CN108690953A - 二维材料的制作方法 - Google Patents

二维材料的制作方法 Download PDF

Info

Publication number
CN108690953A
CN108690953A CN201710303263.3A CN201710303263A CN108690953A CN 108690953 A CN108690953 A CN 108690953A CN 201710303263 A CN201710303263 A CN 201710303263A CN 108690953 A CN108690953 A CN 108690953A
Authority
CN
China
Prior art keywords
dimensional material
film
clad
production method
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710303263.3A
Other languages
English (en)
Other versions
CN108690953B (zh
Inventor
侯拓宏
黄俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spring Foundation of NCTU
Original Assignee
Spring Foundation of NCTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spring Foundation of NCTU filed Critical Spring Foundation of NCTU
Publication of CN108690953A publication Critical patent/CN108690953A/zh
Application granted granted Critical
Publication of CN108690953B publication Critical patent/CN108690953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明二维材料的制作方法,包含以下步骤:于基板上形成具有至少一二维材料元素的薄膜;于薄膜上形成至少一包覆层;于包覆层形成后将薄膜进行退火,以形成二维材料膜。

Description

二维材料的制作方法
技术领域
本发明是关于一种二维材料的制作方法;具体而言,本发明是关于一种能够制成大面积均匀分布的二维材料的制作方法。
背景技术
二维材料是指具有原子级厚度的单层或数层材料结构。二维材料由于在电传导、光学、机械特性等方面的特殊性质而受到重视。例如石墨烯,其具有高载子迁移率、光透明度等特性。
现有的二维材料制作方法主要有机械剥离法、分子束磊晶法以及化学气相沉积法。机械剥离法受限于人工的操作,无法提供稳定的制作品质。此外,采用机械剥离法仅能于局部表面进行制作,难以制成大面积的二维材料。分子束磊晶法可沉积具有数层的二维材料结构,但是仍无法制成大面积的二维材料。此外,采用分子束磊晶法需在超高真空的环境下进行,需要耗费较多的工艺时间与成本。
采用化学气相沉积法相较前二种方式虽可提高生产效能,然而以此方式制作二维材料有诸多限制,例如,前驱物的选择、不同元素的蒸气分压比控制、以及腔体内的气流控制等等。上述因素造成工艺设计的复杂度。因此,现有的二维材料制作方法仍有待改进。
发明内容
本发明的一目的在于提供一种二维材料的制作方法,可降低工艺的复杂度。
本发明的另一目的在于提供一种二维材料的制作方法,可提高二维材料的品质。
二维材料的制作方法包含以下步骤:于基板上形成具有至少一二维材料元素的薄膜;于薄膜上形成至少一包覆层;于包覆层形成后将薄膜进行退火,以形成二维材料膜。
于一实施例中,该薄膜是为包含至少一过渡金属与至少一硫属元素作为该二维材料元素的二维异质层,所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述硫属元素是选自由硫、硒、碲所组成的群组。
于一实施例中,于该薄膜形成步骤是于具有所述过渡金属与所述硫属元素的至少一靶材进行溅镀或蒸镀,且所述过渡金属与所述硫属元素具有非当量比。
于一实施例中,该退火步骤是于一无硫属气氛下进行。
于一实施例中,该退火步骤包含:调整退火时间与退火温度以控制该薄膜自具有第一结构相的该二维材料膜转换为具有第二结构相的该二维材料膜,其中该第一结构相与该第二结构相具有不同的导电特性。
于一实施例中,该薄膜是为包含至少一过渡金属与至少一非金属元素作为该二维材料元素的二维异质层,所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述非金属元素是选自由碳、氮所组成的群组。
于一实施例中,该薄膜是为二维单质层,该二维材料元素是选自由碳、锗、硅、锡、镓、磷、硒、碲所组成的群组。
于一实施例中,该薄膜是为包含至少一第十三行元素与至少一第十五行元素或第十六行元素作为该二维材料元素的二维异质层,所述第十三行元素是选自由硼、铝、镓、铟所组成的群组,且所述第十五行元素是选自由氮、磷所组成的群组,第十六行元素是选自由硫、硒、碲所组成的群组。
于一实施例中,于该薄膜形成步骤中,是以物理气相沉积形成该薄膜。
于一实施例中,所述物理气相沉积是于具有该二维材料元素的至少一靶材进行溅镀或蒸镀。
于一实施例中,该薄膜的沉积厚度范围为0.5nm至10μm。
于一实施例中,该包覆层的厚度范围为5nm至10μm。
于一实施例中,该包覆层形成步骤包含:于该薄膜上蒸镀形成一第一包覆层;以及于该第一包覆层上以电浆辅助化学气相沈积形成一第二包覆层;其中,该第二包覆层的密度高于该第一包覆层。
于一实施例中,该第一包覆层及该第二包覆层是选自由二氧化硅、氮化硅、氧化硅(SiOx)、氮化硅(SiNx)、硅、锗、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌所组成的群组。
于一实施例中,该退火温度范围为300℃至1200℃。
于一实施例中,该基板是选自由硅、锗、硅锗、硅碳、砷化镓、砷化铟镓、磷化铟、砷化铟、二氧化硅、氮化硅、蓝宝石、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌所组成的群组。
于一实施例中,更包含以下步骤:于退火后以氢氟酸移除该二维材料膜上的该包覆层;以及将该二维材料膜转移至另一基板上。
附图说明
图1为本发明二维材料制作方法的一实施例流程图;
图2A至图2D为制作二维材料的一实施例示意图;
图3为本发明二维材料制作方法的另一实施例流程图;
图4A至图4D为制作二维材料的一实施例示意图;
图5为2H-MoTe2二维材料膜的拉曼光谱;
图6为2H-MoTe2二维材料膜上取不同位置量测拉曼光谱主要峰值的统计图;
图7为2H-MoTe2二维材料膜存放不同时间长度下的拉曼光谱;
图8为不同沉积时间所制成2H-MoTe2二维材料膜的拉曼光谱;
图9为2H-MoS2二维材料膜的拉曼光谱;
图10为Td-WTe2二维材料膜的拉曼光谱;
图11为本发明二维材料制作方法的另一实施例流程图;
图12A至图12D为MoTe2二维材料膜于不同退火时间的光学显微影像;
图13A至图13E为MoTe2二维材料膜形成不同结构相的示意图;
图14A及图14B为MoTe2二维材料膜形成不同结构相的拉曼光谱;
图15A为2H-MoTe2二维材料膜的高解像能电子显微剖面影像;
图15B为2H-MoTe2二维材料膜的高解像能电子显微平面影像;
图15C为对应图15B的快速傅立叶转换影像;
图15D为2H-MoTe2二维材料膜的选区绕射图案;
图15E为1T’-MoTe2二维材料膜的高解像能电子显微平面影像;
图15F为1T’-MoTe2二维材料膜的选区绕射图案;
图16为本发明二维材料制作方法的另一实施例流程图;
图17为采用MoTe2二维材料膜的电晶体元件的ID-VG电性图;
图18为采用MoTe2二维材料膜的电晶体元件的ID-VD电性图。
主要元件符号说明:
10 基板
20 薄膜
22 二维材料膜
30 第一包覆层
32 第二包覆层
50 炉管
201 碲(Te)
203 钼(Mo)
具体实施方式
本发明是提供一种二维材料的制作方法,请参考图1。图1为本发明二维材料制作方法的一实施例流程图。如图1所示,二维材料的制作方法包含薄膜形成、包覆层形成、退火、以及二维材料膜形成等阶段。图2A至图2D为制作二维材料的一实施例示意图。如图1及图2A所示,在步骤S10:于基板10上形成具有至少一二维材料元素的薄膜20。于一实施例,薄膜20形成步骤中,可以物理气相沉积形成薄膜20。基板10可包括硅、锗、硅锗、硅碳、砷化镓、砷化铟镓、磷化铟、砷化铟、二氧化硅、氮化硅、蓝宝石、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌。
接着,在步骤S20:于薄膜上形成第一包覆层。如图2B所示,第一包覆层30形成于薄膜20上。薄膜20位于基板10与第一包覆层30之间。第一包覆层30是作为薄膜20的保护层,以确保薄膜20的形成品质稳定。第一包覆层30可包括二氧化硅、氮化硅、氧化硅(SiOx)、氮化硅(SiNx)、硅、锗、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌。整体而言,薄膜20的沉积厚度范围为0.5nm至10μm。包覆层30的厚度范围为5nm至10μm。
在步骤S30:于第一包覆层形成后将薄膜进行退火。如图2C所示,将具有第一包覆层30及薄膜20的试片放置于炉管50中,通入气体(例如氮气),并进行退火。退火温度范围为300℃至1200℃。退火方式例如可采熔炉退火、快速热退火、雷射退火、或微波退火。所述退火步骤是于第一包覆层形成之后进行,由此,第一包覆层可避免薄膜内的二维材料元素因退火工艺而损失,以提高二维材料的品质。此外,第一包覆层在退火步骤中,可作为控制层,亦即,限制薄膜形成二维材料膜的过程中沿二维而非三维方向的成长。在步骤S40:形成二维材料膜。如图2D所示,退火工艺结束后形成二维材料膜22。
上述二维材料膜可包括自二维异质层的薄膜或自二维单质层的薄膜所制成。于一实施例,二维材料膜可为过渡金属二硫属化物,(可表示为MX2)。例如,二硫化钼(MoS2)、二碲化钼(MoTe2)、二碲化钨(WTe2)…等等。具体而言,薄膜是为包含至少一过渡金属与至少一硫属元素作为二维材料元素的二维异质层。所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述硫属元素是选自由硫、硒、碲所组成的群组。
应理解,自上述过渡金属与硫属元素中所形成的二维材料膜并不以二元形式为限,还可以形成像是MoxW(1-x)Te2、MoS2xSe2(1-x),以及如钽掺杂-铌掺杂-二硫化钼(Ta-doped,Nb-doped MoS2)等多元形式的二维材料。
以过渡金属与硫属元素中所制成的二维材料膜为例,在薄膜形成步骤中,可于具有上述两类二维材料元素的靶材进行溅镀或蒸镀。于一实施例,可采用单一靶材,且靶材上的过渡金属与硫属元素具有当量比。在其他实施例,亦可视工艺需求采用共溅镀或共蒸镀包含二维材料元素(例如过渡金属与硫属元素)的多个靶材而形成薄膜。举例而言,根据多元材料的成分比例,采用共溅镀的方式对多个靶材进行溅镀工艺,由此可对个别材料的参数进行调整,提高工艺弹性。
此外,在退火步骤中,较佳是于无硫属气氛下进行。换言之,由本发明提供的第一包覆层,可避免采用如硫属元素粉末加热挥发这类较为复杂的反应方式,以简化工艺设计。对于包含过渡金属与硫属元素的薄膜,第一包覆层还可作为硫属阻隔层,亦即,限制高温下硫属元素的升华反应,避免硫属元素逸散。
于其他实施例,二维材料膜可为过渡金属碳/氮化物,(或以MXene代称)。例如,碳化钛(Ti3C2)、碳化钽(TaC)等等。具体而言,薄膜是为包含至少一过渡金属与至少一非金属元素作为二维材料元素的二维异质层。所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述非金属元素是选自由碳、氮所组成的群组。类似地,此类二维材料膜亦可为多元形式,像是Ti3(C0.5N0.5)2、(Ti0.5Nb0.5)2C。第一包覆层可避免薄膜内的二维材料元素因退火工艺而损失,以提高二维材料的品质。此外,第一包覆层在退火步骤中,可作为控制层,亦即,限制薄膜形成二维材料膜的过程中沿二维而非三维方向的成长。
于其他实施例,二维材料膜还可为石墨烯族(例如:氮化硼(BN)、磷化硼(BP)、氮化镓(GaN)、氮化铝镓(AlGaN)),以及其他具有硫族元素的化合物(例如:二硒化铟(In2Se2)、硒化铟(InSe)、碲化铟(InTe))。具体而言,薄膜是为包含至少一第十三行元素与至少一第十五行元素或第十六行元素作为二维材料元素的二维异质层。所述第十三行元素是选自由硼、铝、镓、铟所组成的群组,且所述第十五行元素是选自由氮、磷所组成的群组,第十六行元素是选自由硫、硒、碲所组成的群组。
就二维单质层的薄膜而言,可形成如黑磷烯(Phosphorene)、硅烯(Silicene)、硼烯(borophene)…等二维材料膜。具体而言,薄膜是为二维单质层,二维材料元素是选自由碳、锗、硅、锡、镓、磷、硒、碲所组成的群组。
图3为本发明二维材料制作方法的另一实施例流程图。如图3所示,二维材料的制作方法中,包覆层的形成可进一步分为两个阶段。请同时参考图4A至图4D为制作二维材料的示意图。如图3及图4A所示,在步骤S10及步骤S20是于基板10上形成薄膜20。薄膜20具有至少一二维材料元素,并将第一包覆层30形成于薄膜20上。薄膜20位于基板10与第一包覆层30之间。
在步骤S21:于薄膜上形成第二包覆层。如图4B所示,第二包覆层32形成于薄膜20上。第一包覆层30和第二包覆层32位于薄膜20相反于基板10的同一侧。第一包覆层30位于薄膜20与第二包覆层32之间。第一包覆层30和第二包覆层32可包括二氧化硅、氮化硅、氧化硅(SiOx)、氮化硅(SiNx)、硅、锗、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌。整体而言,薄膜的沉积厚度范围较佳为0.5nm至10μm。第一包覆层(或第二包覆层)的厚度范围较佳为5nm至10μm。
接着在步骤S30:于包覆层(包括第一包覆层和第二包覆层)形成后将薄膜进行退火。如图4C所示,将具有第一包覆层30、第二包覆层32以及薄膜20的试片放置于炉管50中,通入气体(例如氮气),并进行退火。退火温度范围为300℃至1200℃。所述退火步骤是于第一包覆层30和第二包覆层32形成之后进行,由此,第一包覆层30和第二包覆层32可避免薄膜20内的二维材料元素因退火工艺而损失,以提高二维材料的品质。
于一实施例,第一包覆层是以蒸镀方式形成于薄膜上,第二包覆层是以电浆辅助化学气相沈积方式形成于第一包覆层上。由此形成第二包覆层的密度高于第一包覆层的密度,亦即,薄膜上具有不同的致密度的包覆层。在退火过程中,第一包覆层和第二包覆层是共同作为薄膜的保护层,以确保薄膜的形成品质稳定。通过密度更高的第二包覆层可进一步提高薄膜的形成品质。
另外,在形成第二包覆层的过程中,第一包覆层亦可作为薄膜的保护层,以防止第二包覆层形成时损伤薄膜。在步骤S40:形成二维材料膜。如图4D所示,退火工艺结束后形成二维材料膜。
图5为2H-MoTe2二维材料膜的拉曼光谱。2H-MoTe2是为MoTe2的多个结构相其中之一。2H-MoTe2二维材料膜是根据图3的流程,于MoTe2靶材上进行溅镀30秒,并将MoTe2薄膜沉积于3cm x 4cm的SiO2基板上。接着于MoTe2薄膜上形成两层各50nm厚的SiO2作为包覆层。在退火阶段,于炉管以650℃加热24小时后自然冷却至200℃,以得到2H-MoTe2二维材料膜。如图5所示,2H-MoTe2二维材料膜可观察到在约171.4cm-1(A1g)、234.7cm-1(E1 2g)、及290.0cm-1(B1 2g)处的拉曼波峰。
请进一步参考图6。图6为2H-MoTe2二维材料膜上取不同位置量测拉曼光谱主要峰值的统计图。如图6所示,在3cm x 4cm大小的2H-MoTe2二维材料膜上取60个位置对主要波峰(A1g、E1 2g、B1 2g)统计后发现,峰值位置的变异很小,表示通过本发明所得2H-MoTe2二维材料膜品质均匀且可制作成毫米级的大面积。
图7为2H-MoTe2二维材料膜存放不同时间长度下的拉曼光谱。图7为2H-MoTe2二维材料膜存放于真空干燥器中,量测不同天数的拉曼光谱变化。在图7中,曲线A、B、C、D分别为初始、5天、12天、以及66天的情形。如图7所示,2H-MoTe2二维材料膜在存放超过两个月下拉曼光谱无明显变化,表示通过本发明可得到品质稳定的2H-MoTe2二维材料膜。
图8为不同沉积时间所制成2H-MoTe2二维材料膜的拉曼光谱。在图8中,实线曲线为MoTe2靶材上进行溅镀30秒后所制成的2H-MoTe2二维材料膜。虚线曲线为MoTe2靶材上进行溅镀3分钟后所制成的2H-MoTe2二维材料膜。如图8所示,二维材料膜的主要拉曼波峰的位置大致不变,表示通过本发明的方法可对不同沉积厚度的情形提供稳定的品质,具有良好的可控制性。
此外,请参见图9及图10。图9为2H-MoS2二维材料膜的拉曼光谱。2H-MoS2二维材料膜是根据图3的流程所制成。于MoS2靶材上进行溅镀10秒,并将MoS2薄膜沉积于蓝宝石基板上。接着于MoS2薄膜上形成两层SiO2作为包覆层。在退火阶段,于炉管以780℃加热12小时后待自然冷却以得到2H-MoS2二维材料膜。如图9所示,2H-MoS2二维材料膜可观察到在约385.6cm-1(E1 2g)、406.6cm-1(A1g)处的拉曼波峰。
图10为Td-WTe2二维材料膜的拉曼光谱。类似地,Td-WTe2二维材料膜是根据图3的流程所制成。于WTe2靶材上进行溅镀30秒,并将WTe2薄膜沉积于蓝宝石基板上。接着于WTe2薄膜上形成两层SiO2作为包覆层。在退火阶段,于炉管以750℃加热1小时后待自然冷却以得到Td-WTe2二维材料膜。如图10所示,Td-WTe2二维材料膜可观察到在约109.9cm-1(A4 2)、121.9cm-1(A9 1)、131.7cm-1(A8 1)、166.2cm-1(A5 1)及216.1cm-1(A2 1)处的拉曼波峰。由上述不同实验结果可知,本发明的方法可适用于制成不同的二维材料膜,并提供良好的品质。
图11为本发明二维材料制作方法的另一实施例流程图。对于具有不同结构相的二维材料,可利用调整退火时间及/或退火温度进行结构相的改变。在图11中,步骤S10~S30、S40已如上述,在此不另赘述。在步骤S32:调整退火时间与退火温度。例如,在退火阶段,调整退火时间与退火温度以控制薄膜自具有第一结构相的二维材料膜转换为具有第二结构相的二维材料膜。所述第一结构相与第二结构相可为具有不同导电特性的二维材料膜。举例而言,第一结构相具有半金属性,且第二结构相具有半导体性。通过调整退火时间及/或退火温度,使半金属性的二维材料膜变为半导体性的二维材料膜,或是将半导体性的二维材料膜变为半金属性的二维材料膜。
图12A至图12D为MoTe2二维材料膜于不同退火时间的光学显微影像。于炉管中以每分钟升温37.5℃的速度自200℃加热至650℃,并维持650℃一段时间(3至24小时)。如图12A所示,在加热3小时下,MoTe2二维材料膜大多为1T’的结构相。如图12B(加热6小时)及图12C(加热15小时)所示,随退火时间增加,MoTe2二维材料膜中2H结构相的范围逐渐比1T’结构相的范围大。光学显微影像中的深色暗点为碲(Te)的沉积物,分布在2H结构相的边界。如图12D所示,在加热24小时下,MoTe2二维材料膜皆为2H的结构相,即2H-MoTe2
请配合参考图13A至图13E。图13A至图13E为MoTe2二维材料膜形成不同结构相的示意图。如图13A所示,在基板10上形成具有钼203及碲201的薄膜20,并将第一包覆层30和第二包覆层32形成于薄膜20上。
如图13B所示,在退火工艺中加热一段时间后,形成MoTe2二维材料膜22,并且在区块R11、区块R12、区块R13形成1T’的结构相,在各区块之间具有过量的碲201分布。
如图13C所示,在区块R22及区块R24(大致对应过量碲201的位置),开始形成2H的结构相,而区块R21、区块R23及区块R25则为1T’的结构相。
如图13D所示,随退火时间增加,MoTe2二维材料膜22中2H结构相的范围逐渐比1T’结构相的范围大。在2H结构相的边界(即区块R32两侧、区块R33与区块R34之间)有过量的碲201。
如图13E所示,在加热24小时下,MoTe2二维材料膜22皆为2H的结构相,2H-MoTe2的晶粒边界有过量的碲201沉淀。从碲201的沉淀物也可得知通过本发明的方法提供薄膜保护,可避免薄膜内的二维材料元素因退火工艺而损失。
如前所述,在薄膜形成阶段可于具有当量比的靶材蒸镀或溅镀以形成薄膜。在其他实施例,可于具有非当量比的靶材进行蒸镀或溅镀(例如Mo与Te非1比2的关系),由此可增加工艺的调变性,例如减少前述碲的沉淀量。
图14A及图14B为MoTe2二维材料膜形成不同结构相的拉曼光谱。图14A为2H-MoTe2对应图12A至图12D中不同加热时间的拉曼光谱。图14B为1T’-MoTe2对应图12A至图12C中不同加热时间的拉曼光谱。如图14A所示,在加热3小时、6小时、15小时、24小时皆观察到2H的结构相。如图14B所示,在加热3小时、6小时、15小时可观察到1T’的结构相。加热至24小时,则无1T’的结构相。
图15A至图15D是观察退火加热24小时的2H-MoTe2二维材料膜。图15A为2H-MoTe2二维材料膜的高解像能电子显微剖面影像。如图15A所示,2H-MoTe2二维材料膜具有三层结构,总厚度为2.1nm。图15B为2H-MoTe2二维材料膜的高解像能电子显微平面影像,且图15C为对应图15B的快速傅立叶转换影像。如图15C所示,2H-MoTe2二维材料膜呈现完美的六方晶格排列。图15D为2H-MoTe2二维材料膜的选区绕射图案。以650nm的孔径得到如图15D所示,单晶2H-MoTe2具有六方对称的绕射图案。
此外,图15E至图15F是观察退火加热3小时的1T’-MoTe2二维材料膜。图15E为1T’-MoTe2二维材料膜的高解像能电子显微平面影像。如图15E所示,1T’-MoTe2二维材料膜呈现晶格无序的结构。图15F为1T’-MoTe2二维材料膜的选区绕射图案。以260nm的孔径得到如图15F所示,1T’-MoTe2二维材料膜为多晶材料。由上述拉曼光谱及电子显微影像的观察可知,二维材料可由调整退火时间及/或退火温度进行结构相的改变。
图16为本发明二维材料制作方法的另一实施例流程图。在图16中,步骤S10~S40已如上述,在此不另赘述。在步骤S50:于退火后以氢氟酸移除二维材料膜上的包覆层。在步骤S52:将二维材料膜转移至另一基板上。举例而言,将二维材料膜用于电晶体元件的制作前,较佳将二维材料膜转移至新的基板上,避免原基板在退火工艺中可能受损的情形。
图17为采用MoTe2二维材料膜的电晶体元件的ID-VG电性图。图18为采用MoTe2二维材料膜的电晶体元件的ID-VD电性图。根据前述流程将MoTe2二维材料膜上的包覆层移除并将MoTe2二维材料膜转移至新的基板后,在MoTe2二维材料膜上沉积钯金属作为源极与汲极以制成具有通道长为8μm的背闸极式场效电晶体。如图17所示,电晶体具有好的开关电流比。例如在汲极电压(VD)=-1(见曲线E3),具有开关电流比达105。如图18所示,汲极电流随闸极电压等比例变化。在闸极电压(VG)=0时(见曲线F1),汲极电流趋近于0,漏电流很小。由本发明的方法所制成适用于电晶体元件的二维材料膜,可提供良好的元件特性。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求的精神及范围的修改及均等设置均包含于本发明的范围内。

Claims (17)

1.一种二维材料的制作方法,其特征在于,包含以下步骤:
于一基板上形成具有至少一二维材料元素的一薄膜;
于该薄膜上形成至少一包覆层;以及
于该包覆层形成后将该薄膜进行退火,以形成一二维材料膜。
2.如权利要求1所述的二维材料的制作方法,其特征在于,该薄膜是为包含至少一过渡金属与至少一硫属元素作为该二维材料元素的二维异质层,所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述硫属元素是选自由硫、硒、碲所组成的群组。
3.如权利要求2所述的二维材料的制作方法,其特征在于,于该薄膜形成步骤是于具有所述过渡金属与所述硫属元素的至少一靶材进行溅镀或蒸镀,且所述过渡金属与所述硫属元素具有非当量比。
4.如权利要求2所述的二维材料的制作方法,其特征在于,该退火步骤是于一无硫属气氛下进行。
5.如权利要求2所述的二维材料的制作方法,其特征在于,该退火步骤包含:调整退火时间与退火温度以控制该薄膜自具有第一结构相的该二维材料膜转换为具有第二结构相的该二维材料膜,其中该第一结构相与该第二结构相具有不同的导电特性。
6.如权利要求1所述的二维材料的制作方法,其特征在于,该薄膜是为包含至少一过渡金属与至少一非金属元素作为该二维材料元素的二维异质层,所述过渡金属是选自由钼、钨、铬、钒、铌、钽、铂、钛、铪、锆、铼所组成的群组,且所述非金属元素是选自由碳、氮所组成的群组。
7.如权利要求1所述的二维材料的制作方法,其特征在于,该薄膜是为二维单质层,该二维材料元素是选自由碳、锗、硅、锡、镓、磷、硒、碲所组成的群组。
8.如权利要求1所述的二维材料的制作方法,其特征在于,该薄膜是为包含至少一第十三行元素与至少一第十五行元素或第十六行元素作为该二维材料元素的二维异质层,所述第十三行元素是选自由硼、铝、镓、铟所组成的群组,且所述第十五行元素是选自由氮、磷所组成的群组,第十六行元素是选自由硫、硒、碲所组成的群组。
9.如权利要求1所述的二维材料的制作方法,其特征在于,于该薄膜形成步骤中,是以物理气相沉积形成该薄膜。
10.如权利要求9所述的二维材料的制作方法,其特征在于,所述物理气相沉积是于具有该二维材料元素的至少一靶材进行溅镀或蒸镀。
11.如权利要求1所述的二维材料的制作方法,其特征在于,该薄膜的沉积厚度范围为0.5nm至10μm。
12.如权利要求1所述的二维材料的制作方法,其特征在于,该包覆层的厚度范围为5nm至10μm。
13.如权利要求1所述的二维材料的制作方法,其特征在于,该包覆层形成步骤包含:
于该薄膜上蒸镀形成一第一包覆层;以及
于该第一包覆层上以电浆辅助化学气相沈积形成一第二包覆层;
其中,该第二包覆层的密度高于该第一包覆层。
14.如权利要求13所述的二维材料的制作方法,其特征在于,该第一包覆层及该第二包覆层是选自由二氧化硅、氮化硅、氧化硅、氮化硅、硅、锗、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌所组成的群组。
15.如权利要求1所述的二维材料的制作方法,其特征在于,该退火温度范围为300℃至1200℃。
16.如权利要求1所述的二维材料的制作方法,其特征在于,该基板是选自由硅、锗、硅锗、硅碳、砷化镓、砷化铟镓、磷化铟、砷化铟、二氧化硅、氮化硅、蓝宝石、氧化铝、二氧化铪、二氧化锆、二氧化钛、五氧化二钽、氧化锌、氧化铟镓锌所组成的群组。
17.如权利要求1所述的二维材料的制作方法,其特征在于,更包含以下步骤:
于退火后以氢氟酸移除该二维材料膜上的该包覆层;以及
将该二维材料膜转移至另一基板上。
CN201710303263.3A 2017-04-07 2017-05-03 二维材料的制作方法 Active CN108690953B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106111790 2017-04-07
TW106111790A TWI646670B (zh) 2017-04-07 2017-04-07 二維材料的製作方法

Publications (2)

Publication Number Publication Date
CN108690953A true CN108690953A (zh) 2018-10-23
CN108690953B CN108690953B (zh) 2021-03-12

Family

ID=63710758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710303263.3A Active CN108690953B (zh) 2017-04-07 2017-05-03 二维材料的制作方法

Country Status (3)

Country Link
US (1) US10428427B2 (zh)
CN (1) CN108690953B (zh)
TW (1) TWI646670B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620043A (zh) * 2019-09-24 2019-12-27 山东大学 一种不稳定的二维材料的半导体薄膜场效应管的制备方法
CN110634958A (zh) * 2019-09-24 2019-12-31 山东大学 一种不稳定的二维材料的半导体薄膜场效应管及其制备方法
CN117888060A (zh) * 2024-03-12 2024-04-16 北京师范大学 一种限域薄层二维材料的制备方法及应用
CN117888060B (zh) * 2024-03-12 2024-06-04 北京师范大学 一种限域薄层二维材料的制备方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109434119B (zh) * 2018-11-08 2021-10-22 西安理工大学 一种高韧性MXene相掺杂钼合金的制备方法
CN110054187B (zh) * 2019-06-10 2022-10-04 辽宁工程技术大学 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用
CN110510585B (zh) * 2019-09-30 2022-09-06 福州大学 一种大面积薄层二维碲烯的制备方法
CN112522669B (zh) * 2020-11-30 2022-07-01 天津大学 一种晶圆级单层硼烯的制备方法及晶圆级单层硼烯
CN112985636B (zh) * 2021-04-19 2021-12-28 清华大学 单细胞温度分布的激光拉曼测量方法及其用途
CN113526556B (zh) * 2021-07-12 2022-07-22 济南大学 一种单晶颗粒组装片层WNb2O8及其制备方法与应用
CN114005895B (zh) * 2021-10-26 2024-04-09 中国科学院苏州纳米技术与纳米仿生研究所 光电探测器及其制作方法
CN114807848A (zh) * 2022-04-20 2022-07-29 南京大学 一种大面积二碲化钼的pld制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218114A (zh) * 2014-08-28 2014-12-17 太原理工大学 一种二维异质结太阳能电池及其制备方法
US20150060768A1 (en) * 2013-08-13 2015-03-05 The Board Of Regents Of The University Of Texas System Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
CN205188486U (zh) * 2015-10-23 2016-04-27 中国科学院苏州纳米技术与纳米仿生研究所 二维纳米薄膜制备装置
CN105980596A (zh) * 2014-02-13 2016-09-28 敏斯材料公司 涂覆基底以提供控制的平面内组成调制的方法
TW201701334A (zh) * 2015-06-16 2017-01-01 Asm Ip控股公司 在基材表面上形成結構或閘極堆疊之方法
CN106521452A (zh) * 2015-09-15 2017-03-22 超科技公司 2d金属硫属化物膜的激光辅助原子层沉积

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US21008A (en) * 1858-07-27 Paper-making machine
US4684542A (en) * 1986-08-11 1987-08-04 International Business Machines Corporation Low pressure chemical vapor deposition of tungsten silicide
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
US6380558B1 (en) * 1998-12-29 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
DE20321085U1 (de) * 2003-10-23 2005-12-29 Commissariat à l'Energie Atomique Phasenwechselspeicher, Phasenwechselspeicheranordnung, Phasenwechselspeicherzelle, 2D-Phasenwechselspeicherzellen-Array, 3D-Phasenwechselspeicherzellen-Array und Elektronikbaustein
WO2008066965A2 (en) * 2006-06-23 2008-06-05 The Regents Of The University Of California Articles comprising large-surface-area bio-compatible materials and methods for making and using them
US8889223B2 (en) 2008-07-28 2014-11-18 Tanaka Kikinzoku Kogyo K.K. Physical vapor deposition apparatus and physical vapor deposition method
WO2010103856A1 (ja) * 2009-03-12 2010-09-16 三井化学株式会社 新規な金属酸化物多孔質体、その製造方法および用途
JP5987174B2 (ja) * 2011-10-12 2016-09-07 株式会社Joled 薄膜トランジスタ装置
WO2014064057A2 (en) * 2012-10-23 2014-05-01 Universität Zürich Method for preparing a substantially clean monolayer of a two-dimensional material
US9580834B2 (en) 2013-03-11 2017-02-28 William Marsh Rice University Growth methods for controlled large-area fabrication of high-quality graphene analogs
US9527062B2 (en) 2013-05-09 2016-12-27 North Carolina State University Process for scalable synthesis of molybdenum disulfide monolayer and few-layer films
US20150146341A1 (en) * 2013-11-27 2015-05-28 GlobalFoundries, Inc. ALD dielectric films with leakage-reducing impurity layers
TWI548448B (zh) * 2015-01-05 2016-09-11 國立交通大學 製備二維材料的方法
US20160233322A1 (en) 2015-02-06 2016-08-11 G-Force Nanotechnology Ltd. Method for fabricating chalcogenide films
US20170117417A1 (en) * 2015-07-13 2017-04-27 Board Of Regents, The University Of Texas System Integration of air-sensitive two-dimensional materials on arbitrary substrates for the manufacturing of electronic devices
CN106384719B (zh) * 2015-08-06 2020-06-23 王贝贝 使用氧等离子体刻蚀黑磷二维材料体的加工方法
TWI579398B (zh) 2015-10-07 2017-04-21 國立清華大學 過渡金屬硫族化物二維薄膜的製備方法
US9406872B1 (en) * 2015-11-16 2016-08-02 International Business Machines Corporation Fabricating two-dimensional array of four-terminal thin film devices with surface-sensitive conductor layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150060768A1 (en) * 2013-08-13 2015-03-05 The Board Of Regents Of The University Of Texas System Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
CN105980596A (zh) * 2014-02-13 2016-09-28 敏斯材料公司 涂覆基底以提供控制的平面内组成调制的方法
CN104218114A (zh) * 2014-08-28 2014-12-17 太原理工大学 一种二维异质结太阳能电池及其制备方法
TW201701334A (zh) * 2015-06-16 2017-01-01 Asm Ip控股公司 在基材表面上形成結構或閘極堆疊之方法
CN106521452A (zh) * 2015-09-15 2017-03-22 超科技公司 2d金属硫属化物膜的激光辅助原子层沉积
CN205188486U (zh) * 2015-10-23 2016-04-27 中国科学院苏州纳米技术与纳米仿生研究所 二维纳米薄膜制备装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620043A (zh) * 2019-09-24 2019-12-27 山东大学 一种不稳定的二维材料的半导体薄膜场效应管的制备方法
CN110634958A (zh) * 2019-09-24 2019-12-31 山东大学 一种不稳定的二维材料的半导体薄膜场效应管及其制备方法
CN110634958B (zh) * 2019-09-24 2021-01-15 山东大学 一种不稳定的二维材料的半导体薄膜场效应管及其制备方法
CN110620043B (zh) * 2019-09-24 2021-01-15 山东大学 一种不稳定的二维材料的半导体薄膜场效应管的制备方法
CN117888060A (zh) * 2024-03-12 2024-04-16 北京师范大学 一种限域薄层二维材料的制备方法及应用
CN117888060B (zh) * 2024-03-12 2024-06-04 北京师范大学 一种限域薄层二维材料的制备方法及应用

Also Published As

Publication number Publication date
TW201838160A (zh) 2018-10-16
TWI646670B (zh) 2019-01-01
US20180291508A1 (en) 2018-10-11
CN108690953B (zh) 2021-03-12
US10428427B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
CN108690953A (zh) 二维材料的制作方法
US8410004B2 (en) Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
JPH06151930A (ja) カルコパイライト型化合物薄膜の製造方法
CN109868454B (zh) 一种二维硫化铬材料的制备方法
Sapaev et al. Fabrication and Properties of n Si–p CdTe Heterojunctions
JP2013533374A (ja) カルコゲニド系物質及び後カルコゲン化技術を使用する真空下でのこのような物質の製造方法
KR102109347B1 (ko) 도핑된 금속 칼코게나이드 박막의 제조 방법
US11869768B2 (en) Method of forming transition metal dichalcogenide thin film
US11788183B2 (en) Method for growing crystalline optical films on Si substrates which may optionally have an extremely small optical loss in the infra-red spectrum with hydrogenation of the crystalline optical films
US11887849B2 (en) Method of forming transition metal dichalcogenidethin film and method of manufacturing electronic device including the same
KR20190024575A (ko) 금속 칼코겐 화합물 박막의 제조 방법
JP4009102B2 (ja) 半導体特性を示すアモルファス鉄シリサイド膜とその作製方法
Lim et al. Influence of stacking order and intermediate phase at low temperature on Cu 2 ZnSnS 4 thin film formation for solar cell
KR102576569B1 (ko) 전이금속 디칼코게나이드의 제조 방법
CN116926472A (zh) 一种叠层生长多层二维材料范德华异质结的方法
JP6831514B2 (ja) 半導体層の製造方法
CN116377396B (zh) 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法
JP7477407B2 (ja) 酸化ガリウム系半導体の製造方法
KR20220132754A (ko) 2차원 나노소재의 제조방법 및 2차원 나노소재의 제조장치
KR101974165B1 (ko) 전이금속 디칼코게나이드 박막의 상전이 방법 및 장치
Hibino et al. Evaluation of $\mathbf {MoS} _ {2 (1-x)}\mathbf {Te} _ {2x} $ fabricated by different bottom-up methods
JP2022118459A (ja) Liドープp型NiO薄膜の製造方法
TW201324837A (zh) 在一光電電池中之一i-iii-vi2層和一後接觸層之間之改進介面

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant