发射数据是否超过所述感测的声发射数据的所述所确立基准状况;
确定所述滑动密封界面近端的所述润滑流体的所述感测温度是否超过所述滑动密封界面近端的所述润滑流体的所述感测温度的所述所确立基准状况;
确定所述机械密封系统是否被配置成诊断所述润滑流体的压力反向;
确定所述机械密封系统是否被配置成诊断接近所述滑动密封界面的空穴;以及
将检测到所述滑动密封界面内的润滑损耗的通知发送给用户。
2.根据权利要求1所述的方法,其进一步包括评估所述机械密封系统,以确定所述机械密封系统的关于以下中的至少一个的故障可能性:所述滑动密封界面内的润滑损耗、提供到所述滑动密封界面的润滑流体的低流量、所述滑动密封界面近端的润滑流体的压力反向和接近所述机械密封系统的所述滑动密封界面发生的空穴。
3.根据权利要求2所述的方法,其进一步包括调适所述机械密封系统,以诊断具有确定的高发生可能性的机械密封系统故障相关的操作状况,以便适合个别客户需求、特定环境状况和/或所述机械密封系统的特定应用。
4.根据权利要求2所述的方法,其进一步包括启用所述机械密封系统内的润滑损耗故障模式逻辑模块,其中所述润滑损耗故障模式逻辑模块被配置成诊断与所述滑动密封界面内的润滑损耗相关的状况。
5.根据权利要求2所述的方法,其进一步包括启用润滑流体低流量故障模式逻辑模块、润滑流体压力反向故障模式逻辑模块和接近所述滑动密封界面的空穴故障模式逻辑模块中的至少一个。
6.根据权利要求1所述的方法,其中发送到所述用户的所述通知指示所述滑动密封界面内的所述润滑损耗的严重度。
7.根据权利要求6所述的方法,其中所述通知包含建议消息,其被配置成为用户提供指南以便寻找故障和/或采取适当措施来弥补所述滑动密封界面内的所述润滑损耗。
8.根据权利要求6所述的方法,其进一步包括启动计时器,以确定在通知所述用户之后经过的时间。
9.根据权利要求8所述的方法,其进一步包括在所述经过的时间超过预定义时间段的情况下发送警报消息。
10.根据权利要求9所述的方法,其中所述预定义时间段为30分钟或更短。
11.根据权利要求9所述的方法,其中所述警报消息包含所述机械密封件的估计剩余使用寿命。
12.一种机械密封系统,其被配置成自主地检测机械密封件的滑动密封界面内的润滑损耗,所述机械密封系统包括:
机械密封件,其具有固定外壳与旋转轴之间的滑动密封界面;
一个或多个传感器,其被配置成感测接近所述机械密封件的声发射数据和接近所述滑动密封界面的润滑流体的温度;
润滑损耗故障模式逻辑模块,其被配置成监测由所述一个或多个传感器感测的数据并诊断与所述滑动密封界面内的润滑损耗相关的状况;
多个其它故障模式逻辑模块,其被配置成监测由所述一个或多个传感器感测的数据并诊断与已知在机械密封系统中发生的特定类型的机械故障相关的状况,所述多个其它故障模式逻辑模块包含润滑流体低流量故障模式逻辑模块、润滑流体压力反向故障模式逻辑模块和接近所述滑动密封界面的空穴故障模式逻辑模块中的至少一个;
其中基于每个故障模式逻辑模块的相应特定类型的机械故障在所述机械密封系统内发生的可能性启用所述多个故障模式逻辑模块中的选择故障模式逻辑模块;以及
其中所述润滑损耗故障模式逻辑模块被配置成确定在与所述滑动密封界面内的润滑损耗相关的状况的所述诊断期间启用所述多个其它故障模式逻辑模块中的哪些。
13.根据权利要求12所述的机械密封系统,其中启用所述多个故障模式逻辑模块中的所述选择故障模式逻辑模块以便调适所述机械密封系统以便适合个别客户需求、特定环境状况和/或所述机械密封件的特定应用。
14.根据权利要求12所述的机械密封系统,其中基于所述机械密封系统的评估启用所述多个故障模式逻辑模块中的所述选择故障模式逻辑模块,以确定所述机械密封系统的关于以下中的至少一个的故障可能性:所述滑动密封界面内的润滑损耗、所述滑动密封界面内的润滑流体的低流量、所述滑动密封界面近端的润滑流体的压力反向和/或接近所述机械密封系统的所述滑动密封界面发生的空穴。
15.根据权利要求12所述的机械密封系统,其中当检测到所述滑动密封界面内的润滑损耗时,向用户发送通知。
16.根据权利要求15所述的机械密封系统,其中所述通知指示所述滑动密封界面内的所述润滑损耗的严重度。
17.根据权利要求15所述的机械密封系统,其中所述通知包含建议消息,其被配置成为用户提供指南以便寻找故障和/或采取适当措施弥补所述滑动密封界面内的所述润滑损耗。
18.根据权利要求12所述的机械密封系统,其中所述润滑损耗故障模式逻辑模块包括计时器,其被配置成确定在发送所述通知之后经过的时间。
19.根据权利要求18所述的机械密封系统,其中在所述经过的时间超过预定义时间段的情况下发送警报消息。
20.根据权利要求19所述的机械密封系统,其中所述预定义时间段为30分钟或更短。
21.根据权利要求18所述的机械密封系统,其中所述警报消息包含所述滑动密封界面的估计剩余使用寿命。
22.一种机械密封系统,其具有被配置成调适后适合个别客户需求、特定环境状况和/或特定应用的可定制预测诊断子系统,所述机械密封系统包括:
机械密封件,其安装在固定外壳与可旋转轴之间;
多个感测装置,其被配置成感测接近所述机械密封件的压力、温度、转速、振动和声发射中的至少一个;以及
多个故障模式逻辑模块,每个故障模式逻辑模块被配置成监测由所述多个感测装置中的一个或多个感测的与已知在机械密封件中发生的特定类型的机械故障相关的数据,并向用户提供关于实际上在所述机械密封系统中发生所述特定类型的机械故障的通知,通过用户接口提供给用户;
其中通过所述用户接口选择性地启用所述多个故障模式逻辑模块中的某些故障模式逻辑模块,以用于调适所述预测诊断子系统以便适合个别客户需求、特定环境状况和/或所述机械密封系统的特定应用。
23.根据权利要求22所述的机械密封系统,其中所述机械密封件可操作地连接到泵。
24.根据权利要求23所述的机械密封系统,其中所述机械密封件包含引入润滑流体的至少一个滑动密封界面。
25.根据权利要求24所述的机械密封系统,其进一步包括润滑流体调节单元,所述润滑流体调节单元包含热交换器、囊状蓄压器、压力容器或其组合中的一个。
26.根据权利要求25所述的机械密封系统,其中所述多个感测装置中的至少一个包含以下中的至少一个:被配置成监测所述泵的声发射的传感器,被配置成监测所述泵的振动和/或转速的传感器,被配置成监测所述泵的所述温度的传感器,被配置成监测离开所述滑动密封界面的润滑流体的温度和/或压力的传感器,被配置成监测进入所述滑动密封界面的润滑流体的所述温度和/或压力的传感器,被配置成监测所述滑动密封界面的声发射的传感器,被配置成监测所述滑动密封界面中或近端的润滑流体的温度和/或压力的传感器,被配置成监测所述囊状蓄压器近端的润滑流体的温度和/或压力的传感器,以及被配置成监测所述热交换器近端的所述润滑流体的温度和压力的传感器。
27.根据权利要求22所述的机械密封系统,其中所述特定类型的机械故障为所述机械密封件的滑动密封界面内的润滑损耗、所述滑动密封界面内的润滑流体的低流量、所述润滑流体的压力反向和/或接近所述机械密封件的所述滑动密封界面发生的空穴中的至少一个。
28.根据权利要求22所述的机械密封系统,其中所述机械密封系统为以下中的一个:符合API标准01、API标准02、API标准11、API标准12、API标准13、API标准14、API标准21、API标准23、API标准31、API标准32、API标准41、API标准52、API标准53A、API标准53B、API标准53C、API标准54、API标准62、API标准65A、API标准65B、API标准66A、API标准66B、API标准72、API标准74、API标准75和API标准76的系统或其组合。
29.根据权利要求22所述的机械密封系统,其中所述多个感测装置可操作地连接到一个或多个数据集合器,所述数据集合器被配置成接收并处理由所述多个感测装置中的一个或多个感测的数据且将由所述多个感测装置中的一个或多个感测的所述数据传输到一个或多个服务器。
30.根据权利要求29所述的机械密封系统,其中由所述多个感测装置中的一个或多个感测的所述数据以无线方式传输到所述一个或多个服务器。
31.根据权利要求22所述的机械密封系统,其中所述通知包含非正式通知、警示通知、警报通知、跳闸通知和被配置成为用户提供指南以便寻找故障并对现存状况采取适当措施的建议消息中的至少一个。
32.一种机械密封系统,其被配置成在操作期间检测操作状况并向用户提供实时稳定性评定,所述机械密封系统包括:
旋转装置,其包含固定外壳和旋转轴;
机械密封件,其被配置成在所述旋转装置的所述固定外壳与所述旋转轴之间提供滑动密封界面;
润滑流体调节单元,其被配置成将润滑流体引入到所述滑动密封界面中;
多个传感器,其被配置成感测所述机械密封系统的操作状况;以及
多个故障模式逻辑模块,其被配置成监测所述感测的操作状况并借助于通知通过用户接口向用户提供关于所述机械密封系统中发生特定类型的机械故障的可能性的反馈;
其中可启用或停用所述多个故障模式逻辑模块中的每一个,以适合个别客户需求、特定环境状况和/或所述机械密封系统的特定应用。
33.根据权利要求32所述的机械密封系统,其中所述润滑流体调节单元包含以下中的一个:热交换器、囊状蓄压器、压力容器中的一个或其组合。
34.根据权利要求33所述的机械密封系统,其中所述多个传感器中的至少一个被配置成进行以下中的至少一个:监测所述泵的声发射,监测所述泵的振动和/或转速,监测所述泵的温度,监测离开所述机械密封件的润滑流体的温度和/或压力,监测进入所述机械密封件的润滑流体的所述温度和/或压力,监测所述滑动密封界面的声发射,监测所述滑动密封界面中或近端的润滑流体的温度和/或压力,监测所述囊状蓄压器近端的润滑流体的温度和/或压力,以及监测所述热交换器近端的所述润滑流体的温度和压力。
35.根据权利要求32所述的机械密封系统,其中所述特定类型的机械故障中的至少一个包含所述滑动密封界面内的润滑损耗、提供到所述滑动密封界面的所述润滑流体的低流量、所述润滑流体的压力反向和/或接近所述润滑流体的在所述滑动密封界面内发生的空穴。
36.根据权利要求32所述的机械密封系统,其中所述机械密封系统为以下中的一个:符合API标准01、API标准02、API标准11、API标准12、API标准13、API标准14、API标准21、API标准23、API标准31、API标准32、API标准41、API标准52、API标准53A、API标准53B、API标准53C、API标准54、API标准62、API标准65A、API标准65B、API标准66A、API标准66B、API标准72、API标准74、API标准75和API标准76的系统或其组合
37.根据权利要求32所述的机械密封系统,其中所述多个传感器可操作地连接到一个或多个数据集合器,所述数据集合器被配置成接收并处理所述感测的操作状况且将所述感测的操作状况传输到一个或多个服务器。
38.根据权利要求32所述的机械密封系统,其中所述感测的操作状况以无线方式传输到所述一个或多个服务器。
39.根据权利要求32所述的机械密封系统,其中所述通知包含非正式通知、警示通知、警报通知和跳闸通知中的至少一个。
40.根据权利要求39所述的机械密封系统,其中所述通知指示所述感测的操作状况的严重度。
41.根据权利要求40所述的机械密封系统,其中所述通知包含建议消息,其被配置成为所述用户提供指南以便寻找故障并对现存状况采取适当措施。
42.一种机械密封系统,其具有被配置成将机械密封件的所监测状况以无线方式传达到远离所述机械密封件近端的潜在危险操作环境的区域的预测诊断子系统,所述机械密封系统包括:
机械密封件,其安装在固定外壳与可旋转轴之间;
一个或多个感测装置,其被配置成感测接近所述机械密封件的压力、温度、转速、振动和声发射中的至少一个;
位于远端的服务器,其被配置成收集并分析由所述一个或多个感测装置感测的数据;以及
数据集合器,其被配置成将由所述一个或多个感测装置感测的所述数据以无线方式传达到所述位于远端的服务器,所述数据集合器包含:
壳体,其适合于安装在工业环境中;
一个或多个传感器输入端,其被配置成接收由所述一个或多个感测装置感测的所述数据;
信号处理器,其被配置成将由所述一个或多个感测装置感测的所述数据转化成数字信号;以及
输出接口,其被配置成将所述数字信号以无线方式传输到所述服务器。
43.根据权利要求42所述的机械密封系统,其中所述数据集合器被配置成实时接收由所述一个或多个感测装置感测的数据。
44.根据权利要求42所述的机械密封系统,其中所述壳体适用于危险环境内。
45.根据权利要求42所述的机械密封系统,其中所述壳体是防水的。
46.根据权利要求42所述的机械密封系统,其中所述壳体是防爆的。
47.根据权利要求42所述的机械密封系统,其中所述数据集合器包含齐纳二极管,其被配置成限制流入所述潜在危险操作环境的电能。
48.根据权利要求42所述的机械密封系统,其中所述数据集合器包含总共十四个或超过十四个传感器输入端。
49.根据权利要求48所述的机械密封系统,其中所述传感器输入端包含以下中的至少一个:用于压力和/或温度传感器的输入端、用于振动传感器的输入端、用于声发射传感器的输入端和用于转速传感器的输入端。
50.根据权利要求42所述的机械密封系统,其中所述信号处理器被配置成处理由所述一个或多个感测装置感测的数据,以减少待由所述输出接口传输的所述数据的量。
51.根据权利要求42所述的机械密封系统,其进一步包括存储器,所述存储器被配置成存储由所述一个或多个感测装置感测的数据。
52.根据权利要求42所述的机械密封系统,其中所述输出接口至少在计划时间、随机时间和通过来自所述服务器的请求将所述数字信号传输到所述服务器。
53.一种机械密封系统,其被配置成在操作期间检测操作状况并向用户提供实时稳定性评定,所述机械密封系统包括:
机械密封件,其具有旋转装置的固定外壳与旋转轴之间的滑动密封界面;
多个传感器,其被配置成感测所述机械密封系统的操作状况;以及
服务器,其被配置成收集并分析所述感测的操作状况;以及
数据集合器,其被配置成将由所述一个或多个感测装置感测的所述数据以无线方式传达到位于远端的服务器,所述数据集合器包含:
壳体,其适合于安装在工业环境中;
一个或多个传感器输入端,其被配置成接收所述感测的操作状况;
信号处理器,其被配置成将所述感测的操作状况转化成数字信号;以及
输出接口,其被配置成将所述数字信号以无线方式传输到所述服务器。
54.根据权利要求53所述的机械密封系统,其中所述数据集合器被配置成实时接收所述感测的操作状况。
55.根据权利要求53所述的机械密封系统,其中所述壳体适用于危险环境内。
56.根据权利要求53所述的机械密封系统,其中所述壳体是防水的。
57.根据权利要求53所述的机械密封系统,其中所述壳体是防爆的。
58.根据权利要求53所述的机械密封系统,其中所述数据集合器包含齐纳二极管,其被配置成限制流入所述潜在危险操作环境的电能。
59.根据权利要求35所述的机械密封系统,其中所述数据集合器包含总共十四个或超过十四个传感器输入端。
60.根据权利要求60所述的机械密封系统,其中所述传感器输入端包含以下中的至少一个:用于压力和/或温度传感器的输入端、用于振动传感器的输入端、用于声发射传感器的输入端和用于转速传感器的输入端。
61.根据权利要求53所述的机械密封系统,其中所述信号处理器被配置成处理所述感测操作状况,以减少待由所述输出接口传输的所述数据的数量。
62.根据权利要求53所述的机械密封系统,其进一步包括存储器,所述存储器被配置成存储所述感测的操作状况。
63.根据权利要求53所述的机械密封系统,其中所述输出接口至少在计划时间、随机时间和通过来自所述服务器的请求将所述数字信号传输到所述服务器。
64.一种基于渐次混合密封性能模拟算法监测机械密封系统中的密封件相对于预期参数的稳定性状况以便自主地诊断机械密封件的滑动密封界面内的润滑损耗的方法,所述方法包括:
感测接近所述机械密封件的声发射数据;
确立所述感测的声发射数据的基准状况;
感测滑动密封界面近端的润滑流体的温度;
确立所述滑动密封界面近端的所述润滑流体的所述感测的温度的基准状况,所述感测的声发射数据的所述基准状况和所述润滑流体的所述感测温度的所述基准状况共同包括基准参数;以及
将所述基准参数与所述预期参数进行比较。
65.一种基于积分密封性能模拟算法监测机械密封系统中的一个或多个密封件相对于预期参数的稳定性状况以便自主地诊断所述机械密封系统内的操作异常的方法,所述方法包括:
感测接近所述机械密封系统的操作参数数据;
当所述感测的操作参数数据指示所述机械密封系统处于稳态时,基于所述感测的操作参数数据确立基准状况参数;
当所述感测的操作参数数据指示所述机械密封系统不处于稳态时,基于所述预期参数确立基准状况参数;以及
将所述基准状况参数与所述操作参数数据进行比较。
66.一种根据权利要求65所述的方法,所述感测接近所述机械系统的操作参数数据的步骤包括感测所述机械密封系统内的操作参数数据。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010284894.7A CN111473114B (zh) | 2016-02-23 | 2017-02-23 | 用于机械系统的预测诊断的系统和方法 |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662298839P | 2016-02-23 | 2016-02-23 | |
US201662298814P | 2016-02-23 | 2016-02-23 | |
US201662298848P | 2016-02-23 | 2016-02-23 | |
US201662298851P | 2016-02-23 | 2016-02-23 | |
US62/298,851 | 2016-02-23 | ||
US62/298,814 | 2016-02-23 | ||
US62/298,839 | 2016-02-23 | ||
US62/298,848 | 2016-02-23 | ||
US201662302458P | 2016-03-02 | 2016-03-02 | |
US201662302451P | 2016-03-02 | 2016-03-02 | |
US62/302,458 | 2016-03-02 | ||
US62/302,451 | 2016-03-02 | ||
PCT/US2017/019139 WO2017147297A1 (en) | 2016-02-23 | 2017-02-23 | Systems and methods for predictive diagnostics for mechanical systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010284894.7A Division CN111473114B (zh) | 2016-02-23 | 2017-02-23 | 用于机械系统的预测诊断的系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109073089A true CN109073089A (zh) | 2018-12-21 |
CN109073089B CN109073089B (zh) | 2020-09-04 |
Family
ID=59630589
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010284894.7A Active CN111473114B (zh) | 2016-02-23 | 2017-02-23 | 用于机械系统的预测诊断的系统和方法 |
CN201780022317.7A Active CN109073089B (zh) | 2016-02-23 | 2017-02-23 | 用于机械系统的预测诊断的系统和方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010284894.7A Active CN111473114B (zh) | 2016-02-23 | 2017-02-23 | 用于机械系统的预测诊断的系统和方法 |
Country Status (8)
Country | Link |
---|---|
US (4) | US10545120B2 (zh) |
EP (2) | EP3420254B1 (zh) |
JP (2) | JP7370704B2 (zh) |
CN (2) | CN111473114B (zh) |
AU (3) | AU2017223691B2 (zh) |
BR (1) | BR122023003434B1 (zh) |
CA (1) | CA3015495A1 (zh) |
WO (1) | WO2017147297A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109991314A (zh) * | 2019-03-11 | 2019-07-09 | 清华大学 | 基于机器学习的机械密封状态判断方法、装置 |
CN111289621A (zh) * | 2019-12-27 | 2020-06-16 | 清华大学 | 机械密封信号分析及故障诊断方法、装置与设备 |
CN111693277A (zh) * | 2020-07-10 | 2020-09-22 | 国电大渡河枕头坝发电有限公司 | 一种水轮机主轴密封件监测系统 |
TWI732392B (zh) * | 2019-07-31 | 2021-07-01 | 竹陞科技股份有限公司 | 工廠管理系統及控制系統 |
CN113423979A (zh) * | 2019-01-04 | 2021-09-21 | 苏尔寿管理有限公司 | 机械密封布置结构以及用于监测机械密封布置结构的操作的传感器环 |
TWI744909B (zh) * | 2019-06-28 | 2021-11-01 | 日商住友重機械工業股份有限公司 | 用於預測對象裝置的運轉狀態之預測系統、其之預測、其之預測程式、以及用於掌握對象裝置的運轉狀態之顯示裝置 |
US11320809B2 (en) | 2019-07-31 | 2022-05-03 | Grade Upon Technology Corporation | Factory management system and control system |
CN116989937A (zh) * | 2023-09-25 | 2023-11-03 | 苏州俊煌机械科技有限公司 | 一种机械密封件的检测方法及装置 |
CN118425233A (zh) * | 2024-05-30 | 2024-08-02 | 南通莱博尔精密机电配套有限公司 | 基于高温性能监测的集装箱密封条破损检测系统和方法 |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10861256B1 (en) * | 2015-08-28 | 2020-12-08 | United States Of America As Represented By The Administrator Of Nasa | System for failure response advice based on diagnosed failures and their effect on planned activities |
CA3015495A1 (en) * | 2016-02-23 | 2017-08-31 | John Crane Uk Ltd. | Systems and methods for predictive diagnostics for mechanical systems |
CN110770483B (zh) * | 2017-05-15 | 2022-09-02 | 约翰起重机英国有限公司 | 抑制加压气体从机器内排放的机械密封组件和相关方法 |
US11624326B2 (en) | 2017-05-21 | 2023-04-11 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
WO2020049449A1 (en) * | 2018-09-03 | 2020-03-12 | Hsd S.P.A. | Operating device for a machine tool |
GB2577957B (en) * | 2018-10-08 | 2021-08-04 | Crane John Uk Ltd | Mechanical seal with sensor |
AU2019356507A1 (en) | 2018-10-08 | 2021-05-13 | John Crane Uk Limited | Mechanical seal with sensor |
US11560845B2 (en) | 2019-05-15 | 2023-01-24 | Bj Energy Solutions, Llc | Mobile gas turbine inlet air conditioning system and associated methods |
US11015536B2 (en) | 2019-09-13 | 2021-05-25 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
CA3092829C (en) | 2019-09-13 | 2023-08-15 | Bj Energy Solutions, Llc | Methods and systems for supplying fuel to gas turbine engines |
CA3092865C (en) | 2019-09-13 | 2023-07-04 | Bj Energy Solutions, Llc | Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods |
US10895202B1 (en) | 2019-09-13 | 2021-01-19 | Bj Energy Solutions, Llc | Direct drive unit removal system and associated methods |
US11604113B2 (en) | 2019-09-13 | 2023-03-14 | Bj Energy Solutions, Llc | Fuel, communications, and power connection systems and related methods |
CA3092868A1 (en) | 2019-09-13 | 2021-03-13 | Bj Energy Solutions, Llc | Turbine engine exhaust duct system and methods for noise dampening and attenuation |
US11002189B2 (en) | 2019-09-13 | 2021-05-11 | Bj Energy Solutions, Llc | Mobile gas turbine inlet air conditioning system and associated methods |
US10989180B2 (en) | 2019-09-13 | 2021-04-27 | Bj Energy Solutions, Llc | Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods |
CA3197583A1 (en) | 2019-09-13 | 2021-03-13 | Bj Energy Solutions, Llc | Fuel, communications, and power connection systems and related methods |
US10815764B1 (en) | 2019-09-13 | 2020-10-27 | Bj Energy Solutions, Llc | Methods and systems for operating a fleet of pumps |
US12065968B2 (en) | 2019-09-13 | 2024-08-20 | BJ Energy Solutions, Inc. | Systems and methods for hydraulic fracturing |
US11015594B2 (en) | 2019-09-13 | 2021-05-25 | Bj Energy Solutions, Llc | Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump |
GB2592370B (en) * | 2020-02-25 | 2022-04-13 | Crane John Uk Ltd | Condition monitoring apparatus |
US11708829B2 (en) | 2020-05-12 | 2023-07-25 | Bj Energy Solutions, Llc | Cover for fluid systems and related methods |
US10968837B1 (en) | 2020-05-14 | 2021-04-06 | Bj Energy Solutions, Llc | Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge |
US11428165B2 (en) | 2020-05-15 | 2022-08-30 | Bj Energy Solutions, Llc | Onboard heater of auxiliary systems using exhaust gases and associated methods |
US11208880B2 (en) | 2020-05-28 | 2021-12-28 | Bj Energy Solutions, Llc | Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods |
US11208953B1 (en) | 2020-06-05 | 2021-12-28 | Bj Energy Solutions, Llc | Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit |
US10961908B1 (en) | 2020-06-05 | 2021-03-30 | Bj Energy Solutions, Llc | Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit |
US11109508B1 (en) | 2020-06-05 | 2021-08-31 | Bj Energy Solutions, Llc | Enclosure assembly for enhanced cooling of direct drive unit and related methods |
US11111768B1 (en) | 2020-06-09 | 2021-09-07 | Bj Energy Solutions, Llc | Drive equipment and methods for mobile fracturing transportation platforms |
US11066915B1 (en) | 2020-06-09 | 2021-07-20 | Bj Energy Solutions, Llc | Methods for detection and mitigation of well screen out |
US10954770B1 (en) | 2020-06-09 | 2021-03-23 | Bj Energy Solutions, Llc | Systems and methods for exchanging fracturing components of a hydraulic fracturing unit |
US11022526B1 (en) | 2020-06-09 | 2021-06-01 | Bj Energy Solutions, Llc | Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit |
US11028677B1 (en) | 2020-06-22 | 2021-06-08 | Bj Energy Solutions, Llc | Stage profiles for operations of hydraulic systems and associated methods |
US11933153B2 (en) | 2020-06-22 | 2024-03-19 | Bj Energy Solutions, Llc | Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control |
US11125066B1 (en) | 2020-06-22 | 2021-09-21 | Bj Energy Solutions, Llc | Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing |
US11939853B2 (en) | 2020-06-22 | 2024-03-26 | Bj Energy Solutions, Llc | Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units |
US11473413B2 (en) | 2020-06-23 | 2022-10-18 | Bj Energy Solutions, Llc | Systems and methods to autonomously operate hydraulic fracturing units |
US11466680B2 (en) | 2020-06-23 | 2022-10-11 | Bj Energy Solutions, Llc | Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units |
US11149533B1 (en) | 2020-06-24 | 2021-10-19 | Bj Energy Solutions, Llc | Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation |
US11220895B1 (en) | 2020-06-24 | 2022-01-11 | Bj Energy Solutions, Llc | Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods |
US11193360B1 (en) | 2020-07-17 | 2021-12-07 | Bj Energy Solutions, Llc | Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations |
GB2597756B (en) * | 2020-08-03 | 2022-11-23 | Crane John Uk Ltd | Determining remaining lifetime of a seal based on accumulation of an acoustic emission energy |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
DE102020124238A1 (de) * | 2020-09-17 | 2022-03-17 | Eagleburgmann Germany Gmbh & Co. Kg | Verfahren zum Betreiben einer Gleitringdichtungsanordnung sowie Gleitringdichtungsanordnung |
EP4232714A1 (en) * | 2020-10-23 | 2023-08-30 | Cornell Pump Company LLC | Monitoring system for pump with mechanical seal lubrication arrangement |
DE102020134365A1 (de) * | 2020-12-21 | 2022-06-23 | Eagleburgmann Germany Gmbh & Co. Kg | Verfahren zum Überwachen einer Gleitringdichtungsanordnung sowie Gleitringdichtungsanordnung |
RU2759027C1 (ru) * | 2021-01-12 | 2021-11-08 | Общество с ограниченной ответственностью «Синтез технологий» | Устройство для диагностирования заделки остекления фонаря кабины воздушного судна |
US11639654B2 (en) | 2021-05-24 | 2023-05-02 | Bj Energy Solutions, Llc | Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods |
CN117780624B (zh) * | 2024-02-26 | 2024-05-14 | 大庆文迪石油设备有限公司 | 一种泵用可调节机械密封结构 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270979A (ja) * | 1987-04-28 | 1988-11-08 | Ebara Corp | メカニカルシ−ルの運転状態監視方法 |
US6065345A (en) * | 1997-07-31 | 2000-05-23 | Sulzer Pumpen Ag | Method for monitoring the condition of a mechanical seal |
WO2001033208A1 (en) * | 1999-11-02 | 2001-05-10 | Georgia Tech Research Corporation | Condition monitoring system and method for an interface |
EP1286056A1 (en) * | 2001-08-10 | 2003-02-26 | Reliance Electric Technologies, LLC | System and method for detecting and diagnosing pump cavitation |
CN101032123A (zh) * | 2004-09-30 | 2007-09-05 | 国际商业机器公司 | 用于确定故障对网络服务的影响的方法和装置 |
US7442291B1 (en) * | 2002-04-09 | 2008-10-28 | Rockwell Automation Technologies, Inc. | Filter integration for a lubrication analysis system |
CN103821938A (zh) * | 2013-09-30 | 2014-05-28 | 中国人民解放军国防科学技术大学 | 一种舵轴热密封结构 |
WO2015009805A1 (en) * | 2013-07-16 | 2015-01-22 | Franklin Electric Co., Inc. | Enclosure with wireless communication features |
Family Cites Families (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH464625A (de) | 1966-10-12 | 1968-10-31 | Sulzer Ag | Wellendichtung für ein Gebläse, insbesondere für das Umwälzgebläse einer gasgekühlten Kernreaktoranlage |
GB1526927A (en) | 1974-10-15 | 1978-10-04 | Shell Int Research | Process for recovering vanadium from deactivated catalyst |
JPS55138616A (en) | 1979-04-16 | 1980-10-29 | Kansai Electric Power Co Inc:The | Bearing fault discriminating device |
US4389849A (en) | 1981-10-02 | 1983-06-28 | Beggs James M Administrator Of | Stirling cycle cryogenic cooler |
JPS60209676A (ja) | 1984-04-02 | 1985-10-22 | Hitachi Ltd | フリ−ピストン形振動式圧縮機のピストンストロ−ク制御装置 |
US5170359A (en) | 1984-07-19 | 1992-12-08 | Presearch Incorporated | Transient episode detector method and apparatus |
US4751657A (en) | 1985-07-08 | 1988-06-14 | General Electric Company | Method and apparatus for detecting axial cracks in rotors for rotating machinery |
JPS6219755A (ja) | 1985-07-19 | 1987-01-28 | Hitachi Ltd | Ae方式回転機異常診断システム |
US4643437A (en) * | 1985-10-21 | 1987-02-17 | Borg-Warner Industrial Products, Inc. | Mechanical seal with automatic gap convergence control |
US4691276A (en) | 1985-10-21 | 1987-09-01 | Borg-Warner Industrial Products, Inc. | Adaptive control system for mechanical seal assembly |
GB2190198A (en) | 1986-04-28 | 1987-11-11 | Vipac Pty Ltd | Vibrational analysis system for a machine |
DE3875398T2 (de) | 1987-06-03 | 1993-04-08 | Kawasaki Steel Co | Vorrichtung zum feststellen von fehlern in lagern. |
GB8727178D0 (en) | 1987-11-20 | 1987-12-23 | British Petroleum Co Plc | Monitoring accoustic emissions |
JPH01242876A (ja) * | 1988-03-23 | 1989-09-27 | Hitachi Ltd | メカニカルシールの面圧制御方法及び制御装置 |
JPH02199374A (ja) * | 1989-01-30 | 1990-08-07 | Eagle Ind Co Ltd | メカニカルシールの特性変化計測方法およびその計測装置 |
JPH02298825A (ja) | 1989-05-13 | 1990-12-11 | Nippondenso Co Ltd | 回転機のための異常検査装置 |
US5076589A (en) | 1990-03-01 | 1991-12-31 | Bw/Ip International, Inc. | Mechanical seal |
US5064205A (en) | 1990-05-23 | 1991-11-12 | General Electric Company | Active magnetic seal |
US5071141A (en) * | 1990-07-17 | 1991-12-10 | John Crane Inc. | Spiral groove seal arrangement for high vapor-pressure liquids |
US5063993A (en) | 1990-10-22 | 1991-11-12 | The Babcock & Wilcox Company | Air heater with automatic sealing |
US5152536A (en) | 1991-04-16 | 1992-10-06 | Theodor Bardas | Fluid seal with a maintained gap of seal faces |
US5291032A (en) | 1991-08-21 | 1994-03-01 | Hughes Aircraft Company | Fiber optic evanescent wave fuel gauge and leak detector using eccentric core fibers |
JPH05164412A (ja) | 1991-12-17 | 1993-06-29 | Hitachi Ltd | 空気調和機 |
CH686525A5 (de) | 1992-07-02 | 1996-04-15 | Escher Wyss Ag | Turbomaschine . |
JPH0616846A (ja) | 1992-07-03 | 1994-01-25 | Hitachi Zosen Corp | 導電性を有する繊維強化合成樹脂 |
JPH0616846U (ja) * | 1992-08-03 | 1994-03-04 | 東芝エンジニアリング株式会社 | 異常診断装置 |
US5375853B1 (en) | 1992-09-18 | 1998-05-05 | Crane John Inc | Gas lubricated barrier seal |
US5544080A (en) | 1993-02-02 | 1996-08-06 | Honda Giken Kogyo Kabushiki Kaisha | Vibration/noise control system |
US5327920A (en) | 1993-02-23 | 1994-07-12 | Detrex Corporation | Automated apparatus and vapor/immersion cleaning method for soiled parts |
JP3321487B2 (ja) * | 1993-10-20 | 2002-09-03 | 株式会社日立製作所 | 機器/設備診断方法およびシステム |
JP3351925B2 (ja) * | 1995-03-22 | 2002-12-03 | 横河電機株式会社 | 設備管理システム |
EP0997714A3 (en) | 1994-08-31 | 2001-06-06 | Honeywell Inc. | Remote self-powered structure monitor |
JP2766875B2 (ja) | 1995-04-10 | 1998-06-18 | 日本ピラー工業株式会社 | 軸封システム装置 |
AU1192897A (en) | 1995-06-23 | 1997-01-22 | Revolve Technologies Inc. | Dry seal contamination prevention system |
US5755372A (en) | 1995-07-20 | 1998-05-26 | Ocean Engineering & Manufacturing, Inc. | Self monitoring oil pump seal |
US5737433A (en) | 1996-01-16 | 1998-04-07 | Gardner; William A. | Sound environment control apparatus |
US6907383B2 (en) * | 1996-03-28 | 2005-06-14 | Rosemount Inc. | Flow diagnostic system |
US5700013A (en) | 1997-01-22 | 1997-12-23 | John Crane Inc. | Secondary seal with mechanical gas seal |
US6082737A (en) | 1997-08-20 | 2000-07-04 | John Crane Inc. | Rotary shaft monitoring seal system |
US6626436B2 (en) | 1997-08-20 | 2003-09-30 | Crane John Inc | Monitoring seal system |
US6098022A (en) | 1997-10-17 | 2000-08-01 | Test Devices, Inc. | Detecting anomalies in rotating components |
US6324899B1 (en) * | 1998-04-02 | 2001-12-04 | Reliance Electric Technologies, Llc | Bearing-sensor integration for a lubrication analysis system |
US6418384B1 (en) | 1998-05-12 | 2002-07-09 | Rhodia, Inc. | Acoustic emission monitor, method and memory media for solid material processing machinery |
IL126826A0 (en) | 1998-10-30 | 1999-08-17 | Optiguide Ltd | Optical hygrometers |
DE19938722B4 (de) | 1999-08-16 | 2010-10-07 | Prüftechnik Dieter Busch AG | Verfahren und Vorrichtung zur Analyse von Wälzlagern in Maschinen |
DE19938721A1 (de) | 1999-08-16 | 2001-02-22 | Busch Dieter & Co Prueftech | Verfahren und Vorrichtung zum Ermitteln von Schäden an sich zyklisch bewegenden Maschinenelementen |
US6394764B1 (en) | 2000-03-30 | 2002-05-28 | Dresser-Rand Company | Gas compression system and method utilizing gas seal control |
FR2811754B1 (fr) | 2000-07-11 | 2003-04-11 | Busch Dieter & Co Prueftech | Vibrometre universel |
US6981513B2 (en) | 2000-07-28 | 2006-01-03 | Hiltap Fittings, Ltd | Fluid flow management system |
JP2002252075A (ja) | 2001-02-26 | 2002-09-06 | Suzuki Motor Corp | 防曇用ヒータ付ヘルメットのヒータ異常検出装置およびヒータ異常検出方法 |
US6775642B2 (en) | 2002-04-17 | 2004-08-10 | Motorola, Inc. | Fault detection system having audio analysis and method of using the same |
US6715985B2 (en) | 2002-05-15 | 2004-04-06 | John Crane Inc. | Gas conditioning system |
US7097351B2 (en) | 2002-09-30 | 2006-08-29 | Flowserve Management Company | System of monitoring operating conditions of rotating equipment |
GB0224862D0 (en) | 2002-10-25 | 2002-12-04 | Aesseal Plc | An intelligent sealing system |
US6772633B2 (en) | 2002-12-11 | 2004-08-10 | Hewlett-Packard Development Company, L.P. | Acoustics-based diagnostics |
WO2005103674A2 (en) | 2004-04-21 | 2005-11-03 | Symyx Technologies, Inc. | Portable fluid sensing system and sensing method using a flexural resonator |
US7025559B2 (en) | 2004-06-04 | 2006-04-11 | General Electric Company | Methods and systems for operating rotary machines |
US7640139B2 (en) | 2004-10-18 | 2009-12-29 | Nsk Ltd. | Abnormality diagnosing system for mechanical equipment |
US7479876B2 (en) | 2005-02-02 | 2009-01-20 | Rockwell Automation Technologies, Inc. | Wireless integrated condition monitoring system |
US7409765B2 (en) | 2005-03-03 | 2008-08-12 | Perception Digital Limited | Combination cooking utensil |
GB2430034A (en) * | 2005-05-04 | 2007-03-14 | Aes Eng Ltd | A condition monitoring device using acoustic emission sensors and data storage devices. |
JP4210671B2 (ja) | 2005-05-11 | 2009-01-21 | 日本ピラー工業株式会社 | 非接触形メカニカルシール |
JP2006349424A (ja) | 2005-06-14 | 2006-12-28 | Toyoji Ahei | 漏洩電流検出システム及び方法 |
US20070074579A1 (en) * | 2005-10-03 | 2007-04-05 | Honeywell International Inc. | Wireless pressure sensor and method of forming same |
JP5028028B2 (ja) | 2006-05-24 | 2012-09-19 | 株式会社ジェイテクト | アコースティックエミッション検出装置および制御装置 |
CA2607700A1 (en) * | 2006-11-03 | 2008-05-03 | General Electric Company | Mechanical sealing system and method for rotary machines |
DE202007001223U1 (de) | 2007-01-22 | 2007-05-03 | Burgmann Industries Gmbh & Co. Kg | Gleitringdichtung mit Überwachungsfunktion |
JP5164412B2 (ja) | 2007-03-31 | 2013-03-21 | 三洋電機株式会社 | アルカリ蓄電池及び焼結基板の製造方法 |
US7854584B2 (en) | 2007-05-24 | 2010-12-21 | General Electric Company | Barrier sealing system for centrifugal compressors |
JP2009015992A (ja) | 2007-07-06 | 2009-01-22 | Sony Corp | 光記録媒体、光記録媒体記録再生装置及び光記録媒体の解析方法 |
JP2009215992A (ja) | 2008-03-11 | 2009-09-24 | Hitachi-Ge Nuclear Energy Ltd | 液体加圧ポンプの運転方法及びそのメカニカルシール |
GB0805864D0 (en) | 2008-04-01 | 2008-04-30 | Crane John Uk Ltd | Internally pressurised seals |
EP2297491B1 (en) | 2008-05-21 | 2013-10-30 | John Crane, Inc. | Seal monitoring and control system |
US8264347B2 (en) | 2008-06-24 | 2012-09-11 | Trelleborg Sealing Solutions Us, Inc. | Seal system in situ lifetime measurement |
DE102008051176A1 (de) | 2008-10-14 | 2010-04-15 | Wittenstein Ag | Verfahren und Vorrichtung zum Ermitteln des Zustandes eines Bauteils |
US7997140B2 (en) | 2008-10-28 | 2011-08-16 | Pratt & Whitney Canada Corp. | Method and apparatus for troubleshooting noise/vibration issues of rotating components |
US9109748B2 (en) * | 2008-12-16 | 2015-08-18 | Rockwell Automation Technologies, Inc. | Machine conditioning monitoring closed loop lubrication system and method |
US8326582B2 (en) | 2008-12-18 | 2012-12-04 | International Electronic Machines Corporation | Acoustic-based rotating component analysis |
DE102009004035B4 (de) | 2009-01-08 | 2017-05-11 | Man Diesel & Turbo Se | Überwachung einer Abdichtungsanordnung, insbesondere eines Gaskompressors oder -expanders |
US8640528B2 (en) * | 2009-01-28 | 2014-02-04 | Aktiebolaget Skf | Lubrication condition monitoring |
DE102009017935A1 (de) | 2009-04-17 | 2010-10-21 | Man Turbo Ag | Turbomaschinenkomponente und damit ausgerüstete Turbomaschine |
DE202009008089U1 (de) | 2009-06-10 | 2009-08-20 | Burgmann Industries Gmbh & Co. Kg | Gleitringdichtung mit Reibungsüberwachungseinrichtung |
US20110141851A1 (en) | 2009-12-16 | 2011-06-16 | Chevron U.S.A. Inc. | System and method for integrated reservoir and seal quality prediction |
US8578772B2 (en) | 2010-01-28 | 2013-11-12 | Pruftechnik Dieter Busch Ag | Device and method for monitoring of rotating machine elements |
GB201020381D0 (en) | 2010-12-02 | 2011-01-12 | Crane John Uk Ltd | Component failure detection system |
GB201021266D0 (en) * | 2010-12-14 | 2011-01-26 | Crane John Uk Ltd | Seals |
US8596417B2 (en) * | 2011-07-05 | 2013-12-03 | Honeywell International Inc. | Lubrication systems with nozzle blockage detection systems |
DE102011079015B4 (de) | 2011-07-12 | 2020-03-19 | Man Energy Solutions Se | Verfahren zur Maschinenzustandsüberwachung |
US9145783B2 (en) | 2011-08-03 | 2015-09-29 | Joe Delrahim | Seal gas monitoring and control system |
CN102313578A (zh) * | 2011-08-04 | 2012-01-11 | 广州市香港科大霍英东研究院 | 一种机械密封在线监测系统 |
DE102011121636A1 (de) | 2011-12-19 | 2013-06-20 | Eagleburgmann Germany Gmbh & Co. Kg | Verfahren und Vorrichtung zur Überwachung einer Gleitringdichtung |
EP2841902B1 (en) | 2012-04-24 | 2019-08-14 | Aktiebolaget SKF | Acoustic emission measurements of a bearing aseembly |
US9330560B2 (en) | 2012-05-02 | 2016-05-03 | Flowserve Management Company | Reconfigurable equipment monitoring systems and methods |
JP6104820B2 (ja) * | 2012-06-13 | 2017-03-29 | イーグル工業株式会社 | 高温密封流体をシールする故障予知型メカニカルシールシステム |
DE102012109393A1 (de) | 2012-10-02 | 2014-04-03 | Prüftechnik Dieter Busch AG | Vorrichtung und Verfahren zur Bewertung von Schwingungen |
US9835594B2 (en) | 2012-10-22 | 2017-12-05 | Augury Systems Ltd. | Automatic mechanical system diagnosis |
CN202868265U (zh) * | 2012-10-25 | 2013-04-10 | 北京工业大学 | 一种动力机械的润滑系统 |
US9119528B2 (en) * | 2012-10-30 | 2015-09-01 | Dexcom, Inc. | Systems and methods for providing sensitive and specific alarms |
CN202971913U (zh) * | 2012-12-13 | 2013-06-05 | 立白日化有限公司 | 均质机机械密封预防性维护系统 |
US9726643B2 (en) * | 2012-12-28 | 2017-08-08 | Vetco Gray Inc. | Gate valve real time health monitoring system, apparatus, program code and related methods |
AR095272A1 (es) * | 2013-03-14 | 2015-09-30 | Fisher Controls Int Llc | Pronóstico de válvula en función de análisis de laboratorio |
WO2014174097A1 (de) | 2013-04-26 | 2014-10-30 | Sulzer Pumpen Ag | Verfahren zur beurteilung eines verschleisszustandes einer baugruppe einer strömungsmaschine, baugruppe, sowie strömungsmaschine |
JP2016024007A (ja) * | 2014-07-18 | 2016-02-08 | Ntn株式会社 | 機械部品診断システムおよびそのサーバ |
US9593594B2 (en) * | 2014-09-30 | 2017-03-14 | General Electric Company | Method and apparatus for decongealing a lubricating fluid in a heat exchanger apparatus |
CN104390012B (zh) * | 2014-11-04 | 2016-06-15 | 南京工业大学 | 磁流体润滑的机械密封装置及自适应密封控制方法 |
DE102015207134A1 (de) | 2015-04-20 | 2016-10-20 | Prüftechnik Dieter Busch AG | Verfahren zum Erfassen von Vibrationen einer Vorrichtung und Vibrationserfassungssystem |
US10018274B2 (en) | 2015-08-10 | 2018-07-10 | Exxonmobil Upstream Research Company | Device and method for magnetically controlled dry gas seal |
DE102015226311A1 (de) | 2015-12-21 | 2017-06-22 | BestSensAG | Überwachung von Gleitringdichtung |
CA3015495A1 (en) | 2016-02-23 | 2017-08-31 | John Crane Uk Ltd. | Systems and methods for predictive diagnostics for mechanical systems |
US20170254051A1 (en) | 2016-03-03 | 2017-09-07 | SYNCRUDE CANADA LTD.in trust for the owners of the Syncrude Project, as such owners exist now and | Wireless sensor network for detecting equipment failure |
DE102016108463A1 (de) | 2016-05-09 | 2017-11-09 | Man Diesel & Turbo Se | Labyrinthdichtung |
US10132412B2 (en) | 2016-08-05 | 2018-11-20 | Exxonmobil Upstream Research Company | Device and method for controlling rotating equipment seal without buffer support equipment |
IT201700029982A1 (it) | 2017-03-17 | 2018-09-17 | Nuovo Pignone Tecnologie Srl | Tenuta a gas |
EP3615899B1 (en) | 2017-04-26 | 2024-10-09 | Augury Systems Ltd. | Systems and methods for monitoring of mechanical and electrical machines |
EP3584472A1 (en) | 2018-06-20 | 2019-12-25 | Sulzer Management AG | A mechanical seal arrangement for a flow machine |
CN108869750A (zh) | 2018-08-16 | 2018-11-23 | 清华大学 | 可监测型机械密封装置 |
CN113423979A (zh) | 2019-01-04 | 2021-09-21 | 苏尔寿管理有限公司 | 机械密封布置结构以及用于监测机械密封布置结构的操作的传感器环 |
JP7168619B2 (ja) | 2020-08-21 | 2022-11-09 | 矢崎総業株式会社 | インナハウジング組付け時の基板保護構造 |
-
2017
- 2017-02-23 CA CA3015495A patent/CA3015495A1/en active Pending
- 2017-02-23 EP EP17757209.6A patent/EP3420254B1/en active Active
- 2017-02-23 AU AU2017223691A patent/AU2017223691B2/en active Active
- 2017-02-23 JP JP2018545375A patent/JP7370704B2/ja active Active
- 2017-02-23 US US15/440,764 patent/US10545120B2/en active Active
- 2017-02-23 BR BR122023003434-1A patent/BR122023003434B1/pt active IP Right Grant
- 2017-02-23 EP EP21202638.9A patent/EP4008934A3/en active Pending
- 2017-02-23 CN CN202010284894.7A patent/CN111473114B/zh active Active
- 2017-02-23 WO PCT/US2017/019139 patent/WO2017147297A1/en active Application Filing
- 2017-02-23 CN CN201780022317.7A patent/CN109073089B/zh active Active
-
2019
- 2019-12-11 US US16/709,987 patent/US11125726B2/en active Active
-
2020
- 2020-03-13 US US16/818,235 patent/US11060999B2/en active Active
- 2020-05-13 AU AU2020203135A patent/AU2020203135B2/en active Active
-
2021
- 2021-07-12 US US17/372,775 patent/US11719670B2/en active Active
-
2022
- 2022-03-31 JP JP2022059417A patent/JP7441881B2/ja active Active
- 2022-10-28 AU AU2022259856A patent/AU2022259856A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270979A (ja) * | 1987-04-28 | 1988-11-08 | Ebara Corp | メカニカルシ−ルの運転状態監視方法 |
US6065345A (en) * | 1997-07-31 | 2000-05-23 | Sulzer Pumpen Ag | Method for monitoring the condition of a mechanical seal |
WO2001033208A1 (en) * | 1999-11-02 | 2001-05-10 | Georgia Tech Research Corporation | Condition monitoring system and method for an interface |
EP1286056A1 (en) * | 2001-08-10 | 2003-02-26 | Reliance Electric Technologies, LLC | System and method for detecting and diagnosing pump cavitation |
US7442291B1 (en) * | 2002-04-09 | 2008-10-28 | Rockwell Automation Technologies, Inc. | Filter integration for a lubrication analysis system |
CN101032123A (zh) * | 2004-09-30 | 2007-09-05 | 国际商业机器公司 | 用于确定故障对网络服务的影响的方法和装置 |
WO2015009805A1 (en) * | 2013-07-16 | 2015-01-22 | Franklin Electric Co., Inc. | Enclosure with wireless communication features |
CN103821938A (zh) * | 2013-09-30 | 2014-05-28 | 中国人民解放军国防科学技术大学 | 一种舵轴热密封结构 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113423979A (zh) * | 2019-01-04 | 2021-09-21 | 苏尔寿管理有限公司 | 机械密封布置结构以及用于监测机械密封布置结构的操作的传感器环 |
CN109991314A (zh) * | 2019-03-11 | 2019-07-09 | 清华大学 | 基于机器学习的机械密封状态判断方法、装置 |
TWI744909B (zh) * | 2019-06-28 | 2021-11-01 | 日商住友重機械工業股份有限公司 | 用於預測對象裝置的運轉狀態之預測系統、其之預測、其之預測程式、以及用於掌握對象裝置的運轉狀態之顯示裝置 |
TWI732392B (zh) * | 2019-07-31 | 2021-07-01 | 竹陞科技股份有限公司 | 工廠管理系統及控制系統 |
US11320809B2 (en) | 2019-07-31 | 2022-05-03 | Grade Upon Technology Corporation | Factory management system and control system |
CN111289621A (zh) * | 2019-12-27 | 2020-06-16 | 清华大学 | 机械密封信号分析及故障诊断方法、装置与设备 |
CN111693277A (zh) * | 2020-07-10 | 2020-09-22 | 国电大渡河枕头坝发电有限公司 | 一种水轮机主轴密封件监测系统 |
CN116989937A (zh) * | 2023-09-25 | 2023-11-03 | 苏州俊煌机械科技有限公司 | 一种机械密封件的检测方法及装置 |
CN116989937B (zh) * | 2023-09-25 | 2023-12-22 | 苏州俊煌机械科技有限公司 | 一种机械密封件的检测方法及装置 |
CN118425233A (zh) * | 2024-05-30 | 2024-08-02 | 南通莱博尔精密机电配套有限公司 | 基于高温性能监测的集装箱密封条破损检测系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
US11060999B2 (en) | 2021-07-13 |
CN111473114A (zh) | 2020-07-31 |
BR112018017180A2 (pt) | 2019-01-02 |
US10545120B2 (en) | 2020-01-28 |
US11125726B2 (en) | 2021-09-21 |
EP4008934A2 (en) | 2022-06-08 |
AU2017223691B2 (en) | 2020-06-25 |
CA3015495A1 (en) | 2017-08-31 |
CN109073089B (zh) | 2020-09-04 |
BR122023003434B1 (pt) | 2024-01-30 |
JP2019512094A (ja) | 2019-05-09 |
CN111473114B (zh) | 2022-06-17 |
US20200278325A1 (en) | 2020-09-03 |
AU2020203135A1 (en) | 2020-06-04 |
EP3420254A1 (en) | 2019-01-02 |
AU2022259856A1 (en) | 2022-12-08 |
US20200141907A1 (en) | 2020-05-07 |
JP7370704B2 (ja) | 2023-10-30 |
AU2020203135B2 (en) | 2022-07-28 |
EP3420254B1 (en) | 2021-11-24 |
US20210341430A1 (en) | 2021-11-04 |
EP4008934A3 (en) | 2023-03-29 |
WO2017147297A1 (en) | 2017-08-31 |
AU2017223691A1 (en) | 2018-09-20 |
US20170241955A1 (en) | 2017-08-24 |
JP7441881B2 (ja) | 2024-03-01 |
JP2022093348A (ja) | 2022-06-23 |
EP3420254A4 (en) | 2019-10-09 |
US11719670B2 (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109073089A (zh) | 用于机械系统的预测诊断的系统和方法 | |
US9255578B2 (en) | Systems and methods to monitor pump cavitation | |
JP5547945B2 (ja) | 圧力逃がし弁の監視 | |
JP6040399B2 (ja) | 一軸偏心ねじポンプの遠隔モニタリングシステム | |
JP5468041B2 (ja) | プラントの機器維持管理システム | |
KR20140130543A (ko) | 설비들의 그룹의 조건 모니터링을 위한 방법 및 시스템 | |
US11262743B2 (en) | Predicting leading indicators of an event | |
US11101050B2 (en) | Systems and methods to evaluate and reduce outages in power plants | |
WO2024095277A1 (en) | Intelligent vehicle washing system(s) and method for end-to-end health monitoring of the same | |
Rohlfing | Condition monitoring of multiphase pumps | |
Kalhoro et al. | Remote Monitoring of Equipment Performance Through a Customized Real-Time Performance Solution | |
Vincent et al. | Health management solution thanks to wireless vibration sensors network | |
BR112018017180B1 (pt) | Método para monitorar um sistema de vedação mecânica, método para monitorar a condição de integridade de uma ou mais vedações em um sistema de vedação mecânica, e sistemas de vedação mecânica | |
JP2017015097A (ja) | 回転容積型ポンプの遠隔モニタリングシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |