CN108682808A - 一种锂离子电池正极材料包覆改性的方法 - Google Patents

一种锂离子电池正极材料包覆改性的方法 Download PDF

Info

Publication number
CN108682808A
CN108682808A CN201810425380.1A CN201810425380A CN108682808A CN 108682808 A CN108682808 A CN 108682808A CN 201810425380 A CN201810425380 A CN 201810425380A CN 108682808 A CN108682808 A CN 108682808A
Authority
CN
China
Prior art keywords
anode material
lithium
ion batteries
coating modification
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810425380.1A
Other languages
English (en)
Other versions
CN108682808B (zh
Inventor
张正富
王梓
汤梦云
刘警峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810425380.1A priority Critical patent/CN108682808B/zh
Publication of CN108682808A publication Critical patent/CN108682808A/zh
Application granted granted Critical
Publication of CN108682808B publication Critical patent/CN108682808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种锂离子电池正极材料包覆改性的方法,属于新能源锂电池正极材料技术领域。本发明所述方法为:将锂离子电池正极材料溶解在硝酸铁溶液中,然后再将氟化氢铵溶液逐滴加入到上述溶液中,在常温下,在正极材料颗粒表面生成三水合氟化铁,再将所得到的产物抽滤、干燥、研磨后进行煅烧,即得到包覆后的锂离子电池正极材料。本发明所述方法制备得到的锂离子电池正极材料能提高电池的充放电容量和循环稳定性。

Description

一种锂离子电池正极材料包覆改性的方法
技术领域
本发明涉及是一种锂离子电池正极材料包覆改性的方法,属于新能源锂电池正极材料技术领域。
背景技术
由于相对于橄榄石型或者尖晶石型正极材料具有更高的理论比容量,锂过渡金属氧化物(LiMO2, M =Mn, Co, Ni 等等)被认为有很大潜力成为高能量和高容量电池的正极材料,但是较差的倍率性能和循环稳定性都限制了其大规模的生产和应用。
表面包覆是提高正极材料性能的一种重要且常用的方法,不仅可以防止正极材料被电解液腐蚀,而且可以缓解高电压下正极材料结构的转变,从而达到改进电化学性能的目的。常用的包覆物包括单质碳,金属氧化物和金属氟化物,然而这些物质都不具有电化学活性,会降低正极材料的质量能量密度。
发明内容
本发明的目的在于提供一种锂离子电池正极材料表面包覆的方法,通过让FeF3·3H2O在LiNi0.6Co0.2Mn0.2O2材料颗粒表面生成,从而形成包覆层,具体包括以下步骤:
(1)将Fe(NO3)3·9H2O溶于无水乙醇中,Fe(NO3)3·9H2O的浓度为2~4mmol/L,然后将LiNi0.6Co0.2Mn0.2O2正极料倒入其中搅拌得到悬浊液A,LiNi0.6Co0.2Mn0.2O2正极料的加入量为30~50g/L;将NH4HF2溶于去离子水中,得到澄清溶液B ,NH4HF2浓度为6~12mmol/L;
(2)按体积比为1:1的比例将溶液B逐滴加入悬浊液A中,在室温下搅拌6~10h;
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼干燥、研磨、过筛,然后进行煅烧,自然冷却后得到包覆后的锂离子电池正极材料。
优选的,本发明步骤(3)中干燥条件为:在80℃下真空干燥24h,研磨后过300目筛。
优选的,本发明步骤(3)中煅烧条件为:在氩气气氛下,从室温开始以4~10℃/min升温至80~200℃,保温2~4h。
本发明的有益效果:
(1)本发明采用液相法,直接在LiNi0.6Co0.2Mn0.2O2正极材料表面生成一层FeF3·3H2O,同时完成了FeF3·3H2O材料的制备和包覆两个步骤,经过烧结,可以得到FeF3·0.33H2O,工艺更为优化且便捷,各种参数易于控制;另外,相对于纯相FeF3,FeF3·3H2O由于存在结晶水,导电性相较于FeF3也更好,更有利于提升正极材料的充放电性能。
(2)本发明所述方法通过液相法将FeF3包覆在LiNi0.6Co0.2Mn0.2O2,即可以有效阻止电解液对正极材料的腐蚀,从而提高电池材料的循环稳定性,同时,FeF3本身也具有电化学活性,可以提高整体材料的放电比容量。
附图说明
图1为本发明实施例1合成的FeF3·3H2O的XRD图;
图2为未经过包覆的正极材料的SEM图;
图3为本发明实施例1中表面包覆有FeF3·0.33H2O的正极材料的SEM图;
图4为本发明实施例1~5合成的经过包覆的正极材料在0.5C下首次放电比容量图。
具体实施方式
下面结合具体的实施例进一步说明本发明,需要指出的是,以下实施例只用于说明本发明的具体实施方法,并不能限制本发明权利保护范围。
实施例1
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将6gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为10mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌10h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以8℃/min升温至80℃,保温2h、自然冷却后得到包覆后的锂离子电池正极材料。从图1中可以确定包覆层材料为FeF3·3H2O,图2为未经包覆的正极材料的SEM图,可以看出未经包覆的正极材料颗粒表面较为规整,经过包覆后的正极材料的SEM图如图3所示,可以看出本实施例制得的正极材料表面均匀的分布有包覆层材料,材料颗粒粒径分布均匀,包覆没有改变材料的整体形貌,在0.5C下首次放电容量为173.13mAhg-1
实施例2
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将8gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为8mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌8h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以6℃/min升温至180℃,保温2h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面较为均匀地分布有包覆层,包覆后整体形貌与包覆前没有较大差别,本实施例制得的正极材料在0.5C下首次从放电的比容量为168.73mAhg-1
实施例3
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将10gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为6mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌6h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以4℃/min升温至200℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面包覆有较为均匀的包覆层,包覆层含量较少,本实施例制得的正极材料在0.5C下的首次放电比容量为164.56mAhg-1
实施例4
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为4mmol/L,将8gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为12mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌7h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以10℃/min升温至200℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的包覆材料在正极材料颗粒的表面分布的较为均匀,在0.5C下首次放电容量为170.12mAhg-1
实施例5
(1)将Fe(NO3)3·9H2O溶于200ml无水乙醇中,Fe(NO3)3·9H2O浓度为2mmol/L,将10gLiNi0.6Co0.2Mn0.2O2正极料倒入其中,搅拌得到悬浊液A;将NH4HF2溶于200ml去离子水中,NH4HF2浓度为8mmol/L,得到澄清溶液B。
(2)将溶液B逐滴加入溶液A中,在室温下搅拌6h。
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼在80℃下真空干燥24h、研磨后过300目筛,在氩气气氛下,从室温开始以5℃/min升温至180℃,保温4h、自然冷却后得到包覆后的锂离子电池正极材料;本实施例制得的正极材料表面包覆层较为均匀,在0.5C下的首次放电比容量为167.67mAg-1

Claims (3)

1.一种锂离子电池正极材料包覆改性的方法,其特征在于,具体包括以下步骤:
(1)将Fe(NO3)3·9H2O溶于无水乙醇中,Fe(NO3)3·9H2O的浓度为2~4mmol/L,然后将LiNi0.6Co0.2Mn0.2O2正极料倒入其中搅拌得到悬浊液A,LiNi0.6Co0.2Mn0.2O2正极料的加入量为30~50g/L;将NH4HF2溶于去离子水中,得到澄清溶液B ,NH4HF2浓度为6~12mmol/L;
(2)按体积比为1:1的比例将溶液B逐滴加入悬浊液A中,在室温下搅拌6~10h;
(3)将步骤(2)中反应完成后的浊液进行抽滤,滤饼干燥、研磨、过筛,然后进行煅烧,自然冷却后得到包覆后的锂离子电池正极材料。
2.根据权利要求1所述的锂离子电池正极材料包覆改性的方法,其特征在于:步骤(3)中干燥条件为:在80℃下真空干燥24h,研磨后过300目筛。
3.权利要求1所述的锂离子电池正极材料包覆改性的方法,其特征在于:煅烧条件为:在氩气气氛下,从室温开始以4~10℃/min升温至80~200℃,保温2~4h。
CN201810425380.1A 2018-05-07 2018-05-07 一种锂离子电池正极材料包覆改性的方法 Active CN108682808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810425380.1A CN108682808B (zh) 2018-05-07 2018-05-07 一种锂离子电池正极材料包覆改性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810425380.1A CN108682808B (zh) 2018-05-07 2018-05-07 一种锂离子电池正极材料包覆改性的方法

Publications (2)

Publication Number Publication Date
CN108682808A true CN108682808A (zh) 2018-10-19
CN108682808B CN108682808B (zh) 2020-08-25

Family

ID=63803004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810425380.1A Active CN108682808B (zh) 2018-05-07 2018-05-07 一种锂离子电池正极材料包覆改性的方法

Country Status (1)

Country Link
CN (1) CN108682808B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496722A (zh) * 2011-12-22 2012-06-13 南开大学 金属氟化物包覆的层状富锂正极材料及其制备方法
CN103151522A (zh) * 2013-02-28 2013-06-12 湘潭大学 一种混合晶型的氟化铁正极材料及其制备方法
EP2889935A1 (en) * 2013-12-30 2015-07-01 Samsung Fine Chemicals Co., Ltd. Cathode active material for lithium secondary battery, method of fabricating the same, and lithium secondary battery including the same
CN106784655A (zh) * 2016-11-29 2017-05-31 北京科技大学 一种改善富锂锰基正极材料性能的包覆改性方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496722A (zh) * 2011-12-22 2012-06-13 南开大学 金属氟化物包覆的层状富锂正极材料及其制备方法
CN103151522A (zh) * 2013-02-28 2013-06-12 湘潭大学 一种混合晶型的氟化铁正极材料及其制备方法
EP2889935A1 (en) * 2013-12-30 2015-07-01 Samsung Fine Chemicals Co., Ltd. Cathode active material for lithium secondary battery, method of fabricating the same, and lithium secondary battery including the same
CN106784655A (zh) * 2016-11-29 2017-05-31 北京科技大学 一种改善富锂锰基正极材料性能的包覆改性方法

Also Published As

Publication number Publication date
CN108682808B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN108336316B (zh) 一种基于MOFs表面改性的富锂正极材料及其制备方法
CN111370707B (zh) 一种硫化钴基复合材料及其制备方法和应用
CN110085822B (zh) 一种f-n-c复合材料及其制备方法和应用
CN104638219A (zh) 一种锂硒电池用复合隔膜及其制备方法
CN108777290B (zh) 一种锂离子电池正极材料包覆改性的方法
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN110943213A (zh) 一种MOF衍生多孔碳盒负载Co3V2O8复合负极材料及其制备方法和应用
CN108899531A (zh) 一种磷酸盐包覆镍钴铝三元正极材料的制备方法
CN108767216A (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
CN113948681B (zh) 一种生物质基硬碳化合物复合材料及其制备方法和用途
CN108807918B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN110880589B (zh) 一种纳米碳管@二氧化钛纳米晶@碳的复合材料及其制备方法和应用
CN102544444B (zh) 一种锂离子电池负极活性材料的制备方法
CN111082009B (zh) 一种采用磷酸盐改善的富锂锰基复合正极材料及制备方法
CN113903884B (zh) 正极活性材料及其制备方法、正极、锂离子电池
CN108767203B (zh) 一种二氧化钛纳米管-石墨烯-硫复合材料及其制备方法和应用
CN115881920A (zh) 多策略改性的钴掺杂包覆型单晶层状氧化物钠离子电池正极材料
CN105529447B (zh) 一种碳纳米管-碳-多孔硅复合材料制备方法及应用
CN108598439A (zh) 一种三氧化钨/石墨烯复合负极材料的制备方法
CN102169991A (zh) 一种具有核壳结构的锂电池正极材料及其制备方法和应用
CN108598383A (zh) 一种Ti、N共掺杂的球形磷酸铁锂复合材料的制备方法
CN104701531B (zh) 原位碳包覆六边形K0.7[Fe0.5Mn0.5]O2纳米材料及其制备方法和应用
CN114583126B (zh) 一种La2O3-Co/AB复合材料及其制备方法及应用
CN111285408A (zh) 一种制备锂离子动力电池氧化铁负极材料的方法
CN106602035B (zh) 一种管状生物碳包覆SnO2结构复合粉体的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant