CN111617641A - 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法 - Google Patents

咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法 Download PDF

Info

Publication number
CN111617641A
CN111617641A CN202010375102.7A CN202010375102A CN111617641A CN 111617641 A CN111617641 A CN 111617641A CN 202010375102 A CN202010375102 A CN 202010375102A CN 111617641 A CN111617641 A CN 111617641A
Authority
CN
China
Prior art keywords
pil
pmma
ultrafiltration membrane
membrane
imidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010375102.7A
Other languages
English (en)
Other versions
CN111617641B (zh
Inventor
武春瑞
汤超
张仁伟
厍景国
吕晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202010375102.7A priority Critical patent/CN111617641B/zh
Publication of CN111617641A publication Critical patent/CN111617641A/zh
Priority to US17/246,113 priority patent/US11623183B2/en
Application granted granted Critical
Publication of CN111617641B publication Critical patent/CN111617641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/35Use of magnetic or electrical fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开咪唑类功能化离子液体共聚物(PMMA‑b‑PIL‑R*)合成及合金超滤膜制备方法。首先以甲基丙烯酸甲酯(MMA)和含有双键的可聚合咪唑类功能化离子液体(IL‑R*)为反应单体,通过顺序自由基聚合制备PMMA‑b‑PIL‑R*。利用非溶剂致相分离法,将PMMA‑b‑PIL‑R*引入聚合物膜材料本体,制备合金超滤膜。PMMA‑b‑PIL‑R*分子链中的羰基与聚合物膜材料分子链中的H…C‑Cl结构间形成氢键作用,提升PMMA‑b‑PIL‑R*与聚合物膜材料分子链之间的相容性,使其能够在超滤膜中稳定存在;PMMA‑b‑PIL‑R*分子链中的咪唑基团和功能化官能团提供良好的亲水性。通过上述作用,可使膜材料的亲水性、抗污染能力和力学性能得到同步提升。

Description

咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
技术领域
本发明涉及膜分离技术领域,尤其涉及PMMA-b-PIL-R*合成及合金超滤膜制备方法。
背景技术
近年来,膜分离技术被世界诸多国家高度重视,广泛应用于水处理方面。超滤膜具有制备容易,耐化学稳定性等优良特性,因此应用比较广泛,但是由于超滤膜材料多为疏水性,在实际应用中容易被一些有机大分子物质(胶体颗粒、微生物、蛋白等)污染,使得超滤膜性能降低,寿命缩短,运行成本增加。改善膜表面的亲水性,有利于提高膜的抗污染性能,通常采用一定的方法将亲水性材料固定在超滤膜表面,缓解蛋白质在表面吸附,从而达到抗污染的目的。
离子液体具有良好的热、化学稳定性,多样化的分子结构选择,赋予其与分子结构匹配的广泛的功能特性,在诸多领域得到广泛应用。Cheng等人通过化学接枝反应将聚1-丁基-3-乙烯基咪唑溴化物引入到聚氯乙烯超滤膜的聚合物主链上,聚氯乙烯膜的不可逆通量衰减率从67%降低到5%。然而该类化学接枝方法反应条件苛刻,对膜材料、膜结构及寿命产生负面影响。共混改性由于其工艺简单,无需繁琐的后处理步骤,改性剂能同时覆盖膜表面和膜孔内壁,不会因膜的改性而引起膜结构的破坏等优点而被广泛的探究。Kausha等人使用1-十二烷基-3-甲基咪唑溴化物作为共混添加剂,通过相转化技术制备了聚氯乙烯超滤膜,水接触角从92.6°降低至73.4°,通量从105.6L/m2 h提升至326.3L/m2 h。但在膜运行过程中,小分子离子液体从膜材料中迅速流失,导致膜性能的快速衰减。综上一种工艺简单,生产成本低,亲水、抗污染性能及力学性能良好,性能稳定的合金超滤膜亟待开发。
本发明解决合金超滤膜本身具有较强的疏水性、易受蛋白质、腐殖质等污染且现有离子液体接枝和常规合成离子液体共聚物技术过程繁琐或单独添加小分子离子液体易流失,膜的性能不稳定,力学性能差,生产成本高的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明提供一种简易的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,以解决常规合金超滤膜亲水性差、易污染且小分子离子液体性能不稳定及现有合成离子液体共聚物方法繁琐、成本高、操作要求高的技术问题。
本发明还有一个目的是采用PMMA-b-PIL-R*作为改性添加剂,利用简单的顺序自由基聚合反应制备两亲性PMMA-b-PIL-R*,改善膜材料的亲水性能、力学性能,增强膜的抗污染性能、延长膜的使用寿命。
本发明是由以下技术方案实现的。
本发明咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,包括以下步骤:
第一步,通过偶氮二异丁腈引发MMA、IL-R*,通过顺序自由基聚合制备两亲性PMMA-b-PIL-R*;
第二步,采用非溶剂致相分离方法,将PMMA-b-PIL-R*引入聚合物膜材料本体,制备合金超滤膜;
IL-R*中R*为羟基、磺酸基、羧基,IL-R*和PMMA-b-PIL-R*分子结构式如下,PMMA-b-PIL-R*中m值为50~100,n值为60~120。
Figure BDA0002479699420000021
本发明咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,两亲性PMMA-b-PIL-R*通过以下步骤制得:将一定量的MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至60℃~80℃,加入一定量的偶氮二异丁腈引发剂,氮气保护下反应2h~4h;
称取一定量的IL-R*加入反应体系,氮气保护下继续反应4h~24h,反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应,而后把共聚物溶液倒入沉淀剂中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥10~15h,得到白色共聚物,即PMMA-b-PIL-R*,常温密封保存。
本发明咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,合金超滤膜通过以下步骤制得:将真空干燥后的聚合物、PMMA-b-PIL-R*、聚乙二醇按照一定质量比溶解于二甲基乙酰胺中,在60℃~80℃下恒温搅拌至混合均匀,形成均一的铸膜液;室温25℃下,将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜或将铸膜液倒入纺丝机中挤出形成初生态膜,初生态膜在空气中预蒸发5s~30s后迅速放置在25℃凝固浴中进行相转化,固化成非对称超滤膜,然后转移到25℃的去离子水中浸泡24h备用。
前述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其中:IL-R*为1-羟丁基-3-乙烯基咪唑四氟硼酸盐、1-磺酸丁基-3-乙烯基咪唑四氟硼酸盐、1-羧丁基-3-乙烯基咪唑四氟硼酸盐、1-丁基-3-乙烯基咪唑四氟硼酸盐中的一种或两种以上的混合物。
前述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其中:MMA与IL-R*摩尔比为2:1~5:1;聚合物为聚氯乙烯、聚三氟氯乙烯、聚偏氟乙烯与氯乙烯共聚物、聚偏氟乙烯与三氟氯乙烯共聚物中的一种或两种以上的混合物;PMMA-b-PIL-R*在聚合物中的质量百分含量为1%~3%;合金超滤膜为平板膜或中空纤维膜。
本发明的有益效果是,本发明咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法是通过改变单体及反应条件和通过相转化法调节铸膜液组成等制备而成。
1)所述制备方法通过顺序自由基聚合与非溶剂致相分离法结合而制备,操作环境要求低、自由基聚合可控、适用范围较广,操作连续方便。
2)采用的PMMA-b-PIL-R*分子链中MMA链段的羰基与膜材料分子链中的H…C-Cl结构间形成氢键或者产生偶极-偶极相互作用,增强PMMA-b-PIL-R*与膜材料分子链间的相互作用,提高两者的相容性,使PMMA-b-PIL-R*在合金超滤膜中稳定存在,提高其力学性能;PMMA-b-PIL-R*的咪唑基团和功能化官能团提供良好的亲水性,抗污染效果显著。
3)此类PMMA-b-PILs-R*是一种具备一定亲水性且不溶于水的聚合物,能在膜长期运行过程中稳定存在于膜本体,生产成本低。
附图说明
图1是实施例1制得的PMMA-b-PIL-R*合成原理图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1:
1)合成两亲性PMMA-b-PIL-R*
将4.005g MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至60℃,加入0.049g偶氮二异丁腈引发剂,氮气保护下反应2h。称取5.081g 1-羟丁基-3-乙烯基咪唑四氟硼酸盐加入反应体系,氮气保护下继续反应4h。反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应。而后把共聚物溶液倒入乙醇中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥12h,得到白色共聚物(PMMA-b-PIL-R1*),PMMA-b-PIL-R1*中m值为50,n值为60。MMA、1-羟丁基-3-乙烯基咪唑四氟硼酸盐和偶氮二异丁腈的摩尔比控制为2:1:0.015。
2)合金超滤膜的制备
将33.2g二甲基乙酰胺,5.2g聚氯乙烯,1.2g聚乙二醇,0.4g PMMA-b-PIL-R1*,在60℃下恒温搅拌至混合均匀,形成均一的铸膜液;室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发10s后迅速放置在25℃凝固浴为去离子水中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
从附图1所示的自由基聚合反应机理图片中可以看出实施例1中制备的两亲性PMMA-b-PIL-R*的合成路线图。
对比例1:
1)将33.6g二甲基乙酰胺,5.2g聚氯乙烯,1.2g聚乙二醇,在60℃下恒温搅拌至混合均匀,形成均一的铸膜液;
2)室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发10s后迅速放置在25℃凝固浴为去离子水中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。所得的膜水接触角81.2°,对该合金超滤膜进行性能测试,结果如表1所示。
对比例2:
1)将33.2g二甲基乙酰胺,5.2g聚氯乙烯,1.2g聚乙二醇,0.4g 1-羟丁基-3-乙烯基咪唑四氟硼酸盐(IL-R1*),在60℃下恒温搅拌至混合均匀,形成均一的铸膜液;
2)室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发10s后迅速放置在25℃凝固浴为去离子水中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
对比例3:
1)将33.2g二甲基乙酰胺,5.2g聚氯乙烯,1.2g聚乙二醇,0.4g聚1-羟丁基-3-乙烯基咪唑四氟硼酸盐(IL-R1*),在60℃下恒温搅拌至混合均匀,形成均一的铸膜液。
2)室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发10s后迅速放置在25℃凝固浴为去离子水中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
实施例2:
1)合成两亲性PMMA-b-PIL-R*
将10.012g MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至70℃,加入0.049g偶氮二异丁腈引发剂,氮气保护下反应3h。称取6.361g 1-磺酸丁基-3-乙烯基咪唑四氟硼酸盐加入反应体系,氮气保护下继续反应12h。反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应。而后把共聚物溶液倒入无水乙醇中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥10h,得到白色共聚物(PMMA-b-PIL-R2*),PMMA-b-PIL-R2*中m值为70,n值为90。MMA、1-磺酸丁基-3-乙烯基咪唑四氟硼酸盐和偶氮二异丁腈的摩尔比控制为5:1:0.015。
2)PMMA-b-PIL-R*合金超滤膜的制备
将32.8g二甲基乙酰胺,5.2g聚三氟氯乙烯,1.2g聚乙二醇,0.8g PMMA-b-PIL-R2*,在70℃下恒温搅拌至混合均匀,形成均一的铸膜液。室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发5s后迅速放置在10℃凝固浴为乙醇中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
实施例3:
1)合成两亲性PMMA-b-PIL-R*
将6.072g MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至80℃,加入0.049g偶氮二异丁腈引发剂,氮气保护下反应4h。称取5.641g 1-羧丁基-3-乙烯基咪唑四氟硼酸盐单体加入反应体系,氮气保护下继续反应24h。反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应。而后把共聚物溶液倒入乙醇中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥15h,得到白色共聚物(PMMA-b-PIL-R3*),PMMA-b-PIL-R3*中m值为100,n值为120。MMA、1-羧丁基-3-乙烯基咪唑四氟硼酸盐和偶氮二异丁腈的摩尔比控制为3:1:0.015。
2)PMMA-b-PIL-R*合金超滤膜的制备
将32.4g二甲基乙酰胺,5.2g聚偏氟乙烯与氯乙烯共聚物,1.2g聚乙二醇,1.2gPMMA-b-PIL-R3*,在80℃下恒温搅拌至混合均匀,形成均一的铸膜液;室温25℃下将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜。将初生态膜在空气中预蒸发30s后迅速放置在25℃凝固浴为异丙醇中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
实施例4:
1)合成两亲性PMMA-b-PIL-R*
将4.005g MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至60℃,加入0.049g偶氮二异丁腈引发剂,氮气保护下反应2h。称取4.761g 1-丁基-3-乙烯基咪唑四氟硼酸盐加入反应体系,氮气保护下继续反应12h。反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应。而后把共聚物溶液倒入乙醇中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥12h,得到白色共聚物(PMMA-b-PIL-R4*),PMMA-b-PIL-R4*中m值为100,n值为120。MMA、1-丁基-3-乙烯基咪唑四氟硼酸盐和偶氮二异丁腈的摩尔比控制为2:1:0.015。
2)PMMA-b-PIL-R*合金超滤膜的制备
将33.2g二甲基乙酰胺,5.2g聚偏氟乙烯与三氟氯乙烯共聚物,1.2g聚乙二醇,0.4g PMMA-b-PIL-R4*,在60℃下恒温搅拌至混合均匀,形成均一的铸膜液。室温25℃下,将铸膜液倒入纺丝机中,挤出形成初生态膜。将初生态膜在空气中预蒸发10s后迅速放置在25℃凝固浴为去离子水中进行相转化,固化成非对称超滤膜。然后转移到25℃的去离子水中浸泡24h备用。对该合金超滤膜进行性能测试,结果如表1所示。
为了说明合金超滤膜的性能效果,采用水接触角评价膜表面的亲水性,接触越低,亲水性越好。采用通量恢复率评价膜的抗污染性能,通量恢复率越高,抗污染性能越好。采用拉伸强度和断裂伸长率评价膜的力学性能,其值越高,膜的力学性能越好。具体结果参见表1。
表1
Figure BDA0002479699420000061
Figure BDA0002479699420000071
实施例与对比例1中可以看出添加PMMA-b-PIL-R*的合金超滤膜接触角降低,通量恢复率提高,拉伸强度和断裂伸长率均有所增加,表明添加PMMA-b-PIL-R*后,合金超滤膜的表面亲水官能团增加,亲水性增强,缓解蛋白质在膜表面吸附,从而达到良好的抗污染效果,同时PMMA-b-PIL-R*分子链中MMA链段的羰基与膜材料分子链中的H…C-Cl结构间形成氢键或者产生偶极-偶极相互作用,增强PMMA-b-PIL-R*与膜材料分子链间的相互作用,提高两者的相容性,使PMMA-b-PIL-R*在合金超滤膜中稳定存在,提高其力学性能。实施例与对比例2、对比例3中可以看出单独添加IL-R*、PIL-R*能提高膜的亲水性和抗污染性能,但其在膜中的稳定性较差,导致其容易从膜中析出,表现为拉伸强度和断裂伸长率均有所降低,仅起到致孔剂的作用,不利于膜的使用寿命的延长。实施例1、2、3中可以看出,PMMA-b-PIL-R*含量越高,膜表面的接触角越低,亲水性越好,抗污染性能越强。
本发明实施例中未进行说明的内容为现有技术,故,不再赘述。
本发明的优点是:1、本发明采用PMMA-b-PIL-R*作为添加剂,合成方法简单。2、本发明采用PMMA-b-PIL-R*分子链中MMA链段的羰基与膜材料分子链中的H…C-Cl结构间形成氢键或者产生偶极-偶极相互作用,增强PMMA-b-PIL-R*与膜材料分子链间的相互作用,提高两者的相容性。3、本发明将PMMA-b-PIL-R*添加到铸膜液中,分子链中含有许多亲水功能化官能团,构建亲水表面,接触角降低,在膜表面形成水化层,缓解蛋白质在表面吸附,具有很高的通量恢复率,能很好提高膜的亲水性与抗污染性。4、本发明通过添加PMMA-b-PIL-R*,与单纯添加离子液体制备膜相比,其具有亲水且不溶于水的性质,能够在铸膜液中稳定存在,延长膜的使用寿命。5、本发明通过向铸膜液中添加PMMA-b-PIL-R*,绿色经济,简单易行。
以上所述仅为本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (7)

1.咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:包括以下步骤:
第一步,通过偶氮二异丁腈引发MMA、IL-R*,通过顺序自由基聚合制备两亲性PMMA-b-PIL-R*;
第二步,采用非溶剂致相分离方法,将PMMA-b-PIL-R*引入聚合物膜材料本体,制备合金超滤膜;
IL-R*中R*为羟基、磺酸基、羧基,IL-R*和PMMA-b-PIL-R*分子结构式如下:PMMA-b-PIL-R*中m值为50~100,n值为60~120,
Figure RE-FDA0002565045350000011
2.根据权利要求1所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:两亲性PMMA-b-PIL-R*通过以下步骤制得:
将一定量的MMA溶于二甲基乙酰胺溶剂中并置于烧瓶中,磁力搅拌,向反应体系中通入氮气,排除氧气后,反应浴温度升至60℃~80℃,加入一定量的偶氮二异丁腈引发剂,氮气保护下反应2h~4h;
称取一定量的IL-R*加入反应体系,氮气保护下继续反应4h~24h,反应结束后,所得共聚物溶液立即放入含有冰水溶液的水冷机中冷却终止反应,而后把共聚物溶液倒入沉淀剂中沉淀析出,产物经过去离子水过滤、清洗3遍后,放入冷冻干燥机中冷冻干燥10~15h,得到白色共聚物,即PMMA-b-PIL-R*,常温密封保存。
3.根据权利要求1或2所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:合金超滤膜通过以下步骤制得:将真空干燥后的聚合物、PMMA-b-PIL-R*、聚乙二醇按照一定质量比溶解于二甲基乙酰胺中,在60℃~80℃下恒温搅拌至混合均匀,形成均一的铸膜液;室温25℃下,将铸膜液倒在干净、无损的玻璃板一端,用自制刮刀匀速将铸膜液刮至另一端,在玻璃板上形成初生态膜或将铸膜液倒入纺丝机中挤出成初生态膜,初生态膜在空气中预蒸发5s~30s后迅速放置在25℃凝固浴中进行相转化,固化成非对称超滤膜,然后转移到25℃的去离子水中浸泡24h备用。
4.根据权利要求1或2所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:IL-R*为1-羟丁基-3-乙烯基咪唑四氟硼酸盐、1-磺酸丁基-3-乙烯基咪唑四氟硼酸盐、1-羧丁基-3-乙烯基咪唑四氟硼酸盐、1-丁基-3-乙烯基咪唑四氟硼酸盐中的一种或两种以上的混合物。
5.根据权利要求1或2所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:第一步MMA与IL-R*摩尔比为2:1~5:1。
6.根据权利要求1或3所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:所述的聚合物为聚氯乙烯、聚三氟氯乙烯、聚偏氟乙烯与氯乙烯共聚物、聚偏氟乙烯与三氟氯乙烯共聚物中的一种或两种以上的混合物;PMMA-b-PIL-R*在聚合物中的质量百分含量为1%~3%。
7.根据权利要求1或3所述的咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法,其特征在于:所述的合金超滤膜为平板膜或中空纤维膜。
CN202010375102.7A 2020-05-07 2020-05-07 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法 Active CN111617641B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010375102.7A CN111617641B (zh) 2020-05-07 2020-05-07 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
US17/246,113 US11623183B2 (en) 2020-05-07 2021-04-30 Synthesis of imidazolium-based functional ionic liquid copolymer and preparation method of alloy ultra-filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010375102.7A CN111617641B (zh) 2020-05-07 2020-05-07 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法

Publications (2)

Publication Number Publication Date
CN111617641A true CN111617641A (zh) 2020-09-04
CN111617641B CN111617641B (zh) 2021-12-10

Family

ID=72267742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010375102.7A Active CN111617641B (zh) 2020-05-07 2020-05-07 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法

Country Status (2)

Country Link
US (1) US11623183B2 (zh)
CN (1) CN111617641B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619441A (zh) * 2021-01-15 2021-04-09 福州大学 一种阴离子交换膜及其无溶剂化制备方法
CN113583180A (zh) * 2021-08-11 2021-11-02 浙江理工大学龙港研究院有限公司 一种含硫辛酸阴离子聚离子液体及其制备方法
CN115121126A (zh) * 2022-07-18 2022-09-30 中国科学院赣江创新研究院 一种用于稀土回收水凝胶层调控界面聚合纳滤膜的结构及其制备方法
CN115433307A (zh) * 2022-09-28 2022-12-06 福州大学 一种具有强弱离子簇的固态离子弹性体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212637B (zh) * 2022-12-08 2024-10-01 中国科学技术大学 一种基于聚离子液体刷功能化的超滤膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102702564A (zh) * 2012-05-18 2012-10-03 浙江工商大学 具有离子敏感性的荷电聚偏氟乙烯共混多孔膜的制备方法及产品
US20160248064A1 (en) * 2012-09-12 2016-08-25 Drexel University Polymerized ionic liquid block copolymers as battery membranes
CN108654410A (zh) * 2017-03-29 2018-10-16 宁波大学 一种亲水改性聚偏氟乙烯膜的制备方法
CN108816057A (zh) * 2018-06-25 2018-11-16 福州大学 一种聚多巴胺-离子液复合膜及其制备方法
US20180333683A1 (en) * 2015-11-27 2018-11-22 Queen's University At Kingston Functional Filters for Hydrophobic Liquid/Hydrophilic Liquid Separations
CN110743395A (zh) * 2019-11-05 2020-02-04 杭州师范大学 一种高效防污、亲水的聚醚砜超滤膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108176255B (zh) * 2017-12-30 2020-06-23 浙江工业大学 一种聚偏氟乙烯-二氧化钛杂化膜及其制备方法和应用
CN109433027A (zh) * 2018-12-20 2019-03-08 长春工业大学 一种亲水型抗污染超滤膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102702564A (zh) * 2012-05-18 2012-10-03 浙江工商大学 具有离子敏感性的荷电聚偏氟乙烯共混多孔膜的制备方法及产品
US20160248064A1 (en) * 2012-09-12 2016-08-25 Drexel University Polymerized ionic liquid block copolymers as battery membranes
US20180333683A1 (en) * 2015-11-27 2018-11-22 Queen's University At Kingston Functional Filters for Hydrophobic Liquid/Hydrophilic Liquid Separations
CN108654410A (zh) * 2017-03-29 2018-10-16 宁波大学 一种亲水改性聚偏氟乙烯膜的制备方法
CN108816057A (zh) * 2018-06-25 2018-11-16 福州大学 一种聚多巴胺-离子液复合膜及其制备方法
CN110743395A (zh) * 2019-11-05 2020-02-04 杭州师范大学 一种高效防污、亲水的聚醚砜超滤膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619441A (zh) * 2021-01-15 2021-04-09 福州大学 一种阴离子交换膜及其无溶剂化制备方法
CN113583180A (zh) * 2021-08-11 2021-11-02 浙江理工大学龙港研究院有限公司 一种含硫辛酸阴离子聚离子液体及其制备方法
CN113583180B (zh) * 2021-08-11 2023-01-10 浙江理工大学龙港研究院有限公司 一种含硫辛酸阴离子聚离子液体及其制备方法
CN115121126A (zh) * 2022-07-18 2022-09-30 中国科学院赣江创新研究院 一种用于稀土回收水凝胶层调控界面聚合纳滤膜的结构及其制备方法
CN115433307A (zh) * 2022-09-28 2022-12-06 福州大学 一种具有强弱离子簇的固态离子弹性体及其制备方法
CN115433307B (zh) * 2022-09-28 2023-11-10 福州大学 一种具有强弱离子簇的固态离子弹性体及其制备方法

Also Published As

Publication number Publication date
US11623183B2 (en) 2023-04-11
US20210346847A1 (en) 2021-11-11
CN111617641B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN111617641B (zh) 咪唑类功能化离子液体共聚物合成及合金超滤膜制备方法
CN104558350B (zh) 一种亲水性超大孔聚合物微球及其制备方法
Han et al. Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization
CN105037667B (zh) 一种两亲性聚偏氟乙烯基嵌段共聚物及其应用
WO2022007496A1 (zh) 一种含有木质素的生物基复合材料及其制备方法
CN109316973B (zh) 一种含聚乙烯亚胺和聚甲基丙烯酸甲酯复合膜
CN111330452A (zh) 一种聚硫酸酯平板超滤膜及其制备方法
CN113061266B (zh) 一种基于多重非共价交联作用的高强度离子凝胶
Liu et al. Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP
CN107522875B (zh) 银纳米粒子交联的水凝胶、其制备方法及应用
Bieringer et al. Triblock copolyampholytes from 5-(N, N-dimethylamino) isoprene, styrene, and methacrylic acid: Synthesis and solution properties
CN112724325B (zh) 纳米硅交联剂和快速响应水凝胶的制备方法及应用
CN117679954B (zh) 一种高通量抗污染的聚醚砜平板微孔膜及其制备方法和应用
CN115260504B (zh) 含有两性离子的聚芳醚砜嵌段共聚物、抗污染超滤膜及制备方法、应用
CN108530658B (zh) 嵌段聚合物fpeg-co-ca改性ca滤膜及其制备方法
CN104558452B (zh) 一种聚偏氟乙烯‑聚乙烯基吡咯烷酮嵌段共聚合物的制备方法
CN108250735B (zh) 一种表面多孔尼龙微球及其制备方法
CN114588792B (zh) 一种聚乙烯醇缩丁醛共混增强的聚偏二氯乙烯超滤膜及其制备方法
CN1370758A (zh) 一种水系陶瓷浆料凝胶成型方法
CN106178988B (zh) 一种二氧化碳响应性的聚偏氟乙烯共混膜及其制备方法
CN112791599A (zh) 一种双重抗污染超滤膜的制备方法
CN112708232A (zh) 一种聚乙烯醇-聚丙烯酰胺-环糊精复合吸水树脂及制法
CN111534069A (zh) 一种高强度的丙烯酸酯交联微球接枝改性聚乳酸及其制法
CN106492660B (zh) 一种温度响应pvdf半互穿网络聚合物膜及其制备方法
CN106492661B (zh) 一种pH响应PVDF半互穿网络聚合物膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant