CN114807848A - 一种大面积二碲化钼的pld制备方法 - Google Patents

一种大面积二碲化钼的pld制备方法 Download PDF

Info

Publication number
CN114807848A
CN114807848A CN202210416935.2A CN202210416935A CN114807848A CN 114807848 A CN114807848 A CN 114807848A CN 202210416935 A CN202210416935 A CN 202210416935A CN 114807848 A CN114807848 A CN 114807848A
Authority
CN
China
Prior art keywords
molybdenum ditelluride
film
laser deposition
ditelluride
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210416935.2A
Other languages
English (en)
Inventor
王学锋
李天康
庄文卓
张冲
张�荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210416935.2A priority Critical patent/CN114807848A/zh
Publication of CN114807848A publication Critical patent/CN114807848A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大面积二碲化钼的PLD制备方法,方法在脉冲激光沉积系统(PLD)真空腔室内一定的温度与压力条件下,将处理好的氟晶云母基片利用脉冲激光沉积系统进行二碲化钼(MoTe2)薄膜的沉积,随后将沉积好的薄膜及适量Te粉末封装进真空石英管中进行高温退火。根据不同的退火条件可以制备出半导体相(2H‑MoTe2)和金属相(1T’‑MoTe2)两种不同相的薄膜。本发明方法原理简单,所制备的二碲化钼厚度也可以通过改变沉积的时间进行调控从而满足不同的实验要求,与传统方法相比能够稳定制备出厘米级别的大面积二碲化钼薄膜,并且能极大地节省原材料,降低成本,更加符合现代化工业制备二碲化钼的工艺要求。

Description

一种大面积二碲化钼的PLD制备方法
技术领域
本发明公开了一种大面积二碲化钼的PLD制备方法,属于电子材料技术领域。
背景技术
自2004年通过机械剥离技术得到的石墨烯材料出现以来,其独特的物理性质和电子输运特性引起了研究者们极大的兴趣,先后出现了包括六方氮化硼(h-BN)、黑磷(BP)、过渡金属硫族化合物(TMDs)等二维材料。在这其中,过渡金属硫属化合物种类繁多,其结构、电学、磁学等性质也不尽相同,导电性从绝缘体、半导体、半金属到金属,磁性也从铁磁、反铁磁到顺磁,这些新材料的出现为探索新奇的物理现象和物理机理提供了理想的平台。
TMDs材料是一类具有MX2结构的层状材料,M代表过渡金属元素,主要包括第四副族过渡金属(Ti,Zr,Hf等),第五副族过渡金属(V,Nb,Ta)以及第六副族的过渡金属(Mo,W等);X指硫族元素(S,Se,Te),这类层状材料具有X-M-X的原子层结构,即在两层硫族原子层(X)中间加入一层过渡金属原子层(M),层间以微弱的范德瓦尔斯力相连,层间距在0.65nm左右。根据原子层的堆垛方式以及金属原子的配位形式,块体TMDCs层状材料具有多种晶相结构,总体上可以分为2H型,1T型和3R型,分别属于六方晶系、三方晶系和单斜晶系的TMDCs材料。其中1T型TMDCs材料不能稳定存在,而是以1T'晶相的方式存在。
二维层状二碲化钼(MoTe2)材料属于二维层状过渡金属硫族化合物中的一种,MoTe2以其独特的尺寸特征、电子特性和物理性质,已成为凝聚态物理、材料科学和化学领域重要的研究材料。在TMDs材料中,MoTe2具有较小的能带带隙,对整个光谱都具有很强的光吸收性能,故MoTe2光电器件的工作范围可从可见光区域拓展到近红外区域,且能在隧穿场效应晶体管中实现更高的驱动电流,使其在薄膜晶体管、光催化、传感器等电子器件方面大显身手。
目前二碲化钼薄膜的制备方法主要包括单晶样品机械剥离法、化学气相沉积法制备单晶纳米片等,但上述方法难以实现大面积、低成本的二碲化钼薄膜制备,因此寻找一种兼顾质量和大面积的制备方法显得尤为重要。
发明内容
发明要解决的技术问题
本发明针对现有技术难以制备高质量大面积二碲化钼的问题,提出一种大面积二碲化钼的PLD制备方法。
技术方案
为达到上述目的,本发明提供的技术方案为:
一种大面积二碲化钼的PLD制备方法,其特征在于,包括以下步骤:
步骤1:对氟晶云母基片使用丙酮、酒精、去离子水进行处理;
步骤2:将处理好的氟晶云母基片以及二碲化钼靶材放入脉冲激光沉积系统真空腔室,将腔室抽成真空后加热氟晶云母基片到恒定温度;
步骤3:保持步骤2中真空腔室环境不变,将激光通过透镜照射于二碲化钼靶材上,在基片上进行二碲化钼薄膜沉积;
步骤4:保持真空腔室内温度气压环境不变,将步骤3所得基片进行原位退火,将薄膜自然冷却至室温;
步骤5:关闭脉冲激光沉积系统,从真空腔室内取出基片样品;
步骤6:将步骤5所得样品与适量Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热至一定温度,在Te气氛下进行退火并以恒定降温速率缓慢降温,制备得到半导体相二碲化钼薄膜;将步骤5所得样品与适量Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热至一定温度,在Te气氛下退火,随后将样品放入冷水中快速淬火降温,制备得到金属相二碲化钼薄膜。
进一步地,步骤3中的激光源为KrF准分子激光器。
进一步地,步骤3的沉积过程中靶材放置于匀速转动的转动台上。
有益效果
采用本发明的技术方案,能够产生以下有益效果:
本发明方法原理简单易于推广,所制备的二碲化钼厚度也可以通过改变沉积的时间进行调控,满足不同的实验要求;
本发明方法与传统方法相比能够稳定制备出厘米级别的大面积二碲化钼薄膜,并且能极大地节省原材料,降低成本,更加符合现代化工业制备二碲化钼的工艺要求。
附图说明
图1为本发明制备方法的流程图;
图2为本发明所制二碲化钼薄膜的光学照片;
图3为本发明所制二碲化钼的原子力显微镜图;
图4为本发明所制2H-MoTe2薄膜的拉曼光谱;
图5为本发明所制1T’-MoTe2薄膜的拉曼光谱。
具体实施方式
为进一步了解本发明的内容,结合附图和具体实施方式对本发明作详细描述。
本发明首先通过脉冲激光沉积系统在基底上沉积二碲化钼薄膜,随后将沉积好的薄膜及Te粉末封装进真空石英管中,进行高温退火,根据不同的退火条件可以制备出2H-MoTe2和1T’-MoTe2这两种不同相的薄膜,整体制备步骤如图1所示。
步骤1:对氟晶云母基片使用丙酮、酒精、去离子水进行处理,本实施例所采用的方法为:首先将氟晶云母基片分别在丙酮、无水乙醇中超声清洗5分钟,然后将清洗后的基片在去离子水中浸泡20分钟。
步骤2:将装有处理好的氟晶云母基片以及二碲化钼靶材放入真空腔室,将腔室抽成真空后加热氟晶云母基片到恒定温度,在本实施例中腔室内压抽至4.6±1×10-7mbar,加热温度为200±5℃。
步骤3:保持步骤2真空腔室环境不变,将激光通过透镜照射于二碲化钼靶材上,本实施例中采用KrF准分子激光器,激光波长为248nm,靶材与激光束的夹角约为45°,激光束的平均能量密度约为1.5J/cm2,激光重复频率为2Hz,沉积时间根据选择厚度而决定。沉积时靶材放置在转动台上,保持均匀速率进行转动,其目的是使激光均匀的打在靶材上面,从而在增加薄膜生长的稳定性同时延长靶材使用的寿命。
步骤4:制得步骤3薄膜后,将样品基片原位退火约5min,然后将薄膜自然冷却至室温,原位退火过程保持真空腔室内气压不变,目的是使生长完成的薄膜更加平整。
步骤5:关闭脉冲激光沉积系统,从真空腔室内取出基片样品。
步骤6:将基片样品和2.0mg Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热到700±5℃,在Te气氛下退火12h,以2℃/min降温速率缓慢降温,得到半导体相(2H-MoTe2)二碲化钼薄膜;将样品和2.0mg Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热到900±5℃,在Te气氛下退火12h,随后将样品放入冷水中快速淬火降温,制备得到金属相(1T’-MoTe2)二碲化钼薄膜。
图2为上述实施例所制二碲化钼薄膜的光学照片,可以看出其样品尺寸可以达到1×1cm2,表面为亮黑色。
图3为本发明所制二碲化钼的原子力显微镜(AFM)图,图中可以观察到制备得到的样品厚度约为10nm,粗糙度约为0.7nm,体现了样品表面形貌的高质量。
图4为本发明所制2H相的二碲化钼的拉曼(Raman)光谱。其中二碲化钼的特征峰A1g、E2g以及B2g分别位于169.82cm-1、233.0cm-1以及289.6cm-1处,这一结果与文献中报道2H相的二碲化钼相符合,表明成功制备了2H相的二碲化钼结晶样品。
图5为本发明所制1T’相的二碲化钼的拉曼(Raman)光谱。其中二碲化钼的特征峰分别为于109.06cm-1(Au)、127.46cm-1(Ag)、162.7cm-1(Bg)以及256.2cm-1(Ag)处,这一结果与文献中报道1T’相的二碲化钼相符合,表明成功制备了1T’相的二碲化钼结晶样品。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (3)

1.一种大面积二碲化钼的PLD制备方法,其特征在于,包括以下步骤:
步骤1:对氟晶云母基片使用丙酮、酒精、去离子水进行处理;
步骤2:将处理好的氟晶云母基片以及二碲化钼靶材放入脉冲激光沉积系统真空腔室,将腔室抽成真空后加热氟晶云母基片到恒定温度;
步骤3:保持步骤2中真空腔室环境不变,将激光通过透镜照射于二碲化钼靶材上,在基片上进行二碲化钼薄膜沉积;
步骤4:保持真空腔室内温度气压环境不变,将步骤3所得基片进行原位退火,将薄膜自然冷却至室温;
步骤5:关闭脉冲激光沉积系统,从真空腔室内取出基片样品;
步骤6:将步骤5所得样品与适量Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热至一定温度,在Te气氛下进行退火并以恒定降温速率缓慢降温,制备得到半导体相二碲化钼薄膜;将步骤5所得样品与适量Te粉末放入单开口石英管中,抽至高真空后封好管口,随后加热至一定温度,在Te气氛下退火,随后将样品放入冷水中快速淬火降温,制备得到金属相二碲化钼薄膜。
2.如权利要求1所述的一种大面积二碲化钼的PLD制备方法,其特征在于,所述步骤3中的激光源为KrF准分子激光器。
3.如权利要求1所述的一种大面积二碲化钼的PLD制备方法,其特征在于,所述步骤3的沉积过程中靶材放置于匀速转动的转动台上。
CN202210416935.2A 2022-04-20 2022-04-20 一种大面积二碲化钼的pld制备方法 Pending CN114807848A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210416935.2A CN114807848A (zh) 2022-04-20 2022-04-20 一种大面积二碲化钼的pld制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210416935.2A CN114807848A (zh) 2022-04-20 2022-04-20 一种大面积二碲化钼的pld制备方法

Publications (1)

Publication Number Publication Date
CN114807848A true CN114807848A (zh) 2022-07-29

Family

ID=82505520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210416935.2A Pending CN114807848A (zh) 2022-04-20 2022-04-20 一种大面积二碲化钼的pld制备方法

Country Status (1)

Country Link
CN (1) CN114807848A (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047059A1 (en) * 2013-03-22 2016-02-18 University-Industry Cooperation Group Of Kyung Hee University Two-dimensional large-area growth method for chalcogen compound, method for manufacturing cmos-type structure, film of chalcogen compound, electronic device comprising film of chalcogen compound, and cmos-type structure
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN106206254A (zh) * 2016-07-13 2016-12-07 合肥工业大学 具有优异光致发光特性的大面积二维层状材料的制备方法
CN106395765A (zh) * 2016-08-25 2017-02-15 中国石油大学(华东) 一种二碲化钼电化学储能材料、制备方法及其应用
CN108389779A (zh) * 2018-02-13 2018-08-10 江南大学 一种基于温和氢气等离子体的半金属相碲化钼的制备方法
US20180291508A1 (en) * 2017-04-07 2018-10-11 National Chiao Tung University Fabrication method for two-dimensional materials
CN109727846A (zh) * 2018-12-19 2019-05-07 北京大学 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
US20190139713A1 (en) * 2016-04-07 2019-05-09 University Of North Texas Two-dimensional transition metal dichalcogenide micro- supercapacitors
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN110416408A (zh) * 2019-07-04 2019-11-05 华中科技大学 一种MoTe2-xOx/MoTe2异质结忆阻器及其制备方法
CN110923663A (zh) * 2019-11-11 2020-03-27 中国科学院上海技术物理研究所 一种二次反应生长大面积单层或多层二碲化钼结构的方法
CN111285400A (zh) * 2020-02-18 2020-06-16 中南大学 一种二维过渡金属硫化物的可控相转变方法
CN111403475A (zh) * 2020-03-06 2020-07-10 华中科技大学 一种二维二碲化钼垂直异质结及其制备方法和应用
WO2021097424A1 (en) * 2019-11-15 2021-05-20 The Johns Hopkins University Substrate directed synthesis of transition-metal dichalcogenide crystals with tunable dimensionality and optical properties
US11063164B1 (en) * 2020-09-17 2021-07-13 Allen Howard Engel Method and materials to manufacture heterojunctions, diodes, and solar cells
KR20210147539A (ko) * 2020-05-29 2021-12-07 울산과학기술원 금속성 1t-전이금속 칼코겐화합물의 제조방법 및 금속성 1t-전이금속 칼코겐화합물

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047059A1 (en) * 2013-03-22 2016-02-18 University-Industry Cooperation Group Of Kyung Hee University Two-dimensional large-area growth method for chalcogen compound, method for manufacturing cmos-type structure, film of chalcogen compound, electronic device comprising film of chalcogen compound, and cmos-type structure
US20190139713A1 (en) * 2016-04-07 2019-05-09 University Of North Texas Two-dimensional transition metal dichalcogenide micro- supercapacitors
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN106206254A (zh) * 2016-07-13 2016-12-07 合肥工业大学 具有优异光致发光特性的大面积二维层状材料的制备方法
CN106395765A (zh) * 2016-08-25 2017-02-15 中国石油大学(华东) 一种二碲化钼电化学储能材料、制备方法及其应用
US20180291508A1 (en) * 2017-04-07 2018-10-11 National Chiao Tung University Fabrication method for two-dimensional materials
CN108389779A (zh) * 2018-02-13 2018-08-10 江南大学 一种基于温和氢气等离子体的半金属相碲化钼的制备方法
CN109727846A (zh) * 2018-12-19 2019-05-07 北京大学 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN110416408A (zh) * 2019-07-04 2019-11-05 华中科技大学 一种MoTe2-xOx/MoTe2异质结忆阻器及其制备方法
CN110923663A (zh) * 2019-11-11 2020-03-27 中国科学院上海技术物理研究所 一种二次反应生长大面积单层或多层二碲化钼结构的方法
WO2021097424A1 (en) * 2019-11-15 2021-05-20 The Johns Hopkins University Substrate directed synthesis of transition-metal dichalcogenide crystals with tunable dimensionality and optical properties
CN111285400A (zh) * 2020-02-18 2020-06-16 中南大学 一种二维过渡金属硫化物的可控相转变方法
CN111403475A (zh) * 2020-03-06 2020-07-10 华中科技大学 一种二维二碲化钼垂直异质结及其制备方法和应用
KR20210147539A (ko) * 2020-05-29 2021-12-07 울산과학기술원 금속성 1t-전이금속 칼코겐화합물의 제조방법 및 금속성 1t-전이금속 칼코겐화합물
US11063164B1 (en) * 2020-09-17 2021-07-13 Allen Howard Engel Method and materials to manufacture heterojunctions, diodes, and solar cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIN CHEOL PARK等: "Phase-Engineered Synthesis of Centimeter-Scale 1T’- and 2H-Molybdenum Ditelluride Thin Films", 《ACS NANO》 *
QINGJUN SONG等: "Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1 T´-MoTe2", 《SCIENTIFIC REPORTS》 *
曹万强等: "《材料物理专业实验教程》", 29 February 2016, 冶金工业出版社 *
王宇等: "二维MoTe2的CVD法制备改进及表征", 《中国科技信息》 *
葛爱文等: "MoTe2的结构调控及其电催化产氢和储能", 《分子科学学报》 *

Similar Documents

Publication Publication Date Title
CN108083339B (zh) 一种制备单层二维过渡金属硫化物材料的方法
CN111349907B (zh) 一种MoS2/WS2垂直异质结的制备方法
CN108342716B (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN108193276B (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
JP6116705B2 (ja) Ge量子ドットの成長方法、Ge量子ドット複合材及びその応用
CN107217242B (zh) 一种电子器件介电衬底的表面修饰方法
JP2022105014A (ja) Iiia族窒化物成長システムおよび方法
CN109437124B (zh) 一种合成单层过渡金属硫族化合物的方法
JP3439994B2 (ja) 低抵抗n型および低抵抗p型単結晶AlN薄膜の合成法
US11869768B2 (en) Method of forming transition metal dichalcogenide thin film
WO2016149934A1 (zh) 石墨烯的生长方法
Pradhan et al. Modulation of microstructural and electrical properties of rapid thermally synthesized MoS2 thin films by the flow of H2 gas
Han et al. Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates
EP3662505B1 (en) Mono- and multilayer silicene prepared by plasma-enhanced chemical vapor deposition
Yang et al. Synthesis of single crystalline GaN nanoribbons on sapphire (0001) substrates
CN109706434B (zh) 一种固溶体纳米线及其制备方法和用途
CN114807848A (zh) 一种大面积二碲化钼的pld制备方法
CN114381806B (zh) 二维氮化铝晶体的制备方法
CN110670125A (zh) 一种生长在蓝宝石衬底上的硫化钼二维材料的制备方法
CN113564698B (zh) 一种磁性拓扑异质结薄膜的制备方法
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
CN109637925B (zh) 氧化镁锌薄膜及其制备方法
KR102576569B1 (ko) 전이금속 디칼코게나이드의 제조 방법
Panwar et al. Synthesis of multilayer graphene by filtered cathodic vacuum arc technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220729