CN110387049A - 一种二维金属有机框架纳米片的制备方法和应用 - Google Patents

一种二维金属有机框架纳米片的制备方法和应用 Download PDF

Info

Publication number
CN110387049A
CN110387049A CN201910585074.9A CN201910585074A CN110387049A CN 110387049 A CN110387049 A CN 110387049A CN 201910585074 A CN201910585074 A CN 201910585074A CN 110387049 A CN110387049 A CN 110387049A
Authority
CN
China
Prior art keywords
organic frame
nanometer sheet
dimensional metallic
metallic organic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910585074.9A
Other languages
English (en)
Inventor
王一娴
裘启明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910585074.9A priority Critical patent/CN110387049A/zh
Priority to PCT/CN2019/104312 priority patent/WO2021000422A1/zh
Publication of CN110387049A publication Critical patent/CN110387049A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种二维金属有机框架纳米片及其制备方法,该制备方法包括:将层状金属有机框架块体材料加入溶剂中进行搅拌剥离,然后静置取上清液,将上清液离心取沉淀即为二维金属有机框架纳米片。该方法能够大规模的制备二维金属有机框架纳米片,且其操作方便易行。所述的二维金属有机框架纳米片的厚度仅为1~10nm。本发明还公开了所述的二维金属有机框架纳米片在电化学检测超氧根离子中的应用,具体为将所述的二维金属有机框架纳米片制成分散液后滴涂在电极上,然后使用循环伏安法或/和安培法对超氧根离子进行检测。所述的二维金属有机框架对超氧根离子具有优异的电催化性能,能够将超氧根离子转化为水。

Description

一种二维金属有机框架纳米片的制备方法和应用
技术领域
本发明涉及功能纳米材料技术领域,具体涉及一种二维金属有机框架纳米片的制备方法和应用。
背景技术
金属有机框架(Metal-organic frameworks,MOFs)是近年来新兴的一种纳米功能材料,其本质上是由包含金属的无机位点和有机配体通过配位键结合形成的高度有序多孔晶体材料。与常规的多孔材料相比,金属有机框架拥有着多种优点,例如其合成方法简单、结构和功能拥有可设计性、比表面积巨大等。而金属有机框架结构和功能可调整的特性使得研究人员可以通过选择合适的金属离子、有机配体来赋予金属有机框架良好的催化性能。因此有大量基于金属有机框架用于构建的电化学传感器的报道。
二维金属有机框架纳米片是金属有机框架的一个分支,一般指至少在一个维度上其尺寸为几个纳米左右的金属有机框架材料。与传统的块体金属有机框架相比,二维金属有机框架纳米片最突出的特点是其超薄的厚度。得益于其超薄的厚度,二维金属有机框的溶液分散性,机械柔性较好。对比块体金属有机框架,二维金属有机框架纳米片超薄的厚度使得其暴露的活性位点更多,因此其催化性能较块体金属有机框架有很大的提高。因此二维金属有机框架纳米片是一种很适合用于电化学检测的材料。
超氧根离子是主要的内源性活性氧种类之一,是免疫防御系统的重要组成部分。人体每天大约需要产生5g的超氧根离子来保持机体的正常运转。但过量的超氧根离子会对核酸、脂质和蛋白质造成氧化损伤,进而导致正常细胞的死亡和某些疾病,比如引起泌尿系统疾病、关节炎、癌症等疾病的退行性疾病。因此对超氧根离子的检测具有重要的意义。
现有基于电化学法检测超氧根离子的方法中主要依靠将超氧化物歧化酶、金属氧化物、修饰贵金属纳米颗粒的炭基材料、磷酸锰纳米材料修饰到电极表面进而对超氧根离子进行检测。但使用这些材料修饰电极存在多种问题。比如酶的成本高昂,容易失活且无法重复利用。而金属氧化物、修饰贵金属颗粒的碳基材料制备困难,操作复杂且成本昂贵。因此开发能够大规模制备、操作简单且成本低廉的新型材料用于检测超氧根离子势在必行。
发明内容
针对本领域存在的不足之处,本发明提供了一种二维金属有机框架纳米片的制备方法,利用快速旋转溶液中存在的剪切力来破坏层状金属有机框架层与层之间较弱的氢键、范德华力、π-π键等作用力进而获得二维金属有机框架纳米片材料。该方法能够大规模的制备二维金属有机框架纳米片,且操作方便易行。
一种二维金属有机框架纳米片的制备方法,包括:将层状金属有机框架块体材料加入溶剂中进行搅拌剥离,然后静置取上清液,将上清液离心取沉淀即为二维金属有机框架纳米片。
层状结构的金属有机框架块体材料,层与层之间为π-π键、氢键、范德华力等弱相互作用力,易于通过机械剥离的方法制得单层或少层金属有机框架纳米片。
作为优选,所述的层状金属有机框架块体材料具有过氧化氢酶活性,具体可以为含有过渡金属元素(如铜、铁、锰、锌、钴等)或卟啉类有机配体等金属有机框架。具有过氧化氢酶活性的二维金属有机框架纳米片滴涂在电极上能够实现对超氧根离子的检测。
进一步优选,所述的层状金属有机框架块体材料选自:
ELM-12,即Cu(bpy)2(OTf)2
Zn2(bim)4
MOF-2,即Zn(TPA)(H2O)·DMF;
Fe(Py2th)2
MAMS-1,即Ni8(5-BBDC)6(μ-OH)4
M1-TCPP,M1为Cu、Cd、Zn或Co;
M2-TCPP(Fe),M2为Co、Cu或Zn;
Cu2Br(IN)2
NTU-9,即Ti2(HDOBDC)2(H2DOBDC);
Zn2(PdTCPP);
MnDMS,即Mn(DMS)·H2O;
ZnDMS,即Zn7(DMS)6(OH)2
M3(2,3-DMS),即M3(2,3-DMS·H2O),M3为Mn、Co或Zn。
所述的溶剂没有特殊要求,采用本领域常用的可分散对应的层状金属有机框架块体材料的溶剂即可,如水、乙醇、丙酮、异丙醇、甲醇等。
所述搅拌的转速为1000~5000rpm,优选1500~3000rpm。
连续搅拌过程中会由于摩擦等产生热量,且无法及时散热,由此会产生体系温度过高、溶剂挥发过多等问题。为防止连续搅拌过程中过热,采用间歇性搅拌,优选搅拌0.5~2h,暂停0.25~1h。
在搅拌分散过程中,溶剂(尤其是有机溶剂)会挥发,因此可在每次暂停期间加入适量相应的溶剂。
作为优选,所述搅拌剥离过程中,有效搅拌时间为4~12h。
在实际搅拌分散过程中,层状金属有机框架块体材料可能会聚集在机械搅拌产生的溶液漩涡中心。此时除了机械搅拌外,还可在搅拌分散的容器中加入磁力转子,在容器底部进行磁力搅拌,以防止层状金属有机框架块体材料聚集。
作为优选,所述静置的时间为6~24h。
作为优选,所述离心的转速为8000~12500rpm。
本发明还提供了根据所述的二维金属有机框架纳米片的制备方法制备得到的二维金属有机框架纳米片。
所述的二维金属有机框架纳米片对超氧根离子具有优异的催化性能,能够通过电化学催化将超氧根离子转换成水。
作为优选,所述的二维金属有机框架纳米片的厚度为1~10nm。
本发明还提供了一种所述的二维金属有机框架纳米片在电化学检测超氧根离子中的应用。
所述的二维金属有机框架纳米片在电化学检测超氧根离子中的应用,具体为将所述的二维金属有机框架纳米片制成分散液后滴涂在电极上,然后使用循环伏安法或/和安培法对超氧根离子进行检测。
所述的电极可采用本领域常用的电极,如玻碳电极,或者新型柔性电极,如激光烧结的石墨烯电极。
本发明与现有技术相比,主要优点包括:
(1)本发明提出了一种能够大规模制备二维金属有机框架纳米片的方法,有力地促进二维金属有机框架纳米片的工业化应用。
(2)相比于传统的块体金属有机框架材料,二维金属有机框架纳米片具有更加优异的催化能力,将其应用于电化学催化检测超氧根离子,具有更强的电化学信号和更高的灵敏度。
(3)本发明克服了如今电化学检测超氧根离子方法中材料制备困难 (如修饰贵金属纳米颗粒的碳基材料、金属氧化物等)、操作复杂(如修饰贵金属颗粒的碳基材料)、成本高昂(如超氧化物歧化酶)等问题。
附图说明
图1为实施例1的ELM-12纳米片的透射电子显微镜(TEM)照片;
图2为实施例1的ELM-12纳米片的原子力显微镜(AFM)照片;
图3为应用例1中各玻碳电极的循环伏安特性图;
图4为应用例2中ELM-12纳米片修饰的石墨烯电极对不同浓度超氧根离子的电化学检测结果图;
图5为应用例2中电流信号变化与超氧根离子浓度的关系图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1 ELM-12纳米片的制备
称取150mg块体层状金属有机框架ELM-12放置于500mL的玻璃烧杯中,随后在烧杯中加入150mL丙酮。采用商用的匀浆机(型号:IKA RW20digital)以2000rpm的搅拌速度搅拌8h。为防止连续搅拌的匀浆机过热,采取间歇性搅拌,即搅拌1h,停止0.5h。此外,在搅拌过程中有机溶剂会挥发,因此在每次搅拌间隙加入相应的有机溶剂使烧杯内的溶剂体积保持在150mL。为了防止搅拌过程中块体的金属有机框架沉降在溶液的漩涡中心,在烧杯底部加入磁力转子搅拌来防止块体金属有机框架的沉降聚集。当搅拌完成后,烧杯中的溶液转移到250mL的蓝盖瓶中静置 12h,其上清液即为获得的ELM-12纳米片的分散液。分散液在转速12500 rpm下离心10min,去除上清液。加入少量丙酮溶液得到ELM-12纳米片丙酮浓缩液,经测定,ELM-12纳米片浓度为0.224mg/mL。
对搅拌完成后的ELM-12纳米片进行表征。如图1所示,透射电子显微镜图中ELM-12纳米片的低衬度证明了获得材料超薄的特性。如图2所示,通过对原子力显微镜图片的分析,证明得到的ELM-12纳米片的片层厚度为3~5nm,进一步证明得到了二维金属有机框架纳米片。通过电感耦合等离子体质谱(ICP-MS)表征可得ELM-12纳米片的产率为8.05%。
实施例2 MOF-2纳米片的制备
与实施例1的ELM-12纳米片的制备方法相比,区别在于称取150mg 块体MOF-2分散到150mL丙酮中,其余步骤和条件均相同。对得到的二维金属有机框架纳米片分散液离心浓缩后得到浓度较高的MOF-2纳米片丙酮分散液。
实施例3 Cu-TCPP纳米片的制备
与实施例1的ELM-12纳米片的制备方法相比,区别在于称取150mg 块体Cu-TCPP分散到150mL乙醇中,其余步骤和条件均相同。对得到的二维金属有机框架纳米片分散液离心浓缩后得到浓度较高的Cu-TCPP纳米片乙醇分散液。
实施例4 Zn-TCPP纳米片的制备
与实施例1的ELM-12纳米片的制备方法相比,区别在于称取150mg 块体Zn-TCPP分散到150mL乙醇中,其余步骤和条件均相同。对得到的二维金属有机框架纳米片分散液离心浓缩后得到浓度较高的Zn-TCPP纳米片乙醇分散液。
实施例5 MnDMS纳米片的制备
与实施例1的ELM-12纳米片的制备方法相比,区别在于称取150mg 块体MnDMS分散到150mL乙醇中,其余步骤和条件均相同。对得到的二维金属有机框架纳米片分散液离心浓缩后得到浓度较高的MnDMS纳米片乙醇分散液。
实施例6 ELM-12纳米片修饰的玻碳电极制备
在制备电极前,先使用0.3μm和0.05μm的氧化铝粉末分别对玻碳电极进行打磨。打磨后的玻碳电极需在0.001M的铁氰化钾溶液使用循环伏安法表征。当其氧化峰和还原峰的峰间距小于70mV时,证明玻碳电极表面杂质去除干净可以用于接下来的实验。随后取0.5mL实施例1的 ELM-12纳米片浓缩液在12500rpm的转速下离心10min,去除上清液。加入乙醇并以相同转速再次离心10min,去除上清液,随后加入25μL乙醇和2.5μL Nafion稀释液(质量分数为5%的Nafion溶液使用乙醇稀释10 倍)。混合均匀后,将混合液滴涂在玻碳电极表面,待其干燥后,再在其表面滴涂5μL Nafion稀释液,干燥待用。
应用例1
将实施例6制备的ELM-12纳米片修饰的玻碳电极、块体金属有机框架ELM-12修饰的玻碳电极以及裸玻碳电极分别在含有200μM超氧根离子的磷酸缓冲盐溶液(PBS缓冲液,0.1M,除氧)中进行循环伏安表征。如图3所示,在存在200μM超氧根离子的情况下,修饰了ELM-12纳米片的玻碳电极还原响应电流远远大于修饰了块体ELM-12的玻碳电极和裸玻碳电极。由此证明ELM-12纳米片对超氧根离子存在电催化能力,且其电催化能力远强于块体ELM-12。因此,理论上ELM-12纳米片可用于对超氧根离子的检测。
实施例7 ELM-12纳米片修饰的石墨烯电极制备
首先使用商用激光雕刻机(Nano Pro III,天津嘉银纳米科技有限公司) 制备石墨烯电极。为了去除石墨烯电极上的杂质,对石墨烯电极进行活化处理。具体操作为将石墨烯电极在0.01M的PBS缓冲液中使用循环伏安法扫描30次(扫描电压设置为0.3~1.4V)。随后使用去离子水冲洗活化后的石墨烯电极,并用氮气吹干。电极的非工作区域应涂抹银浆(ENER-DS200,上海幂方电子科技有限公司)以增强电极的导电能力。取0.25mL实施例1的ELM-12纳米片浓缩液以12500rpm的转速下离心 10min,去除上清液加入乙醇并以该转速再次离心10min。再次去除上清液后加入25μL乙醇,混合均匀后将该溶液滴涂在石墨烯电极的工作区域。待电极表面干燥后,在其表面滴涂2μL Nafion稀释液(质量分数为5%的 Nafion溶液使用乙醇稀释10倍),干燥待用。
应用例2
将实施例7中制备的ELM-12纳米片修饰的石墨烯电极作为工作电极,铂丝电极作为对电极,银/氯化银(Ag/AgCl)电极作为参比电极构建三电极体系使用安培法对超氧根离子进行检测。其中选用的缓冲液为0.1M的 PBS缓冲液。检测过程中需用磁子对缓冲液进行不断地搅拌。此外,石墨电极的非工作区域需要用聚酰亚胺胶带(PI胶带)包裹密封,防止非工作区域对检测过程产生影响。如图4所示,待电化学工作站输出的电流基线平稳后,每隔20s加入一定浓度的超氧根离子,同时电化学工作站输出的电流信号在加入超氧根离子后开始下降。
图4中,基线在100s处电流基线已经平稳,因此从100s处开始每隔 20s加入一次超氧根离子,一共加入25次。具体加入超氧根离子的量为第1次到第5次加入1μL 100mM的超氧根离子溶液(即每加入一次超氧根离子,缓冲液中超氧根离子的浓度增加10μM),第6次到第10次加入 2μL 100mM的超氧根离子溶液(即每加入一次超氧根离子,缓冲液中超氧根离子的浓度增加20μM),第11次到第15次加入4μL 100mM的超氧根离子溶液(即每加入一次超氧根离子,缓冲液中超氧根离子的浓度增加40μM),第16次到第20次加入7μL 100mM的超氧根离子溶液(即每加入一次超氧根离子,缓冲液中超氧根离子的浓度增加70μM),第21 次到第25次加入10μL 100mM的超氧根离子溶液(即每加入一次超氧根离子,缓冲液中超氧根离子的浓度增加100μM)。
如图4、5所示,随着超氧根离子浓度的增加,电流信号一直在下降,且下降值与超氧根离子的浓度呈良好的线性关系,拟合的线性方程为:
ΔJ=-0.01414×c-18281,
其中,ΔJ为电流密度变化值,具体为最开始基线电流与加入超氧根离子之后电流的差值,单位为μA cm-2;c为超氧根离子浓度,单位为μM;线性回归决定系数R2>0.999。
上述结果说明,在一定的超氧根离子浓度内,超氧根离子的加入会导致检测体系中电流信号会下降,且下降值与缓冲液中超氧根离子浓度的增加值成正比。因此根据输出电流信号的变化能够推断溶液中超氧根离子的浓度,实现对超氧根离子浓度的精确检测。
实施例8 MOF-2纳米片修饰的石墨烯电极制备
类似于实施例7中制备二维金属有机框架纳米片修饰的石墨烯电极的方法。首先对石墨烯电极进行活化,并在电极的非工作区域涂抹银浆。随后取0.25mL实施例2的MOF-2纳米片浓缩液在12500rpm的转速下离心两次以完全去除丙酮溶液。然后加入25μL乙醇,混合均匀后将该溶液滴涂在石墨烯电极的工作区域。待电极表面干燥后,在其表面滴涂2μLNafion稀释液(质量分数为5%的Nafion溶液使用乙醇稀释10倍)并干燥待用。
应用例3
类似于应用例2中对超氧根离子的检测过程,区别在于需将三电极体系中的工作电极更换为实施例8中MOF-2纳米片修饰的石墨烯电极。随后使用安培法对超氧根离子检测,随着超氧根离子的加入,检测体系中的电流值会下降,且下降值与缓冲液中超氧根离子浓度的增加值成正比。因此根据检测体系中电流信号的变化能够推断超氧根离子的浓度,实现对超氧根离子浓度的精确检测。
实施例9 Cu-TCPP纳米片修饰的石墨烯电极制备
类似于实施例7中制备二维金属有机框架纳米片修饰的石墨烯电极的方法。首先对石墨烯电极进行活化,并在电极的非工作区域涂抹银浆。取 0.25mL实施例3的Cu-TCPP纳米片浓缩液在12500rpm的转速下离心10 min并去除上清液,随后加入25μL乙醇。混合均匀后,将该溶液滴涂在石墨烯电极的工作区域。待电极表面干燥后,在其表面滴涂2μL Nafion稀释液(质量分数为5%的Nafion溶液使用乙醇稀释10倍)并干燥待用。
应用例4
类似于应用例2中对超氧根离子的检测过程,区别在于需将三电极体系中的工作电极更换为实施例9中Cu-TCPP纳米片修饰的石墨烯电极。随后使用安培法对超氧根离子检测,随着超氧根离子的加入,检测体系中的电流值会下降,且下降值与缓冲液中超氧根离子浓度的增加值成正比。因此根据检测体系中电流信号的变化能够推断超氧根离子的浓度,实现对超氧根离子浓度的精确检测。
实施例10 Zn-TCPP纳米片修饰的石墨烯电极制备
类似于实施例7中制备二维金属有机框架纳米片修饰的石墨烯电极的方法。首先对石墨烯电极进行活化,并在电极的非工作区域涂抹银浆。取 0.25mL实施例4的Zn-TCPP纳米片浓缩液在12500rpm的转速下离心 10min并去除上清液,随后加入25μL乙醇。混合均匀后,将该溶液滴涂在石墨烯电极的工作区域。待电极表面干燥后,在其表面滴涂2μL Nafion稀释液(质量分数为5%的Nafion溶液使用乙醇稀释10倍)并干燥待用。
应用例5
类似于应用例2中对超氧根离子的检测过程,区别在于需将三电极体系中的工作电极更换为实施例10中Zn-TCPP纳米片修饰的石墨烯电极。随后使用安培法对超氧根离子检测,随着超氧根离子的加入,检测体系中的电流值会下降,且下降值与缓冲液中超氧根离子浓度的增加值成正比。因此根据检测体系中电流信号的变化能够推断超氧根离子的浓度,实现对超氧根离子浓度的精确检测。
实施例11 MnDMS纳米片修饰的石墨烯电极制备
类似于实施例7中制备二维金属有机框架纳米片修饰的石墨烯电极的方法。首先对石墨烯电极进行活化,并在电极的非工作区域涂抹银浆。取 0.25mL实施例5的MnDMS纳米片浓缩液在12500rpm的转速下离心 10min并去除上清液,随后加入25μL乙醇。混合均匀后,将该溶液滴涂在石墨烯电极的工作区域。待电极表面干燥后,在其表面滴涂2μL Nafion 稀释液(质量分数为5%的Nafion溶液使用乙醇稀释10倍)并干燥待用。
应用例6
类似于应用例2中对超氧根离子的检测过程,区别在于需将三电极体系中的工作电极更换为实施例11中MnDMS纳米片修饰的石墨烯电极。随后使用安培法对超氧根离子检测,随着超氧根离子的加入,检测体系中的电流值会下降,且下降值与缓冲液中超氧根离子浓度的增加值成正比。因此根据检测体系中电流信号的变化能够推断超氧根离子的浓度,实现对超氧根离子浓度的精确检测。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

1.一种二维金属有机框架纳米片的制备方法,其特征在于,包括:将层状金属有机框架块体材料加入溶剂中进行搅拌剥离,然后静置取上清液,将上清液离心取沉淀即为二维金属有机框架纳米片。
2.根据权利要求1所述的二维金属有机框架纳米片的制备方法,其特征在于,所述的层状金属有机框架块体材料具有过氧化氢酶活性。
3.根据权利要求1所述的二维金属有机框架纳米片的制备方法,其特征在于,所述搅拌的转速为1000~5000rpm。
4.根据权利要求1所述的二维金属有机框架纳米片的制备方法,其特征在于,采用间歇性搅拌,具体为搅拌0.5~2h,暂停0.25~1h。
5.根据权利要求1所述的二维金属有机框架纳米片的制备方法,其特征在于,所述搅拌剥离过程中,有效搅拌时间为4~12h。
6.根据权利要求1所述的二维金属有机框架纳米片的制备方法,其特征在于,所述离心的转速为8000~12500rpm。
7.一种根据权利要求1~6任一权利要求所述的二维金属有机框架纳米片的制备方法制备得到的二维金属有机框架纳米片。
8.根据权利要求7所述的二维金属有机框架纳米片,其特征在于,所述的二维金属有机框架纳米片的厚度为1~10nm。
9.一种根据权利要求7或8所述的二维金属有机框架纳米片在电化学检测超氧根离子中的应用。
10.根据权利要求9所述的二维金属有机框架纳米片在电化学检测超氧根离子中的应用,其特征在于,将所述的二维金属有机框架纳米片制成分散液后滴涂在电极上,然后使用循环伏安法或/和安培法对超氧根离子进行检测。
CN201910585074.9A 2019-07-01 2019-07-01 一种二维金属有机框架纳米片的制备方法和应用 Pending CN110387049A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910585074.9A CN110387049A (zh) 2019-07-01 2019-07-01 一种二维金属有机框架纳米片的制备方法和应用
PCT/CN2019/104312 WO2021000422A1 (zh) 2019-07-01 2019-09-04 一种二维金属有机框架纳米片的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910585074.9A CN110387049A (zh) 2019-07-01 2019-07-01 一种二维金属有机框架纳米片的制备方法和应用

Publications (1)

Publication Number Publication Date
CN110387049A true CN110387049A (zh) 2019-10-29

Family

ID=68286064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910585074.9A Pending CN110387049A (zh) 2019-07-01 2019-07-01 一种二维金属有机框架纳米片的制备方法和应用

Country Status (2)

Country Link
CN (1) CN110387049A (zh)
WO (1) WO2021000422A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918123A (zh) * 2019-11-27 2020-03-27 天津农学院 一种带有自身终止作用的过氧化物酶及其制备方法和应用
CN111487242A (zh) * 2020-04-27 2020-08-04 天津工业大学 一种基于铁卟啉二维MOFs类酶催化的过氧化氢检测方法
CN111921560A (zh) * 2020-08-18 2020-11-13 浙江大学 一种晶格畸变的超薄金属有机框架纳米片催化剂、其制备方法和应用
CN112816465A (zh) * 2021-01-06 2021-05-18 武汉轻工大学 一种快速测定食品中苯甲酸钠含量的方法
CN116063690A (zh) * 2022-12-29 2023-05-05 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043061A (ko) * 2016-10-19 2018-04-27 한국에너지기술연구원 자기조립형 3차원 혼성 구조체, 이의 제조방법 및 이를 이용한 광촉매
CN108114612A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 层状mof纳米片复合膜
CN108976433A (zh) * 2018-07-13 2018-12-11 江南大学 一种液相剥离法制备金属有机框架纳米片的方法
CN109179489A (zh) * 2018-10-26 2019-01-11 浙江大学 一种二维超薄硫化亚锡纳米片的制备方法及产品和应用
CN109205578A (zh) * 2018-08-09 2019-01-15 上海交通大学 一种微波辅助液相剥离层状材料制备二维纳米片的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043061A (ko) * 2016-10-19 2018-04-27 한국에너지기술연구원 자기조립형 3차원 혼성 구조체, 이의 제조방법 및 이를 이용한 광촉매
CN108114612A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 层状mof纳米片复合膜
CN108976433A (zh) * 2018-07-13 2018-12-11 江南大学 一种液相剥离法制备金属有机框架纳米片的方法
CN109205578A (zh) * 2018-08-09 2019-01-15 上海交通大学 一种微波辅助液相剥离层状材料制备二维纳米片的方法
CN109179489A (zh) * 2018-10-26 2019-01-11 浙江大学 一种二维超薄硫化亚锡纳米片的制备方法及产品和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918123A (zh) * 2019-11-27 2020-03-27 天津农学院 一种带有自身终止作用的过氧化物酶及其制备方法和应用
CN111487242A (zh) * 2020-04-27 2020-08-04 天津工业大学 一种基于铁卟啉二维MOFs类酶催化的过氧化氢检测方法
CN111921560A (zh) * 2020-08-18 2020-11-13 浙江大学 一种晶格畸变的超薄金属有机框架纳米片催化剂、其制备方法和应用
CN112816465A (zh) * 2021-01-06 2021-05-18 武汉轻工大学 一种快速测定食品中苯甲酸钠含量的方法
CN116063690A (zh) * 2022-12-29 2023-05-05 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA
CN116063690B (zh) * 2022-12-29 2024-04-30 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA

Also Published As

Publication number Publication date
WO2021000422A1 (zh) 2021-01-07

Similar Documents

Publication Publication Date Title
CN110387049A (zh) 一种二维金属有机框架纳米片的制备方法和应用
Mao et al. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance
Manavalan et al. Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum
Guo et al. Polyaniline/Pt hybrid nanofibers: high‐efficiency nanoelectrocatalysts for electrochemical devices
Li et al. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing
Li et al. Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing
Israr et al. Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor
Rebekah et al. MnCo2O4-rGO hybrid magnetic nanocomposite modified glassy carbon electrode for sensitive detection of L-tryptophan
Zhang et al. Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing
Ling et al. Directional charge separation on 2D/2D BiVO4/MXene for the enhanced photoelectrochemical detection of oxytetracycline antibiotic in water
Li et al. CuS/Prussian blue core–shell nanohybrid as an electrochemical sensor for ascorbic acid detection
Vinodha et al. Graphene oxide based highly sensitive electrochemical sensor for detection of environmental pollutants and biomolecules
Zhuang et al. Ultra-low loading of Pd5 nanoclusters on carbon nanotubes as bifunctional electrocatalysts for the oxygen reduction reaction and the ethanol oxidation reaction
CN106908498A (zh) 一种Co4S3/氮掺杂石墨烯复合材料的制备方法及其应用
CN107941889A (zh) 一种二氧化锡‑三维石墨烯纳米复合材料固定蛋白质修饰电极的制备及电化学传感应用研究
Liu et al. A ternary composite based on graphene, hemin, and gold nanorods with high catalytic activity for the detection of cell‐surface glycan expression
Zhao et al. Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection
Wei et al. Mesoporous ZnS–NiS nanocomposites for nonenzymatic electrochemical glucose sensors
Wu et al. Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/N‐Doped Graphene Hybrids
Ma et al. Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets
Guo et al. A photoelectrochemical immunosensor based on magnetic all-solid-state Z-scheme heterojunction for SARS-CoV-2 nucleocapsid protein detection
Li et al. 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection
CN103399053A (zh) 一种基于NiFe2O4磁性纳米粒子修饰碳纳米管的用于甲磺胺心定检测的电化学传感器制备方法
Jiang et al. Sensitive detection of prostate specific antigen based on copper ions doped ag-au nanospheres labeled immunosensor
Ni et al. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Magnetic Core‐Shell Fe3O4@ C/Au Nanoparticle Nanocomposite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191029

RJ01 Rejection of invention patent application after publication