CN108554202A - 金属有机框架复合膜的制备方法 - Google Patents

金属有机框架复合膜的制备方法 Download PDF

Info

Publication number
CN108554202A
CN108554202A CN201810029016.3A CN201810029016A CN108554202A CN 108554202 A CN108554202 A CN 108554202A CN 201810029016 A CN201810029016 A CN 201810029016A CN 108554202 A CN108554202 A CN 108554202A
Authority
CN
China
Prior art keywords
organic frame
metal organic
preparation
composite membrane
frame composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810029016.3A
Other languages
English (en)
Other versions
CN108554202B (zh
Inventor
李健生
李秦
方小峰
廖志鹏
王大鹏
孙秀云
沈锦优
韩卫清
王连军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810029016.3A priority Critical patent/CN108554202B/zh
Publication of CN108554202A publication Critical patent/CN108554202A/zh
Application granted granted Critical
Publication of CN108554202B publication Critical patent/CN108554202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种金属有机框架复合膜的制备方法。所述方法先将高分子聚合物和金属有机框架的金属前驱体溶于N,N‑二甲基甲酰胺中,加热搅拌,配制成铸膜液,再将铸膜液进行涂膜,待N,N‑二甲基甲酰胺蒸发后,置于含有2‑甲基咪唑和0.2~1wt%亲水改性剂的水溶液中进行相转化成膜,相转化1~4小时后即得到金属有机框架复合膜。本发明制备的金属有机框架复合膜具有优异的分离性能,并能够长时间稳定使用,且适用于不止一种支撑层材质和金属有机框架种类。

Description

金属有机框架复合膜的制备方法
技术领域
本发明属于膜技术领域,具体涉及一种金属有机骨架复合膜的制备方法。
背景技术
膜分离技术因其能耗较低,易于集成组装等优点,在分离领域具有良好的前景。优质的膜应具有通量高、选择性高等特点。其中高通量通常通过增大膜的孔隙率来实现,高选择性需要孔径分布窄的孔道。
金属有机框架(Metal-Organic Frameworks,MOFs)是一系列孔隙率高、孔径均一的有机无机杂化的纳米材料,其特性与制备优质膜的要求相契合,因此由连续MOF层作为分离层,基膜作为支撑层的复合膜近年来成为了膜制备方面的研究热点。李建荣课题组报道了在水解聚丙烯腈基膜上以层层自组装的方式组装金属有机框架ZIF-8层的方法(Angew.Chem.Int.Ed.,2014,53,9775-9779)。制得的膜对100mg/L甲基蓝的水溶液中甲基蓝的截留率达到98.6%,透过液通量为265Lm-2h-1MPa-1。王湛课题组报道了在水解聚丙烯腈基膜上以配位作用固定金属有机框架ZIF-8层的方法(J.Membr.Sci.,2017,532,76-86.)。制得的膜对100mg/L刚果红的水溶液中刚果红截留率达到99.2%,透过液通量为374Lm-2h- 1MPa-1。然而,上述方法需要事先准备基膜作为支撑层的特点导致了金属有机框架复合膜的制备过程复杂,且膜的分离性能仍有提升空间。目前缺少一种能够同步制备支撑层和金属有机框架层的方法。
发明内容
本发明的目的在于提供一种金属有机框架复合膜的制备方法,该方法通过相转化法成膜技术,将复合膜的支撑层和金属有机骨架层同步制成。
实现本发明目的技术方案如下:
金属有机框架复合膜的制备方法,具体步骤如下:
步骤1,将高分子聚合物和金属有机框架的金属前驱体溶于N,N-二甲基甲酰胺(DMF)中,加热搅拌,配制成铸膜液,其中,铸膜液中,高分子聚合物的浓度为12~20wt%,金属有机框架的金属前驱体的浓度为9~15wt%;
步骤2,将铸膜液进行涂膜,待N,N-二甲基甲酰胺蒸发后,置于含有2-甲基咪唑(2-MeIM)和0.2~1.0wt%亲水改性剂的水溶液中进行相转化成膜,相转化1~4小时,即得到金属有机框架复合膜。
优选地,步骤1中,所述的高分子聚合物为聚醚砜(PES)或聚偏二氟乙烯(PVDF)。
优选地,步骤1中,所述的金属有机框架的金属前驱体为乙酰丙酮锌(Zn(acac)2)、氧化锌(ZnO)、乙酰丙酮钴(Co(acac)2)中的一种。
优选地,步骤1中,所述的高分子聚合物的浓度为15wt%。
优选地,步骤1中,所述的金属有机框架的金属前驱体的浓度为12wt%。
优选地,步骤1中,所述的加热温度为60℃~80℃。
优选地,步骤2中,所述的亲水改性剂为聚苯乙烯磺酸钠(PSS)或聚乙烯亚胺(PEI)。
优选地,步骤2中,所述的2-甲基咪唑的浓度为100g/L。
优选地,步骤2中,涂膜厚度为150微米~300微米。
优选地,步骤2中,亲水改性剂在水溶液中的浓度为0.4~0.6wt%。
本发明还提供按照上述步骤制得的金属有机框架复合膜。
与现有技术相比,本发明方法简单,对不止一种金属有机框架材料和支撑层材料适用,解决了传统金属有机框架膜制备过程复杂的不足,并实现了更好的分离性能。同时,制得的金属有机框架复合膜具有优异的分离性能,例如对100mg/L刚果红水溶液中刚果红截留率可达99.2%,同时透过液通量可达544Lm-2h-1MPa-1,并能够长时间稳定使用。
附图说明
图1为ZIF-8粉末和金属有机框架复合膜(PSS/ZIF-8/PES膜)的X-射线衍射图。
图2为金属有机框架复合膜(PSS/ZIF-8/PES膜)表面的扫描电子显微镜图。
图3为金属有机框架复合膜(PSS/ZIF-8/PES膜)截面的扫描电子显微镜图。
图4为金属有机框架复合膜(PSS/ZIF-8/PES膜)对100mg/L刚果红水溶液过滤效果的简化图。
图5为金属有机框架复合膜(PSS/ZIF-8/PES膜)对100mg/L刚果红水溶液连续300分钟的过滤性能图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1
步骤1,将7.5g PES、6g Zn(acac)2溶于38.6ml DMF中,加热至60℃,搅拌10h,配制成铸膜液。此铸膜液含15wt%PES、12wt%Zn(acac)2
步骤2:将步骤1中所述铸膜液进行涂膜,待DMF蒸发后,置于含有100g/L 2-MeIM和0.4wt%PSS的水溶液中进行相转化成膜,相转化1h,即得到金属有机框架复合膜(PSS/ZIF-8/PES膜)。
对该膜和ZIF-8粉末分别进行X-射线衍射实验,从图1可看出金属有机框架复合膜(PSS/ZIF-8/PES膜)表面存在ZIF-8。从该膜表面和截面的扫描电子显微镜照片(图2和图3)可以看出膜表面有一层连续无缺陷且有一定厚度的颗粒层,结合X-射线衍射实验,可以证实金属有机框架复合膜(PSS/ZIF-8/PES膜)表面形成了连续无缺陷的ZIF-8层。
分离性能测试:将上述得到的PSS/ZIF-8/PES膜安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.2%,透过液通量为544Lm-2h-1MPa-1,该过滤过程的简化模拟如图4。
实施例2
本实施例与实施例1基本相同,唯一不同的是铸膜液中Zn(acac)2的用量为4.5g,DMF用量为40.2ml。此铸膜液含15wt%PES、9wt%Zn(acac)2
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为98.1%,透过液通量为463Lm-2h-1MPa-1
实施例3
本实施例与实施例1基本相同,唯一不同的是铸膜液中Zn(acac)2的用量为7.5g,DMF用量为37.0ml。此铸膜液含15wt%PES、15wt%Zn(acac)2
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.0%,透过液通量为537Lm-2h-1MPa-1
对比例1
本对比例与实施例1基本相同,唯一不同的是铸膜液中Zn(acac)2的用量为1.5g,DMF用量为43.4ml。此铸膜液含15wt%PES、3wt%Zn(acac)2
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为97.2%,透过液通量为269Lm-2h-1MPa-1
对比例2
本对比例与实施例1基本相同,唯一不同的是铸膜液中Zn(acac)2的用量为10g,DMF用量为34.4ml。此铸膜液含15wt%PES、20wt%Zn(acac)2
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.3%,透过液通量为285Lm-2h-1MPa-1
实施例4
本实施例与实施例1基本相同,唯一不同的是步骤所述水溶液中PSS的质量分数为0.2wt%。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为98.7%,透过液通量为491Lm-2h-1MPa-1
实施例5
本实施例与实施例1基本相同,唯一不同的是步骤所述水溶液中PSS的质量分数为0.6wt%。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.0%,透过液通量为503Lm-2h-1MPa-1
实施例6
本实施例与实施例1基本相同,唯一不同的是步骤所述水溶液中PSS的质量分数为1.0wt%。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.0%,透过液通量为449Lm-2h-1MPa-1
对比例3
本对比例与实施例1基本相同,唯一不同的是步骤2所述水溶液中未加入PSS,得到的金属有机框架复合膜记为ZIF-8/PES膜。
分离性能测试:将得到的金属有机框架复合膜(ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为97.6%,透过液通量为227Lm-2h-1MPa-1
对比例4
本对比例与实施例1基本相同,唯一不同的是步骤2所述水溶液中PSS的质量分数为1.5wt%。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.2%,透过液通量为322Lm-2h-1MPa-1
实施例7
本实施例与实施例1基本相同,唯一不同的是相转化时间为4h。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.3%,透过液通量为293Lm-2h-1MPa-1
对比例5
本对比例与实施例1基本相同,唯一不同的是相转化时间为0.5h。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为98.4%,透过液通量为367Lm-2h-1MPa-1
对比例6
本对比例与实施例1基本相同,唯一不同的是相转化时间为5h。
分离性能测试:将得到的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红水溶液中刚果红截留率为99.2%,透过液通量为231Lm-2h-1MPa-1
实施例8
步骤1,将7.5g PVDF、6g Co(acac)2溶于38.6ml DMF中,加热至60℃,搅拌10h,配制成铸膜液。此铸膜液含15wt%PES、12wt%Co(acac)2
步骤2:将步骤1中所述铸膜液进行涂膜,待DMF蒸发后,置于含有100g/L 2-MeIM和0.4wt%PSS的水溶液中进行相转化成膜,相转化1h,即得到金属有机框架复合膜(PSS/ZIF-67/PVDF膜)。
分离性能测试:将上述得到的PSS/ZIF-67/PVDF膜安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对20mg/L孟加拉红的乙醇溶液中孟加拉红截留率为98.8%,透过液通量为120Lm-2h-1MPa-1
实施例9
步骤1,将7.5g PVDF、6g ZnO溶于38.6ml DMF中,并将此体系加热至60摄氏度,搅拌10h,配制成铸膜液。此铸膜液含15wt%PES、12wt%ZnO。
步骤2:将步骤1中所述铸膜液进行涂膜,待DMF蒸发后,置于含有100g/L 2-MeIM和0.4wt%PEI的水溶液中进行相转化成膜,相转化1h,即得到金属有机框架复合膜(PEI/ZIF-8/PES膜)。
分离性能测试:将上述得到的PEI/ZIF-8/PES膜安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,测得对100mg/L刚果红的水溶液中刚果红截留率为99.1%,透过液通量为398Lm-2h-1MPa-1
实施例10
将实施例1中制得的金属有机框架复合膜(PSS/ZIF-8/PES膜)安装到膜分离装置中,控制膜两侧压力差为0.2MPa,室温条件下,对100mg/L刚果红的水溶液进行连续300分钟的过滤。如图5所示,期间测得膜对刚果红的截留率始终保持在99.2%以上,透过液通量始终保持在451Lm-2h-1MPa-1以上。

Claims (10)

1.金属有机框架复合膜的制备方法,其特征在于,具体步骤如下:
步骤1,将高分子聚合物和金属有机框架的金属前驱体溶于N,N-二甲基甲酰胺中,加热搅拌,配制成铸膜液,其中,铸膜液中,高分子聚合物的浓度为12~20wt%,金属有机框架的金属前驱体的浓度为9~15wt%;
步骤2,将铸膜液进行涂膜,待N,N-二甲基甲酰胺蒸发后,置于含有2-甲基咪唑和0.2~1.0wt%亲水改性剂的水溶液中进行相转化成膜,相转化1~4小时,即得到金属有机框架复合膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的高分子聚合物为聚醚砜或聚偏二氟乙烯。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的金属有机框架的金属前驱体为乙酰丙酮锌、氧化锌、乙酰丙酮钴中的一种。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的高分子聚合物的浓度为15wt%。
5.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的金属有机框架的金属前驱体的浓度为12wt%。
6.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的加热温度为60℃~80℃。
7.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的亲水改性剂为聚苯乙烯磺酸钠或聚乙烯亚胺。
8.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的2-甲基咪唑的浓度为100g/L,涂膜厚度为150微米~300微米。
9.根据权利要求1所述的制备方法,其特征在于,步骤2中,亲水改性剂在水溶液中的浓度为0.4~0.6wt%。
10.根据权利要求1~9任一所述的制备方法制得的金属有机框架复合膜。
CN201810029016.3A 2018-01-12 2018-01-12 金属有机框架复合膜的制备方法 Active CN108554202B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810029016.3A CN108554202B (zh) 2018-01-12 2018-01-12 金属有机框架复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810029016.3A CN108554202B (zh) 2018-01-12 2018-01-12 金属有机框架复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN108554202A true CN108554202A (zh) 2018-09-21
CN108554202B CN108554202B (zh) 2021-08-03

Family

ID=63529769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810029016.3A Active CN108554202B (zh) 2018-01-12 2018-01-12 金属有机框架复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN108554202B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529634A (zh) * 2018-10-30 2019-03-29 南京理工大学 金属有机骨架zif-67-pvdf中空纤维膜的制备方法
CN110559878A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种共价有机骨架@金属有机骨架复合膜及其制备方法
CN110743508A (zh) * 2019-11-19 2020-02-04 北京林业大学 一种生物质基复合材料的制备方法
CN111286036A (zh) * 2019-12-30 2020-06-16 南京理工大学 成型金属有机框架材料的制备方法
CN113385043A (zh) * 2021-05-14 2021-09-14 石河子大学 一种念珠状材料填充的混合基质膜的制备方法和应用
CN113637131A (zh) * 2021-08-13 2021-11-12 南京理工大学 全氟烷基链修饰的共价有机框架、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886244A (zh) * 2012-05-18 2013-01-23 天津工业大学 一种脱硫用金属有机骨架杂化膜及其制造方法
CN105498553A (zh) * 2015-12-11 2016-04-20 华南理工大学 一种聚偏氟乙烯-金属有机骨架复合超滤膜及制备与应用
CN105789668A (zh) * 2016-03-03 2016-07-20 中国科学院化学研究所 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN105879715A (zh) * 2014-12-16 2016-08-24 天津工业大学 一种聚醚砜支撑体上金属有机骨架膜的制备方法
CN106823863A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 金属有机骨架杂化膜、其制备方法及应用
CN107020020A (zh) * 2017-05-22 2017-08-08 天津工业大学 一种新型MOFs‑PVDF复合膜的制备方法
WO2017207424A1 (en) * 2016-05-31 2017-12-07 Eth Zurich Self-supporting mof membranes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886244A (zh) * 2012-05-18 2013-01-23 天津工业大学 一种脱硫用金属有机骨架杂化膜及其制造方法
CN105879715A (zh) * 2014-12-16 2016-08-24 天津工业大学 一种聚醚砜支撑体上金属有机骨架膜的制备方法
CN106823863A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 金属有机骨架杂化膜、其制备方法及应用
CN105498553A (zh) * 2015-12-11 2016-04-20 华南理工大学 一种聚偏氟乙烯-金属有机骨架复合超滤膜及制备与应用
CN105789668A (zh) * 2016-03-03 2016-07-20 中国科学院化学研究所 金属有机骨架材料/聚合物复合质子交换膜的制备方法
WO2017207424A1 (en) * 2016-05-31 2017-12-07 Eth Zurich Self-supporting mof membranes
CN107020020A (zh) * 2017-05-22 2017-08-08 天津工业大学 一种新型MOFs‑PVDF复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RONG ZHANG ET AL.: "《Coordination‐Driven In Situ Self‐Assembly Strategy for the Preparation of Metal–Organic Framework Hybrid Membranes》", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529634A (zh) * 2018-10-30 2019-03-29 南京理工大学 金属有机骨架zif-67-pvdf中空纤维膜的制备方法
CN110559878A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种共价有机骨架@金属有机骨架复合膜及其制备方法
CN110559878B (zh) * 2019-08-29 2021-10-15 浙江工业大学 一种共价有机骨架@金属有机骨架复合膜及其制备方法
CN110743508A (zh) * 2019-11-19 2020-02-04 北京林业大学 一种生物质基复合材料的制备方法
CN111286036A (zh) * 2019-12-30 2020-06-16 南京理工大学 成型金属有机框架材料的制备方法
CN111286036B (zh) * 2019-12-30 2021-11-05 南京理工大学 成型金属有机框架材料的制备方法
CN113385043A (zh) * 2021-05-14 2021-09-14 石河子大学 一种念珠状材料填充的混合基质膜的制备方法和应用
CN113385043B (zh) * 2021-05-14 2022-07-08 石河子大学 一种念珠状材料填充的混合基质膜的制备方法和应用
CN113637131A (zh) * 2021-08-13 2021-11-12 南京理工大学 全氟烷基链修饰的共价有机框架、制备方法及其应用

Also Published As

Publication number Publication date
CN108554202B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN108554202A (zh) 金属有机框架复合膜的制备方法
Fan et al. Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation
CN109012236B (zh) 铸膜液、超滤膜以及制备超滤膜的方法
Kong et al. Superior effect of TEMPO-oxidized cellulose nanofibrils (TOCNs) on the performance of cellulose triacetate (CTA) ultrafiltration membrane
CN103360080A (zh) 一种改进的溶胶-凝胶法制备陶瓷纳滤膜的方法
Kim et al. Macroporous PVDF/TiO2 membranes with three-dimensionally interconnected pore structures produced by directional melt crystallization
KR20140032998A (ko) 막 증류용 복합 혼성 매트릭스 막 및 관련된 제조 방법
Liu et al. Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly
CN101293185A (zh) 一种制备聚偏氟乙烯多孔膜的方法
CN112323116B (zh) 一种基于沸石咪唑酯骨架的镁合金超疏水涂层的制备方法
CN102974229A (zh) 一种二维层状金属有机骨架的开层及应用
CN102430343B (zh) 一种聚偏氟乙烯平板微滤膜的制备方法
CN106582314B (zh) 一种用于膜蒸馏的小孔径疏水复合膜制备方法
CN108114612A (zh) 层状mof纳米片复合膜
CN104772053A (zh) 一种嵌段聚合物共组装均孔膜的制备方法
CN105268333A (zh) 一种聚偏氟乙烯/氧化石墨烯复合超滤膜的制备方法
CN106310984A (zh) 多巴胺修饰金属有机化合物/聚醚共聚酰胺混合基质膜及制备和应用
Hu et al. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid
CN112246111B (zh) 一种金属有机骨架膜的制备方法
CN110449046A (zh) 一种mof改性抗污染复合反渗透膜及其制备方法
CN102626595A (zh) 工业用高强度抗污染超滤平板膜片的配方及其制备方法
Li et al. High-flux corrugated PDMS composite membrane fabricated by using nanofiber substrate
CN109304099A (zh) 一种聚合物-金属氢氧化物纳米线复合薄膜及其制备方法
CN107824060A (zh) 一种多面体低聚倍半硅氧烷复合纳滤膜制备方法
CN104212154B (zh) 磺化聚醚醚酮-氨基化二氧化硅微球杂化膜及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant