CN108682808B - 一种锂离子电池正极材料包覆改性的方法 - Google Patents
一种锂离子电池正极材料包覆改性的方法 Download PDFInfo
- Publication number
- CN108682808B CN108682808B CN201810425380.1A CN201810425380A CN108682808B CN 108682808 B CN108682808 B CN 108682808B CN 201810425380 A CN201810425380 A CN 201810425380A CN 108682808 B CN108682808 B CN 108682808B
- Authority
- CN
- China
- Prior art keywords
- anode material
- ion battery
- lithium ion
- solution
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开一种锂离子电池正极材料包覆改性的方法,属于新能源锂电池正极材料技术领域。本发明所述方法为:将锂离子电池正极材料溶解在硝酸铁溶液中,然后再将氟化氢铵溶液逐滴加入到上述溶液中,在常温下,在正极材料颗粒表面生成三水合氟化铁,再将所得到的产物抽滤、干燥、研磨后进行煅烧,即得到包覆后的锂离子电池正极材料。本发明所述方法制备得到的锂离子电池正极材料能提高电池的充放电容量和循环稳定性。
Description
技术领域
本发明涉及是一种锂离子电池正极材料包覆改性的方法,属于新能源锂电池正极材料技术领域。
背景技术
由于相对于橄榄石型或者尖晶石型正极材料具有更高的理论比容量,锂过渡金属氧化物(LiMO2, M =Mn, Co, Ni 等等)被认为有很大潜力成为高能量和高容量电池的正极材料,但是较差的倍率性能和循环稳定性都限制了其大规模的生产和应用。
表面包覆是提高正极材料性能的一种重要且常用的方法,不仅可以防止正极材料被电解液腐蚀,而且可以缓解高电压下正极材料结构的转变,从而达到改进电化学性能的目的。常用的包覆物包括单质碳,金属氧化物和金属氟化物,然而这些物质都不具有电化学活性,会降低正极材料的质量能量密度。
发明内容
本发明的目的在于提供一种锂离子电池正极材料表面包覆的方法,通过让FeF3·3H2O在LiNi0.6Co0.2Mn0.2O2材料颗粒表面生成,从而形成包覆层,具体包括以下步骤:
(1)将Fe(NO3)3·9H2O溶于无水乙醇中,Fe(NO3)3·9H2O的浓度为2~4mmol/L,然后将LiNi0.6Co0.2Mn0.2O2正极料倒入其中搅拌得到悬浊液A,LiNi0.6Co0.2Mn0.2O2正极料的加入量为30~50g/L;将NH4HF2溶于去离子水中,得到澄清溶液B ,NH4HF2浓度为6~12mmol/L;
(2)按体积比为1:1的比例将溶液B逐滴加入悬浊液A中,在室温下搅拌6~10h;
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼干燥、研磨、过筛,然后进行煅烧,自然冷却后得到包覆后的锂离子电池正极材料。
优选的,本发明步骤(3)中干燥条件为:在80℃下真空干燥24h,研磨后过300目筛。
优选的,本发明步骤(3)中煅烧条件为:在氩气气氛下,从室温开始以4~10℃/min升温至80~200℃,保温2~4h。
本发明的有益效果:
(1)本发明采用液相法,直接在LiNi0.6Co0.2Mn0.2O2正极材料表面生成一层FeF3·3H2O,同时完成了FeF3·3H2O材料的制备和包覆两个步骤,经过烧结,可以得到FeF3·0.33H2O,工艺更为优化且便捷,各种参数易于控制;另外,相对于纯相FeF3,FeF3·3H2O由于存在结晶水,导电性相较于FeF3也更好,更有利于提升正极材料的充放电性能。
(2)本发明所述方法通过液相法将FeF3包覆在LiNi0.6Co0.2Mn0.2O2,即可以有效阻止电解液对正极材料的腐蚀,从而提高电池材料的循环稳定性,同时,FeF3本身也具有电化学活性,可以提高整体材料的放电比容量。
附图说明
图1为本发明实施例1合成的FeF3·3H2O的XRD图;
图2为未经过包覆的正极材料的SEM图;
图3为本发明实施例1中表面包覆有FeF3·0.33H2O的正极材料的SEM图;
图4为本发明实施例1~5合成的经过包覆的正极材料在0.5C下首次放电比容量图。
具体实施方式
下面结合具体的实施例进一步说明本发明,需要指出的是,以下实施例只用于说明本发明的具体实施方法,并不能限制本发明权利保护范围。
实施例1
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将6gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为10mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌10h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以8℃/min升温至80℃,保温2h、自然冷却后得到包覆后的锂离子电池正极材料。从图1中可以确定包覆层材料为FeF3·3H2O,图2为未经包覆的正极材料的SEM图,可以看出未经包覆的正极材料颗粒表面较为规整,经过包覆后的正极材料的SEM图如图3所示,可以看出本实施例制得的正极材料表面均匀的分布有包覆层材料,材料颗粒粒径分布均匀,包覆没有改变材料的整体形貌,在0.5C下首次放电容量为173.13mAhg-1。
实施例2
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将8gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为8mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌8h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以6℃/min升温至180℃,保温2h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面较为均匀地分布有包覆层,包覆后整体形貌与包覆前没有较大差别,本实施例制得的正极材料在0.5C下首次从放电的比容量为168.73mAhg-1。
实施例3
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将10gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为6mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌6h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以4℃/min升温至200℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面包覆有较为均匀的包覆层,包覆层含量较少,本实施例制得的正极材料在0.5C下的首次放电比容量为164.56mAhg-1。
实施例4
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为4mmol/L,将8gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为12mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌7h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以10℃/min升温至200℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的包覆材料在正极材料颗粒的表面分布的较为均匀,在0.5C下首次放电容量为170.12mAhg-1。
实施例5
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将10gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为8mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌6h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以5℃/min升温至180℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面包覆层较为均匀,在0.5C下的首次放电比容量为167.67mAg-1。
Claims (1)
1.一种锂离子电池正极材料包覆改性的方法,其特征在于,采用液相法,直接在LiNi0.6Co0.2Mn0.2O2正极材料表面生成一层FeF3·3H2O,同时完成了FeF3·3H2O材料的制备和包覆两个步骤,经过烧结,可以得到FeF3·0.33H2O,具体包括以下步骤:
(1)将Fe(NO3)3·9H2O溶于无水乙醇中,Fe(NO3)3·9H2O的浓度为2~4mmol/L,然后将LiNi0.6Co0.2Mn0.2O2正极料倒入其中搅拌得到悬浊液A,LiNi0.6Co0.2Mn0.2O2正极料的加入量为30~50g/L;将NH4HF2溶于去离子水中,得到澄清溶液B,NH4HF2浓度为6~12mmol/L;
(2)按体积比为1:1的比例将溶液B逐滴加入悬浊液A中,在室温下搅拌6~10h;
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼干燥、研磨、过筛,然后进行煅烧,自然冷却后得到包覆后的锂离子电池正极材料;
步骤(3)中干燥条件为:在80℃下真空干燥24h,研磨后过300目筛;
煅烧条件为:在氩气气氛下,从室温开始以4~10℃/min升温至80~200℃,保温2~4h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810425380.1A CN108682808B (zh) | 2018-05-07 | 2018-05-07 | 一种锂离子电池正极材料包覆改性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810425380.1A CN108682808B (zh) | 2018-05-07 | 2018-05-07 | 一种锂离子电池正极材料包覆改性的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108682808A CN108682808A (zh) | 2018-10-19 |
CN108682808B true CN108682808B (zh) | 2020-08-25 |
Family
ID=63803004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810425380.1A Active CN108682808B (zh) | 2018-05-07 | 2018-05-07 | 一种锂离子电池正极材料包覆改性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108682808B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2889935A1 (en) * | 2013-12-30 | 2015-07-01 | Samsung Fine Chemicals Co., Ltd. | Cathode active material for lithium secondary battery, method of fabricating the same, and lithium secondary battery including the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496722A (zh) * | 2011-12-22 | 2012-06-13 | 南开大学 | 金属氟化物包覆的层状富锂正极材料及其制备方法 |
CN103151522B (zh) * | 2013-02-28 | 2015-08-19 | 湘潭大学 | 一种混合晶型的氟化铁正极材料制备方法 |
CN106784655B (zh) * | 2016-11-29 | 2019-02-15 | 北京科技大学 | 一种改善富锂锰基正极材料性能的包覆改性方法 |
-
2018
- 2018-05-07 CN CN201810425380.1A patent/CN108682808B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2889935A1 (en) * | 2013-12-30 | 2015-07-01 | Samsung Fine Chemicals Co., Ltd. | Cathode active material for lithium secondary battery, method of fabricating the same, and lithium secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
CN108682808A (zh) | 2018-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108777290B (zh) | 一种锂离子电池正极材料包覆改性的方法 | |
JP5365711B2 (ja) | ニッケルコバルトマンガン複合水酸化物及びその製造方法 | |
JP6186919B2 (ja) | ニッケルコバルトマンガン複合水酸化物及びその製造方法 | |
JP5928445B2 (ja) | リチウムイオン二次電池用の正極活物質およびその製造方法 | |
CN108511714B (zh) | 一种过渡金属磷化物-碳复合材料及其制备方法和应用 | |
CN111640936B (zh) | 一种富锂锰基正极材料及其制备方法、锂离子电池 | |
WO2012020769A1 (ja) | ニッケル含有複合化合物の製造方法 | |
JP6583359B2 (ja) | ニッケルコバルトマンガン複合水酸化物 | |
CN109346698B (zh) | 一种磷酸铁锂-富锂锰基双相电极材料的原位制备方法 | |
CN108767216A (zh) | 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法 | |
WO2019205356A1 (zh) | 一种氮掺杂钛酸锂复合材料及其制备方法与锂离子电池 | |
CN110668507A (zh) | 一种富锂锰基包覆层的三元正极材料制备方法 | |
CN114551835A (zh) | 一种超高镍四元正极材料及其制备方法和应用 | |
CN104979555B (zh) | 一种亚微米级钴锰复合氧化物材料及其制备方法 | |
CN114583141A (zh) | 一种三层结构的前驱体材料及其制备方法、正极材料 | |
KR20240056745A (ko) | 나트륨 이온 전지 양극재 및 그 제조 방법과 응용 | |
CN112142069A (zh) | 一种普鲁士蓝类似物及其形貌控制方法和应用 | |
CN112234203A (zh) | 一种导电聚合物包覆的铷掺杂的高镍三元锂电池正极材料及其制备方法 | |
CN115498298A (zh) | 一种废旧三元正极材料的再生方法 | |
CN113314707B (zh) | 一种改性镍钴铝酸锂正极材料及其制备方法和应用 | |
CN113871589B (zh) | 一种熔盐辅助钛酸锂包覆的富锂锰基正极材料及其制备方法 | |
CN108400299B (zh) | 一种用于钠离子电池的CuFe2O4/C复合负极材料的制备方法 | |
CN114349071A (zh) | 一种单晶核壳结构高镍富钴正极材料的合成方法 | |
CN113346055A (zh) | 复合磷酸盐包覆的锂离子电池高镍正极材料及其制备方法 | |
CN108598383A (zh) | 一种Ti、N共掺杂的球形磷酸铁锂复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |