CN108884449A - 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法 - Google Patents

新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法 Download PDF

Info

Publication number
CN108884449A
CN108884449A CN201780001521.0A CN201780001521A CN108884449A CN 108884449 A CN108884449 A CN 108884449A CN 201780001521 A CN201780001521 A CN 201780001521A CN 108884449 A CN108884449 A CN 108884449A
Authority
CN
China
Prior art keywords
leua
leu
amino acid
pcj7
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780001521.0A
Other languages
English (en)
Other versions
CN108884449B (zh
Inventor
李智惠
宋秉哲
全爱智
金宗贤
金蕙园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CJ CheilJedang Corp
Original Assignee
CJ CheilJedang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CJ CheilJedang Corp filed Critical CJ CheilJedang Corp
Priority to CN202111316466.9A priority Critical patent/CN114085800A/zh
Publication of CN108884449A publication Critical patent/CN108884449A/zh
Application granted granted Critical
Publication of CN108884449B publication Critical patent/CN108884449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/030132-Isopropylmalate synthase (2.3.3.13)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本公开涉及具有异丙基苹果酸合酶活性的新型修饰多肽、编码该多肽的多核苷酸、包含该多肽的微生物和通过培养该微生物生产L‑亮氨酸的方法。

Description

新型异丙基苹果酸合酶变异体及使用其生产L-亮氨酸的方法
技术领域
本公开涉及具有异丙基苹果酸合酶活性的新型修饰多肽、编码该多肽的多核苷酸、包含该多肽的微生物和通过培养该微生物生产L-亮氨酸的方法。
背景技术
L-亮氨酸(L-Leucine)是一种必需氨基酸,其价格昂贵并广泛用于药物、食品、饲料添加剂、工业化学品等。此外,主要使用微生物来生产L-亮氨酸。包括L-亮氨酸在内的支链氨基酸的发酵主要通过埃希氏杆菌属的微生物(a microorganism of the genusEscherichia)或棒状杆菌属的微生物(a microorganism of the genusCorynebacterium)经过若干步骤来进行,已知的是由丙酮酸(pyruvic acid)来生物合成2-酮异己酸(2-ketoisocaproate)而作为前体(precursor)(韩国专利号10-0220018和10-0438146)。
作为参与亮氨酸生物合成的酶,异丙基苹果酸合酶(Isopropylmalate synthase,以下称为“IPMS”)是亮氨酸生物合成中第一步骤的酶,其将缬氨酸生物合成途径中产生的2-酮异戊酸(2-ketoisovalerate)转化为异丙基苹果酸,使得亮氨酸代替缬氨酸进行生物合成,因此IPMS是亮氨酸生物合成过程中重要的酶。然而,IPMS受到最终产物L-亮氨酸或其衍生物的反馈抑制。因此,尽管存在与释放反馈抑制而生产高浓度亮氨酸的IPMS变异体相关的各种现有技术(美国专利公开申请号2005-0079641和美国专利号6403342),但仍在继续研究以发现更好的变异体。
在这些情况下,本发明人尝试开发一种可用于以高浓度生产L-亮氨酸的IPMS变异体,并由此开发出了一种新型IPMS变异体。据证实,该变异体释放出由L-亮氨酸(为最终产物)引起的反馈抑制并增强了其活性,使得该变异体能够通过含有其的微生物以高产率生产L-亮氨酸,从而实现本公开。
发明内容
技术问题
本公开的一个目的是提供具有异丙基苹果酸合酶活性的新型修饰多肽。
本公开的另一个目的是提供编码所述修饰多肽的多核苷酸。
本公开的又一个目的是提供含有所述多肽的生产L-亮氨酸的棒状杆菌(Corynebacterium)属的微生物。
本公开的又一个目的是提供通过在培养基中培养所述微生物来生产L-亮氨酸的方法。
技术方案
为了实现上述目的,本公开的一方面提供了具有异丙基苹果酸合酶活性的新型修饰多肽。该新型修饰多肽可以是如下具有异丙基苹果酸合酶活性的修饰多肽:其中由氨基酸序列SEQ ID NO:1组成的多肽的N端的558位的精氨酸被非精氨酸的氨基酸残基置换,或者由氨基酸序列SEQ ID NO:1组成的多肽的N端的561位的甘氨酸被非甘氨酸的氨基酸残基置换。本公开的修饰多肽不仅比具有异丙基苹果酸合酶活性的多肽SEQ ID NO:1具有更高的活性,而且还具有释放L-亮氨酸反馈抑制的特征。
如本文所用,术语“异丙基苹果酸合酶”是指通过与乙酰辅酶A(acetyl-CoA)反应来将2-酮异戊酸转化成异丙基苹果酸(L-亮氨酸的前体)的酶。可以包括本公开的异丙基苹果酸合酶,只要该酶具有转化活性即可,而不论微生物的来源。具体地,异丙基苹果酸合酶可以是源自棒状杆菌(Corynebacterium)属的微生物的酶。更具体地,异丙基苹果酸合酶可以是源自谷氨酸棒状杆菌(Corynebacterium glutamicum)的异丙基苹果酸合酶,具体地,可以包括氨基酸序列SEQ ID NO:1,但不限于此。此外,异丙基苹果酸合酶可以包括与氨基酸序列SEQ ID NO:1具有至少80%、90%、95%、96%、97%、98%或99%同源性的多肽。例如,显而易见的是,具有这种同源性并表现出对应于异丙基苹果酸合酶效果的氨基酸序列可以包括在本公开的范围之内,即使其氨基酸序列中的某些序列缺失、被修饰、被置换或被添加。
如本文所用,术语“异丙基苹果酸合酶活性的增加”是指异丙基苹果酸转化活性的增加。因此,与具有异丙基苹果酸合酶活性的多肽SEQ ID NO:1相比,本公开的修饰多肽具有更高水平的异丙基苹果酸转化活性。异丙基苹果酸转化活性可以通过测量产生的异丙基苹果酸水平而被直接证实,或者可以通过测量所产生的辅酶A(CoA)的水平来间接证实。如本文所用,术语“活性的增加”可与“增强的活性”结合使用。此外,异丙基苹果酸是L-亮氨酸的前体,因此与具有异丙基苹果酸合酶活性的多肽SEQ ID NO:1相比,使用本公开的修饰多肽产生了更高水平的L-亮氨酸。
此外,与具有异丙基苹果酸合酶活性的多肽SEQ ID NO:1不同,本公开的修饰多肽的特征在于释放了作为最终产物的L-亮氨酸或其衍生物的反馈抑制。如本文所用,术语“反馈抑制”是指在酶体系中,最终产物在酶体系的早期状态下的反应抑制。对于本公开的目的,反馈抑制可以是L-亮氨酸或其衍生物抑制异丙基苹果酸合酶(其介导生物合成途径的第一步骤)活性的反馈抑制,但不限于此。因此,当释放出对异丙基苹果酸合酶的反馈抑制时,与不释放反馈抑制的情况相比,可以增加L-亮氨酸的生产率。
如本文所用,术语“修饰”、“修饰的”或“变异体”是指在一种稳定表型中显示出遗传性或非遗传性交替的培养物或个体。具体地,术语“变异体”可以意指:与野生型相比,由于与源于谷氨酸棒状杆菌(Corynebacterium glutamicum)的异丙基苹果酸合酶对应的氨基酸序列被修饰而有效增加其活性的变异体;释放L-亮氨酸或其衍生物的反馈抑制的变异体;或释放反馈抑制和增加活性二者的变异体。
具体地,具有异丙基苹果酸合酶活性的本公开的修饰多肽可以是如下具有异丙基苹果酸合酶活性的修饰多肽:其中由氨基酸序列SEQ ID NO:1组成的多肽的N端的558位的氨基酸-精氨酸-被非精氨酸的氨基酸残基置换,或者由氨基酸序列SEQ ID NO:1组成的多肽的N端的561位的氨基酸残基-甘氨酸-被非甘氨酸的氨基酸残基置换。非精氨酸的氨基酸可以包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸、甲硫氨酸、甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺、谷氨酰胺、赖氨酸、组氨酸、天冬氨酸和谷氨酸;且非甘氨酸的氨基酸可以包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸、甲硫氨酸、精氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺、谷氨酰胺、赖氨酸、组氨酸、天冬氨酸和谷氨酸;但所述氨基酸不限于此。更具体地,所述修饰多肽可以是如下修饰多肽:其中由氨基酸序列SEQ ID NO:1组成的多肽的N端的558位的氨基酸-精氨酸-被组氨酸、丙氨酸或谷氨酰胺置换,或者由氨基酸序列SEQ ID NO:1组成的多肽的N端的561位的氨基酸残基-甘氨酸-被天冬氨酸、精氨酸或酪氨酸置换,但不限于此。此外,所述修饰多肽可以是如下多肽:其中558位的精氨酸被组氨酸、丙氨酸或谷氨酰胺置换;并且561位的甘氨酸被天冬氨酸、精氨酸或酪氨酸置换,但不限于此。最具体地,所述修饰多肽可以包括SEQID NO:21至SEQ ID NO:35中任一个的氨基酸序列。
另外,所述修饰多肽可以包括与SEQ ID NO:21至SEQ ID NO:35中任一个的氨基酸序列具有至少80%、90%、95%、96%、97%、98%或99%同源性的多肽。例如,显而易见的是,具有如下氨基酸序列的酶变异体也应属于本公开的范围:其中一些序列缺失、被修饰、被置换或被添加,而与558位和/或561位的氨基酸序列对应的经修饰的氨基酸序列是固定的;只要氨基酸序列具有上述同源性并且展示与异丙基苹果酸合酶对应的效果即可。另一方面,作为特定修饰位置的558位和561位是指基于氨基酸序列SEQ ID NO:1中的N端确定的位置,因此,通过考虑向SEQ ID NO:1的N端上添加或从其缺失的氨基酸数量来确定这些位置的这一事实对于本领域普通技术人员是显而易见的,因此也属于本公开的范围。例如,leuA(编码异丙基苹果酸合酶的基因)通过由616个氨基酸组成的SEQ ID NO:1来表示。然而,在一些参考文献中,转译起始密码子表示leuA基因序列下游的35个氨基酸,即由581个氨基酸组成的基因。在这种情况下,第558位氨基酸被解释为第523位氨基酸,第561位氨基酸被解释为第526位氨基酸,从而包括在本公开的范围之内。
如本文所用,术语“同源性”是指两个多核苷酸或多肽半部(polypeptidemoieties)之间的同一性百分比。从一个半部到另一半部的序列之间的同源性可以通过本领域已知的技术来确定。例如,可以使用易于访问的计算机程序(例如:BLAST 2.0)通过直接排列序列信息(即诸如两个多核苷酸分子或两个多肽分子的得分、同一性、相似性等的参数)来确定同源性。另外,多核苷酸之间的同源性可以通过以下方式来确定:在同源区域之间形成稳定双链(double-strand)的条件下使多核苷酸杂交,用单链特异性核酸酶分解,然后确定所分解的片段的大小。
本公开的另一方面提供了编码修饰多肽的多核苷酸。
所述多核苷酸可以是编码如下具有异丙基苹果酸合酶活性的修饰多肽的多核苷酸:其中由氨基酸序列SEQ ID NO:1组成的多肽的N端的558位的氨基酸-精氨酸-被非精氨酸的其它氨基酸残基置换,或者由氨基酸序列SEQ ID NO:1组成的多肽的N端的561位的氨基酸残基-甘氨酸-被非甘氨酸的其它氨基酸残基置换。具体地,可以包括(但不限于)编码以下多肽的多核苷酸:包括氨基酸序列SEQ ID NO:21至35并具有异丙基苹果酸合酶活性的多肽;与上述多肽具有至少80%、90%、95%、96%、97%、98%或99%同源性的修饰多肽;或编码具有异丙基苹果酸合酶活性的修饰多肽,其中缺失、修饰、置换或添加了一些序列,而作为上述多肽中的特定修饰位置的558和/或561位的经修饰的氨基酸序列是固定的。或者,可以包括(但不限于)通过在严格条件(stringent conditions)下使上述全部或部分核苷酸序列的互补序列杂交而从已知基因序列(例如,编码具有异丙基苹果酸合酶活性的蛋白质的序列)制得的探针。
如本文所用,术语“严格条件”是指如下条件:在该条件下,形成所谓的杂交体而不形成非特异性杂交体(non-specific hybrids)。这些条件的示例包括如下条件:在该条件下,具有高度同源性的基因(如同源性为80%或以上、特别为90%或以上、更特别为95%或以上、再特别为97%或以上、最特别为99%或以上的基因)彼此杂交,而具有低度同源性的基因彼此不杂交;或者在该条件下,在60℃、1×SSC和0.1%SDS的温度和盐浓度下(特别为60℃、0.1×SSC和0.1%SDS,更特别为68℃、0.1×SSC和0.1%SDS,这些是普通Southern杂交的洗涤条件)洗涤基因1次(特别为2次和3次)(Sambrook等人,《分子克隆:实验室手册》第3版,冷泉港实验出版社,冷泉港,纽约(2001)(Sambrook et al.,Molecular Cloning:ALaboratory Manual,3rd Ed.,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,N.Y.(2001)))。
杂交中使用的探针可以是核苷酸序列的互补序列的一部分。可以使用基于已知序列制得的寡核苷酸作为引物和含有该核苷酸序列的基因片段作为模板,通过PCR来构建此类探针。例如,可以使用长度为约300bp的基因片段作为探针。更具体地,在使用具有一定(约300bp)长度的探针的情况下,杂交的洗涤条件可建议为50℃、2×SSC和0.1%SDS。
另一方面,多核苷酸可以是具有SEQ ID NO:36至SEQ ID NO:50中任一个的核苷酸序列的多核苷酸,并且显而易见的是,多核苷酸还包括可通过密码子简(codondegeneracy)被转译成修饰多肽的多核苷酸。
本公开的又一方面是提供生产L-亮氨酸的棒状杆菌(Corynebacterium)属的微生物,其含有所述修饰多肽。
在本公开中,所述微生物可以包括通过转化而人工产生的微生物或天然存在的微生物中的所有微生物。
如本文所用,术语“转化”是指将基因引入宿主细胞进行表达。在本公开中,转化方法包括将基因引入细胞并可通过选择本领域已知的合适标准技术实施的任何方法。转化方法的示例是电穿孔法、磷酸钙共沉淀法、逆转录病毒感染法、显微注射法、DEAE-葡聚糖法、阳离子脂质体法、热休克法等,但不限于此。
待转化的基因可以包括插入宿主细胞的染色体中的形式和位于染色体外部的形式二者,只要其可以在宿主细胞中表达即可。此外,该基因包括作为能够编码多肽的多核苷酸的DNA和RNA,并且可以使用可引入宿主细胞并在其中表达的任何基因而无限制。例如,可以将基因以表达盒的形式引入宿主细胞,表达盒是含有自身表达所需的所有要素的多核苷酸构建体。表达盒通常包括可操作地连接到基因的启动子、转录终止信号、核糖体结合位点以及转译终止信号。表达盒可以是自我复制的表达载体(vector)的形式。此外,基因可以是引入宿主细胞本身或呈多核苷酸构建体形式(即载体的形式)的基因,并且可操作地连接至要求在宿主细胞中表达的序列。
如本文所用,术语“载体”是指用于将核苷酸克隆和/或转移至宿主细胞的任何运载体。载体可以是复制子(replicon),以允许复制与其它DNA片段结合的片段。“复制子”是指进行自我复制直到DNA体内复制的任何遗传单位(例如质粒、噬菌体、粘粒、染色体和病毒),即可通过自我调节进行复制。术语“载体”可以包括用于在体外、离体或体内将核苷酸引入宿主细胞的病毒运载体和非病毒运载体,并且还可以包括微球形DNA。例如,载体可以是不合细菌DNA序列的质粒。已经去除了富含CpG区域的细菌DNA序列,以减少转基因表达的消音(silencing)并促进质粒DNA载体的更连续表达(例如,Ehrhardt,A.等人(2003)《人类基因治疗》10∶215-25;Yet,N.S.(2002)《分子治疗》5∶731-38;Chen,Z.Y.等人(2004)《基因治疗》11∶856-64(Ehrhardt,A.et al.(2003)Hum Gene Ther 10∶215-25;Yet,N.S.(2002)MoI Ther 5∶731-38;Chen,Z.Y.et al.(2004)Gene Ther 11∶856-64))。术语“载体”也可以包括转座子(transposon),如睡美人转座子(Izsvak等人,《分子生物学期刊》302∶93-102(2000)(Izsvak et al.J.Mol.Biol.302∶93-102(2000)))或人工染色体。通常使用的载体的示例可以是天然或重组质粒、粘粒、病毒和细菌噬菌体。例如,作为噬菌体载体或粘粒载体,可以使用pWE15、M13、λMBL3、λMBL4、λIXII、λASHII、λAPII、λt10、λt11、Charon4A、Charon21A等。此外,作为质粒载体,可以使用pDZ型、pBR型、pUC型、pBluescriptII型、pGEM型、pTZ型、pCL型、pET型等。具体地,可以使用pECCG117载体。本公开中可以使用的载体没有特别限制,可以使用已知的表达/置换型载体。
此外,载体可以是重组载体,该重组载体可进一步包括各种抗生素抗性基因。
如本文所用,术语“抗生素抗性基因”是指具有抗生素抗性的基因,并且包含该基因的细胞甚至能够存活在用相应的抗生素处理过的环境中。因此,抗生素抗性基因可以有效地用作微生物(如大肠杆菌等)中大规模生产质粒的筛选标记。在本发明中,由于抗生素抗性基因不是显著影响表达效率的因素(表达效率通过作为本发明关键特征的载体的成分的最佳组合而获得),因此任何常见的抗生素抗性基因都可以用作筛选标记而不受限制。具体地,可以使用抗氨苄青霉素、抗四环素、抗卡那霉素、抗氯霉素、抗链霉素以及抗新霉素的抗性基因(the resistance genes against ampicilin,tetracyclin,kanamycin,chloramphenicol,streptomycin,or neomycin can be used)。
如本文所用,术语“可操作地连接”是指用于核苷酸表达的调节序列与编码靶蛋白的核苷酸序列的可操作连接而用于实现其一般功能,从而影响编码核苷酸序列的表达。可以使用本领域已知的基因重组技术与载体可操作地连接,并且可以使用本领域已知的限制酶和连接酶进行位点特异性DNA的分裂(cleavage)和连结(ligation)。
如本文所用,术语“载体引入(转化)的宿主细胞”是指用具有编码一种或多种靶蛋白的基因的载体转化的细胞。宿主细胞可以包括原核微生物和真核微生物中的任意一种,只要微生物包括通过引入上述载体能够产生异丙基苹果酸合酶的修饰多肽即可。例如,可以包括属于埃希氏杆菌(Escherichia)属、欧文氏菌(Erwinia)属、沙雷氏菌(Serratia)属、普罗威登氏菌(Providencia)属、棒状杆菌(Corynebacterium)属以及短杆菌(Brevibacterium)属的微生物菌株。棒状杆菌(Corynebacterium)属的微生物的示例可以是谷氨酸棒状杆菌(Corynebacterium glutamicum),但不限于此。
生产L-亮氨酸的棒状杆菌属微生物(The microorganism of the genusCorynebacterium producing L-leucine)(能够表达具有异丙基苹果酸合酶活性的修饰多肽)包括除引入载体之外的能够通过各种已知方法表达修饰多肽的所有微生物。
本公开的另一方面提供了生产L-亮氨酸的方法,该方法包括:(a)培养产生L-亮氨酸的棒状杆菌(Corynebacterium)属的微生物;和(b)从培养的微生物或培养基中回收L-亮氨酸。
如本文所用,术语“培养”是指在适当控制的环境条件下培养微生物。本公开的培养过程可以根据本领域已知的合适培养基和培养条件来实施。根据将要选择的菌株,本领域普通技术人员可以容易地调整和使用这种培养过程。具体地,培养可以是间歇型(batchtype)、连续型和补料分批型(fed-batch type),但不限于此。
培养基中含有的碳源可以包括:糖和碳水化合物,如葡萄糖、蔗糖、乳糖、果糖、麦芽糖、淀粉和纤维素;油和脂肪,如大豆油、葵花油、蓖麻油、椰子油等;脂肪酸,如棕榈酸、硬脂酸和亚油酸;醇类,如甘油和乙醇;以及有机酸,如乙酸。这些材料可以单独使用或组合使用,但不限于此。培养基中含有的氮源可以包括:有机氮源,如蛋白胨,酵母膏、肉汁、麦芽膏、玉米浆和大豆;以及无机氮源,如尿素、硫酸铵、氯化铵、磷酸铵、碳酸铵和硝酸铵。这些氮源可以单独使用或组合使用,但不限于此。培养基中含有的磷源可以包括磷酸二氢钾、磷酸氢二钾及相应的含钠盐,但不限于此。此外,可以含有金属盐,如硫酸镁或硫酸铁。此外,可以含有氨基酸、维生素、合适的前体等。这些培养基或前体可以以分批培养过程或连续培养过程添加到培养物中,但不限于此。
可以在培养期间通过添加适当的化合物(如氢氧化铵、氢氧化钾、氨、磷酸和硫酸)来调节培养物的pH,并且可以在培养期间通过使用消泡剂(如脂肪酸聚乙二醇酯)来抑制泡沫的产生。为了维持培养的有氧条件,可以将氧气或含氧气体注入到培养物中。为了保持厌氧和微氧条件,可以不注入气体或者也可以注入氮气、氢气或二氧化碳。培养的温度可以为27℃至37℃,特别为30℃至35℃,但不限于此。培养时间可以是连续的,只要回收了所需量的有用物料即可,并且优选为10至100小时,但培养时间不限于此。
回收在本公开的培养步骤中所生产的L-亮氨酸的步骤可以根据培养方法使用本领域已知的合适方法从微生物或培养基中收集所需的L-亮氨酸。例如,可以使用离心、过滤、阴离子交换层析、结晶、HPLC方法等,并且可以使用本领域已知的合适方法从培养基或微生物中回收所需的L-亮氨酸。另外,上述回收步骤可以包括纯化过程。
有益效果
与野生型相比,具有异丙基苹果酸合酶活性的新型修饰多肽是活性增加并释放L-亮氨酸反馈抑制的多肽,从而可以使用这种修饰多肽以高产率生产L-亮氨酸。
具体实施方式
在下文中,将通过所附示例性实施例来详细描述本公开。然而,本文公开的示例性实施例仅用于说明性的目的,不应被解释为限制本公开的范围。
示例1:确认KCCM11661P的leuA核苷酸序列、生产亮氨酸的微生物
在121℃下,在15分钟内将谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067接种到具有下述成分的种子培养基中,培养13小时,然后回收25mL培养基。用100mM柠檬酸盐缓冲液洗涤所回收的培养基,并用N-甲基-N′-硝基-N-亚硝基胍(NTG)处理30分钟,最终浓度为400μg/mL。之后,用100mM磷酸盐缓冲液洗涤所得物。在具有下述成分的基本培养基上涂抹菌株的结果是:NTG处理过的菌株的死亡率确定为99.6%。为了获得耐正亮氨酸(norleucine,NL)的变异体,将NTG处理过的菌株涂抹在最终浓度为20mM、40mM和50mM的基本培养基上,在30℃下培养5天,然后获得耐NL的变异体。
<种子培养基>
葡萄糖(20g),蛋白胨(10g),酵母膏(5g),尿素(1.5g),KH2PO4(4g),K2HPO4(8g),MgSO4·7H2O(0.5g),生物素(100μg),盐酸硫胺素(1000μg),泛酸钙(2000μg),烟酰胺(2000μg,按1升蒸馏水计),pH 7.0
<生产培养基>
葡萄糖(100g),(NH4)2SO4(40g),大豆蛋白(2.5g),玉米浆固体(5g),尿素(3g),KH2PO4(1g),MgSO4·7H2O(0.5g),生物素(100μg),盐酸硫胺素(1000μg),泛酸钙(2000μg),烟酰胺(3000μg),CaCO3(30g,按1升蒸馏水计),pH 7.0
通过上述方法获得的变异体被命名为谷氨酸棒状杆菌KCJ-24(Corynebacteriumglutamicum KCJ-24)和谷氨酸棒状杆菌KCJ-28(Corynebacterium glutamicum KCJ-28),并且根据布达佩斯条约,于2015年1月22日将其保藏于国际保藏机构-韩国微生物培养中心,因此谷氨酸棒状杆菌KCJ-24(Corynebacterium glutamicum KCJ-24)和谷氨酸棒状杆菌KCJ-28(Corynebacterium glutamicum KCJ-28)分别以保藏号KCCM11661P和KCCM11662P保藏。谷氨酸棒状杆菌KCJ-24(Corynebacterium glutamicum KCJ-24)和谷氨酸棒状杆菌KCJ-28(Corynebacterium glutamicum KCJ-28)分别生产浓度为2.7g/L和3.1g/L的L-亮氨酸。因此,证实了由变异体生产的L-亮氨酸的生产率比野生型高10倍。
另外,尝试证实在变异体KCCM11661P中是否发生编码异丙基苹果酸合酶(IPMS)的leuA的变异。通过参照基因库的WP_003863358.1,确认了野生型leuA的氨基酸序列(SEQ IDNO:1)。使用聚合酶链反应(以下称为“PCR”)方法对变异体的染色体DNA进行扩增。尽管已知leuA基因由616个氨基酸组成,但在一些参考文献中公开了leuA基因序列下游的35个氨基酸被表示为转译起始密码子,因此leuA基因由581个氨基酸组成。在这种情况下,表示相应氨基酸的变异的位置编号可能改变。因此,在leuA基因被认为是由581个氨基酸组成的情况下,在括号中另外表示变异位置。
具体地,使用变异体的染色体DNA作为模板并使用引物SEQ ID NO:3和4在以下条件下进行PCR:在94℃下变性1分钟;在58℃下退火30秒;以及使用Taq DNA聚合酶在72℃下聚合2分钟。共重复上述PCR 28次,以扩增约2700个碱基对(base pairs)的片段。使用相同的引物来分析片段的核苷酸序列,结果证实,KCCM11661P中leuA的第1673位核苷酸G被A置换。该结果表明,第558位(或第523位;以下只表示为第558位)氨基酸-精氨酸-被组氨酸置换。此外,还证实,第1682和1683位核苷酸的GC被AT置换。该结果也意味着第561位(或第526位,以下只表示为第561位)氨基酸-甘氨酸-被天冬氨酸置换。
示例2:生产IPMS变异体的置换型载体
为了生产含有示例1中确认的经修饰的核苷酸序列的载体,使用上述变异体的染色体DNA作为模板并使用引物SEQ ID NO:5和6在以下条件下进行PCR:在94℃下变性1分钟;在58℃下退火30秒;以及使用Pfu DNA聚合酶在72℃下聚合1分钟。共重复25次上述PCR,用SalI和XbaI限制酶位点来扩增约1460个碱基对的片段。用限制酶SalI和XbaI处理扩增的片段,然后通过与用相同的酶处理的载体pDZ(韩国专利号10-0924065和国际专利公开号2008-033001)连结来制备pDZ-leuA(R558H,G561D)。另外,为了制备每个变异体的载体,使用ATCC14067作为模板,然后分别使用引物5和7以及引物8和6来扩增2个片段。使用制备的两个片段作为模板在以下条件下进行PCR:在94℃下变性1分钟;在58℃下退火30秒;以及使用Pfu DNA聚合酶在72℃下聚合1分钟。共重复25次上述PCR,用SalI和XbaI限制酶位点来扩增约1460个碱基对的片段。用限制酶SalI和XbaI处理扩增的片段,然后通过与用相同的酶处理的pDZ连结来制备pDZ-leuA(R558H)。通过用与上述相同的方法,使用引物5和9以及引物10和6来制备pDZ-leuA(G561D)。
示例3:生产IPMS变异体的置换型菌株
使用谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067作为亲本菌株,以制备含有在上述修饰菌株中发现的leuA修饰的核苷酸序列的菌株。
用示例2中制备的载体pDZ-leuA(R558H)、pDZ-leuA(G561D)和pDZ-leuA(R558H,G561D)通过电穿孔技术转化谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067。通过二次交换制备的每个菌株被命名为14067::leuA(R558H)、14067::leuA(G561D)和14067::leuA(R558H,G561D)。为了确认leuA的核苷酸是否被置换,使用引物SEQ ID NO:3和4在以下条件下进行PCR:在94℃下变性1分钟;在58℃下退火30秒;以及使用Taq DNA聚合酶在72℃下聚合2分钟。共重复上述PCR 28次,以扩增约2700个碱基对的片段。之后,通过用相同的引物分析核苷酸序列来确认leuA的核苷酸的置换。
将用载体pDZ-leuA(R558H,G561D)转化的菌株14067::leuA(R558H,G561D)命名为KCJ-0148,并且于2016年1月25日将其保藏于韩国微生物培养中心,由此该菌株以保藏号KCCM11811P保藏。
示例4:在IPMS变异体的置换型菌株中生产L-亮氨酸
为了从示例3制备的谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::leuA(R558H)、14067::leuA(G561D)和14067::leuA(R558H,G561D)来生产L-亮氨酸,采用以下方式进行培养。
将亲本菌株谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067与制备的谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::leuA(R558H)、14067::leuA(G561D)和14067::leuA(R558H,G561D)菌株中的每一种的白金环(platinum loop)接种到含有生产培养基(25mL)的挡板三角烧瓶(250mL)中。之后,在30℃的振荡水浴中,以200rpm的速率培育60小时来生产L-亮氨酸。
培育完成后,通过高效液相色谱法测定产生的L-亮氨酸的量。对于每种实验菌株,培养基中L-亮氨酸的浓度示于下表1中。
表1 IPMS变异体的置换型菌株中的L-亮氨酸生产
菌株 L-亮氨酸浓度(g/L)
ATCC14067 0.1
14067::leuA(R558H) 1.2
14067::leuA(G561D) 1.6
14067::leuA(R558H,G561D) 2.5
如上表1所示,证实了与亲本菌株谷氨酸棒状杆菌(Corynebacteriumglutamicum)ATCC 14067相比,具有leuA基因的R558H、G561D或R558H/G561D变异的L-亮氨酸生产菌株-谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::leuA(R558H)、14067::leuA(G561D)和14067::leuA(R558H,G561D)的L-亮氨酸生产率增加到约12至25倍。
示例5:生产IPMS变异体的过表达载体(overexpressing vector)
为了生产含有在示例1中确认的经修饰的核苷酸序列的表达载体,使用ATCC14067和示例3中制备的3种变异体的染色体DNA作为模板,并使用引物SEQ ID NO:11和12在以下条件下进行PCR:在94℃下变性1分钟;在58℃下退火30秒;以及使用Pfu DNA聚合酶在72℃下聚合1分钟。共重复上述PCR25次,用NdeI和XbaI限制酶位点来扩增约2050个碱基对的片段。用限制酶NdeI和XbaI处理扩增的片段,然后使用p117_PCJ7(其中PCJ7启动子被插入到用相同的酶处理的载体pECCG117中)(《生物技术学报》第13卷,第10期,第721-726页(1991)(Biotechnology letters Vol.13,No.10,p.721-726(1991)))通过连结来制备表达载体p117_PCJ7-leuA(WT)、p117_PCJ7-leuA(R558H)、p117_PCJ7-leuA(G561D)和p117_PcJ7-leuA(R558H,G561D)。PCJ7启动子是增强基因表达的启动子,并且在韩国专利号10-0620092和国际专利公开号2006-065095中是公知的。
示例6:生产由IPMS变异体的过表达载体转化的菌株
为了生产用含有示例5中制备的经leuA修饰的核苷酸序列的过表达载体转化的菌株,使用了野生型谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067作为亲本菌株以及亮氨酸生产菌株KCCM11661P和KCCM11662P。
通过电穿孔技术,用示例5中制备的各个载体p117_PCJ7-leuA(WT)、p117_PCJ7-leuA(R558H)、p117_PCJ7-leuA(G561D)和p117_PCJ7-leuA(R558H,G561D)来转化谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067、KCCM11661P和KCCM11662P。由此生产了14067::p117_PCJ7-leuA(WT)、14067::p117_PCJ7-leuA(R558H)、14067::p117_PCJ7-leuA(G561D)、14067::p117_PCJ7-leuA(R558H,G561D);KCCM11661P::p117_PCJ7-leuA(WT)、KCCM11661P::p117_PCJ7-leuA(R558H)、KCCM11661P::p117_PCJ7-leuA(G561D)、KCCM11661P::p117_PCJ7-leuA(R558H,G561D);以及KCCM11662P::p117_PCJ7-leuA(WT)、KCCM11662P::p117_PCJ7-leuA(R558H)、KCCM11662P::p117_PCJ7-leuA(G561D)、KCCM11662P::p117_PCJ7-leuA(R558H,G561D)。
示例7:在用IPMS变异体的过表达载体转化的菌株中生产L-亮氨酸
为了从L-亮氨酸生产菌株、示例6中生产的谷氨酸棒状杆菌(Corynebacteriumglutamicum)14067::p117_PCJ7-leuA(WT)、14067::p111_PCJ7-leuA(R558H)、14067::p117_PCJ7-leuA(G561D)、14067::p117_PCJ7-leuA(R558H,G561D);KCCM11661P::p117_PCJ7-leuA(WT)、KCCM11661P::117PCJ7-leuA(R558H)、KCCM11661P::p117_PCJ7-leuA(G561D)、KCCM11661P::p117_PCJ7-leuA(R558H,G561D);以及KCCM11662P::p117_PCJ7-leuA(WT)、KCCM11662P::p117_PCJ7-leuA(R558H)、KCCM11662P::p117_PCJ7-leuA(G561D)、KCCM11662P::p117_PCJ7-leuA(R558H,G561D)中生产L-亮氨酸,采用以下方式进行培养。
将亲本菌株-谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067、KCCM11661P和KCCM11662P与示例6中生产的菌株中的每一种的白金环接种到含有生产培养基(25mL)的挡板三角烧瓶(250mL)中。之后,在30℃的振荡水浴中,以200rpm的速率培育60个小时来生产L-亮氨酸。
培育完成后,通过高效液相色谱法测定产生的L-亮氨酸的量。对于每个实验菌株,培养基中L-亮氨酸的浓度示于下表2中。
表2 在过表达IPMS变异体菌株中生产L-亮氨酸
如上表2所示,证实了与亲本菌株ATCC14067相比,用包含在菌株ATCC14067中的leuA基因变异的过表达载体转化的L-亮氨酸生产菌株、14067::p117_PCJ7-leuA(R558H)、14067::p117_PCJ7-leuA(G561D)和14067::p117_PCJ7的L-亮氨酸生产增加到45至98倍(enhanced 45-to 98-fold);与亲本菌株KCCM11661P相比,用包含在菌株KCCM11661P中的leuA基因变异的过表达载体转化的L-亮氨酸生产菌株、KCCM11661P::p117_PCJ7-leuA(R558H)、KCCM11661P::p117_PCJ7-leuA(G561D)和KCCM11661P::p117_PCJ7-leuA(R558H,G561D)的L-亮氨酸生产增加到2.3至4.5倍(enhanced 2.3-to 4.5-fold);以及与亲本菌株KCCM11662P相比,用包含在菌株KCKCM11662P中的leuA基因的变异的过表达载体转化的L-亮氨酸生产菌株、KCCM11662P::p117_PCJ7-leuA(R558H)、KCCM11662P::p117_PCJ7-leuA(G561D)和KCCM11662P::p117_PCJ7-leuA(R558H,G561D)的L-亮氨酸生产率增加到2至4.2倍(enhanced 2-to 4.2-fold)。
示例8:在用leuA过表达载体转化的菌株中测定异丙基苹果酸合酶活性
为了测定示例6中生产的以下L-亮氨酸生产菌株中的异丙基苹果酸合酶活性(谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::p117_PCJ7-leuA(WT)、14067::p117_PCJ7-leuA(R558H)、14067::p117_PCJ7-leuA(G561D)和14067::p117_PCJ7-leuA(R558H,G561D)),采用以下方式进行实验。
将上述4个菌株中的每一种的白金环接种到含有种子培养基(25mL)的挡板三角烧瓶(250mL)中。之后,将所得物在30℃的振荡水浴中以200rpm的速率培育16小时。培育完成后,将培养基离心以弃去上清液,洗涤沉淀物(pellet)并与裂解缓冲液混合,然后用玻珠均质器粉碎细胞。根据Bradford测定法对存在于裂解物中的蛋白质进行定量,并且通过测量使用含有蛋白质的裂解物(100μg/mL)时产生的辅酶A(CoA)来测定异丙基苹果酸合酶活性。每种菌株中的异丙基苹果酸合酶活性的测定结果示于下表3中。
表3
菌株 相对IPMS活性(%)
14067::p117_PCJ7-leuA(WT) 100
14067::p117_PCJ7-leuA(R558H) 105
14067::p117_PCJ7-leuA(G561D) 130
14067::p117_PCJ7-leuA(R558H,G561D) 328
为了确认酶中亮氨酸反馈抑制的释放程度,通过在添加亮氨酸(3g/L)的条件下测量使用含有蛋白质(100μg/mL)的裂解物时产生的辅酶A来测定异丙基苹果酸合酶活性。每种菌株中的异丙基苹果酸合酶活性的测量结果示于下表4中。
表4
如上表3和表4所示,证实了与对照组谷氨酸棒状杆菌(Corynebacteriumglutamicum)14067::p117_PCJ7-leuA(WT)相比,用表达IPMS变异体的载体转化的L-亮氨酸生产菌株-谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::p117_PCJ7-leuA(R558H)、14067::p117_PCJ7-leuA(G561D)和14067::p117_PCJ7-leuA(R558H,G561D)的异丙基苹果酸合酶活性分别增加1.05倍、1.3倍和3.2倍。此外,即使在添加亮氨酸(2g/L)的情况下,L-亮氨酸生产菌株的IPMS活性仍分别保持在61%、70%和89%,这证实了释放出了亮氨酸的反馈抑制。
示例9:生产用于改进异丙基苹果酸合酶(IPMS)变异体载体
在示例4、7和8中,由于证实了异丙基苹果酸合酶的氨基酸序列(SEQ ID NO:1)中的第558位和561位氨基酸是IPMS变异体酶的活性的重要位点,因此尝试证实当用变异体中的氨基酸之外的氨基酸置换时,酶活性是否增加或反馈抑制是否进一步释放。因此,尝试制备被其它能够引起结构变异的氨基酸基团的氨基酸置换的变异体。
制备其中第558位氨基酸-精氨酸-被丙氨酸(Ala)或谷氨酰胺(Gln)置换的变异体。使用定点突变方法(a site-directed mutagenesis method),并且通过使用载体p117_PCJ7-leuA(R558H)作为模板,使用引物SEQ ID NO:13和14及引物对SEQ ID NO:15和16来制备其中第558位氨基酸被丙氨酸(Ala)置换的载体p117_PCJ7-leuA(R558A)和其中第558位氨基酸被谷氨酰胺(Gln)置换的载体p117_PCJ7-leuA(R558Q)。
制备其中第561位氨基酸-甘氨酸-被精氨酸(Arg)或酪氨酸(Tyr)置换的变异体。使用定点突变方法,并且通过使用p117_PCJ7-leuA(G561D)作为模板,使用引物SEQ ID NO:17和18及引物对SEQ ID NO:19和20来获得其中第561位氨基酸被精氨酸(Arg)置换的载体p117_PCJ7-leuA(G561R)和其中第561位氨基酸被酪氨酸(Tyr)置换的载体p117_PCJ7-leuA(G561Y)。
示例10:生产其中引入异丙基苹果酸修饰变异体的菌株
为了制备用含有示例9中制备的leuA修饰的核苷酸序列的表达载体来转化的菌株,使用野生型谷氨酸棒状杆菌(wild-type Corynebacterium glutamicum)ATCC14067作为亲本菌株。
通过电穿孔技术,将示例9中制备的各个载体p117_PCJ7-leuA(R558A)、p117_PCJ7-leuA(R558Q)、p117_PCJ7-1euA(G561R)和p117_PCJ7-leuA(G561Y)转化到谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067中,以制备14067::p117_PCJ7-leuA(R558A)、14067::p117_PCJ7-leuA(R558Q)、14067::p117_PCJ7-leuA(G561R)和14067::p117_PCJ7-leuA(G561Y)。
示例11:在引入异丙基苹果酸合酶修饰的变异体的菌株中生产L-亮氨酸
为了从示例10中制备的以下L-亮氨酸生产菌株生产L-亮氨酸:谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::p117_PCJ7-leuA(R558A)、14067::p117_PCJ7-leuA(R558Q)、14067::p117_PCJ7-leuA(G561R)和14067::p117_PCJ7-leuA(G561Y),采用以下方式进行培养。
将亲本菌株、谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC14067和上述4个菌株中的每一种的白金环接种到含有生产培养基(25mL)的挡板三角烧瓶(250mL)中。之后,在30℃的振荡水浴中,以200rpm的速率培育60小时来生产L-亮氨酸。
培育完成后,通过高效液相色谱法测定产生的L-亮氨酸的量。对于每个实验菌株,培养基中L-亮氨酸的浓度示于下表5中。
表5 过表达IPMS变异体的菌株中的L-亮氨酸生产
如上表5所示,证实了与亲本菌株-谷氨酸棒状杆菌(Corynebacteriumglutamicum)ATCC14067相比,L-亮氨酸生产菌株-谷氨酸棒状杆菌(Corynebacteriumglutamicum)14067::p117_PCJ7-leuA(R558A)和14067::pl17_PCJ7-leuA(R558Q)的L-亮氨酸生产率增加到32至38倍。
此外,还证实了与亲本菌株-谷氨酸棒杆状菌(Corynebacterium glutamicum)ATCC14067相比,L-亮氨酸生产菌株-谷氨酸棒状杆菌(Corynebacterium glutamicum)14067::p117_PCJ7-leuA(G561R)和14067::p117_PCJ7-leuA(G561Y)的L-亮氨酸生产率增加到约36至40倍。
根据上述结果,证实了异丙基苹果酸合酶的氨基酸序列(SEQ ID NO:1)中第558和561位氨基酸是IPMS变异体酶活性的重要位点,并且即使野生型IPMS蛋白质的第558位和第561位氨基酸分别被组氨酸和天冬氨酸置换,具有这种修饰的菌株中的L-亮氨酸生产率仍显著增加。
虽然已经参考具体的示例性实施例描述了本公开,但是本公开所属领域的技术人员将会理解,本公开可以以其它的具体形式来实现而不脱离本公开的技术宗旨或基本特征。因此,上述实施例被认为是各方面的说明而非限制性的。此外,本公开的范围由所附权利要求书限定,而不是由具体的实施方式来限定,并且应当理解,从本公开及其等同物的含义和范围衍生出的所有修改或变化都包括在所附权利要求书的范围内。

Claims (11)

1.一种具有异丙基苹果酸合酶活性的修饰多肽,其中由氨基酸序列SEQ ID NO:1组成的多肽的N端的558位的精氨酸被非精氨酸的氨基酸残基置换,或者由氨基酸序列SEQ IDNO:1组成的多肽的N端的561位的甘氨酸被非甘氨酸的氨基酸残基置换。
2.根据权利要求1所述的修饰多肽,其中所述558位的精氨酸被组氨酸、丙氨酸或谷氨酰胺置换。
3.根据权利要求1所述的修饰多肽,其中所述561位的甘氨酸被天冬氨酸、精氨酸或酪氨酸置换。
4.根据权利要求1所述的修饰多肽,其中所述558位的精氨酸被组氨酸、丙氨酸或谷氨酰胺置换,并且所述561位的甘氨酸被天冬氨酸、精氨酸或酪氨酸置换。
5.根据权利要求1所述的修饰多肽,其中所述修饰多肽由选自由SEQ ID NO:21至SEQID NO:35组成的组的氨基酸序列组成。
6.一种编码权利要求1至5中任一项所述的修饰多肽的多核苷酸。
7.根据权利要求6所述的多核苷酸,其中所述多核苷酸由选自由SEQ ID NO:36至SEQID NO:50组成的组的核苷酸序列组成。
8.一种生产L-亮氨酸的棒状杆菌(Corynebacterium)属的微生物,其包含权利要求1至5中任一项所述的修饰多肽。
9.一种生产L-亮氨酸的棒状杆菌(Corynebacterium)属的微生物,其由包含编码权利要求1至5中任一项所述的修饰多肽的多核苷酸的载体转化。
10.根据权利要求8所述的微生物,其中,所述棒状杆菌(Corynebacterium)属的微生物是谷氨酸棒状杆菌(Corynebacterium glutamicum)。
11.一种生产L-亮氨酸的方法,包括:
(a)在培养基中培养根据权利要求8所述的生产L-亮氨酸的所述棒状杆菌(Corynebacterium)属的所述微生物,以生产所述L-亮氨酸;和
(b)从所述培养的微生物或所述培养基中回收所述L-亮氨酸。
CN201780001521.0A 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法 Active CN108884449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111316466.9A CN114085800A (zh) 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160181343 2016-12-28
KR10-2016-0181343 2016-12-28
PCT/KR2017/011622 WO2018124440A2 (ko) 2016-12-28 2017-10-20 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111316466.9A Division CN114085800A (zh) 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法

Publications (2)

Publication Number Publication Date
CN108884449A true CN108884449A (zh) 2018-11-23
CN108884449B CN108884449B (zh) 2022-01-25

Family

ID=62710309

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111316466.9A Pending CN114085800A (zh) 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法
CN201780001521.0A Active CN108884449B (zh) 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111316466.9A Pending CN114085800A (zh) 2016-12-28 2017-10-20 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法

Country Status (12)

Country Link
US (2) US11104924B2 (zh)
EP (2) EP3564366B1 (zh)
JP (2) JP6848067B2 (zh)
KR (2) KR102055874B1 (zh)
CN (2) CN114085800A (zh)
CA (2) CA3095659C (zh)
ES (2) ES2896257T3 (zh)
HK (1) HK1258202A1 (zh)
HU (2) HUE056931T2 (zh)
MX (2) MX2019007782A (zh)
PL (2) PL3858987T3 (zh)
WO (1) WO2018124440A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540976A (zh) * 2019-08-29 2019-12-06 天津科技大学 一种异丙基苹果酸合成酶及其应用
WO2021037190A1 (zh) * 2019-08-29 2021-03-04 天津科技大学 一种2-异丙基苹果酸合成酶及其工程菌与应用
CN114072492A (zh) * 2019-06-17 2022-02-18 Cj第一制糖株式会社 生产l-酪氨酸的微生物及利用其生产l-酪氨酸的方法
CN115175993A (zh) * 2020-01-30 2022-10-11 Cj第一制糖株式会社 柠檬酸合酶活性减弱的新型修饰多肽及使用其生产l-氨基酸的方法
CN115335515A (zh) * 2021-04-07 2022-11-11 Cj第一制糖株式会社 新2-异丙基苹果酸合酶变体及使用其生产l-缬氨酸的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3858987T3 (pl) * 2016-12-28 2023-05-22 Cj Cheiljedang Corporation Nowy wariant syntazy izopropylojabłczanowej i sposób wytwarzania l-leucyny z jego wykorzystaniem
CN109456987B (zh) * 2018-10-26 2021-05-25 天津科技大学 高产l-亮氨酸的相关基因及工程菌构建方法与应用
KR102153534B1 (ko) 2019-09-02 2020-09-09 씨제이제일제당 주식회사 신규한 프로모터 및 이를 이용한 아미노산 생산 방법
KR102143964B1 (ko) 2019-12-06 2020-08-12 씨제이제일제당 주식회사 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
KR102207867B1 (ko) 2020-01-21 2021-01-26 씨제이제일제당 주식회사 Nadp 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 포함하는 미생물을 이용하여 l-아미노산을 생산하는 방법
KR102360900B1 (ko) * 2020-05-20 2022-02-09 씨제이제일제당 (주) 신규한 폴리펩티드 및 이를 이용한 l-류신의 생산 방법
KR102495918B1 (ko) 2021-01-26 2023-02-06 씨제이제일제당 주식회사 aroG 알돌라아제 (Phospho-2-dehydro-3-deoxyheptonate aldolase) 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
KR102527096B1 (ko) 2021-02-01 2023-04-28 씨제이제일제당 주식회사 프리페네이트 탈수 효소 (Prephenate dehydratase) 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
KR102527102B1 (ko) * 2021-03-05 2023-04-28 씨제이제일제당 주식회사 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
JP2024075803A (ja) * 2021-03-29 2024-06-05 GreenEarthInstitute株式会社 改変型α-イソプロピルマレートシンターゼ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302765A (zh) * 2012-04-27 2015-01-21 赢创工业集团股份有限公司 反馈抗性α-异丙基苹果酸合酶
CN104480058A (zh) * 2014-12-30 2015-04-01 福建师范大学 一株高产l-亮氨酸工程菌及其应用
CN106190921A (zh) * 2016-08-08 2016-12-07 天津科技大学 一种谷氨酸棒状杆菌与应用
CN106754807A (zh) * 2016-12-29 2017-05-31 廊坊梅花生物技术开发有限公司 生产l‑亮氨酸菌株和生产l‑亮氨酸的方法
CN108138192A (zh) * 2015-08-25 2018-06-08 Cj第制糖株式会社 产生l-亮氨酸的微生物以及使用其产生l-亮氨酸的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438146B1 (ko) 1996-11-28 2004-11-03 씨제이 주식회사 L-루이신생산미생물인코리네박테리움글루타미컴ch25
KR100220018B1 (ko) 1997-06-25 1999-10-01 손 경 식 L-루이신을 생산하는 신규한 미생물 코리네박테리움 글루타미컴(Corynebacterium glutamicum) CH45
CN1222576A (zh) * 1997-10-29 1999-07-14 味之素株式会社 生产l-亮氨酸的方法
JP3915275B2 (ja) * 1998-10-16 2007-05-16 味の素株式会社 L−ロイシンの製造法
RU2201454C2 (ru) * 1999-07-09 2003-03-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Мутантная альфа-изопропилмалат синтаза (ipms), днк, кодирующая мутантную ipms, способ получения штамма escherichia coli, способ получения l-лейцина
US20030167513A1 (en) * 2001-11-30 2003-09-04 Mourad George S. Selection and use of isopropylmalate synthase (IPMS) mutants desensitized in L-leucine negative feedback control
KR20060065095A (ko) 2004-12-09 2006-06-14 엘지전자 주식회사 부품 냉각수단을 포함하는 휴대형 통신 단말기 및 냉각방법
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
CN101573438B (zh) 2006-09-15 2013-01-02 Cj第一制糖株式会社 具有增加的l-赖氨酸生产力的棒状杆菌和使用其生产l-赖氨酸的方法
KR20080033001A (ko) 2006-10-12 2008-04-16 삼성전자주식회사 백라이트 유닛 및 이를 구비하는 액정 표시 장치
KR101119593B1 (ko) * 2009-08-14 2012-03-06 한국과학기술원 L-루신 생성능이 개선된 변이 미생물 및 이를 이용한 l-루신의 제조방법
TWI510621B (zh) * 2013-07-08 2015-12-01 Cj Cheiljedang Corp 具有增加之腐胺生產力之重組微生物及使用該微生物之製造腐胺之方法
KR101632642B1 (ko) * 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
PL3858987T3 (pl) * 2016-12-28 2023-05-22 Cj Cheiljedang Corporation Nowy wariant syntazy izopropylojabłczanowej i sposób wytwarzania l-leucyny z jego wykorzystaniem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302765A (zh) * 2012-04-27 2015-01-21 赢创工业集团股份有限公司 反馈抗性α-异丙基苹果酸合酶
CN104480058A (zh) * 2014-12-30 2015-04-01 福建师范大学 一株高产l-亮氨酸工程菌及其应用
CN108138192A (zh) * 2015-08-25 2018-06-08 Cj第制糖株式会社 产生l-亮氨酸的微生物以及使用其产生l-亮氨酸的方法
CN106190921A (zh) * 2016-08-08 2016-12-07 天津科技大学 一种谷氨酸棒状杆菌与应用
CN106754807A (zh) * 2016-12-29 2017-05-31 廊坊梅花生物技术开发有限公司 生产l‑亮氨酸菌株和生产l‑亮氨酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NCBI: "NCBI Reference Sequence: WP_060563627.1", 《NCBI》 *
WANDEE YINDEEYOUNGYEON等: "Characterization of α-isopropylmalate synthases containing", 《BMC MICROBIOLOGY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114072492A (zh) * 2019-06-17 2022-02-18 Cj第一制糖株式会社 生产l-酪氨酸的微生物及利用其生产l-酪氨酸的方法
CN114072492B (zh) * 2019-06-17 2024-04-30 Cj第一制糖株式会社 生产l-酪氨酸的微生物及利用其生产l-酪氨酸的方法
CN110540976A (zh) * 2019-08-29 2019-12-06 天津科技大学 一种异丙基苹果酸合成酶及其应用
WO2021037190A1 (zh) * 2019-08-29 2021-03-04 天津科技大学 一种2-异丙基苹果酸合成酶及其工程菌与应用
US11866737B2 (en) 2019-08-29 2024-01-09 Tianjin University Of Science And Technology 2-isopropylmalate synthetase and engineering bacteria and application thereof
CN115175993A (zh) * 2020-01-30 2022-10-11 Cj第一制糖株式会社 柠檬酸合酶活性减弱的新型修饰多肽及使用其生产l-氨基酸的方法
CN115175993B (zh) * 2020-01-30 2024-06-04 Cj第一制糖株式会社 柠檬酸合酶活性减弱的新型修饰多肽及使用其生产l-氨基酸的方法
CN115335515A (zh) * 2021-04-07 2022-11-11 Cj第一制糖株式会社 新2-异丙基苹果酸合酶变体及使用其生产l-缬氨酸的方法
CN115335515B (zh) * 2021-04-07 2023-08-11 Cj第一制糖株式会社 新2-异丙基苹果酸合酶变体及使用其生产l-缬氨酸的方法

Also Published As

Publication number Publication date
JP2021019596A (ja) 2021-02-18
US11905539B2 (en) 2024-02-20
US11104924B2 (en) 2021-08-31
HK1258202A1 (zh) 2019-11-08
ES2896257T3 (es) 2022-02-24
EP3858987B1 (en) 2022-11-09
MX2019007782A (es) 2019-08-29
KR20190058413A (ko) 2019-05-29
EP3564366B1 (en) 2021-09-29
JP2020503045A (ja) 2020-01-30
EP3564366A2 (en) 2019-11-06
HUE056931T2 (hu) 2022-03-28
CN114085800A (zh) 2022-02-25
CA3048802A1 (en) 2018-07-05
HUE060328T2 (hu) 2023-02-28
EP3858987A1 (en) 2021-08-04
US20200032305A1 (en) 2020-01-30
PL3858987T3 (pl) 2023-05-22
WO2018124440A2 (ko) 2018-07-05
CA3095659C (en) 2022-12-06
MX2023009109A (es) 2023-08-09
BR112019013521A2 (pt) 2020-02-04
KR102055874B1 (ko) 2019-12-13
US20210254111A1 (en) 2021-08-19
PL3564366T3 (pl) 2022-01-03
EP3564366A4 (en) 2020-08-05
JP7217250B2 (ja) 2023-02-02
WO2018124440A3 (ko) 2018-08-23
ES2932086T3 (es) 2023-01-11
JP6848067B2 (ja) 2021-03-24
KR102094875B1 (ko) 2020-03-31
CN108884449B (zh) 2022-01-25
CA3048802C (en) 2021-10-19
CA3095659A1 (en) 2018-07-05
KR20180077008A (ko) 2018-07-06

Similar Documents

Publication Publication Date Title
CN108884449A (zh) 新型异丙基苹果酸合酶变异体及使用其生产l-亮氨酸的方法
US11697810B2 (en) Adenylosuccinate synthetase and method for producing purine nucleotides using the same
CA3071280C (en) Atp phosphoribosyltransferase variant and method for producing l-histidine using the same
US10457919B2 (en) Feedback-resistant acetohydroxy acid synthase variant and method for producing L-valine using the same
US11746130B2 (en) Polypeptide and method of producing IMP using the same
CN110249054A (zh) 产生imp的微生物和使用其产生imp的方法
EP3739044A1 (en) Variant phosphoribosyl pyrophosphate amidotransferase and method for producing purine nucleotide by using same
KR102617168B1 (ko) 쉬와넬라 오네이덴시스 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
KR102589135B1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
KR20220003476A (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
KR102616694B1 (ko) 쉬와넬라 아틀란티카 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
KR102685486B1 (ko) L-라이신 생산능이 향상된 변이 미생물 및 이를 이용한 l-라이신의 생산 방법
JP2024515389A (ja) L-リシン生産能が向上したコリネバクテリウム・グルタミカム変異株及びそれを用いたl-リシンの生産方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1258202

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant