CN108114612A - 层状mof纳米片复合膜 - Google Patents

层状mof纳米片复合膜 Download PDF

Info

Publication number
CN108114612A
CN108114612A CN201611057525.4A CN201611057525A CN108114612A CN 108114612 A CN108114612 A CN 108114612A CN 201611057525 A CN201611057525 A CN 201611057525A CN 108114612 A CN108114612 A CN 108114612A
Authority
CN
China
Prior art keywords
layer
membrane
stratiform
mof
mof nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611057525.4A
Other languages
English (en)
Other versions
CN108114612B (zh
Inventor
杨维慎
杨昆
李砚硕
彭媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611057525.4A priority Critical patent/CN108114612B/zh
Publication of CN108114612A publication Critical patent/CN108114612A/zh
Application granted granted Critical
Publication of CN108114612B publication Critical patent/CN108114612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/168Removing solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption

Abstract

一种层状MOF纳米片复合膜,为多层复合结构,包括:至少一层分离层,由二维层状MOF纳米片组装而成;至少一层支撑层,为超薄无支撑聚酰胺纳滤膜;所述的分离层组装于支撑层上,或分离层组装于两层支撑层之间。该复合膜具有一定的气体分离性能和液体分离性能,且制备方法简单易行、重复性高。

Description

层状MOF纳米片复合膜
技术领域
本发明属于膜分离领域,具体涉及一种针对MOF纳米片的新的复合膜技术。
背景技术
在过去十年中,一类新的多孔晶体材料出现了明确进展,即金属有机骨架(MOF)材料,有机和无机组成的构筑单元为孔隙大小、形状和结构方面提供了非常大的变动灵活性。基于有机链和金属离子的相互作用可以控制调节材料的孔,并且他们的孔隙表面可以通过各种方法进行功能化,因此MOF材料被用来做成MOF膜并应用于气体和液体分离。
近年来,二维层状多孔材料正在成为低维材料和纳米孔材料领域的研究热点,MOF材料丰富的设计合成特性为MOF分子筛纳米片的制备提供了诸多可能。晶体工程手段为纳米厚度的MOF薄片晶体的可控合成提供了一条可行性路线,即所谓的“Bottom-up”路线。另一条获得MOF纳米片的方法是所谓的“Top-down”路线,即从二维层状母体材料出发,通过开层剥离的手段得到MOF纳米片。利用超薄二维多孔材料构建分离薄膜,有望实现具有纳米级厚度的高性能分离膜的制备,因为纳米片层的厚度非常小,大大降低了分子传输的阻力。但面向真实体系的分离应用,纯MOF纳米片分子筛膜仍有一些亟待解决的问题:MOF纳米片分离膜的机械强度较差,目前仅能在很小的跨膜压差下使用,限制了其在真实反应体系的应用,并且MOF纳米片分离膜的气体或液体选择性无法可控调节。MOF纳米片分离膜的分离性能很大程度上取决于MOF纳米片在膜内的堆积形态。因此,合理设计及优化构建此类分离膜中二维纳米限域的分子传输路径十分关键。
同时,超薄高聚物分离膜方面的研究也取得了突破性进展,超薄自支撑聚酰胺纳滤膜具有极佳的机械强度和超高透量。传统的基于MOF材料的复合膜,结合了MOF分子筛材料优异的分离性能以及聚合物膜材料易加工、机械强度大的特点。传统复合膜的制备方法主要有溶液共混法和溶胶凝胶法,这些传统的制备方法一般把MOF纳米粒子与聚合物溶液或预聚物共混,然后通过刮涂铸膜、静置挥发、浸渍提拉、旋涂、喷涂、纺纱等方法制备出自支撑或担载型复合膜;但是对MOF纳米片来说,由于其机械强度较差,传统的混合基质膜制备方法会使MOF纳米片发生卷曲,从而MOF纳米片失去筛分分子的功能。
发明内容
本发明的目的首先在于提供一种层状MOF纳米片复合膜,该复合膜为多层复合结构,包括:
至少一层分离层,由二维层状MOF纳米片组装而成;
至少一层支撑层,为超薄无支撑聚酰胺纳滤膜;
所述的分离层组装于支撑层上,或分离层组装于两层支撑层之间。
上述本发明的层状MOF纳米片复合膜的分离曾和支撑层通常形成双层复合或三明治结构的三层复合,后者为优选,两层超薄无支撑聚酰胺纳滤膜形成支撑结构,二维层状MOF纳米片组装于两层支撑层之间作为分离层。
上述本发明的层状MOF纳米片复合膜中作为支撑层的超薄无支撑聚酰胺纳滤膜通过首先使水相单体和有机相单体在覆有牺牲层的基膜上进行界面聚合反应,然后用稀盐酸除去牺牲层而制得。其中,
所述的水相单体选自间苯二胺,二乙烯二胺或4-(氨基甲基)哌啶;
所述的有机相单体为均苯三甲酰氯;
所述的牺牲层选自Cd(OH)2纳米线,Cu(OH)2纳米线;
所述的基膜是聚酰亚胺超滤膜或聚砜超滤膜。
进一步地,上述的水相单体质量浓度0.1~10%,有机相单体质量浓度0.005~1.0%,二者反应时间为1min~24h。
另一方面,上述本发明的层状MOF纳米片复合膜还包括多孔载体层,其为多孔氧化物基膜,多孔金属膜或金属网。其中,优选多孔氧化物基膜,尤其是多孔氧化铝基膜或多孔氧化钛基膜。
本发明的另一方面的目的在于提供上述层状MOF纳米片复合膜的制备方法,包括如下步骤:
(1)制备二维层状MOF纳米片;
(2)制备超薄无支撑聚酰胺纳滤膜:首先质量浓度0.1~10%水相单体和质量浓度0.005~1.0%的有机相单体在覆有牺牲层的基膜上进行界面聚合反应1min~24h,然后用稀盐酸除去牺牲层;
其中,所述的水相单体选自间苯二胺,二乙烯二胺或4-(氨基甲基)哌啶;有机相单体为均苯三甲酰氯;牺牲层是Cd(OH)2纳米线或Cu(OH)2纳米线;基膜是聚酰亚胺超滤膜或聚砜超滤膜;
(3)制备层状MOF纳米片复合膜:将上述步骤制备的二维层状MOF纳米片、超薄无支撑聚酰胺纳滤膜以及多孔载体层组装成复合膜产品;
(4)步骤(3)的复合膜产品于室温放置12小时以上后,于100℃下干燥12小时,然后于真空中100℃下干燥12小时。
上述制备方法中,步骤(1)是通过对层状MOF晶体进行溶剂辅助球磨并超声震荡开层处理制得二维层状MOF纳米片,该方法在我们在先的研究中已经有非常详细的记载(CN105709614A)。本发明中给出下述一个具体的方案作为参考,但不限定于此,该较为具体的方案中:
所述的球磨时间1~24小时,球磨速率为60~200rpm;
所述的超声水浴60~600瓦,超声时长20~60分钟;
所述的溶剂选自甲醇、乙醇、正丙醇、异丙醇、异丁醇、甲醚、正己烷或正庚烷。
以此方法所得到的MOF纳米片的片层厚度范围为从单原子层厚度(约 )到100nm,长宽尺度是厚度的5倍以上。
另一方面,上述方法中步骤(3)复合膜的组装使用层层组装方法,具体可选择机械转移,滴加组装,抽滤,LB膜技术,刮涂,静置挥发,浸渍提拉,旋涂,喷涂以及界面聚合等。
上述本发明所提供的新型层状结构的MOF纳米片复合膜
本方法将结合MOF纳米片与超薄聚合物膜材料各自的优势,提出了一种新型的层状MOF纳米片复合膜。该复合膜具有一定的气体分离性能和混合液体分离性能,其制备方法简便高效,重复性高。进一步可以通过选取不同的MOF纳米片,改变组装方法来调控纳米片的堆积形态,选取不同的聚合物支撑层,从而控制复合膜的分离性能。在层状MOF纳米片复合膜中,其MOF纳米片的孔道只允许尺寸较小的分子通过,而较大分子无法通过MOF纳米片的孔道,只能绕过MOF纳米片从其间的片层缝隙中通过或无法通过,传输路径远大于小分子,从而达到分离的效果。而纳米片两侧的超薄聚合物膜具有较高的机械强度、高透量或一定的吸附分离性能,可以对MOF纳米片提供良好的支撑,承受一定的压力。通过两者优良物理化学性质相互结合得到的层状MOF纳米片复合膜,有望推动复合膜在液体和气体分离领域的应用发展。
因此,本发明再一方面的目的在于公开上述本发明的层状MOF纳米片复合膜在气体和/或液体分离领域的应用。
附图说明
图1为实施例1制备的层状MOF纳米片Zn2(bim)4X-射线衍射图;
图2为实施例1制备的层状MOF纳米片Zn2(bim)4扫描电子显微镜照片;
图3为实施例2制备的超薄无支撑聚酰胺纳滤膜扫描电子显微镜照片;
图4为实施例3制备的复合膜X-射线衍射图;
图5为实施例3制备的复合膜的组装过程和截面示意图;
图6为实施例3制备的复合膜液体分离性能图示;
图7为实施例3制备的复合膜气体分离性能图示。
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
二维层状MOF纳米片——Zn2(bim)4纳米片的制备
取0.025g层状ZIF-7粉末四份,分别放入球磨罐,并放入六粒钢珠,然后加入100ml甲醇试剂,加盖拧紧,放入球磨机固定,开始球磨(转速:60rpm;总时间:70min;每转1min后停15s,并开始反转)。结束后,用注射器把100ml溶液转移至肖特瓶并用150ml甲醇洗涤球磨罐并转移至肖特瓶。把得到的溶液进行超声30min(600W),循环水保持水温常温,每隔10min手动摇晃。结束后,静置约一到两周,直至澄清,得到Zn2(bim)4纳米片甲醇溶液。
X射线衍射证实Zn2(bim)4纳米片具有一定的晶型和取向(如图1),在9°出现特征峰包。扫描电子显微镜显示Zn2(bim)4纳米片的长宽维度为微米级别(如图2)。
实施例2
超薄无支撑聚酰胺纳滤膜的制备
将等体积4mM CdCl2水溶液与0.8mM 2-氨基乙醇混合(各20ml),400rpm剧烈搅拌10min,得到Cd(OH)2纳米线溶液。基膜为交联的聚酰胺XP84超滤膜,将Cd(OH)2纳米线溶液在XP84聚合物基膜上抽滤。25ml 3.0wt.%间苯二铵水溶液通过覆有纳米线牺牲层的基膜上抽滤,然后卸去负压,迅速将等体积的0.15wt.%均苯三甲酰氯己烷溶液加到纳米线层上部,进行界面聚合反应,反应时间60s。结束反应后,用50ml己烷清洗30min,然后室温存放在含有水的培养皿12小时。然后放入6mM HCl溶液清洗,出去残余的氢氧化镉纳米线,然后用去离子水清洗三次。然后得到聚酰胺膜。
图3为所得聚酰胺膜的实物图片,半径为可达2-3厘米。
实施例3
层状MOF纳米片复合膜的制备:
将制备的聚酰胺膜转移在Alpha-Al2O3上,室温干燥12h,60℃干燥12小时。然后将膜片置于50℃的加热面板上,取2.5ml甲醇溶液滴加清洗;然后取15ml的Zn2(bim)4纳米片甲醇溶液,同样在50℃下进行热滴加组装,结束后,继续保持50℃的加热60min。取下膜片冷却后,再将一层超薄聚自支撑的酰胺膜覆盖在上面,室温干燥12小时后于60℃环境中继续干燥12小时,然后真空干燥12小时。
X射线衍射证实层状MOF纳米片复合膜中成功嵌入了Zn2(bim)4纳米片(如图4),图5为层状MOF纳米片复合膜的组装过程示意图和截面示意图。
实施例4
层状MOF纳米片复合膜的液体分离性能
将实施例3所得的层状MOF纳米片复合膜进行液体分离测试研究,测试温度为30℃,原料测压力为5bar,四种有机溶剂的渗透率结果如图6所示。
由图可见,通过本发明制备的新型杂化膜具有一定的液体有机溶剂分离性能。
实施例5
层状MOF纳米片复合膜的气体分离性能
将实施例3中所得到的膜进行混合气体分离测试。室温下,原料侧氢气/二氧化碳体积比为1:1,渗透测为常压,吹扫气为氦气,复合膜在不同原料测压力下的氢气/二氧化碳分离结果如图7所示。

Claims (8)

1.层状MOF纳米片复合膜,为多层复合结构,其特征在于,包括:
至少一层分离层,由二维层状MOF纳米片组装而成;
至少一层支撑层,为超薄无支撑聚酰胺纳滤膜;
所述的分离层组装于支撑层上,或分离层组装于两层支撑层之间。
2.根据权利要求1所述的层状MOF纳米片复合膜,其特征在于,所述的超薄无支撑聚酰胺纳滤膜通过首先使水相单体和有机相单体在覆有牺牲层的基膜上进行界面聚合反应,然后用稀盐酸除去牺牲层而制得。
3.根据权利要求2所述的层状MOF纳米片复合膜,其特征在于,所述的:
水相单体选自间苯二胺,二乙烯二胺或4-(氨基甲基)哌啶;
有机相单体为均苯三甲酰氯;
牺牲层选自Cd(OH)2纳米线,Cu(OH)2纳米线;
基膜是聚酰亚胺超滤膜或聚砜超滤膜。
4.根据权利要求2所述的层状MOF纳米片复合膜,其特征在于,所述的水相单体质量浓度0.1~10%,有机相单体质量浓度0.005~1.0%,二者反应时间为1min~24h。
5.根据权利要求1所述的层状MOF纳米片复合膜,其特征在于,还包括多孔载体层,其为多孔氧化物基膜,多孔金属膜或金属网。
6.权利要求1所述的层状MOF纳米片复合膜的制备方法,包括如下步骤:
(1)制备二维层状MOF纳米片;
(2)制备超薄无支撑聚酰胺纳滤膜:首先质量浓度0.1~10%水相单体和质量浓度0.005~1.0%的有机相单体在覆有牺牲层的基膜上进行界面聚合反应1min~24h,然后用稀盐酸除去牺牲层;
其中,所述的水相单体选自间苯二胺,二乙烯二胺或4-(氨基甲基)哌啶;有机相单体为均苯三甲酰氯;牺牲层是Cd(OH)2纳米线或Cu(OH)2纳米线;基膜是聚酰亚胺超滤膜或聚砜超滤膜;
(3)制备层状MOF纳米片复合膜:将上述步骤制备的二维层状MOF纳米片、超薄无支撑聚酰胺纳滤膜以及多孔载体层组装成复合膜产品;
(4)步骤(3)的复合膜产品于室温放置12小时以上后,于100℃下干燥12小时,然后于真空中100℃下干燥12小时。
7.根据权利要求6所述的制备方法,其特征在于,所述的步骤(1)中,是通过对层状MOF晶体进行溶剂辅助球磨并超声震荡开层处理制得二维层状MOF纳米片,其中,
所述的球磨时间1~24小时,球磨速率为60~200rpm;
所述的超声水浴60~600瓦,超声时长20~60分钟;
所述的溶剂选自甲醇、乙醇、正丙醇、异丙醇、异丁醇、甲醚、正己烷或正庚烷。
8.权利要求1所述的层状MOF纳米片复合膜在气体和/或液体分离领域的应用。
CN201611057525.4A 2016-11-26 2016-11-26 层状mof纳米片复合膜 Active CN108114612B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611057525.4A CN108114612B (zh) 2016-11-26 2016-11-26 层状mof纳米片复合膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611057525.4A CN108114612B (zh) 2016-11-26 2016-11-26 层状mof纳米片复合膜

Publications (2)

Publication Number Publication Date
CN108114612A true CN108114612A (zh) 2018-06-05
CN108114612B CN108114612B (zh) 2021-04-20

Family

ID=62224734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611057525.4A Active CN108114612B (zh) 2016-11-26 2016-11-26 层状mof纳米片复合膜

Country Status (1)

Country Link
CN (1) CN108114612B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270232A (zh) * 2019-05-31 2019-09-24 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
CN110387049A (zh) * 2019-07-01 2019-10-29 浙江大学 一种二维金属有机框架纳米片的制备方法和应用
CN110404420A (zh) * 2019-08-08 2019-11-05 东华大学 一种采用维纶水溶线为(牺牲)中间层的复合纳滤膜及其制备方法
CN110627491A (zh) * 2019-09-29 2019-12-31 天津大学 三明治结构分子筛膜的合成方法以及膜的用途
CN110681270A (zh) * 2019-09-29 2020-01-14 天津大学 不同载体上三明治型mfi分子筛膜的制备方法及膜的醇用途
CN110917822A (zh) * 2019-12-06 2020-03-27 天津工业大学 一种用于氢气分离的高通量高选择性薄层复合膜及制备方法
CN111151145A (zh) * 2018-11-08 2020-05-15 中国石油化工股份有限公司 超疏水分离膜及其制备方法和应用
WO2021109830A1 (zh) * 2019-12-03 2021-06-10 中国科学院深圳先进技术研究院 二维氢氧化镉材料、制备方法、生长模板及应用
CN113522052A (zh) * 2021-06-07 2021-10-22 中国科学院宁波材料技术与工程研究所 复合中空纤维膜及其制备方法和应用
CN114247307A (zh) * 2022-01-13 2022-03-29 南京工业大学 一种制备金属有机骨架薄膜及复合薄膜的方法
CN114632430A (zh) * 2020-12-15 2022-06-17 中国科学院大连化学物理研究所 一种用于气体分离的共价有机聚合物材料纳米片复合基质膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418168A (zh) * 2011-06-02 2012-04-18 华东理工大学 多孔颗粒掺杂的聚酰亚胺中空纤维膜、其制备方法及应用
CN102652035A (zh) * 2009-12-15 2012-08-29 环球油品公司 金属有机骨架聚合物混合基体膜
CN102886244A (zh) * 2012-05-18 2013-01-23 天津工业大学 一种脱硫用金属有机骨架杂化膜及其制造方法
CN103585899A (zh) * 2013-11-08 2014-02-19 江南大学 一种聚醚共聚酰胺渗透汽化膜、制备方法及其应用
CN104209022A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种高通量聚酰胺/zif-8纳滤复合膜及其制备方法
CN104209021A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种zif-8型金属-有机骨架材料改性的芳香族聚酰胺膜的制备方法
CN105148752A (zh) * 2015-09-29 2015-12-16 北京林业大学 一种含mil型金属-有机骨架材料的聚酰胺反渗透复合膜及其制备方法
CN105148750A (zh) * 2015-08-21 2015-12-16 浙江大学 一种聚酰胺复合膜表面改性的方法
CN105582823A (zh) * 2015-12-23 2016-05-18 南京工业大学 ZIF-8/聚醚-b-聚酰胺混合基质膜及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652035A (zh) * 2009-12-15 2012-08-29 环球油品公司 金属有机骨架聚合物混合基体膜
CN102418168A (zh) * 2011-06-02 2012-04-18 华东理工大学 多孔颗粒掺杂的聚酰亚胺中空纤维膜、其制备方法及应用
CN102886244A (zh) * 2012-05-18 2013-01-23 天津工业大学 一种脱硫用金属有机骨架杂化膜及其制造方法
CN103585899A (zh) * 2013-11-08 2014-02-19 江南大学 一种聚醚共聚酰胺渗透汽化膜、制备方法及其应用
CN104209022A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种高通量聚酰胺/zif-8纳滤复合膜及其制备方法
CN104209021A (zh) * 2014-09-03 2014-12-17 北京林业大学 一种zif-8型金属-有机骨架材料改性的芳香族聚酰胺膜的制备方法
CN105148750A (zh) * 2015-08-21 2015-12-16 浙江大学 一种聚酰胺复合膜表面改性的方法
CN105148752A (zh) * 2015-09-29 2015-12-16 北京林业大学 一种含mil型金属-有机骨架材料的聚酰胺反渗透复合膜及其制备方法
CN105582823A (zh) * 2015-12-23 2016-05-18 南京工业大学 ZIF-8/聚醚-b-聚酰胺混合基质膜及其制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIVYA NAGARAJU ETAL: "In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
LUYING WANG ETAL: "The influence of dispersed phases on polyamide/ZIF一8 nanofiltration membranes for dye removal from water", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
王金云等: "聚酰胺/ZIF-8双层复合纳滤膜的制备及其性能研究", 《应用化工》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151145A (zh) * 2018-11-08 2020-05-15 中国石油化工股份有限公司 超疏水分离膜及其制备方法和应用
CN111151145B (zh) * 2018-11-08 2022-04-05 中国石油化工股份有限公司 超疏水分离膜及其制备方法和应用
CN110270232A (zh) * 2019-05-31 2019-09-24 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
CN110270232B (zh) * 2019-05-31 2021-11-19 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
CN110387049A (zh) * 2019-07-01 2019-10-29 浙江大学 一种二维金属有机框架纳米片的制备方法和应用
CN110404420A (zh) * 2019-08-08 2019-11-05 东华大学 一种采用维纶水溶线为(牺牲)中间层的复合纳滤膜及其制备方法
CN110681270A (zh) * 2019-09-29 2020-01-14 天津大学 不同载体上三明治型mfi分子筛膜的制备方法及膜的醇用途
CN110681270B (zh) * 2019-09-29 2021-11-05 天津大学 不同载体上三明治型mfi分子筛膜的制备方法及膜的醇用途
CN110627491A (zh) * 2019-09-29 2019-12-31 天津大学 三明治结构分子筛膜的合成方法以及膜的用途
CN110627491B (zh) * 2019-09-29 2022-05-17 天津大学 三明治结构分子筛膜的合成方法以及膜的用途
WO2021109830A1 (zh) * 2019-12-03 2021-06-10 中国科学院深圳先进技术研究院 二维氢氧化镉材料、制备方法、生长模板及应用
CN110917822A (zh) * 2019-12-06 2020-03-27 天津工业大学 一种用于氢气分离的高通量高选择性薄层复合膜及制备方法
CN114632430A (zh) * 2020-12-15 2022-06-17 中国科学院大连化学物理研究所 一种用于气体分离的共价有机聚合物材料纳米片复合基质膜及其制备方法
CN114632430B (zh) * 2020-12-15 2023-04-18 中国科学院大连化学物理研究所 一种用于气体分离的共价有机聚合物材料纳米片复合基质膜及其制备方法
CN113522052A (zh) * 2021-06-07 2021-10-22 中国科学院宁波材料技术与工程研究所 复合中空纤维膜及其制备方法和应用
CN114247307A (zh) * 2022-01-13 2022-03-29 南京工业大学 一种制备金属有机骨架薄膜及复合薄膜的方法

Also Published As

Publication number Publication date
CN108114612B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN108114612A (zh) 层状mof纳米片复合膜
Zhang et al. Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy
Xie et al. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture
Zhu et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance
CN107583469B (zh) 含氨基改性纳米粒子的聚酰胺复合纳滤膜的制备方法
Emadzadeh et al. Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application
Dong et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles
US20210060497A1 (en) Thin-film composite polyamide reverse osmosis membrane with anti-bacterial and anti-biofouling effects and preparation method thereof
Pang et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles
Chen et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions
Zhao et al. Manipulation of interactions at membrane interfaces for energy and environmental applications
CN105073235B (zh) 包含石墨烯的膜
EP2789379B1 (en) Reverse osmosis membrane comprising silver nanowire layer, and preparation method thereof
Mahdavi et al. Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes
US7182894B2 (en) Process for the preparation of free standing membranes
CN110237716A (zh) 一种具有优异渗透分离性能的原位界面聚合复合纳滤膜、制备方法及应用
CN106731886B (zh) 一种介孔复合膜的制备方法
Zhao et al. Efficient removal of heavy metal ions based on the selective hydrophilic channels
KR102068656B1 (ko) 나노물질층이 구비된 역삼투용 나노복합막의 제조방법 및 이에 따라 제조된 역삼투용 나노복합막
Wang et al. Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles
Chuntanalerg et al. Nanomaterial-incorporated nanofiltration membranes for organic solvent recovery
Liu et al. Influence of graphene oxide sheets on the pore structure and filtration performance of a novel graphene oxide/silica/polyacrylonitrile mixed matrix membrane
Eghbalazar et al. High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly (dopamine) coated UiO66-(COOH) 2
Gui et al. g-C3N4 nanofibers network reinforced polyamide nanofiltration membrane for fast desalination
CN109224782A (zh) 一种功能化纳米填料复合膜及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant