CN108598150B - 一种横向变掺杂-结终端延伸复合终端结构及其制造方法 - Google Patents

一种横向变掺杂-结终端延伸复合终端结构及其制造方法 Download PDF

Info

Publication number
CN108598150B
CN108598150B CN201810380268.0A CN201810380268A CN108598150B CN 108598150 B CN108598150 B CN 108598150B CN 201810380268 A CN201810380268 A CN 201810380268A CN 108598150 B CN108598150 B CN 108598150B
Authority
CN
China
Prior art keywords
region
doping
junction
terminal
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810380268.0A
Other languages
English (en)
Other versions
CN108598150A (zh
Inventor
王彩琳
刘聪
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810380268.0A priority Critical patent/CN108598150B/zh
Publication of CN108598150A publication Critical patent/CN108598150A/zh
Application granted granted Critical
Publication of CN108598150B publication Critical patent/CN108598150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41716Cathode or anode electrodes for thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • H01L29/66393Lateral or planar thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

本发明公开了一种横向变掺杂‑结终端延伸复合终端结构,以GCT为例,终端区和有源区有共同的n‑衬底及其下方的n型FS层、p+阳极区及阳极电极;在有源区主结的外侧,依次设置有一个电阻区、一个横向变掺杂区和一个结终端延伸区,且该横向变掺杂区与结终端延伸区相互交叠,终端区表面覆盖有两层钝化膜;该电阻区将主结和该复合终端区连接为一体。本发明还公开了该种横向变掺杂‑结终端延伸复合终端结构的制造方法。本发明的复合终端结构,不仅可获得约91%的耐压效率,高温漏电流小、终端稳定性高,而且制作工艺与有源区完全兼容,不会增加器件制备过程中的工艺难度和成本,不论是方形芯片还是圆形芯片的深结器件均适用。

Description

一种横向变掺杂-结终端延伸复合终端结构及其制造方法
技术领域
本发明属于电力半导体器件技术领域,涉及一种横向变掺杂-结终端延伸复合终端结构,本发明还涉及该横向变掺杂-结终端延伸复合终端结构的制造方法。
背景技术
结终端技术是电力半导体器件制造中必须解决的一个关键问题,所用终端结构会直接影响器件的耐压及其稳定性。对高压器件,如晶闸管、门极可关断晶闸管(GTO)及门换流晶闸管(GCT)等,其p基区较深,为了提高终端击穿电压,通常采用机械磨角及腐蚀形成台面终端结构,制作工艺比较成熟,但其耐压效率仅有80%,且终端区面积大,高温漏电流也较大。此外,晶闸管还可以采用平面终端结构,如横向变掺杂(VLD),是在渐变窗口的掩蔽下通过铝掺杂形成。
但是,由于铝扩散系数大,即使采用较低的掺杂剂量和很小的窗口,高温推进后在渐变掺杂区末端仍会形成较深pn结,使pn结末端处的曲率较大,峰值电场仍出现在器件表面,导致器件终端击穿电压下降;同时,由于横向变掺杂区末端的浓度较低,钝化膜中的电荷容易使器件表面反型,导致器件终端漏电流增加。因此,现有的终端技术限制了高压大功率器件的开发。
发明内容
本发明的目的是提供一种横向变掺杂-结终端延伸复合终端结构,解决了现有技术中深结器件终端耐压效率低、高温漏电流大、稳定性差、可靠性低的问题。
本发明的另一目的是提供一种横向变掺杂-结终端延伸复合终端结构的制造方法。
本发明所采用的技术方案是,一种横向变掺杂-结终端延伸复合终端结构,将芯片的中央区域作为有源区,有源区外围区域作为终端区,
有源区和终端区共同的n-衬底下表面设置有n型FS层,在n型FS层下表面设置有p+阳极区,p+阳极区设置有阳极电极;
在有源区的n-基区中设置有多个并联单元,每个单元内与n-基区相邻的是p基区,p基区上表面为p+基区,p+基区中央设置有一个n+阴极区,每个n+阴极区上设置有阴极电极;p+基区上方设置有门极电极,并且整个门极电极环绕在n+阴极区的周围;
在有源区主结的外侧,依次设置有一个电阻区、一个横向变掺杂区和一个结终端延伸区,且该横向变掺杂区与结终端延伸区相互交叠,共同组成复合的终端区,终端区表面覆盖有两层钝化膜;该电阻区将主结和该复合终端区连接为一体。
本发明所采用的另一技术方案是,一种横向变掺杂-结终端延伸复合终端结构的制造方法,按照以下步骤实施:
步骤1、原始硅片处理后,利用常规方法形成n区FS层和p+基区;
步骤2、在二氧化硅-氮化硅-二氧化硅复合膜的掩蔽下,通过铝离子注入并推进兼退火,同时形成有源区内较深的p基区和终端区内的VLD区;
步骤3、在n+阴极区形成之后,通过氧化、光刻及腐蚀形成门-阴极台面;
步骤4、通过氧化、光刻,在硅片上表面形成终端JTE区的掺杂窗口,并去掉硅片下表面的氧化层,在硅片的上、下表面分别进行硼离子注入,推进兼退火,同时形成终端区表面的p型JTE区和n区的FS层表面的p+透明阳极区;
步骤5、制备电极与钝化层,得到横向变掺杂-结终端延伸复合终端结构。
本发明的有益效果是,该复合终端结构,不仅可获得约91%的耐压效率,高温漏电流小、终端稳定性高,而且制作工艺与有源区完全兼容,不会增加器件制备过程中的工艺难度和成本;不论是方形芯片还是圆形芯片均适用。
附图说明
图1是本发明横向变掺杂-结终端延伸复合终端结构截面示意图;
图2是本发明复合终端结构沿表面的横向掺杂浓度分布曲线图;
图3是本发明复合终端结构的电阻区及VLD区形成过程示意图;
图4是本发明复合终端结构击穿时的横向电场强度分布曲线图;
图5是VLD区的表面浓度和结深随其横向位置的变化曲线;
图6是采用本发明复合终端结构的GCT终端击穿电压随关键结构参数变化曲线;
图7是采用本发明复合终端结构的GCT在常温(300K)和高温(400K)下击穿特性的模拟曲线。
实施例
下面结合附图和具体实施方式对本发明进行详细说明。
本发明横向变掺杂-结终端延伸复合终端结构的耐压机理是,通过在横向变掺杂区(VLD区)末端设置一个与之交叠的结终端延伸区(JTE区),使复合终端区末端的掺杂浓度提高,曲率半径变大,不仅可以降低终端区表面的电场强度,提高终端击穿电压,而且可以抑制终端区钝化膜中电荷对其表面的影响,提高耐压的稳定性。通过在主结与复合终端区之间设置一个电阻区,可以有效地缓解有源区边缘处的电流集中,从而提高终端的可靠性。
参照图1,以GCT芯片为例,本发明横向变掺杂-结终端延伸复合终端结构,具体设置是,
将芯片的中央区域作为有源区,有源区外围区域作为终端区,
有源区和终端区共同的n-衬底(基区)下表面设置有n型FS层,在n型FS层下表面设置有p+阳极区,p+阳极区设置有阳极电极A(即图1底部位置);
在有源区的n-基区中设置有多个并联单元,每个单元内与n-基区相邻的是p基区,p基区上表面为p+基区,p+基区中央设置有一个n+阴极区,每个n+阴极区上设置有阴极电极K;p+基区上方设置有门极电极G,并且整个门极电极G环绕在n+阴极区的周围;
有源区内n-基区与p基区形成的pn结称为主结,
在有源区主结的外侧(终端区上部与有源区连接处),依次设置有一个电阻区、一个横向变掺杂区(以下简称VLD区)和一个结终端延伸区(以下简称JTE区),且该横向变掺杂区与结终端延伸区(即VLD区与JTE区)相互交叠,共同组成复合的终端区,终端区表面覆盖有两层钝化膜;该电阻区将主结和该复合终端区连接为一体。
所述VLD区是在多个渐变掺杂区窗口的掩蔽下,通过铝离子(Al+)注入及高温推进,与有源区主结同时形成。
参照图2,是本发明的复合终端结构沿终端表面的横向掺杂浓度分布曲线图。掺杂浓度分三部分,VLD区的掺杂浓度渐变(从高到低渐变),JTE区为结深较浅、掺杂浓度较高且保持不变,n-基区是掺杂浓度低且均匀的衬底。由于VLD区末端掺杂浓度较低,JTE区的掺杂浓度稍高,在两者交叠处掺杂浓度形成了一个台阶。
实施例参数范围是:JTE区的掺杂浓度为1.2×1015cm-3~2.3×1015cm-3,结深为5μm~12μm,长度为250μm~350μm;JTE区的掺杂窗口内边界与VLD区的掺杂窗口外边界之间交叠量为50μm~100μm。
参照图3,是本发明的复合终端结构的电阻区及VLD区形成过程示意图。电阻区及VLD区是在多个渐变掺杂区窗口(w1、w2、w3、......)的掩蔽下,通过铝离子(Al+)注入及高温推进与p基区同时形成。其中第一掺杂区的结深与p基区的结深相等,第一掺杂区窗口(w1)大小主要与推进温度及时间有关。随后各掺杂区窗口依次减小(w1>w2>w3>......),掩蔽尺寸逐渐增大(s1<s2<s3.....),且掺杂区窗口与掩蔽尺寸之和为定值(w1+s1=w2+s2=......)。当主结的结深发生改变时,需要调整第一掺杂区的掺杂窗口,使第一掺杂区结深与p基区一致,再进行随后的掺杂窗口与掩蔽窗口调整。通过选择合理的铝掺杂的窗口宽度、掩模尺寸、掺杂剂量、扩散温度及时间,能够获得理想的掺杂剖面。
实施例参数范围是:p基区与横向变掺杂第一掺杂区(即电阻区)之间的掩模尺寸s0为160μm~240μm,第一掺杂区的掺杂窗口宽度w1为75μm~85μm,第一掺杂区与第二掺杂区之间的掩模尺寸s1为0μm~10μm;随后的掺杂窗口宽度逐渐减小,掩模尺寸逐渐增大。
本发明横向变掺杂-结终端延伸复合终端结构的制造方法,按照以下步骤实施:
步骤1、原始硅片处理后,利用常规方法形成nFS层和p+基区;
步骤2、在二氧化硅-氮化硅-二氧化硅复合膜的掩蔽下,通过铝离子注入并推进兼退火,同时形成有源区内较深的p基区和终端区内的VLD区;
步骤3、在n+阴极区形成之后,通过氧化、光刻及腐蚀形成门-阴极台面;
步骤4、通过氧化、光刻,在硅片上表面形成终端JTE区的掺杂窗口,并去掉硅片下表面的氧化层,在硅片的上、下表面分别进行硼离子注入,推进兼退火,同时形成终端区表面的p型JTE区和n区的FS层表面的p+透明阳极区;
步骤5、制备电极与钝化层,得到横向变掺杂-结终端延伸复合终端结构。
参照图4,是本发明方法制备的复合终端结构在击穿时的横向电场强度分布曲线图。当JTE区的掺杂浓度为2.0×1015cm-3、结深为10μm、长度为350μm时,GCT的有源区电场强度(图中Y=125μm所示的曲线)较高,终端区表面处的电场强度(图中Y=15.5μm所示的曲线)较低,且VLD区末端处的电场强度峰值与JTE末端的电场强度峰值近似相等,此时击穿发生在体内,稳定性较好。此时空间电荷区在终端n-基区内的展宽为1840μm。
参照图5,是本发明方法制备的复合终端结构VLD区的表面浓度和结深随其横向位置的变化曲线,随VLD区横向位置的不断向外侧沿伸,其表面浓度逐渐下降、结深逐渐减小,且末端的结深约为主结结深的72.5%。可见,通过铝掺杂形成的VLD末端处pn结的结深仍然较深。
参照图6,是采用本发明复合终端结构的GCT终端击穿电压随关键结构参数变化曲线。由图6a可见,当JTE的结深为10μm、长度为350μm时,随着JTE区掺杂浓度Nd的增大,阻断电压会逐渐增大;由图6b可见,当JTE结深为10μm、表面掺杂浓度为2.0×1015cm-3时,随着JTE区长度增加,阻断电压逐渐增大;由图6c可见,当JTE区的表面掺杂浓度为2×1015cm-3、长度为350μm时,随着JTE区的结深增加,阻断电压先增大而后快速下降。
参照图7,是采用本发明复合终端结构的GCT在常温和高温下的击穿特性模拟曲线。为了便于对比,图中还给出了GCT体内(即有源区)击穿特性曲线和具有VLD终端结构的特性曲线。由图7可见,在300K常温下,GCT体内击穿电压约为5290V;采用该复合终端结构,可获得约91%的终端击穿电压;而采用VLD终端时,只有约70%的终端击穿电压。在400K高温下,复合终端击穿电压更高,且漏电流比较低。

Claims (2)

1.一种横向变掺杂-结终端延伸复合终端结构,其特征在于:将芯片的中央区域作为有源区,有源区外围区域作为终端区,有源区和终端区共同的n-衬底下表面设置有n型FS层,在n型FS层下表面设置有p+阳极区,p+阳极区设置有阳极电极;在有源区的n-基区中设置有多个并联单元,每个单元内与n-基区相邻的是p基区,p基区上表面为p+基区,p+基区中央设置有一个n+阴极区,每个n+阴极区上设置有阴极电极;p+基区上方设置有门极电极,并且整个门极电极环绕在n+阴极区的周围;在有源区主结的外侧,依次设置有一个电阻区、一个横向变掺杂区和一个结终端延伸区,且该横向变掺杂区与结终端延伸区相互交叠,共同组成复合的终端区,终端区表面覆盖有两层钝化膜;该电阻区将主结和该复合终端区连接为一体;
所述的横向变掺杂区为掺杂浓度渐变;结终端延伸区的结深小于横向变掺杂区的结深,掺杂浓度高于横向变掺杂区末端的浓度且保持不变;
所述的结终端延伸区的掺杂浓度为1.2×1015cm-3~2.3×1015cm-3,结深为5μm~12μm,长度为250μm~350μm;结终端延伸区的掺杂窗口内边界与横向变掺杂区的掺杂窗口外边界之间交叠量为50μm~100μm;
所述的电阻区及横向变掺杂区是在多个渐变掺杂区窗口的掩蔽下,通过铝离子注入及高温推进与p基区同时形成,其中横向变掺杂区的第一掺杂区的结深与p基区的结深相等,随后各掺杂区窗口依次减小,掩模尺寸逐渐增大,且掺杂区窗口与掩模尺寸之和为定值;
所述的p基区与横向变掺杂第一掺杂区之间的掩模尺寸为160μm~240μm,第一掺杂区的掺杂窗口宽度为75μm~85μm,第一掺杂区与第二掺杂区之间的掩模尺寸为0μm~10μm。
2.一种权利要求1所述的横向变掺杂-结终端延伸复合终端结构的制造方法,其特征在于,按照以下步骤具体实施:
步骤1、原始硅片处理后,利用常规方法形成nFS层和p+基区;
步骤2、在二氧化硅-氮化硅-二氧化硅复合膜的掩蔽下,通过铝离子注入并推进兼退火,同时形成有源区内较深的p基区和终端区内的VLD区;
步骤3、在n+阴极区形成之后,通过氧化、光刻及腐蚀形成门-阴极台面;
步骤4、通过氧化、光刻,在硅片上表面形成终端JTE区的掺杂窗口,并去掉硅片下表面的氧化层,在硅片的上、下表面分别进行硼离子注入,推进兼退火,同时形成终端区表面的p型JTE区和n区的FS层表面的p+透明阳极区;
步骤5、制备电极与钝化层,得到横向变掺杂-结终端延伸复合终端结构。
CN201810380268.0A 2018-04-25 2018-04-25 一种横向变掺杂-结终端延伸复合终端结构及其制造方法 Active CN108598150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810380268.0A CN108598150B (zh) 2018-04-25 2018-04-25 一种横向变掺杂-结终端延伸复合终端结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810380268.0A CN108598150B (zh) 2018-04-25 2018-04-25 一种横向变掺杂-结终端延伸复合终端结构及其制造方法

Publications (2)

Publication Number Publication Date
CN108598150A CN108598150A (zh) 2018-09-28
CN108598150B true CN108598150B (zh) 2021-06-15

Family

ID=63609806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810380268.0A Active CN108598150B (zh) 2018-04-25 2018-04-25 一种横向变掺杂-结终端延伸复合终端结构及其制造方法

Country Status (1)

Country Link
CN (1) CN108598150B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273523A (zh) * 2018-11-16 2019-01-25 南京华瑞微集成电路有限公司 一种缓变掺杂终端结构及其制造方法
CN110491779B (zh) * 2019-08-22 2022-05-20 吉林华微电子股份有限公司 Vld终端的制造方法及vld终端
CN112510040B (zh) * 2019-09-13 2023-03-24 杭州士兰集昕微电子有限公司 半导体器件及其制造方法
CN111524798B (zh) * 2020-04-03 2022-05-03 电子科技大学 一种具有纵向线性变掺杂的深槽横向耐压区的制备方法
CN111755501A (zh) * 2020-06-18 2020-10-09 清华大学 一种具有边缘深结结构的晶圆芯片结构
CN111755504B (zh) * 2020-07-13 2024-02-23 电子科技大学 一种横向变掺杂终端结构及设计方法和制备方法
CN112420812A (zh) * 2020-11-18 2021-02-26 华北电力大学 一种高压功率芯片的深结复合终端结构及其制备方法
CN113410140A (zh) * 2021-06-04 2021-09-17 深圳市威兆半导体有限公司 超结mosfet终端的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891173A (zh) * 2012-09-29 2013-01-23 西安理工大学 适用于gct器件的阶梯型平面终端结构及其制备方法
CN105914133A (zh) * 2016-05-09 2016-08-31 中国电子科技集团公司第五十五研究所 一种变掺杂结终端制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011697B4 (de) * 2006-03-14 2012-01-26 Infineon Technologies Austria Ag Integrierte Halbleiterbauelementeanordnung und Verfahren zu deren Herstellung
US8564088B2 (en) * 2008-08-19 2013-10-22 Infineon Technologies Austria Ag Semiconductor device having variably laterally doped zone with decreasing concentration formed in an edge region

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891173A (zh) * 2012-09-29 2013-01-23 西安理工大学 适用于gct器件的阶梯型平面终端结构及其制备方法
CN105914133A (zh) * 2016-05-09 2016-08-31 中国电子科技集团公司第五十五研究所 一种变掺杂结终端制备方法

Also Published As

Publication number Publication date
CN108598150A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108598150B (zh) 一种横向变掺杂-结终端延伸复合终端结构及其制造方法
US9870923B2 (en) Semiconductor device and method of manufacturing the semiconductor device
US9129851B2 (en) Semiconductor device
JP3413250B2 (ja) 半導体装置及びその製造方法
WO2018092788A1 (ja) 半導体装置
KR101745437B1 (ko) 바이폴라 넌-펀치-쓰루 전력 반도체 디바이스
JP6824135B2 (ja) 半導体装置及びその製造方法
CN108493108B (zh) 一种高压快速软恢复二极管的制造方法
CN110600537B (zh) 一种具有pmos电流嵌位的分离栅cstbt及其制作方法
CN107123669A (zh) 一种碳化硅功率器件终端结构
CN106601826A (zh) 一种快恢复二极管及其制作方法
CN111755503A (zh) 一种可变横向掺杂的终端结构及其制作方法
JP2017126724A (ja) 半導体装置および半導体装置の製造方法
CN112397593B (zh) 半导体器件及制造方法
CN112349771A (zh) 一种碳化硅器件埋层型终端结构及其制备方法
JP4096722B2 (ja) 半導体装置の製造方法
CN113161238B (zh) 高温度特性门极灵敏型触发可控硅芯片的制作工艺
JP6911373B2 (ja) 半導体装置
US10069000B2 (en) Bipolar non-punch-through power semiconductor device
US11107887B2 (en) Semiconductor device
CN220652019U (zh) 一种frd的外延层结构芯片
US20230317797A1 (en) Wide band gap semiconductor device and manufacturing method
JP3789580B2 (ja) 高耐圧半導体装置
EP4340045A1 (en) Bidirectional asymmetric transient voltage suppressor device
CN116230740A (zh) 一种具有载流子存储层的超结igbt器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant