CN110743395A - 一种高效防污、亲水的聚醚砜超滤膜及其制备方法 - Google Patents

一种高效防污、亲水的聚醚砜超滤膜及其制备方法 Download PDF

Info

Publication number
CN110743395A
CN110743395A CN201911071284.2A CN201911071284A CN110743395A CN 110743395 A CN110743395 A CN 110743395A CN 201911071284 A CN201911071284 A CN 201911071284A CN 110743395 A CN110743395 A CN 110743395A
Authority
CN
China
Prior art keywords
ionic liquid
pes
membrane
porous membrane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911071284.2A
Other languages
English (en)
Inventor
李勇进
倪春军
郑鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201911071284.2A priority Critical patent/CN110743395A/zh
Publication of CN110743395A publication Critical patent/CN110743395A/zh
Priority to PCT/CN2020/123403 priority patent/WO2021088665A1/zh
Priority to US17/537,515 priority patent/US20220080367A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • B01D2323/385Graft polymerization involving radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开一种高效防污、亲水的聚醚砜超滤膜及其制备方法。本发明通过Co‑γ辐射接枝的化学改性方法,在聚醚砜表面均匀分布化学键连接的含不饱和键的离子液体,然后通过浸没沉淀相转化方法制备得到不对称多孔膜;离子液体与聚醚砜的质量比为2~11:100。本发明为不对称多孔膜,表现出优异的防污性能,较好的纯水通量和BSA截留率。

Description

一种高效防污、亲水的聚醚砜超滤膜及其制备方法
技术领域
本发明涉及一种高效防污、亲水的超滤膜及其制备方法,尤其涉及一种在材料表面均匀分布通过化学键连接离子液体的聚合物复合材料制备方法。
背景技术
目前,我国的膜产业和技术的总体研究及应用水平、膜产品性能等与国外先进技术相比仍有较大差距。由于膜运行效果、寿命长短与本地水质有很大的关系,而我国膜的抗污染性能较差。因此,需加强我国膜科学与技术研究,开发新型膜材料,或寻找高性能膜材料改性方案,从而获得具有更优异的性能,包括高亲水性能、耐受污染程度高、能有效抗菌等性能的分离膜。聚醚砜(PES)作为制备分离膜的材料已经被应用于超滤膜制备中。制备的PES超滤膜也显示出良好的热稳定性、强机械性和抗氧化性,但是它仍存在不足:疏水性较强、分离效率不高等。大量的研究证实膜的疏水性直接影响膜的污染趋势,膜疏水性越强,越容易受污染。因此,本发明提出一种高效防污、亲水的聚醚砜超滤膜及其制备方法。
首先,提高PES多孔膜亲水性的主要方法有两种。一种是对膜表面进行物理或化学修饰:例如通过紫外/臭氧对聚醚砜膜进行表面改性。但是这样的方法对膜进行表面修饰,可能会改变膜的孔径和分布,造成其他性能的缺失。另一种方法是本体改性:将PES与亲水聚合物或无机粒子共混是实现物理本体改性是常用的方法。这种方式主要是将亲水聚合物充当成孔剂,如聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)。聚醚砜(PES)与PVP或PEG共混的多孔膜在过滤过程中,由于PVP或PEG的洗脱作用,其亲水性只是暂时增强,并不能起到永久亲水改性的效果。还有一种本体改性常用的方法就是化学改性PES本体。化学体改性是实现PES膜材料分子设计的可行途径,但是苛刻的反应条件和腐蚀性试剂对聚醚砜的化学改性也有很大的限制。因此我们的目标是提供了一种永久、高效的改性方法。
本发明主要涉及一种通过辐射接枝离子液体的改性方法。选用辐照接枝的原因:1.辐照接枝技术已经较为成熟,被应用在很多方面。2.辐照接枝能够对PES材料起到永久改性的目的。3.辐照接枝不需要化学试剂,操作简单,绿色环保。4.离子液体(Ionic Liquid,IL)是指在室温下呈液态并由离子构成的物质,并且离子液体本身是一种较为亲水的物质,将离子液体接枝到PES分子链上,能够使PES的亲水性得到极大的改善,从而提高的PES的防污性能。同时离子液体的抗菌性能可以赋予PES多孔膜较好的抗菌性能。
本发明主要通过两步法,首先将离子液体通过化学键固定到基体聚合物分子链上,然后通过浸没沉淀相转化得到一系列具有优异防污性能的多孔膜。详细地,在这类聚合物复合材料的表面(内表面和外表面)均匀分布通过化学键连接的离子液体,使多孔膜的膜结构发生了较大的变化,指状孔更加贯通,分布密度变大,同时上下表面的膜孔变大,因此能够起到很好的亲水改性和提高通量的效果。
发明内容
本发明的一个目的是针对现有技术的不足,提供一种高效防污、亲水的超滤膜及其制备方法,其特征在于选用“绿色溶剂”-离子液体改性PES膜,在不改变PES基体性能与结构的前提下,大大改善了PES膜的疏水性较强,易受污染等问题,最终使材料具有较好的亲水、防污性能,水通量也得到了极大的提升,同时保留了对BSA较好的截留率。
本发明通过Co-γ辐射接枝的化学改性方法,在聚醚砜材料表面均匀分布化学键连接的离子液体,然后通过浸没沉淀相转化方法制备得到不对称多孔膜;所述的离子液体与聚醚砜的质量比为2~11:100;
所述的离子液体(IL)为含不饱和键的离子液体;优选地,所述含不饱和键的离子液体为咪唑类离子液体;其中阳离子结构式如下:
Figure BDA0002261030760000021
其中R1为C1~C24的烷基或含C2~C24烯基;R2为含C2~C24烯基;所述的离子液体中的阴离子为PF6 -、BF4 -、Br-、Cl-、I-、NO3 -、CF3CO2 -、CH3COO-或(CF3SO3)2N-
本发明的另一个目的是提供上述的高效防污、亲水的聚合物多孔膜的制备方法。
该方法包括以下步骤:
步骤(1)将聚合物和离子液体按一定配比加入反应釜中进行溶液共混。溶剂选用N,N-二甲基甲酰胺。温度为60℃。
步骤(2)将经溶液共混后的上述溶液进行铺膜,干燥除去溶剂,得到聚合物和离子液体的共混膜;
步骤(3)将所得共混膜置于聚乙烯的塑料袋中进行辐射照射;
所述的辐照为Co-γ辐照,实验条件为常温,空气或氮气环境;
所述的辐照吸收剂量为30kGy;
步骤(4)将辐照后的聚合物配制成溶液,通过浸没沉淀相转化方法进行铸膜,得到多功能PES多孔膜,最后进行性能表征。
上述步骤(4)中,主要是通过辐照接枝离子液体后的聚合物配置成一定浓度的铸膜液,用100μm的刮刀将铸膜液涂覆在玻璃板上,然后将玻璃板浸入凝固浴中,通过溶剂交换的作用,最后制得多功能的PES多孔膜。
本发明的有益效果是:
本发明的PES改性膜表现出优异的防污性能,较好的纯水通量和BSA截留率。
本发明采用特定辐射吸收剂量的Co-γ辐照会使得离子液体影响PES的膜结构(孔径及分布),在提高通量的前提下同时保持其对大分子的截留率;
本发明得到的多孔膜为不对称膜,不对称膜由致密的皮层和支撑层,不仅保证了多孔膜较大的通量,而且保证了一定的选择性,能够起到截留大分子的作用。
附图说明
图1(1)-(6)分别为对比例1(PES多孔膜)、实施例1(2wt%IL-PES改性多孔膜)、实施例2(4wt%IL-PES改性多孔膜)、实施例3(6wt%IL-PES改性多孔膜)、实施例4(10wt%IL-PES改性多孔膜)和对比例2(10wt%IL-PES-电子束多孔膜)的SEM图,其中a,b,c分别代表每个样品的截面,上表面及下表面的微观形貌;
图2对比例1(PES多孔膜)、实施例1(2wt%IL-PES改性多孔膜)、实施例2(4wt%IL-PES改性多孔膜)、实施例3(6wt%IL-PES改性多孔膜)、实施例4(10wt%IL-PES改性多孔膜)和对比例2(10wt%IL-PES-电子束多孔膜)的接触角图;
图3对比例1(PES多孔膜)、实施例1(2wt%IL-PES改性多孔膜)、实施例2(4wt%IL-PES改性多孔膜)、实施例3(6wt%IL-PES改性多孔膜)、实施例4(10wt%IL-PES改性多孔膜)和对比例2(10wt%IL-PES-电子束多孔膜)的纯水通量图;
图4对比例1(PES多孔膜)、实施例1(2wt%IL-PES改性多孔膜)、实施例2(4wt%IL-PES改性多孔膜)、实施例3(6wt%IL-PES改性多孔膜)、实施例4(10wt%IL-PES改性多孔膜)和对比例2(10wt%IL-PES-电子束多孔膜)的通量回复及损失图。
具体实施方式
下面结合附图和具体实施方式详细阐述本发明,但并不将本发明限制在所述的具体实施方式的范围中。
在本实施例及其对比例中均使用聚合物PES为基体,该PES为巴斯夫生产,型号为ULTRASON E6020P。
在本实施例中所使用的含不饱和键的咪唑类离子液体为:1-乙烯基-3-丁基咪唑四氟硼酸盐。
实施例1
步骤(1)首先,将9.8g PES和0.2g 1-乙烯基-3-丁基咪唑四氟硼酸盐加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h,Co-γ为辐射源,于30kGy的辐照剂量下进行常温辐射。
步骤(2)将上述辐照得到的接枝共混物经过甲醇索氏抽提24h,真空干燥后配制成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为2wt%-PES改性多孔膜。
实施例2
步骤(1)首先,将9.6g PES和0.4g 1-乙烯基-3-丁基咪唑四氟硼酸盐加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h,Co-γ为辐射源,于30kGy的辐照剂量下进行常温辐射。
步骤(2)将上述辐照得到的接枝共混物经过甲醇索氏抽提24h,真空干燥后配置成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为4wt%-PES改性多孔膜。
实施例3
步骤(1)首先,将9.4g PES和0.6g 1-乙烯基-3-丁基咪唑四氟硼酸盐加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h,Co-γ为辐射源,于30kGy的辐照剂量下进行常温辐射。
步骤(2)将上述辐照得到的接枝共混物经过甲醇索氏抽提24h,真空干燥后配制成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为6wt%-PES改性多孔膜。
实施例4
步骤(1)首先,将9.0g PES和1.0g 1-乙烯基-3-丁基咪唑四氟硼酸盐加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h,Co-γ为辐射源,于30kGy的辐照剂量下进行常温辐射。
步骤(2)将上述辐照得到的接枝共混物经过甲醇索氏抽提24h,真空干燥后配制成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为10wt%-PES改性多孔膜。
对比例1
步骤(1)首先,将10.0g PES加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h。
步骤(2)配制成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为纯的PES多孔膜。
对比例2
步骤(1)首先,将9.0g PES和1.0g 1-乙烯基-3-丁基咪唑四氟硼酸盐加入到反应釜中,温度为60℃,溶液共混6h;然后,将溶液冷却至室温,倒入PTFE模具中进行铺膜,对所得膜进行挥发溶剂,真空干燥24h,电子束为辐射源,于30kGy的辐照剂量下进行常温辐射。
步骤(2)将上述辐照得到的接枝共混物经过甲醇索氏抽提24h,真空干燥后配制成浓度为20%的铸膜液,然后将铸膜液涂覆在玻璃板上,浸入凝固浴中,分相成膜。记为10wt%-PES-电子束改性多孔膜。
将实施例1、实施例2、实施例3、实施例4、对比例1和对比例2所得样品进行膜结构的表征和性能测试。
如图1所示,将实施例1(2wt%IL-PES改性膜)、实施例2(4wt%IL-PES改性膜)、实施例3(6wt%IL-PES改性膜)、实施例4(10wt%IL-PES改性膜)与对比例1(纯PES膜)和对比例2(10wt%-PES-电子束改性多孔膜)进行SEM分析,我们可以看出,离子液体的加入对PES的膜结构产生了较大的影响。指状孔的数目明显变多,同时分布密度变大,上表面的膜孔增大,指状孔更加贯通,我们认为是离子液体的接枝导致PES的分子链亲水性有所改善,加快分子链向凝固浴的扩散速率,导致膜孔的增多和变大。这为接下来的通量提高做出了解释。然而,由于以电子束为辐射源的样品并不能够接枝上离子液体,因此并不能够体现出离子液体对PES的亲水改性效果,对孔的形貌并没有明显的影响。
同时如表1所示,离子液体的加入使PES对BSA大分子的截留有了明显的提高,这主要是由于离子液体亲水改性的结果,能够使多孔膜的表面形成一层水膜,这样可以截留住BSA大分子,同时膜表面致密的小孔也能对这些大分子的截留起到一定的作用。然而对比例2由于无法接枝离子液体,所以对BSA的截留性能并没有明显提高。
表1为实施例(不同离子液体含量的PES改性多孔膜)和对比例的BSA截留率的测定
Figure BDA0002261030760000061
如图2所示,为实施例1(2wt%IL-PES改性膜)、实施例2(4wt%IL-PES改性膜)、实施例3(6wt%IL-PES改性膜)、实施例4(10wt%IL-PES改性膜)、对比例1(纯PES膜)和对比例2(10wt%-PES-电子束改性多孔膜)的接触角图。由此我们可以得出,离子液体本身是亲水性较好,在接枝了离子液体之后的PES也体现出亲水性改善的现象,随着离子液体含量的增加,多孔膜的接触角越来越小,这也突出了本发明中一个重要特征,离子液体的加入对PES有着亲水改性的效果,并且随着亲水性的改善,离子液体接枝PES膜的抗污性能大幅度提高,主要是亲水性的改善导致在膜的表面形成一层水膜,提高膜的防污性能。
如图3所示,为实施例1(2wt%IL-PES改性膜)、实施例2(4wt%IL-PES改性膜)、实施例3(6wt%IL-PES改性膜)、实施例4(10wt%IL-PES改性膜)、对比例1(纯PES膜)和对比例2(10wt%-PES-电子束改性多孔膜)的纯水通量的测试,综合上述所提到的上下表面膜孔孔径增大,指状孔更加贯通,亲水性改善等现象,可以解释接枝离子液体的多孔膜具有更大的纯水通量,并且提高的幅度较大。
图4所示,为实施例1(2wt%IL-PES改性膜)、实施例2(4wt%IL-PES改性膜)、实施例3(6wt%IL-PES改性膜)、实施例4(10wt%IL-PES改性膜)、对比例1(纯PES膜)和对比例2(10wt%-PES-电子束改性多孔膜)的通量回复测试。Rt,Rr,Rir分别代表多孔膜的全部损失通量,可逆损失通量,不可逆损失通量。因此从数据上分析,接枝离子体液的PES多孔膜损失的通量较少,并且在BSA污染之后能够回复的通量较大,所以我们认为PES-g-IL多孔膜具备防污的性能,能够防止蛋白的污染,并且能够较大的回复通量性能,这也是我们这个发明的主要目的。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (6)

1.一种高效防污、亲水的聚醚砜超滤膜,其特征在于通过Co-γ辐射接枝的化学改性方法,在聚醚砜材料表面均匀分布化学键连接的离子液体,然后通过浸没沉淀相转化方法制备得到不对称多孔膜;所述的离子液体与聚醚砜的质量比为2~11:100;
所述的离子液体(IL)为含不饱和键的离子液体。
2.一种高效防污、亲水的聚醚砜超滤膜的制备方法,其特征在于包括以下步骤:
步骤(1)、将PES和离子液体按一定配比加入反应釜中进行溶液共混;其中离子液体与PES的质量比为2~11:100;
所述的离子液体为含不饱和键的离子液体;
步骤(2)、将经溶液共混后的上述溶液进行铺膜,干燥除去溶剂,得到聚合物和离子液体的共混膜;
步骤(3)、将所得共混膜置于聚乙烯的塑料袋中进行辐射照射;
所述的辐照为Co-γ射线辐照,实验条件为常温,空气或氮气环境;
步骤(4)、将辐照后的聚合物配制成溶液,通过浸没沉淀相转化方法进行铸膜,得到多功能PES多孔膜。
3.如权利要求1所述的一种高效防污、亲水的聚醚砜超滤膜或如权利要求2所述的制备方法得到的一种高效防污、亲水的聚醚砜超滤膜,其特征在于所述含不饱和键的离子液体为咪唑类离子液体;
其阳离子结构式如下:
其中R1为C1~C24的烷基或含C2~C24烯基;R2为含C2~C24烯基;
其阴离子为PF6 -、BF4 -、Br-、Cl-、I-、NO3 -、CF3CO2 -、CH3COO-或(CF3SO3)2N-
4.如权利要求1所述的一种高效防污、亲水的聚醚砜超滤膜或如权利要求2所述的制备方法得到的一种高效防污、亲水的聚醚砜超滤膜,其特征在于Co-γ辐照吸收剂量为30kGy。
5.如权利要求2所述的一种永久抗菌的聚醚砜膜材料的制备方法,其特征在于步骤(1)溶液共混过程中温度为60℃。
6.如权利要求2或5所述的一种永久抗菌的聚醚砜膜材料的制备方法,其特征在于步骤(1)溶液共混过程中溶剂选用N,N-二甲基甲酰胺。
CN201911071284.2A 2019-11-05 2019-11-05 一种高效防污、亲水的聚醚砜超滤膜及其制备方法 Pending CN110743395A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911071284.2A CN110743395A (zh) 2019-11-05 2019-11-05 一种高效防污、亲水的聚醚砜超滤膜及其制备方法
PCT/CN2020/123403 WO2021088665A1 (zh) 2019-11-05 2020-10-23 一种防污、亲水的聚醚砜超滤膜及其制备方法
US17/537,515 US20220080367A1 (en) 2019-11-05 2021-11-30 Efficient antifouling and hydrophilic polyethersulfone ultrafiltration membrane and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911071284.2A CN110743395A (zh) 2019-11-05 2019-11-05 一种高效防污、亲水的聚醚砜超滤膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110743395A true CN110743395A (zh) 2020-02-04

Family

ID=69282195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911071284.2A Pending CN110743395A (zh) 2019-11-05 2019-11-05 一种高效防污、亲水的聚醚砜超滤膜及其制备方法

Country Status (3)

Country Link
US (1) US20220080367A1 (zh)
CN (1) CN110743395A (zh)
WO (1) WO2021088665A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617641A (zh) * 2020-05-07 2020-09-04 天津工业大学 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
WO2021088665A1 (zh) * 2019-11-05 2021-05-14 杭州师范大学 一种防污、亲水的聚醚砜超滤膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008487A (ko) * 2009-07-20 2011-01-27 한남대학교 산학협력단 음이온 교환막 및 이의 제조방법
CN104073900A (zh) * 2014-06-25 2014-10-01 杭州师范大学 离子液体在聚酰胺复合纤维中的应用
CN104073899A (zh) * 2014-06-25 2014-10-01 杭州师范大学 离子液体在聚乳酸复合纤维中的应用
CN107903561A (zh) * 2017-07-24 2018-04-13 杭州师范大学 一种永久抗菌的聚合物复合材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722223A1 (en) * 2005-05-10 2006-11-15 Eidgenossisch Technische Hochschule Zürich Metal oxide membrane with a gas-selective compound
KR101806944B1 (ko) * 2009-04-22 2017-12-11 코오롱인더스트리 주식회사 중공사막의 제조방법
KR101885255B1 (ko) * 2012-03-30 2018-08-03 코오롱인더스트리 주식회사 다공성 막 및 그 제조방법
CN104624067B (zh) * 2014-12-25 2016-08-17 长春工业大学 咪唑功能化的聚醚砜阴离子交换膜及其制备方法
CN107044053A (zh) * 2016-02-05 2017-08-15 中国科学院上海应用物理研究所 一种抗菌纺织品及其制备方法
CN110026091B (zh) * 2019-03-15 2021-02-23 清华大学 一种离子液体改性的荷正电复合纳滤膜及其制备方法
CN110743395A (zh) * 2019-11-05 2020-02-04 杭州师范大学 一种高效防污、亲水的聚醚砜超滤膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008487A (ko) * 2009-07-20 2011-01-27 한남대학교 산학협력단 음이온 교환막 및 이의 제조방법
CN104073900A (zh) * 2014-06-25 2014-10-01 杭州师范大学 离子液体在聚酰胺复合纤维中的应用
CN104073899A (zh) * 2014-06-25 2014-10-01 杭州师范大学 离子液体在聚乳酸复合纤维中的应用
CN107903561A (zh) * 2017-07-24 2018-04-13 杭州师范大学 一种永久抗菌的聚合物复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN ZHENG ET AL.,: "Ionic liquid grafted polyamide 6 as porous membrane materials: Enhanced water flux and heavy metal adsorption", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088665A1 (zh) * 2019-11-05 2021-05-14 杭州师范大学 一种防污、亲水的聚醚砜超滤膜及其制备方法
CN111617641A (zh) * 2020-05-07 2020-09-04 天津工业大学 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
CN111617641B (zh) * 2020-05-07 2021-12-10 天津工业大学 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
US11623183B2 (en) * 2020-05-07 2023-04-11 Tiangong University Synthesis of imidazolium-based functional ionic liquid copolymer and preparation method of alloy ultra-filtration membrane

Also Published As

Publication number Publication date
WO2021088665A1 (zh) 2021-05-14
US20220080367A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
Zhao et al. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive
Zhou et al. Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization
CN102580560B (zh) 纳米材料掺杂聚合物膜的制备方法
Jiang et al. A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation
US12011694B2 (en) Crosslinked protein-based separation membrane and application thereof
CN110479109B (zh) 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN107952375B (zh) 一种基于atrp法的抗污染聚砜/氧化石墨烯共混超滤膜的制备方法
Cheng et al. Improving the hydrophilic and antifouling properties of poly (vinyl chloride) membranes by atom transfer radical polymerization grafting of poly (ionic liquid) brushes
An et al. Polydopamine/cysteine surface modified hemocompatible poly (vinylidene fluoride) hollow fiber membranes for hemodialysis
US20220080367A1 (en) Efficient antifouling and hydrophilic polyethersulfone ultrafiltration membrane and preparation method thereof
CN104667768A (zh) 一种新型抗污染聚砜平板超滤膜的制备方法
Fan et al. Preparation and anti-protein fouling property of δ-gluconolactone-modified hydrophilic polysulfone membranes
He et al. Structure and pH‐sensitive properties of poly (vinylidene fluoride) membrane changed by blending poly (acrylic acid) microgels
Zhou et al. Preparation of a novel sulfonated polyphenlene sulfone with flexible side chain for ultrafiltration membrane application
CN112044290A (zh) 一种聚砜基嵌段共聚物分离膜
CN112058094A (zh) 一种疏松纳滤膜及其制备方法
CN117679954B (zh) 一种高通量抗污染的聚醚砜平板微孔膜及其制备方法和应用
CN113209952B (zh) 手性共价有机骨架膜及其制备方法和应用
Liu et al. Preparation and performance of sulfonated polysulfone flat ultrafiltration membranes
CN114130373A (zh) 一种硝酸纤维素膜及其制备方法
CN113694742A (zh) 一种纳米银抗菌超滤膜及其制备方法
Venault et al. Surface hydrophilicity and morphology control of anti-biofouling polysulfone membranes via vapor-induced phase separation processing
CN106861458B (zh) 一种提高层间结合力的多层聚合物膜的制备方法
CN117181022A (zh) 一种聚醚砜超滤膜及其制备方法与应用
CN110684158A (zh) 一种永久抗菌的聚醚砜膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200204

RJ01 Rejection of invention patent application after publication