TWI732392B - 工廠管理系統及控制系統 - Google Patents
工廠管理系統及控制系統 Download PDFInfo
- Publication number
- TWI732392B TWI732392B TW108146831A TW108146831A TWI732392B TW I732392 B TWI732392 B TW I732392B TW 108146831 A TW108146831 A TW 108146831A TW 108146831 A TW108146831 A TW 108146831A TW I732392 B TWI732392 B TW I732392B
- Authority
- TW
- Taiwan
- Prior art keywords
- control system
- sensing data
- server
- machine
- artificial intelligence
- Prior art date
Links
- 230000002159 abnormal effect Effects 0.000 claims abstract description 10
- 238000013473 artificial intelligence Methods 0.000 claims description 49
- 238000004422 calculation algorithm Methods 0.000 claims description 22
- 238000010801 machine learning Methods 0.000 claims description 17
- 238000013515 script Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 9
- 230000005055 memory storage Effects 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 5
- 230000008447 perception Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000016776 visual perception Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Factory Administration (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本揭露提出一種工廠管理系統及控制系統。工廠管理系統包括:機台;多個感測器對應機台而設置並產生多個第一感測數據;伺服器;以及控制系統,耦接到機台及伺服器。控制系統接收第一感測數據,以即時產生對應的多個第一控制指令,並將第一控制指令傳送到機台。控制系統接收使用者登入訊息,並在使用者登入狀態接收多個第二感測數據且顯示第二感測數據。控制系統接收使用者控制指令,並將對應使用者控制指令的第二控制指令傳送到機台。當控制系統在使用者登入狀態根據第二感測數據判斷發生異常狀況,控制系統發出警示訊息。
Description
本揭露是有關於一種工廠管理系統及控制系統,且特別是有關於一種人員操作與自動化操作能同時並存的工廠管理系統及控制系統。
在工業4.0的時代中,工廠機台通常會加裝感測器來蒐集大數據並根據工廠人工智慧伺服器的即時運算,來對生產機台作出即時的生產命令調整。然而,當生產流程發生異常且人員介入處理時,生產命令及生產狀態的傳送會被迫中斷,而感測器的感測數據也不具備參考價值。
有鑑於此,本揭露提供一種工廠管理系統及控制系統,讓工廠管理系統中人員操作與自動化操作能同時並存。
本揭露提出一種工廠管理系統,包括:機台;多個感測器對應機台而設置並產生多個第一感測數據;伺服器;以及控制
系統,耦接到機台及伺服器。控制系統接收第一感測數據,以即時產生對應的多個第一控制指令,並將第一控制指令傳送到機台。控制系統接收使用者登入訊息,並在使用者登入狀態接收多個第二感測數據且顯示第二感測數據。控制系統接收使用者控制指令,並將對應使用者控制指令的第二控制指令傳送到機台。當控制系統在使用者登入狀態根據第二感測數據判斷發生異常狀況,控制系統發出警示訊息。
本揭露提出一種控制系統,耦接到機台及伺服器。控制系統包括人工智慧模組。人工智慧模組接收第一感測數據,以即時產生對應的多個第一控制指令,並將第一控制指令傳送到機台。人工智慧模組接收使用者登入訊息,並在使用者登入狀態接收多個第二感測數據且顯示第二感測數據。人工智慧模組接收使用者控制指令,並將對應使用者控制指令的第二控制指令傳送到機台。當人工智慧模組在使用者登入狀態根據第二感測數據判斷發生異常狀況,人工智慧模組發出警示訊息。
基於上述,本揭露的工廠管理系統及控制系統能在使用者登入控制系統時持續接收第二感測數據以提供使用者傳送使用者指令。若控制系統在使用者登入狀態中判斷發生異常狀況時,控制系統也會發出警示訊息。因此,本揭露的工廠管理系統及控制系統不會因為使用者登入控制系統就中斷生產流程及相關資料的傳送,而大幅提升工廠自動化管理系統的靈活性及效率。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉
實施例,並配合所附圖式作詳細說明如下。
100:工廠管理系統
110:機台
111:機台控制器
112:機台實體
120:伺服器
130:控制系統
131:虛擬作業員
132:視覺感知模組
133:震動感知模組
134:流量感知模組
135:其他感知模組
136:邏輯分析與判斷模組
137:控制指令模組
138:記憶儲存模組
139:異常處理模組
140:通訊傳遞模組
141:虛實調和管理器
150:實體管理人員
201:紅色按鈕
202:綠色按鈕
300:工廠管理系統
330:控制系統
340:主伺服器
350:影像伺服器
360:機器學習伺服器
410:硬體通訊介面
420:劇本編輯器及執行期引擎
430:人工智慧影像辨識引擎
431:影像辨識模組
440:人工智慧文字辨識引擎
441:文字辨識模組
450:人工智慧分類器引擎
451:分類器模組
510:人工智慧演算法介面
520:排程器及辨識率報告器
530:第一目標類別
531:第一目標類別演算法
540:第二目標類別
541:第二目標類別演算法
550:第三目標類別
551:第三目標類別演算法
600:工廠管理系統
611、612:機台
620:伺服器
630:插頭
640:頭戴式裝置
650:空間
710:可視區域
720:不可視區域
730:即時影像
圖1為根據本揭露一實施例的工廠管理系統的方塊圖。
圖2為根據本揭露一實施例的控制系統的示意圖。
圖3為根據本揭露一實施例的工廠管理系統的方塊圖。
圖4為根據本揭露一實施例的控制系統人工智慧模組的方塊圖。
圖5為根據本揭露一實施例的機器學習伺服器的方塊圖。
圖6為根據本揭露一實施例的工廠管理系統的示意圖。
圖7為根據本揭露一實施例在工廠中限制視線的示意圖。
圖1為根據本揭露一實施例的工廠管理系統的方塊圖。
請參照圖1,本揭露一實施例的工廠管理系統100包括機台110、伺服器120及控制系統130。控制系統130耦接到機台110及伺服器120。機台110包括機台控制器111用以控制機台實體112。伺服器120例如是工廠人工智慧伺服器。控制系統130包括虛擬作業員131(或稱為人工智慧模組)及虛實調和管理器141。虛擬作業員131可執行機台110的自動控制程序並接收機台的生產相關資訊,並將生產相關資訊傳遞給伺服器120。實體管理人員
150可通過虛實調和管理器141與虛擬作業員131溝通以控制機台110。
在一實施例中,控制系統130的視覺感知模組132、震動感知模組133、流量感知模組134及其他感知模組135的至少其中之一接收機台110的第一感測數據,由邏輯分析與判斷模組136進行判斷以即時產生對應的多個第一控制指令,並由指令控制模組137將第一控制指令傳送到機台110的機台控制器111。伺服器120可傳送演算法到控制系統130的虛擬作業員131,且控制系統130的虛擬作業員131根據第一感測數據及演算法產生第一控制指令。控制系統130的虛實調和管理器141接收實體管理人員150的使用者登入訊息,並在使用者登入狀態接收多個第二感測數據(即,虛擬作業員131不會因為實體管理人員150的介入而停止運作)且顯示第二感測數據提供實體管理人員150參考。控制系統130的虛擬作業員131接收使用者控制指令,由控制指令模組137將使用者控制指令轉換成機台控制器111可讀的第二控制指令,並將對應使用者控制指令的第二控制指令傳送到機台110。當控制系統130的虛擬作業員131在使用者登入狀態根據第二感測數據判斷發生異常狀況,控制系統130的虛擬作業員131發出警示訊息。
值得注意的是,多個感測器可對應該機台110而設置(例如,設置於機台前端、機台後端及/或機台內部)並產生多個第一感測數據及第二感測數據。第一感測數據及第二感測數據包括影像感測數據、壓力感測數據、溫度感測數據、流量感測數據、氣體
濃度感測數據、氣體偵測感測數據、及其他任何類型的生產流程感測數據的至少其中之一。
在一實施例中,控制系統130的虛實調和管理器141判斷對應使用者登入訊息的使用者權限,並根據權限與風險對照表判斷對應使用者權限的最大風險值。當使用者控制指令對應的風險值不大於最大風險值時,控制系統130將對應使用者控制指令的該第二控制指令傳送到該機台。虛實調和管理器141可包括一或多組按鍵、按鈕及燈號。當實體管理人員150要介入操作時,可通過按下按鍵讓虛擬作業員131得知。虛擬作業員131也可通過亮燈號或燈號閃爍,讓實體管理人員150得知目前的控制權屬於實體管理人員150或虛擬作業員131。虛實調和管理器141也可包括無線射頻識別(Radio Frequency Identification,RFID)讀取器,當實體管理人員150要介入操作時讀取實體管理人員的RFID卡並藉由RFID卡的識別碼來判斷實體管理人員150是否具備操作權限及其權限等級。虛實調和管理器141還可包括鍵盤、螢幕、觸控屏等輸出裝置。當實體管理人員150要介入操作時可輸入帳號密碼,且螢幕可顯示燈號或其他表示方式讓實體管理人員150得之目前的控制權屬於實體管理人員150或虛擬作業員131。虛實調和管理器141也可通過帳號密碼來判斷實體管理人員150的權限等級。
在一實施例中,對應機台110而設置的影像感測器可擷取機台110的生產影像並通過視覺感知模組132轉換成影像數
據。影像數據可傳送到邏輯分析與判斷模組136。類似地,震動感知模組133、流量感知模組134及其他感知模組135也可將震動感測數據、流量感測數據及/或其他感測數據傳送到邏輯分析與判斷模組136。邏輯分析與判斷模組136可將蒐集的影像數據及感測數據依照預先建立好的邏輯分析與判斷方法做出對應的控制決策並將控制決策傳送到控制指令模組137以轉換成控制指令,並將控制指令傳送到機台控制器111。影像數據及感測數據可儲存於記憶儲存模組138,且邏輯分析與判斷模組136也可取出記憶儲存模組138中的數據以協助判斷。控制指令可包括鍵盤、滑鼠、觸控、軌跡球等輸入信號。邏輯分析與判斷模組136的分析判斷原則(例如,分析演算法)可由伺服器120經由通訊傳遞模組140傳送到虛擬作業員131並儲存於記憶儲存模組138。分析判斷原則可具有優先順序並可被更新。記憶儲存模組138中的數據也可通過通訊傳遞模組140傳送到伺服器120來進行大數據分析及機器學習,並將分析判斷原則進行下一個迭代的優化。當邏輯分析與判斷模組136藉由影像數據及/或感測數據判斷出異常狀況時,可通過異常處理模組139發出信息。信息可包括警示燈、警報聲、電子郵件、簡訊、手機應用程式推播信息等。
在一實施例中,實體管理人員150可通過虛實調和管理器141與虛擬作業員131進行協同作業。虛擬作業員131可將感測數據提供給實體管理人員150讓實體管理人員150進行人為邏輯分析與判斷,並將人為控制決策通過控制指令模組137傳送到
機台110。雖然虛擬作業員131在實體管理人員150介入時的權限低於實體管理人員150,但邏輯分析與判斷模組136仍會在背景進行邏輯分析判斷。雖然這時虛擬作業員131不對控制指令模組137發出控制決策,但當虛擬作業員131判斷發生異常狀況時可以通過異常處理模組139對實體管理人員150發出警示。實體管理人員150的操作記錄可儲存於記憶儲存模組138,且實體管理人員150介入操作時由虛擬作業員131接收或產生的數據也會通過通訊傳遞模組140傳送到伺服器120。
在一實施例中,控制系統130從第一感測器接收第三感測數據,將第三感測數據分割為多個數據區段並計算對應每個數據區段的單一值(例如,平均值、最大值、最小值或峰值出現頻率等)。若其中一個單一值的偏差大於門檻值則控制系統130發出第一警示訊息。舉例來說,當第三感測數據的取樣頻率是50赫茲時,每個數據區段可包括50個取樣值,且控制系統130可計算每個數據區段的50個取樣值所對應的單一值(平均值、最大值等),並判斷每個數據區段的單一值的偏差是否過大而發出警示訊息。值得注意的是,感測數據的波形圖可進行對數(log)運算再分割數據區段。
圖2為根據本揭露一實施例的控制系統的示意圖。
請參照圖2,控制系統130的裝置上可包括紅色按鈕201(或稱為第一按鈕)及綠色按鈕202(或稱為第二按鈕)。紅色按鈕201對應本地端且綠色按鈕對應人工智慧及遠端。當控制系統130
的虛擬作業員131執行一劇本(script)以產生第一控制指令時,第二按鈕的燈號亮起且控制系統130可從遠端存取,當第一按鈕被按壓時,第一按鈕的燈號亮起且控制系統130暫停執行劇本且控制系統130只能從本地端存取而無法從遠端存取。當控制系統130並未執行劇本且第一按鈕的燈號亮起且第二按鈕的燈號不亮時,控制系統130只能從本地端存取而無法遠端存取。
舉例來說,當虛擬作業員131正在執行人工智慧劇本時,綠色按鈕202的綠色燈號會亮起。若實體管理人員150按下紅色按鈕201且紅色按鈕201的紅色燈號亮起時,虛擬作業員131會暫停執行人工智慧劇本時並將本地端設定為最高優先權。以下表一為紅色燈號及綠色燈號對應的不同狀態的表格。
請參照表一,在狀態3、4中紅燈為「ON」代表本地端存取有最高優先權且遠端無法存取,此時綠燈為「OFF」代表人工智慧沒運行且綠燈為「ON」代表人工智慧被暫停。在狀態2中紅燈為「OFF」且綠燈為「ON」代表本地端不可存取且遠端可存取,而人工智慧正在運行中。在狀態1中紅燈綠燈皆為「OFF」,代表
人工智慧沒在運行,此時本地端及遠端都可存取。
圖3為根據本揭露一實施例的工廠管理系統的方塊圖。
請參照圖3,本揭露一實施例的工廠管理系統300包括控制系統330、主伺服器340、影像伺服器350及機器學習伺服器360。主伺服器330及影像伺服器350耦接到控制系統330且機器學習伺服器360耦接到主伺服器340及影像伺服器350。控制系統330可耦接到工廠電腦主機並從工廠電腦主機蒐集生產資料,以及傳送生產指令到工廠電腦主機。影像伺服器350從控制系統330接收多個即時影像且機器學習伺服器360每隔預定時間間隔從影像伺服器350擷取即時影像。機器學習伺服器360將即時影像輸入預設影像辨識模型進行訓練並將辨識率傳送到主伺服器340。當辨識率大於預設辨識率時,主伺服器340傳送訓練後的新影像辨識模型到控制系統330。當有新演算法(例如,偵測產品缺陷的新演算法)發布時,新演算法可被輸入到主伺服器340且主伺服器340可將新演算法傳送到機器學習伺服器360。此外,控制系統330硬體或軟體的狀態報告都會傳送到主伺服器340。
圖4為根據本揭露一實施例的控制系統人工智慧模組的方塊圖。
請參照圖4及圖3,本揭露一實施例的控制系統人工智慧模組400包括硬體通訊介面410及劇本編輯器及執行期(Runtime)引擎420。硬體通訊介面410可通過控制系統硬體來接收影像數據或文字數據等生產數據,並由劇本編輯器及執行期引擎420執行
人工智慧劇本來進行數據辨識。舉例來說,人工智慧影像辨識引擎430可根據不同的影像辨識模組431來進行影像辨識。人工智慧文字辨識引擎440可根據不同的文字辨識模組441來進行文字辨識。人工智慧分類器引擎450可根據不同的分類器模組451來進行數據分類。分類後的數據可被傳送到影像伺服器350,且控制系統人工智慧模組400可從主伺服器340接收最新釋出的辨識模組或分類模組。
圖5為根據本揭露一實施例的機器學習伺服器的方塊圖。
請參照圖5及圖3,本揭露一實施例的機器學習伺服器360包括人工智慧演算法介面510及排程器及辨識率報告器520。人工智慧演算法介面510可從主伺服器340接收新釋出的演算法。排程器及辨識率報告器520則可進行機器學習程序的排程並將辨識率報告傳送到主伺服器340。機器學習伺服器360還包括第一目標類別530及對應的第一目標類別演算法531、第二目標類別540及對應的第二目標類別演算法541、第三目標類別550及對應的第三目標類別演算法551。不同的目標類別對應不同的機器學習對象,例如辨識率學習、影像搜尋學習或辨識速度學習等等。
圖6為根據本揭露一實施例的工廠管理系統的示意圖。圖7為根據本揭露一實施例在工廠中限制視線的示意圖。
請參照圖6及圖7,本揭露一實施例的工廠管理系統600包括機台611、機台612(或更多其他機台)、伺服器620、插頭630及頭戴式裝置640。插頭630耦接到伺服器620,且插頭630與機
台611、機台612位於一空間650中。插頭630可包括通用序列匯流排C類型(USB type-C)介面或其他可進行影音資料傳輸的通訊介面。頭戴式裝置640通過連接線耦接到插頭630且連接線的長度小於一預定長度(例如,小於3公尺)並可具有伸縮功能。頭戴式裝置640例如是擴增實境(Augmented Reality,AR)裝置或虛擬實境(Virtual Reality,VR)裝置。頭戴式裝置640顯示對應空間650的即時影像730。即時影像730包括可視區域710及不可視區域720,且可視區域710包括機台611。伺服器620可將即時影像730傳送到遠端電腦(未繪示於圖中)。頭戴式裝置640還可包括影像感測器及對應影像感測器的鏡頭,且可視區域710包括鏡頭焦距內(例如,一公尺內)的空間影像,且伺服器620對不可視區域720進行模糊化處理、全黑處理或其他類型的遮蔽處理。頭戴式裝置640還可包括麥克風及揚聲器,且頭戴式裝置640藉由麥克風及揚聲器與遠端電腦進行音訊傳輸。值得注意的是,頭戴式裝置640及遠端電腦之間的影音傳輸可通過影音編碼(例如,H.264)來完成。
舉例來說,當現場維修人員要進入工廠的特定區域(例如,無塵室)維修機台611且需要遠端人員(例如,機台611的原廠技術人員)的協助時,維修人員及遠端人員可在伺服器620確認身分。當維修人員進入機台611所在的空間650後可將頭戴式裝置640的連接線插入插頭630並戴上頭戴式裝置640。頭戴式裝置640會顯示即時影像730且伺服器620可將即時影像730傳送給遠端人員讓遠端人員可通過視訊及音訊與維修人員進行溝通,因此戴
著頭戴式裝置640的維修人員與遠端人員都看不到不可視區域720中的物體(例如,機台612)。在一實施例中,伺服器620可事先利用空間650中的不同機台的外型或機台上的特徵進行機台辨識的訓練。當頭戴式裝置640上的影像感測器將空間650的空間影像傳送到伺服器620時,伺服器620可辨識出特定機台(例如,機台611)並將遮蔽機台611以外其他物體的即時影像730傳送到頭戴式裝置640上顯示。在另一實施例中,伺服器620也可獲得頭戴式裝置640在空間650中的位置及方向並根據空間650中各物件的三維資訊來進行不可視區域720的判斷。本揭露不限制不可視區域720的判斷方式。
綜上所述,本揭露的工廠管理系統及控制系統能在使用者登入控制系統時持續接收第二感測數據以提供使用者傳送使用者指令。若控制系統在使用者登入狀態中判斷發生異常狀況時,控制系統也會發出警示訊息。因此,本揭露的工廠管理系統及控制系統不會因為使用者登入控制系統就中斷生產流程及相關資料的傳送,而大幅提升工廠自動化管理系統的靈活性及效率。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
100:工廠管理系統
110:機台
111:機台控制器
112:機台實體
120:伺服器
130:控制系統
131:虛擬作業員
132:視覺感知模組
133:震動感知模組
134:流量感知模組
135:其他感知模組
136:邏輯分析與判斷模組
137:控制指令模組
138:記憶儲存模組
139:異常處理模組
140:通訊傳遞模組
141:虛實調和管理器
150:實體管理人員
Claims (23)
- 一種工廠管理系統,包括:一機台;多個感測器,對應該機台而設置並產生多個第一感測數據;一伺服器;以及一控制系統,耦接到該機台及該伺服器,其中該控制系統接收該些第一感測數據,以即時產生對應的多個第一控制指令,並將該些第一控制指令傳送到該機台,該控制系統接收一使用者登入訊息,並在一使用者登入狀態接收多個第二感測數據且顯示該些第二感測數據,該控制系統接收一使用者控制指令,並將對應使用者控制指令的一第二控制指令傳送到該機台,當該控制系統在該使用者登入狀態根據該些第二感測數據判斷發生一異常狀況,該控制系統發出一警示訊息,其中該控制系統判斷對應該使用者登入訊息的一使用者權限,並根據一權限與風險對照表判斷對應該使用者權限的一最大風險值,當該使用者控制指令對應的一風險值不大於該最大風險值時,該控制系統將對應該使用者控制指令的該第二控制指令傳送到該機台。
- 如申請專利範圍第1項所述的工廠管理系統,其中該伺服器傳送一演算法到該控制系統,且該控制系統根據該些第一感測數據及該演算法產生該些第一控制指令。
- 如申請專利範圍第1項所述的工廠管理系統,其中該使用者登入訊息根據至少一按鈕、一無線射頻識別讀取器、或一鍵盤而產生。
- 如申請專利範圍第1項所述的工廠管理系統,其中該些第一感測數據及該些第二感測數據包括一影像感測數據、一壓力感測數據、一溫度感測數據、一流量感測數據、一氣體濃度感測數據、及一氣體偵測感測數據的至少其中之一。
- 如申請專利範圍第1項所述的工廠管理系統,其中該控制系統包括一第一按鈕及一第二按鈕對應不同燈號,且該控制系統從一本地端或一遠端接收該使用者控制指令。
- 如申請專利範圍第5項所述的工廠管理系統,其中當該控制系統執行一劇本以產生該些第一控制指令時,該第二按鈕的燈號亮起且該控制系統可從該遠端存取,當該第一按鈕被按壓時,該第一按鈕的燈號亮起且該控制系統暫停執行該劇本且該控制系統只能從該本地端存取而無法從該遠端存取。
- 如申請專利範圍第6項所述的工廠管理系統,其中當該控制系統並未執行該劇本且該第一按鈕的燈號亮起且該第二按鈕的燈號不亮時,該控制系統只能從該本地端存取而無法從該遠端存取。
- 如申請專利範圍第1項所述的工廠管理系統,其中該伺服器包括一主伺服器、一影像伺服器及一機器學習伺服器,該主伺服器及該影像伺服器耦接到該控制系統且該機器學習伺服器耦 接到該主伺服器及該影像伺服器,該影像伺服器從該控制系統接收多個即時影像且該機器學習伺服器每隔一預定時間間隔從該影像伺服器擷取該些即時影像。
- 如申請專利範圍第8項所述的工廠管理系統,其中該機器學習伺服器將該些即時影像輸入一預設影像辨識模型進行訓練並將一辨識率傳送到該主伺服器,當該辨識率大於一預設辨識率時,該主伺服器傳送訓練後的一新影像辨識模型到該控制系統。
- 如申請專利範圍第1項所述的工廠管理系統,更包括:一插頭,耦接到該伺服器,且該插頭及該機台位於一空間中;以及一頭戴式裝置,通過一連接線耦接到該插頭,其中該頭戴式裝置顯示對應該空間的一即時影像,該即時影像包括一可視區域及一不可視區域的至少其中之一,且該可視區域包括該機台,該伺服器將該即時影像傳送到一遠端電腦。
- 如申請專利範圍第10項所述的工廠管理系統,其中該頭戴式裝置包括一影像感測器及對應該影像感測器的一鏡頭,且該可視區域包括該鏡頭焦距內的一空間影像,且該伺服器對該不可視區域進行一遮蔽處理。
- 如申請專利範圍第10項所述的工廠管理系統,其中該頭戴式裝置包括一麥克風及一揚聲器,且該頭戴式裝置藉由該麥克風及該揚聲器與該遠端電腦進行一音訊傳輸。
- 如申請專利範圍第1項所述的工廠管理系統,其中該控制系統從一第一感測器接收一第三感測數據,將該第三感測數據分割為多個數據區段並計算對應每個該些數據區段的一單一值,若其中一個該單一值的一偏差大於一門檻值則該控制系統發出一第一警示訊息。
- 如申請專利範圍第13項所述的工廠管理系統,其中該單一值包括一平均值、一最大值、一最小值、一峰值出現頻率的至少其中之一。
- 一種控制系統,耦接到一機台及一伺服器,該控制系統包括:一人工智慧模組,其中該人工智慧模組接收多個第一感測數據,以即時產生對應的多個第一控制指令,並將該些第一控制指令傳送到該機台,該人工智慧模組接收一使用者登入訊息,並在一使用者登入狀態接收多個第二感測數據且顯示該些第二感測數據,該人工智慧模組接收一使用者控制指令,並將對應使用者控制指令的一第二控制指令傳送到該機台,當人工智慧模組在該使用者登入狀態根據該些第二感測數據判斷發生一異常狀況,該人工智慧模組發出一警示訊息,其中該人工智慧模組判斷對應該使用者登入訊息的一使用者權限,並根據一權限與風險對照表判斷對應該使用者權限的一最大風險值,當該使用者控制指令對應的一風險值不大於該最大風險值時,該 人工智慧模組將對應該使用者控制指令的該第二控制指令傳送到該機台。
- 如申請專利範圍第15項所述的控制系統,其中該伺服器傳送一演算法到該人工智慧模組,且該人工智慧模組根據該些第一感測數據及該演算法產生該些第一控制指令。
- 如申請專利範圍第15項所述的控制系統,其中該使用者登入訊息根據至少一按鈕、一無線射頻識別讀取器、或一鍵盤而產生。
- 如申請專利範圍第15項所述的控制系統,其中該些第一感測數據及該些第二感測數據包括一影像感測數據、一壓力感測數據、一溫度感測數據、一流量感測數據、一氣體濃度感測數據、及一氣體偵測感測數據的至少其中之一。
- 如申請專利範圍第15項所述的控制系統,更包括一第一按鈕及一第二按鈕對應不同燈號,且該人工智慧模組從一本地端或一遠端接收該使用者控制指令。
- 如申請專利範圍第19項所述的控制系統,其中當該人工智慧模組執行一劇本以產生該些第一控制指令時,該第二按鈕的燈號亮起且該人工智慧模組可從該遠端存取,當該第一按鈕被按壓時,該第一按鈕的燈號亮起且該人工智慧模組暫停執行該劇本且該人工智慧模組只能從該本地端存取而無法從該遠端存取。
- 如申請專利範圍第20項所述的控制系統,其中當該人工智慧模組並未執行該劇本且該第一按鈕的燈號亮起且該第二按 鈕的燈號不亮時,該人工智慧模組只能從該本地端存取而無法從該遠端存取。
- 如申請專利範圍第15項所述的控制系統,其中該人工智慧模組傳送一即時影像到一影像伺服器。
- 如申請專利範圍第15項所述的控制系統,其中該人工智慧模組從一主伺服器接收訓練後的一新影像辨識模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/862,548 US11320809B2 (en) | 2019-07-31 | 2020-04-29 | Factory management system and control system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962880672P | 2019-07-31 | 2019-07-31 | |
US62/880,672 | 2019-07-31 | ||
US201962890586P | 2019-08-22 | 2019-08-22 | |
US62/890,586 | 2019-08-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202107418A TW202107418A (zh) | 2021-02-16 |
TWI732392B true TWI732392B (zh) | 2021-07-01 |
Family
ID=74336635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108146831A TWI732392B (zh) | 2019-07-31 | 2019-12-20 | 工廠管理系統及控制系統 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112306012A (zh) |
TW (1) | TWI732392B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI767590B (zh) * | 2021-03-02 | 2022-06-11 | 伊斯酷軟體科技股份有限公司 | 用於多部電子計算裝置的機器人流程自動化裝置及機器人流程自動化方法 |
CN113219913B (zh) * | 2021-03-31 | 2024-07-26 | 宇辰系统科技股份有限公司 | 厂房管理系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003067519A (ja) * | 2001-08-24 | 2003-03-07 | Kubota Corp | 機械設備のメンテナンス情報管理システム |
TW201113657A (en) * | 2009-10-09 | 2011-04-16 | Tong Dean Tech Co Ltd | Error diagnosis and classification monitoring and controlling system |
US20160055045A1 (en) * | 2013-03-28 | 2016-02-25 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for fault management in infrastructure as a service clouds |
TW201842428A (zh) * | 2017-04-05 | 2018-12-01 | 日商荏原製作所股份有限公司 | 半導體製造裝置、半導體製造裝置之故障預測方法、及半導體製造之故障預測程序 |
CN109073089A (zh) * | 2016-02-23 | 2018-12-21 | 约翰起重机英国有限公司 | 用于机械系统的预测诊断的系统和方法 |
TWI646846B (zh) * | 2017-02-17 | 2019-01-01 | 日商馬獅達克股份有限公司 | 製造裝置連線維護系統及其方法 |
US20190087554A1 (en) * | 2015-10-06 | 2019-03-21 | Os-New Horizons Personal Computing Solutions Ltd. | A mobile device and method providing secure data access, management and storage of mass personal data |
CN109783262A (zh) * | 2018-12-24 | 2019-05-21 | 新华三技术有限公司 | 故障数据处理方法、装置、服务器及计算机可读存储介质 |
TWI665560B (zh) * | 2016-07-18 | 2019-07-11 | 科智企業股份有限公司 | 行動製造管理和優化平台 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800766A (zh) * | 2009-12-30 | 2010-08-11 | 上海交通大学 | 基于Web的工业污水处理远程监控系统 |
JP6020006B2 (ja) * | 2012-09-27 | 2016-11-02 | キヤノンマーケティングジャパン株式会社 | 情報処理装置、情報処理方法、及び、コンピュータプログラム |
CN206848800U (zh) * | 2017-05-26 | 2018-01-05 | 厦门汇利伟业科技有限公司 | 基于虚拟现实和工业物联网的在线监控系统 |
CN107390537A (zh) * | 2017-07-26 | 2017-11-24 | 上海与德通讯技术有限公司 | 一种基于多任务的处理方法和装置 |
-
2019
- 2019-12-20 TW TW108146831A patent/TWI732392B/zh active
- 2019-12-20 CN CN201911322499.7A patent/CN112306012A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003067519A (ja) * | 2001-08-24 | 2003-03-07 | Kubota Corp | 機械設備のメンテナンス情報管理システム |
TW201113657A (en) * | 2009-10-09 | 2011-04-16 | Tong Dean Tech Co Ltd | Error diagnosis and classification monitoring and controlling system |
US20160055045A1 (en) * | 2013-03-28 | 2016-02-25 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for fault management in infrastructure as a service clouds |
US20190087554A1 (en) * | 2015-10-06 | 2019-03-21 | Os-New Horizons Personal Computing Solutions Ltd. | A mobile device and method providing secure data access, management and storage of mass personal data |
CN109073089A (zh) * | 2016-02-23 | 2018-12-21 | 约翰起重机英国有限公司 | 用于机械系统的预测诊断的系统和方法 |
TWI665560B (zh) * | 2016-07-18 | 2019-07-11 | 科智企業股份有限公司 | 行動製造管理和優化平台 |
TWI646846B (zh) * | 2017-02-17 | 2019-01-01 | 日商馬獅達克股份有限公司 | 製造裝置連線維護系統及其方法 |
TW201842428A (zh) * | 2017-04-05 | 2018-12-01 | 日商荏原製作所股份有限公司 | 半導體製造裝置、半導體製造裝置之故障預測方法、及半導體製造之故障預測程序 |
CN109783262A (zh) * | 2018-12-24 | 2019-05-21 | 新华三技术有限公司 | 故障数据处理方法、装置、服务器及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
TW202107418A (zh) | 2021-02-16 |
CN112306012A (zh) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102031670B1 (ko) | 휴대단말과 원격관리장치 및 이를 이용한 증강현실 기반 원격 가이던스 방법 | |
CN105100724A (zh) | 一种基于视觉分析的智能家居远程安全监控方法及装置 | |
EP3382643A1 (en) | Automated object tracking in a video feed using machine learning | |
KR102132330B1 (ko) | 하이퍼모션 단계 처리가 가능한 증강현실 및 기계학습 기반 원격 가이던스 장치 및 그 방법 | |
TWI732392B (zh) | 工廠管理系統及控制系統 | |
CN111223263A (zh) | 一种全自动综合型火灾预警响应系统 | |
CN109544870A (zh) | 用于智能监控系统的报警判断方法与智能监控系统 | |
CN113903058A (zh) | 一种基于区域人员识别的智能控制系统 | |
CN113748389A (zh) | 用于监控工业过程步骤的方法和设备 | |
CN113542690A (zh) | 一种建筑施工安全监控系统及方法 | |
CN211184122U (zh) | 铁路作业安全防控和大客流预警联动的智能视频分析系统 | |
CN213457742U (zh) | 一种焊接作业监控系统 | |
US11320809B2 (en) | Factory management system and control system | |
CN113887310A (zh) | 工人规范着装识别方法、系统及介质 | |
KR102366396B1 (ko) | Rgb-d 데이터와 딥러닝을 이용한 3d객체영역분할 방법과 그 시스템 | |
CN112666911A (zh) | 协同控制系统 | |
CN208239863U (zh) | 一种基于物联网的智能安防装置 | |
CN109856999A (zh) | 确定与执行设备相关的状态信息是否被篡改的方法和系统 | |
CN115346170A (zh) | 一种燃气设施区域的智能监控方法及装置 | |
CN115657509A (zh) | 一种生产场所无人值守远程移动监控控制系统 | |
CN112947247A (zh) | 一种基于机器视觉和单片机控制的人员监测方法 | |
US10824126B2 (en) | Device and method for the gesture control of a screen in a control room | |
KR20210051392A (ko) | 영상 기반 설비 모니터링 장치 및 방법 | |
TWI850359B (zh) | 一種資訊處理系統及其方法 | |
CN117876538B (zh) | 一种垃圾发电厂可视化管理方法及系统 |