CN116230740A - 一种具有载流子存储层的超结igbt器件及其制造方法 - Google Patents

一种具有载流子存储层的超结igbt器件及其制造方法 Download PDF

Info

Publication number
CN116230740A
CN116230740A CN202310045126.XA CN202310045126A CN116230740A CN 116230740 A CN116230740 A CN 116230740A CN 202310045126 A CN202310045126 A CN 202310045126A CN 116230740 A CN116230740 A CN 116230740A
Authority
CN
China
Prior art keywords
type
region
layer
carrier storage
storage layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310045126.XA
Other languages
English (en)
Inventor
李�昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN202310045126.XA priority Critical patent/CN116230740A/zh
Publication of CN116230740A publication Critical patent/CN116230740A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明提供一种具有载流子存储层的超结IGBT器件及其制造方法,提供两个具有相对主面的N型衬底,外延生长N型外延层;在N型衬底的有源区和终端区上形成载流子存储(CS)层和超结结构;进行离子注入,以在终端区内形成结区以及保护环;形成终端区的阻挡介质层;形成有源区沟槽栅,且在相邻的沟槽栅间设置体区;选择性地注入杂质离子,以在有源区内形成源区,并在终端区内得到截止环;淀积形成层间介质层,刻蚀形成接触孔;淀积金属层,并蚀刻形成源极金属、栅极金属以及截止环金属;制作电场截止层和集电区。本发明在现有IGBT器件基础上,在有源区和终端区增加载流子存储(CS)层和超结结构,并制作最适合器件性能提升的CS层厚度,能够有效提升IGBT器件性能。

Description

一种具有载流子存储层的超结IGBT器件及其制造方法
技术领域
本发明涉及集成电路制造技术领域,具体涉及一种具有载流子存储层的超结IGBT器件及其制造方法。
背景技术
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)结合了场效应晶体管(MOSFET)和双极结晶型晶体管(BJT)的优点,是现代电力电子电路中的核心电子元器件之一。
IGBT利用低掺杂浓度的漂移区来实现高耐压,然而击穿电压和导通电阻之间存在一定比例关系的限制,即“硅极限”。为了打破“硅极限”,人们提出了超结(super junction)理论:在漂移区中引入交替排列的N、P柱,利用N、P柱的横向耗尽来改善电场分布,从而获得更高的耐压。超结器件凭借其高耐压、低导通电阻的性能,广泛应用于肖特基二极管、MOSFET以及IGBT中。相比传统的硅基IGBT器件,SJ-IGBT在相同的漂移区长度下具备更高的耐压。如图1所示,显示为现有工艺形成的一种SJ-IGBT的结构示意图。
但是,经过深入分析发现,SJ-IGBT能够增强耐压,其原因并不是漂移区浓度增加所致,而是较浓的SJ-NEPI区域产生Carrier Storage(载流子存储,CS)作用导致。如图2所示,显示为带CS层的IGBT的结构示意图。SJ-IGBT应该称为Super Carrier stored IGBT。SJ-IGBT的实质是拥有超厚CS层的IGBT(正向时)。反向时利用SJ原理,将超厚CS层耗尽,避免其对耐压的影响。
传统SJ-IGBT器件中采用SJ(超结)或Semi-SJ(半超结)负责全部耐压,未能理解到SJ-IGBT的实质。花了很大力气,反而对器件正向性能没有太大提升,甚至导致器件性能退化。
发明内容
有鉴于此,本发明提供一种具有载流子存储层的超结IGBT器件及其制造方法,用以实现有效提升IGBT器件性能。
本发明提供一种具有载流子存储层的超结IGBT器件的制造方法,包括以下步骤:
步骤一、提供两个具有相对主面的N型衬底,在所述N型衬底上外延生长N型外延层;
步骤二、在所述N型外延层中形成位于所述N型衬底的有源区和终端区的N型载流子存储层,所述N型载流子存储层与所述N型衬底之间间隔有所述N型外延层;
步骤三、在所述N型载流子存储层中形成超结结构,所述超结结构由若干个N型柱和P型柱交替排列构成,所述超结结构的底部位于所述N型外延层中;
步骤四、进行杂质离子的注入,以在所述N型衬底的终端区内形成结区以及保护环;
步骤五、热生长形成阻挡介质层,并去除有源区上的阻挡介质层,以得到终端区的阻挡介质层;
步骤六、通过光刻和刻蚀工艺形成有源区的沟槽栅,且在相邻的沟槽栅间设置体区,所述体区在所述N型外延层内位于所述N型载流子存储层的上方;
步骤七、选择性地注入杂质离子,以在有源区内形成有由N+区组成的源区,并在终端区内得到截止环,所述源区位于所述体区内;
步骤八、淀积形成层间介质层,刻蚀形成接触孔;
步骤九、淀积金属层,并对所述金属层进行选择性地掩蔽和蚀刻后,得到源极金属、栅极金属以及截止环金属;
步骤十、在所述N型衬底的底部制作电场截止层和集电区,所述电场截止层邻接所述N型外延层和所述集电区。
优选地,步骤一中所述N型衬底为通过FZ法制作出的FZ晶片或通过MCZ法制作出的MCZ晶片。
优选地,步骤二中所述N型载流子存储层通过外延生长工艺形成。
步骤二中所述N型载流子存储层的掺杂浓度大于所述N型外延层的掺杂浓度。
优选地,所述N型载流子存储层的厚度在10-20um范围内。
优选地,所述N型载流子存储层的厚度为10um。
优选地,步骤三中形成所述超结结构包括:
采用光刻刻蚀工艺形成多个超结沟槽;
在所述超结沟槽中填充P型外延层形成所述P型柱;所述N型柱由所述P型柱之间的所述N型外延层和所述N型载流子存储层组成。
优选地,所述方法还包括:在所述集电区上设置集电极金属,所述集电极金属与集电区欧姆接触。
本发明还提供一种具有载流子存储层的超结IGBT器件,包括:
两个具有相对主面的N型衬底;位于所述N型衬底上的有源区以及终端区;位于所述N型衬底上方的N型外延层;位于所述N型外延层上方的N型载流子存储层;位于所述N型载流子存储层中的超结结构,所述超结结构由多个N型柱和P型柱横向交替排列而成;位于所述N型衬底底部的场截止层和集电区;
所述有源区位于所述N型衬底的中心区,还包括多个沟槽栅,各所述沟槽栅穿过所述P型体区且各所述沟槽栅的底部进入到所述N型载流子存储层中;形成于所述P型体区的由N+区组成的源区;覆盖所述源区、所述沟槽栅和所述体区表面的层间介质层;穿过所述层间介质层在所述源区和所述沟槽栅的顶部的接触孔;位于所述层间介质层的表面的正面金属层;
所述终端区位于有源区的外圈并环绕包围所述有源区,还包括结区、保护环、阻挡介质层、截止环以及截止环金属;所述结区与所述有源区内邻近终端区的所述沟槽栅接触,所述保护环位于所述结区与所述截止环间,所述截止环位于终端区的外圈,与所述截止环金属欧姆接触;
其中,所述N型载流子存储层通过外延生长工艺形成;厚度为10um。
本发明在现有IGBT器件的基础上,在器件的有源区和终端区增加载流子存储层(CS)层和超结结构,并制作最适合器件性能提升的CS层厚度,实现IGBT器件性能地有效提升。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1显示为现有工艺形成的一种SJ-IGBT的结构示意图;
图2显示为带CS层的IGBT的结构示意图;
图3显示为载流子存储层深度分别设置为5um、10um、20um、40um的示意图;
图4显示为超结IGBT载流子存储层厚度为5um、10um、20um、40um的对应的电压电流曲线示意图;
图5显示为本发明实施例的具有载流子存储层的超结IGBT器件的制造方法的流程图;
图6显示为本发明实施例的具有载流子存储层的超结IGBT器件的示意图;
图7显示为本发明实施例的具有载流子存储层的超结IGBT器件的有源区的结构示意图。
附图标记说明:
1-P型柱;2-体区;3-沟槽栅;4-接触孔;5-层间介质层;6-金属层;7-源区;8-载流子存储层。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个申请文件中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
耐压特性是IGBT器件的最重要参数之一,耐压不足可能导致IGBT器件使用时出现击穿烧毁的风险。为了提升IGBT器件的耐压特性,本发明就载流子存储(Carrier Storage,CS)层是不是越厚越好,进行进一步研究。如图3所示,将CS层厚度分别设置为5um、10um、20um、40um。图4显示为对应的电压-电流曲线图。从图中可看出,并不是CS层越厚越好,其厚度完全不受耐压情况限制,过薄或者过厚都不是最优选择,可以根据实际情况,制作最适合器件性能提升的CS层厚度,并用超结(super junction,SJ)结构保证CS掺杂部分的耐压,其他部分的耐压还交给IGBT器件即可。图4中10umCS的超结NEPI结构电流密度最强,也就是说,在5um、10um、20um、40um中,最适合器件性能提升的CS层厚度为10um。
本发明结合上述情况,提出在现有IGBT器件的基础上,不仅在器件的有源区设置载流子存储层(CS)层和超结结构,还在终端区采用此结构优化结构,帮助器件耐压,从而实现有效提升IGBT器件性能。下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图5显示为本发明实施例的具有载流子存储层的超结IGBT器件的制造方法的流程图。如图5所示,本发明实施例的具有载流子存储层的超结IGBT器件的制造方法包括以下步骤:
步骤一、提供两个具有相对主面的N型衬底,在N型衬底上外延生长N型外延层。
衬底的材料包括硅,当然,也可以采用其他常用的半导体材料。在本发明实施例中,半导体衬底采用通过FZ(Floating Zone)法制作出的FZ晶片或通过MCZ(Magnetic-field applied CZochralki)法制作出的MCZ晶片等包含N型杂质的N型晶片。
步骤二、在N型外延层中形成位于N型衬底的有源区和终端区的N型载流子存储层。
本发明实施例中,在N型衬底的有源区和终端区中形成都形成N型载流子存储层。N型载流子存储层与N型衬底之间间隔有N型外延层,N型载流子存储层通过外延生长工艺形成。结合图4,优选地,N型载流子存储层的厚度在10-20um范围内。在一种更优的实施例中,形成的N型载流子存储层的厚度为10um,而且N型载流子存储层的掺杂浓度大于N型外延层的掺杂浓度。
步骤三、在N型载流子存储层中形成超结结构。
具体地,本发明实施例中,形成所述超结结构包括:采用光刻刻蚀工艺形成多个超结沟槽;在超结沟槽中填充P型外延层形成P型柱。
本发明实施例中,超结结构的顶部和底部皆位于N型外延层中,超结结构由若干个N型柱和P型柱交替排列构成,N型柱由P型柱之间的N型外延层和N型载流子存储层组成。
通过上述步骤二和步骤三,由此,在N型衬底的有源区和终端区上形成了载流子存储(CS)层和超结结构。
本发明实施例中,不仅在N型衬底的有源区上形成了载流子存储(CS)层和超结(SJ)结构,还在终端形成此结构,进一步优化了器件结构,有利于提高器件耐压能力。
步骤四、进行杂质离子的注入,以在N型衬底的终端区内形成结区以及保护环。
在本发明实施例中,进行P型杂质离子的注入,以在终端区内形成P型结区以及P型保护环。
具体地,注入的P型杂质离子可以为硼离子等,在进行P型杂质离子注入时,可以在有源区上涂覆光刻胶等进行遮挡,使得P型杂质离子仅注入终端区内,且在终端区内形成P型结区以及若干P型保护环,P型保护环的数量以及P型结区、P型保护环在N型外延层内的深度均可以通过工艺进行选择控制,具体工艺过程为本技术领域人员所述熟知,此处不再赘述。
步骤五、热生长形成阻挡介质层,并去除有源区上的阻挡介质层,以得到终端区的阻挡介质层。
本发明实施例中,在制备得到P型结区以及P型保护环后,通过热氧化等工艺,生长得到阻挡介质层,阻挡介质层可以为二氧化硅层。去除有源区的阻挡介质层,仅保留位于终端区上的阻挡介质层,从而利用阻挡介质层能够对终端区进行遮挡,便于进行后续的工艺步骤执行。
步骤六、通过光刻和刻蚀工艺形成有源区的沟槽栅,且在相邻的沟槽栅间设置体区,体区在N型外延层内位于N型载流子存储层的上方。
具体的,利用光刻刻蚀工艺在沟槽的侧壁及底部生长栅氧化层,并填充多晶硅形成沟槽栅。体区通过注入P型杂质离子得到。
步骤七、选择性地注入杂质离子,以在有源区内形成有由N+区组成的源区,并在终端区内得到截止环,源区位于体区内。
本发明实施例中,进行N型杂质离子注入,能够同时形成有由N+区组成的源区以及N+截止环。
步骤八、淀积形成层间介质层,刻蚀形成接触孔。
层间介质层覆盖在有源区以及终端区的阻挡介质层上,并对层间介质层进行选择性地掩蔽和刻蚀,以得到贯通层间介质层的接触孔。通过接触孔将源区、沟槽栅、N+截止环引出。
步骤九、淀积金属层,并对金属层进行选择性地掩蔽和蚀刻后,得到源极金属、栅极金属以及截止环金属。
步骤十、在N型衬底的底部制作电场截止层和集电区,电场截止层邻接N型外延层和集电区。
本发明实施例中,通过进行离子注入等制备得到N型电场截止层(FS)以及P型集电区(P-)。此外,在制备N型电场截止层以及P型集电区前,还可以根据需要对半导体基板进行减薄等工艺处理,具体工艺可以根据需要进行确定。
本发明实施例的方法还包括:在集电区上设置集电极金属,集电极金属与集电区欧姆接触。
本发明实施例中,集电极金属与P型集电区欧姆接触,从而能够形成IGBT器件的集电极。
图6显示为本发明实施例的具有载流子存储层的超结IGBT器件的示意图。如图6所示,本发明实施例的具有载流子存储层的超结IGBT器件包括有源区和终端区。本发明仅在有源区采用super CS结构,还在终端区域采用super CS结构,进一步优化了器件结构,提高了器件耐压。为了Super CS结构的效果,较优地,CS层大概需要扩散越10um的深度,当然可根据具体情况调节。如图7所示,图7显示为本发明实施例的具有载流子存储层的超结IGBT器件的有源区的结构示意图。有源区位于N型衬底的中心区,包括位于N型衬底上方的场截止层(FS)和N型外延层(nepi)、位于N型外延层上方的N型载流子存储层8(CS)和体区2(Pbody)、超结结构1(P-Pillar),多个沟槽栅3、形成于P型体区的表面的由N+区组成的源区7、层间介质层5、接触孔4、位于层间介质层的表面的金属层6、以及位于N型衬底底部的集电区(P-)。
终端区(图中未示出)位于有源区的外圈并环绕包围有源区,包括位于N型衬底上方的场截止层和N型外延层、位于N型外延层上方的N型载流子存储层8(CS)、超结结构1(P-Pillar)、P型保护环、N+截止环以及用于形成主结的P型结区,P型结区与有源区内邻近终端区的沟槽栅接触,P型保护环位于P型结区与N+截止环间,N+截止环位于终端区的外圈。本发明实施例中,终端区可以设置一个或多个P型保护环,P型保护环环绕有源区,为了能够实现过渡,在终端区内设置P型结区,P型结区通过与下方的N型外延层形成主结,P型结区与邻近终端区的沟槽栅的外侧壁相接触。N+截止环位于终端区外圈的边缘,N+截止环环绕P型保护环,N+截止环与截止环金属欧姆接触。P型结区与P型保护环为同一工艺制造层,在终端区上还设有阻挡介质层,阻挡介质层上还覆盖有绝缘介质层,截止环金属支撑在与绝缘介质层上。
本发明实施例的具有载流子存储层的超结IGBT器件通过在现有的超结IGBT器件的基础上进行如下工艺形成:通过外延生长工艺在N型外延层中形成N型载流子存储层。本发明实施例中N型载流子存储层的厚度为10um。
本发明在现有IGBT器件的基础上,在器件的有源区和终端区增加载流子存储层(CS)层和超结(SJ)结构,并制作最适合器件性能提升的CS层厚度,实现IGBT器件性能地有效提升。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种具有载流子存储层的超结IGBT器件的制造方法,其特征在于,包括以下步骤:
步骤一、提供两个具有相对主面的N型衬底,在所述N型衬底上外延生长N型外延层;
步骤二、在所述N型外延层中形成位于所述N型衬底的有源区和终端区的N型载流子存储层,所述N型载流子存储层与所述N型衬底之间间隔有所述N型外延层;
步骤三、在所述N型载流子存储层中形成超结结构,所述超结结构由若干个N型柱和P型柱交替排列构成,所述超结结构的底部位于所述N型外延层中;
步骤四、进行杂质离子的注入,以在所述N型衬底的终端区内形成结区以及保护环;
步骤五、热生长形成阻挡介质层,并去除有源区上的阻挡介质层,以得到终端区的阻挡介质层;
步骤六、通过光刻和刻蚀工艺形成有源区的沟槽栅,且在相邻的沟槽栅间设置体区,所述体区在所述N型外延层内位于所述N型载流子存储层的上方;
步骤七、选择性地注入杂质离子,以在有源区内形成有由N+区组成的源区,并在终端区内得到截止环,所述源区位于所述体区内;
步骤八、淀积形成层间介质层,刻蚀形成接触孔;
步骤九、淀积金属层,并对所述金属层进行选择性地掩蔽和蚀刻后,得到源极金属、栅极金属以及截止环金属;
步骤十、在所述N型衬底的底部制作电场截止层和集电区,所述电场截止层邻接所述N型外延层和所述集电区。
2.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,步骤一中所述N型衬底为通过FZ法制作出的FZ晶片或通过MCZ法制作出的MCZ晶片。
3.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,步骤二中所述N型载流子存储层通过外延生长工艺形成。
4.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,步骤二中所述N型载流子存储层的掺杂浓度大于所述N型外延层的掺杂浓度。
5.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,所述N型载流子存储层的厚度在10-20um范围内。
6.根据权利要求5所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,所述N型载流子存储层的厚度为10um。
7.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,步骤三中形成所述超结结构包括:
采用光刻刻蚀工艺形成多个超结沟槽;
在所述超结沟槽中填充P型外延层形成所述P型柱;所述N型柱由所述P型柱之间的所述N型外延层和所述N型载流子存储层组成。
8.根据权利要求1所述的具有载流子存储层的超结IGBT器件的制造方法,其特征在于,所述方法还包括:在所述集电区上设置集电极金属,所述集电极金属与集电区欧姆接触。
9.一种采用权利要求1至8中任一项所述方法形成的具有载流子存储层的超结IGBT器件,其特征在于,包括:
两个具有相对主面的N型衬底;位于所述N型衬底上的有源区以及终端区;位于所述N型衬底上方的N型外延层;位于所述N型外延层上方的N型载流子存储层;位于所述N型载流子存储层中的超结结构,所述超结结构由多个N型柱和P型柱横向交替排列而成;位于所述N型衬底底部的场截止层和集电区;
所述有源区位于所述N型衬底的中心区,还包括多个沟槽栅,各所述沟槽栅穿过所述P型体区且各所述沟槽栅的底部进入到所述N型载流子存储层中;形成于所述P型体区的由N+区组成的源区;覆盖所述源区、所述沟槽栅和所述体区表面的层间介质层;穿过所述层间介质层在所述源区和所述沟槽栅的顶部的接触孔;位于所述层间介质层的表面的正面金属层;
所述终端区位于有源区的外圈并环绕包围所述有源区,还包括结区、保护环、阻挡介质层、截止环以及截止环金属;所述结区与所述有源区内邻近终端区的所述沟槽栅接触,所述保护环位于所述结区与所述截止环间,所述截止环位于终端区的外圈,与所述截止环金属欧姆接触;其中,所述N型载流子存储层通过外延生长工艺形成;厚度为10um。
CN202310045126.XA 2023-01-30 2023-01-30 一种具有载流子存储层的超结igbt器件及其制造方法 Pending CN116230740A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310045126.XA CN116230740A (zh) 2023-01-30 2023-01-30 一种具有载流子存储层的超结igbt器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310045126.XA CN116230740A (zh) 2023-01-30 2023-01-30 一种具有载流子存储层的超结igbt器件及其制造方法

Publications (1)

Publication Number Publication Date
CN116230740A true CN116230740A (zh) 2023-06-06

Family

ID=86572471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310045126.XA Pending CN116230740A (zh) 2023-01-30 2023-01-30 一种具有载流子存储层的超结igbt器件及其制造方法

Country Status (1)

Country Link
CN (1) CN116230740A (zh)

Similar Documents

Publication Publication Date Title
US11094810B2 (en) Semiconductor device and manufacturing method of semiconductor device
US11837629B2 (en) Power semiconductor devices having gate trenches and buried edge terminations and related methods
KR101745776B1 (ko) 전력용 반도체 소자
US10319808B2 (en) Semiconductor device
TWI534902B (zh) 功率半導體裝置及形成功率半導體裝置之方法
US11824090B2 (en) Back side dopant activation in field stop IGBT
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
US20060006458A1 (en) Semiconductor device and method for manufacturing the same
US11444192B2 (en) MOSFET in sic with self-aligned lateral MOS channel
JP2013258327A (ja) 半導体装置及びその製造方法
KR100883795B1 (ko) 대칭적인 트렌치 mosfet 디바이스 및 그 제조 방법
EP1394860A2 (en) Power devices with improved breakdown voltages
JP2003101022A (ja) 電力用半導体素子
CN111081779A (zh) 一种屏蔽栅沟槽式mosfet及其制造方法
CN210110783U (zh) 一种集成高性能的ldmos结构
CN114744049B (zh) 碳化硅mosfet半导体器件及制作方法
KR0134887B1 (ko) 쌍극성 트랜지스터 및 그 제조방법
KR101360070B1 (ko) 반도체 소자 및 그 제조 방법
US20210134989A1 (en) Semiconductor device and method of manufacturing thereof
US20220149196A1 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
KR101550798B1 (ko) 래치업 억제구조를 가지는 전력용 반도체 장치 및 그 제조방법
WO2023183215A1 (en) Support shield structures for trenched semiconductor devices
US10600649B2 (en) Systems and method for charge balanced semiconductor power devices with fast switching capability
CN110931548A (zh) 一种半导体器件结构及其制造方法
US20220130997A1 (en) Gate trench power semiconductor devices having improved deep shield connection patterns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination