CN109224782A - 一种功能化纳米填料复合膜及制备方法和应用 - Google Patents

一种功能化纳米填料复合膜及制备方法和应用 Download PDF

Info

Publication number
CN109224782A
CN109224782A CN201811150979.5A CN201811150979A CN109224782A CN 109224782 A CN109224782 A CN 109224782A CN 201811150979 A CN201811150979 A CN 201811150979A CN 109224782 A CN109224782 A CN 109224782A
Authority
CN
China
Prior art keywords
composite membrane
preparation
filler
functionalized nano
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811150979.5A
Other languages
English (en)
Other versions
CN109224782B (zh
Inventor
任吉中
伍勇东
赵丹
邱永涛
邓麦村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811150979.5A priority Critical patent/CN109224782B/zh
Publication of CN109224782A publication Critical patent/CN109224782A/zh
Application granted granted Critical
Publication of CN109224782B publication Critical patent/CN109224782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种功能化纳米填料复合膜及其制备方法和应用,功能化的纳米填料可以有效促进纳米填料在聚合物溶液中的分散性,抑制成膜过程中聚合物链的堆积,提高材料的自由体积,同时功能基团有助于提高极性气体的溶解度,从而增加聚合物基质膜材料对极性气体的分离性能。此外,纳米尺度的填料溶液有利于制备无缺陷的超薄选择层,增加复合膜的气体分离效率。

Description

一种功能化纳米填料复合膜及制备方法和应用
技术领域
本发明涉及气体分离膜技术,具体地说是一种功能化纳米填料复合膜及其制备方法和应用。
背景技术
二氧化碳的捕获与封存(CCS)是目前最为适用于减少CO2排放的方法,其中CO2的捕获是关键。CO2的分离方法包括吸收、吸附、低温精馏、膜分离法等。膜分离法由于具有能耗低、对环境影响小、占地面积小、操作方便等优点,因而受到广泛的关注。
实现CO2工业分离需要制备具有高渗透通量和高选择性的膜,即制备具有超薄高选择性的复合膜。其中,膜材料的选择尤为关键。
醚氧基(EO)是目前一类对CO2具有高亲和性的功能基团,有助于提高聚合物膜对CO2的分离性能。由于纯PEO具有高结晶度,因而含有醚氧键的嵌段共聚物是一类用于降低聚合物膜材料结晶度、提升PEO膜材料气体分离性能的方法。目前,含有EO的嵌段共聚物包括聚醚-聚酰胺嵌段共聚物(Pebax)、聚醚-聚对苯二甲酸丁二醇酯嵌段共聚物(Polyactive)、聚醚-聚氨酯嵌段共聚物等热塑性弹性体。其中,聚醚-聚酰胺嵌段共聚物是一类具有较高CO2气体分离性能的膜材料。
聚合物与纳米无机颗粒混合是一种有效改善聚合物链排列方式的方法,常用的纳米颗粒包括SiO2、TiO2、CNT、分子筛、石墨烯、C60等。无机颗粒的加入可以抑制聚合物链的链堆积,降低膜材料的结晶度,从而提高聚合物膜的气体分离性能。无机颗粒与聚合物之间的界面性质对膜材料的性能也会产生很大的影响。当无机颗粒与聚合物之间不相容时,无机颗粒与聚合物之间会产生空隙,空隙过大时,膜材料的气体选择性会大大下降,从而使气体分离能力降低。制备具有较好相容性混合基质超薄无缺陷选择层,对于发展新型的气体分离复合膜尤为关键。
因此,本发明通过引入与聚合物溶液具有良好相容性的功能化纳米填料,制备具有高性能的超薄纳米填料复合膜。
发明内容
本发明的目的在于提供一种功能化纳米填料复合膜,通过加入具有良好溶解分散性的功能化纳米填料,调节聚合物膜材料的结构,降低选择层的厚度,提升复合膜的气体分离性能。
一种功能化纳米填料复合膜,复合膜以多孔膜材料为底膜,以聚合物基质-填料混合基质材料为选择层;所述底膜包含多孔层和支撑层;所述选择层厚度在5nm-1um;聚合物基质包括聚氨酯弹性体、聚醚聚碳酸酯嵌段共聚物、聚醚聚酰胺嵌段共聚物、聚醚聚酰亚胺嵌段共聚物、聚醚聚对苯二甲酸丁二醇酯嵌段共聚物、聚醚-聚丙烯-聚二甲基硅氧烷嵌段共聚物中的至少一种;所述填料包括氨基改性的富勒烯、羧基改性的富勒烯、羟基改性的富勒烯(富勒醇)中的至少一种;功能化的纳米填料在溶剂中具有良好的溶解性;相比于传统的纳米填料,功能化的纳米填料能够溶解在溶液中,有利于其分子尺度的分布,从而有利于均匀铸膜液的制备;按质量百分比计算,所述填料在选择层中的含量为0.01wt%-10wt%;多孔层的材料包括聚砜、聚醚砜、聚醚酰亚胺、聚酰胺、聚酰亚胺、聚丙烯腈、聚偏氟乙烯、聚四氟乙烯、聚碳酸酯、聚酰胺酰亚胺中的至少一种;所述支撑层的材料包括无纺布、亚麻布、尼龙布中的至少一种。
所述纳米功能化纳米填料复合膜的制备方法采用璇涂法、浸渍涂覆法、卷对卷法或刮涂法制备。
作为优选的技术方案,功能化纳米填料复合膜的制备方法:采用浸渍涂覆法制备复合膜,包括以下步骤:
步骤1:铸膜液的配置:首先将聚合物溶解于溶剂中,制备质量浓度为0.1-20wt%的聚合物溶液;再向聚合物溶液中加入填料,制备均匀的铸膜液;
步骤2:铸膜液脱泡,脱泡方式包括静置、超声、真空脱泡中的至少一种;
步骤3:对底膜的支撑层侧进行隔离保护处理,处理方式包括粘贴密封法、热封密封,然后将处理后的底膜浸渍在浓度为0.1-20wt%的铸膜液中,提拉速度为0.1-30cm/s;
步骤4:通过蒸发去除溶剂,形成聚合物基质-功能化纳米填料复合膜。
作为优选的技术方案,铸膜液所选用的溶剂包括二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、1-丁醇、1-丙醇中的至少一种、或者为乙醇和水混合溶剂。
功能化米填料复合膜的应用,所述的混合基质复合膜用于气体分离,所述气体包括CO2、SO2、H2S中的至少一种。
所述的复合膜优选用于极性气体与惰性气体的分离。
本发明的优点在于:功能化纳米填料表面的功能团可以增加纳米填料与聚合物之间的亲和性;功能化纳米填料在溶液有中良好的溶解性,有效促进纳米填料在聚合物溶液中的分散性,可以无需超声分散;而SiO2、TiO2、CNT、分子筛、石墨烯、C60等填料难于在溶液中分散,往往需要借助超声分散,且分散过程中易于出现明显的沉降现象。此外,功能化纳米填料能够抑制成膜过程中聚合物链的堆积,同时功能基团有助于提高极性气体的溶解度,从而增加聚合物基质膜材料的气体分离性能。功能化纳米填料溶液中纳米填料处于分子溶解状态,有利于制备无缺陷的超薄选择层,提高纳米填料复合膜的气体分离效率。本发明采用的浸涂成膜工艺简单,运行成本低,易于实现工业化应用。
附图说明
图1为复合膜的结构示意图
图2为对比例1所制备的Pebax/PAN复合膜断面扫描电镜图
图3为实施例2所制备的Pebax-富勒醇均质膜的断面扫描电镜图
图4为实施例3所制备的Pebax-富勒醇/PAN复合膜断面扫描电镜图
具体实施方式
下面将通过对比例和实施例对本发明作更详细的说明,但是这些实施例并不是对本发明范围的限制,本发明的范围应当由权利要求书进行限定。
对比例1
称取5.0g聚醚-聚酰亚胺嵌段共聚物Pebax加入到245.0g乙醇/水混合溶剂中,Pebax溶液浓度为2wt%,形成均匀透明的Pebax溶液后,静置脱泡。
底膜以无纺布为支撑层,聚丙烯腈(PAN)为多孔层;将底膜无纺布侧密封后,浸入Pebax溶液中涂层,以8cm/s的速度提取出涂层后的膜;然后放入40℃烘箱中,进一步脱除溶剂,制得Pebax/PAN复合膜,并测试其渗透性能(35℃),测试结果见表1。
图2为Pebax/PAN复合膜的断面扫描电镜图:复合膜具有明显的两层结构,致密的选择层和多孔层,选择层紧贴在多孔底膜上;选择层厚度在200-300nm。
表1
实施例1
称取5.0g聚醚-聚酰亚胺嵌段共聚物Pebax加入到245.0g乙醇/水混合溶剂中,Pebax溶液浓度为2wt%,形成均匀透明的Pebax溶液后,加入0.0251g富勒醇,形成均匀的高分子-富勒醇溶液,超声后静置脱泡。
底膜以无纺布为支撑层,聚丙烯腈(PAN)为多孔层;将底膜无纺布侧密封后,浸入Pebax/富勒醇溶液中涂层,以10cm/s的速度提取出涂层后的膜;然后放入40℃烘箱中,进一步脱除溶剂,制得Pebax-富勒醇/PAN复合膜,复合膜的结构示意图如图1所示。
测试Pebax-富勒醇/PAN复合膜的气体渗透性能(35℃),测试结果见表2。
表2
实施例2
称取5.0g聚醚-聚酰亚胺嵌段共聚物Pebax加入到245.0g乙醇/水混合溶剂中,Pebax溶液浓度为2wt%,形成均匀透明的Pebax溶液后,加入0.0505g富勒醇,形成均匀的高分子-富勒醇溶液,超声后静置脱泡。
首先制备Pebax-富勒醇均质膜,鉴定Pebax与富勒醇之间的相容性:图3可以看出,Pebax与富勒醇之间没有空隙,说明Pebax与富勒醇的具有良好的相容性。
表3
其次,制备Pebax-富勒醇/PAN复合膜:底膜以无纺布为支撑层,聚丙烯腈(PAN)为多孔层;将底膜无纺布侧密封后,浸入Pebax/富勒醇溶液中涂层,以0.6cm/s的速度提取出涂层后的膜;然后放入40℃烘箱中,进一步脱除溶剂,制得Pebax-富勒醇/PAN复合膜,并测试其渗透性能(35℃),测试结果见表3。
实施例3
称取5.0g聚醚-聚酰亚胺嵌段共聚物Pebax加入到245.0g乙醇/水混合溶剂中,Pebax溶液浓度为2wt%,形成均匀透明的Pebax溶液后,加入0.102g富勒醇,形成均匀的高分子-富勒醇溶液,超声后静置脱泡。
底膜以无纺布为支撑层,聚丙烯腈(PAN)为多孔层;将底膜无纺布侧密封后,浸入Pebax/富勒醇溶液中涂层,以5cm/s的速度提取出涂层后的膜;然后放入40℃烘箱中,进一步脱除溶剂,制得Pebax-富勒醇/PAN复合膜,并测试其渗透性能(35℃),测试结果见表4。
表4
Pebax-富勒醇(2wt%)/PAN复合膜的断面扫描电镜图如图4所示:复合膜具有明显的两层结构,致密的选择层和多孔层,选择层紧贴在多孔底膜上;选择层厚度在200-300nm。
实施例与对比例数据分析如下:
表5为对比例1与实施例1、2、3的气体分离性能的比较,通过表5可以看出Pebax-富勒醇/PAN复合膜的渗透通量大于Pebax/PAN复合膜的渗透通量,表明该纳米填料混合基质复合膜在分离CO2混合体系时,提高了气体渗透性能。Pebax/PAN复合膜与Pebax-富勒醇/PAN复合膜的气体的选择性相近,说明功能化纳米填料富勒醇与Pebax之间具有良好的相容性,没有明显的界面空隙。
表5
表6为实施例1、2、3的气体分离性能比较,通过表6对比实施例1、2、3可以看出纳米填料富勒醇能够提升混合基质复合膜材料的气体分离性能,随着富勒醇含量的增加,气体渗透通量增加,选择性变化不大。
表6
因此,通过功能化纳米填料的加入,复合膜的气体分离性能得到显著的增加,有利于提高复合膜的气体分离效率。

Claims (6)

1.一种功能化纳米填料复合膜,其特征在于:复合膜以多孔膜材料为底膜,以聚合物基质-填料混合基质材料为选择层;所述底膜包含多孔层和支撑层;所述选择层厚度在5nm-1um;
所述聚合物基质包括聚氨酯弹性体、聚醚聚碳酸酯嵌段共聚物、聚醚聚酰胺嵌段共聚物、聚醚聚酰亚胺嵌段共聚物、聚醚聚对苯二甲酸丁二醇酯嵌段共聚物、聚醚-聚丙烯-聚二甲基硅氧烷嵌段共聚物中的至少一种;
所述填料包括氨基改性的富勒烯、羧基改性的富勒烯、羟基改性的富勒烯(富勒醇)中的至少一种;按质量百分比计算,所述填料在选择层中的含量为0.01wt%-10wt%;
所述多孔层的材料包括聚砜、聚醚砜、聚醚酰亚胺、聚酰胺、聚酰亚胺、聚丙烯腈、聚偏氟乙烯、聚四氟乙烯、聚碳酸酯、聚酰胺酰亚胺中的至少一种;
所述支撑层的材料包括无纺布、亚麻布、尼龙布中的至少一种。
2.权利要求1所述功能化纳米填料复合膜的制备方法,其特征在于采用璇涂法、浸渍涂覆法、卷对卷法或刮涂法制备。
3.根据权利要求2所述的制备方法,其特征在于,采用浸渍涂覆法制备复合膜,包括以下步骤:
步骤1:铸膜液的配置:首先将聚合物溶解于溶剂中,制备质量浓度为0.1-20wt%的聚合物溶液;再向聚合物溶液中加入填料,制备均匀的铸膜液;
步骤2:铸膜液脱泡,脱泡方式包括静置、超声、真空脱泡中的至少一种;
步骤3:对底膜的支撑层侧进行隔离保护处理,处理方式包括粘贴密封法、热封密封,然后将处理后的底膜浸渍在浓度为0.1-20wt%的铸膜液中,提拉速度为0.1-30cm/s;
步骤4:通过蒸发去除溶剂,形成聚合物基质-功能化纳米填料复合膜。
4.根据权利要求3所述的功能化纳米填料复合膜的制备方法,其特征在于,铸膜液所选用的溶剂包括二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、1-丁醇、1-丙醇中的至少一种、或者为乙醇和水混合溶剂。
5.权利要求1所述的功能化纳米填料复合膜的应用,其特征在于,所述的复合膜用于气体分离,所述气体包括CO2、SO2、H2S中的至少一种。
6.根据权利要求5所述应用,其特征在于,所述的复合膜用于极性气体与惰性气体的分离。
CN201811150979.5A 2018-09-29 2018-09-29 一种功能化纳米填料复合膜及制备方法和应用 Active CN109224782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811150979.5A CN109224782B (zh) 2018-09-29 2018-09-29 一种功能化纳米填料复合膜及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811150979.5A CN109224782B (zh) 2018-09-29 2018-09-29 一种功能化纳米填料复合膜及制备方法和应用

Publications (2)

Publication Number Publication Date
CN109224782A true CN109224782A (zh) 2019-01-18
CN109224782B CN109224782B (zh) 2021-02-12

Family

ID=65055245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811150979.5A Active CN109224782B (zh) 2018-09-29 2018-09-29 一种功能化纳米填料复合膜及制备方法和应用

Country Status (1)

Country Link
CN (1) CN109224782B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227361A (zh) * 2019-05-31 2019-09-13 太原理工大学 一种偏高岭土和碳纳米管协同改性的混合基质膜的制备方法和应用
CN110508165A (zh) * 2019-08-09 2019-11-29 大连理工大学 天然气提浓氦气多孔碳纳米球混合基质复合膜及其制备方法
CN110655748A (zh) * 2019-11-01 2020-01-07 四川龙华光电薄膜股份有限公司 一种富勒醇改性pmma/pc复合材料的制备方法
CN111111479A (zh) * 2020-01-02 2020-05-08 中国科学院大连化学物理研究所 一种用于气体分离的混合基质膜及其制备方法与应用
CN113117525A (zh) * 2019-12-30 2021-07-16 南京七弦桐环保科技有限公司 一种氨基功能化单壁碳纳米管改性聚酰胺纳滤膜及其制备方法与应用
CN115151335A (zh) * 2020-03-25 2022-10-04 日东电工株式会社 分离膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2414953C1 (ru) * 2009-07-14 2011-03-27 Учреждение Российской академии наук Институт высокомолекулярных соединений РАН Способ получения композитных мембран с фуллеренсодержащим полимерным селективным слоем
CN104722215A (zh) * 2014-10-08 2015-06-24 南京工业大学 基于石墨烯材料的二氧化碳气体分离膜的制备方法
US9126137B1 (en) * 2012-07-18 2015-09-08 Battelle Memorial Institute Polymer nanocomposites for gas separation
CN104936684A (zh) * 2012-11-26 2015-09-23 联邦科学与工业研究组织 混合基质聚合物组合物
CN105080366A (zh) * 2014-04-22 2015-11-25 中国石油化工股份有限公司 一种反渗透膜及其制备方法
CN105582823A (zh) * 2015-12-23 2016-05-18 南京工业大学 ZIF-8/聚醚-b-聚酰胺混合基质膜及其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2414953C1 (ru) * 2009-07-14 2011-03-27 Учреждение Российской академии наук Институт высокомолекулярных соединений РАН Способ получения композитных мембран с фуллеренсодержащим полимерным селективным слоем
US9126137B1 (en) * 2012-07-18 2015-09-08 Battelle Memorial Institute Polymer nanocomposites for gas separation
CN104936684A (zh) * 2012-11-26 2015-09-23 联邦科学与工业研究组织 混合基质聚合物组合物
CN105080366A (zh) * 2014-04-22 2015-11-25 中国石油化工股份有限公司 一种反渗透膜及其制备方法
CN104722215A (zh) * 2014-10-08 2015-06-24 南京工业大学 基于石墨烯材料的二氧化碳气体分离膜的制备方法
CN105582823A (zh) * 2015-12-23 2016-05-18 南京工业大学 ZIF-8/聚醚-b-聚酰胺混合基质膜及其制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNG,TS ET AL.: "《Characterization of permeability and sorption in Matrimid/C-60 mixed matrix membranes》", 《JOURNAL OF MEMBRANE SCIENCE》 *
JINGGUK KIM ET AL.: "CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture", 《JOURNAL OF MEMBRANE SCIENCE》 *
刘琨等: "SiO2填充PEABX/PAN复合膜渗透汽化分离水中多元有机物", 《膜科学与技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227361A (zh) * 2019-05-31 2019-09-13 太原理工大学 一种偏高岭土和碳纳米管协同改性的混合基质膜的制备方法和应用
CN110227361B (zh) * 2019-05-31 2021-09-03 太原理工大学 一种偏高岭土和碳纳米管协同改性的混合基质膜的制备方法和应用
CN110508165A (zh) * 2019-08-09 2019-11-29 大连理工大学 天然气提浓氦气多孔碳纳米球混合基质复合膜及其制备方法
CN110655748A (zh) * 2019-11-01 2020-01-07 四川龙华光电薄膜股份有限公司 一种富勒醇改性pmma/pc复合材料的制备方法
CN113117525A (zh) * 2019-12-30 2021-07-16 南京七弦桐环保科技有限公司 一种氨基功能化单壁碳纳米管改性聚酰胺纳滤膜及其制备方法与应用
CN111111479A (zh) * 2020-01-02 2020-05-08 中国科学院大连化学物理研究所 一种用于气体分离的混合基质膜及其制备方法与应用
CN111111479B (zh) * 2020-01-02 2021-05-18 中国科学院大连化学物理研究所 一种用于气体分离的混合基质膜及其制备方法与应用
CN115151335A (zh) * 2020-03-25 2022-10-04 日东电工株式会社 分离膜

Also Published As

Publication number Publication date
CN109224782B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN109224782A (zh) 一种功能化纳米填料复合膜及制备方法和应用
Wang et al. Relationship between polymer–filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes
US11364471B2 (en) Composite membranes for separation of gases
KR101421219B1 (ko) 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법
US7658784B2 (en) Composite material, in particular composite membrane, and process for the production of the same
CN108114612A (zh) 层状mof纳米片复合膜
Bazhenov et al. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation
CN112007521B (zh) 一种高通量复合纳滤膜的制备方法
CN103846013A (zh) 一种多孔材料-聚合物气体分离复合膜
CN112969520A (zh) 用于气体分离的膜
CN106582314B (zh) 一种用于膜蒸馏的小孔径疏水复合膜制备方法
JP6480111B2 (ja) カーボンナノチューブ複合膜
CN101269303A (zh) 超薄活性层的中空纤维复合膜及制备方法和应用
CN112717711A (zh) 一种聚酰亚胺基混合基质中空纤维膜的制备方法
CN109925896A (zh) 一种杂化复合膜、制备方法及其应用
Wang et al. Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles
Zhou et al. Preparation of a novel sulfonated polyphenlene sulfone with flexible side chain for ultrafiltration membrane application
Wang et al. Fabrication of green poly (L‐lactic acid) hybrid membrane through incorporation of functionalized natural halloysite nanotubes
CN113663540B (zh) 一种二氧化碳分离膜及其应用
CN110743395A (zh) 一种高效防污、亲水的聚醚砜超滤膜及其制备方法
Mansoori et al. CO 2 and H 2 selectivity properties of PDMS/PSf membrane prepared at different conditions
KR20150105022A (ko) 수소분리용 그래핀 옥사이드 나노복합막, 환원된 그래핀 옥사이드 나노복합막 및 그 제조방법
JP2019018167A (ja) ガス分離膜
CN114177788A (zh) Zif-8管修饰的超薄纳米复合膜、其制备方法及应用
RU198975U1 (ru) Композиционная мембрана для осушения газовых смесей с селективным слоем на основе оксида графена, содержащим наноленты оксида графена между нанолистами оксида графена

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant