CN108254244A - 明胶中的金属含量的测定方法及处理方法 - Google Patents

明胶中的金属含量的测定方法及处理方法 Download PDF

Info

Publication number
CN108254244A
CN108254244A CN201711160424.4A CN201711160424A CN108254244A CN 108254244 A CN108254244 A CN 108254244A CN 201711160424 A CN201711160424 A CN 201711160424A CN 108254244 A CN108254244 A CN 108254244A
Authority
CN
China
Prior art keywords
micro
acid
gelatin
carried out
catch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711160424.4A
Other languages
English (en)
Other versions
CN108254244B (zh
Inventor
胡晨雪
王富荣
钟伟
李春娥
王冉
杨瑞婷
吕晓东
张煜
申磊
关志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAOTOU DONGBAO BIOTECHNOLOGY Co Ltd
Original Assignee
BAOTOU DONGBAO BIOTECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAOTOU DONGBAO BIOTECHNOLOGY Co Ltd filed Critical BAOTOU DONGBAO BIOTECHNOLOGY Co Ltd
Priority to CN201711160424.4A priority Critical patent/CN108254244B/zh
Publication of CN108254244A publication Critical patent/CN108254244A/zh
Application granted granted Critical
Publication of CN108254244B publication Critical patent/CN108254244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种明胶中的金属含量测定方法,包括供试样品的制备过程和采用原子吸收法对供试样品进行测定的过程。供试样品的制备过程包括:(1)预消解步骤:将明胶样品浸泡于硝酸中,从而得到预消解液;(2)微波消解步骤:将所述预消解液置于微波发生设备中,在120~130℃下进行一次微波处理5~10min,在150~160℃下进行二次微波处理5~10min,在180~190℃下进行三次微波处理10~20min,然后降至室温,从而得到微波消解液;(3)赶酸步骤:将所述微波消解液在120~150℃下进行一次赶酸10~20min,在170~180℃下进行二次赶酸35~50min,然后加入超纯水进行三次赶酸。本发明还公开了一种明胶的处理方法。本发明的方法可以快速准确检测明胶中的金属含量。

Description

明胶中的金属含量的测定方法及处理方法
技术领域
本发明涉及一种明胶中的金属含量的测定方法及处理方法,尤其 是一种明胶中的铁、钙和铜含量测定方法及明胶的处理方法。
背景技术
明胶是以动物的骨、皮(多为猪、牛的结缔组织或硬骨组织)为 原料,通过水洗浸泡、浸酸脱矿、浸灰脱脂、中和水洗、蒸煮液化、 灭菌过滤、浓缩干燥等几十道工序得到的直链聚合物。根据明胶的用 途和品质不同,分为医用明胶、食用明胶、工业明胶、照相明胶。工业明胶对于杂质含量的要求不高,但医用明胶和食用明胶对于杂质含 量的控制较为严格。重金属元素含量是明胶品质的重要指标,如何快 速准确地测定明胶中的重金属元素含量对于明胶生产意义重大。
通常,采用紫外分光光度计测定明胶中的重金属元素。但是,该 方法存在耗时长、干扰严重等缺点。随着原子吸收光谱仪的普及,将 其用于测定明胶中的多种重金属元素含量。该方法的特点是耗时短、 干扰小。例如,CN103389277A公开了一种胶囊制剂中的铬含量检测 方法,通过在供试样品中加入硝酸进行预消解,并通过加入双氧水使 得消解过程加入的强酸量减少。但是,该方法需要使用双氧水,从而 可能引入新的杂质或导致被检测重金属的损失,影响检测效果。
又如,CN102928377A公开了一种明胶制品中六价铬的测定方 法,包括:(1)试样加入Na2CO3/NaOH溶液,同时加入MgCl2和磷酸 盐缓冲液,水浴振荡消解;(2)碱消解完毕,冷却后用滤膜抽滤除去三 价铬沉淀;(3)取滤液加无机酸于电热板上进行湿法酸消解;(4)消解液 用蒸馏水稀释、定容,用原子吸收分光光度法测定六价铬含量。该方 法需要使用Na2CO3、NaOH、MgCl2和磷酸盐等多种化学物质,从而 可能引入新的杂质或导致被检测重金属的损失,影响检测效果。
再如,CN106404687A公开了一种明胶空心胶囊中铬的检验方 法。该方法采用原子吸收分光光度法进行测定;供试品溶液的制备方 法为:将明胶空心胶囊样品,置于聚四氟乙烯消解罐内,加硝酸,混 匀,置电热板上缓缓加热,升高温度至210±10℃,对样品进行预消 解;待内罐中液体近干时,取下内罐,放置至室温,再加入硝酸,旋 紧外套,置适宜的微波消解炉内,进行消解;消解完全后,取消解内 罐置电热板上,在210±10℃温度下加热至红棕色蒸汽挥尽并近干时, 用2%硝酸溶液转移至50ml容量瓶中,并用2%硝酸溶液稀释至刻 度,摇匀,即可。该方法的预消解温度过高、并且没有公开具体的微 波消解工艺参数。
此外,上述方法均是针对明胶中的铬含量进行测定,并不适用于 铁、钙、铜含量进行测定。但是,铁、钙、铜含量是高品质明胶的重 要指标。目前,针对明胶中铁、钙、铜含量的测定方法并不多。陈树 榆提出了一种水解法萃取制样技术测定明胶中的铁和铜,但是该方法 需要设计一条在线萃取的管道,且对水解液的pH要求较严格,这不 仅增加了操作的繁琐程度,还增加了检测成本(参见“流动注射在线萃 取—火焰原子吸收光谱法测定明胶中的微量Fe和Cμ”,陈树榆等,光 谱学与光谱分析,第85~90页,1995年)。
因此,目前仍然需要一种快速准确地检测明胶中的金属元素含量 的方法。
发明内容
本发明的一个目的在于提供一种明胶中的金属含量测定方法,其 可以快速准备地检测明胶中的铁、钙、铜含量。
本发明的另一个目的在于提供一种明胶的处理方法,其可以避免 杂质的引入,并避免金属杂质的损失,从而便于获得更加准确的测定 结果。
根据本发明的一个方面,本发明提供一种明胶中的金属含量测定 方法,包括供试样品的制备过程和采用原子吸收法对供试样品进行测 定的过程,所述的金属为铁、钙和/或铜;其中,所述供试样品的制 备过程包括如下步骤:
(1)预消解步骤:将明胶样品浸泡于硝酸中,从而得到预消解 液;
(2)微波消解步骤:将所述预消解液置于微波发生设备中,在 120~130℃下进行一次微波处理5~10min,在150~160℃下进行二 次微波处理5~10min,在180~190℃下进行三次微波处理10~ 20min,然后降至室温,从而得到微波消解液;
(3)赶酸步骤:将所述微波消解液在120~150℃下进行一次赶 酸10~20min,在170~180℃下进行二次赶酸35~50min,然后加入 超纯水进行三次赶酸。
根据本发明的方法,优选地,在步骤(1)中,明胶样品与硝酸 的用量配比为0.3~0.5g:8~10ml。
根据本发明的方法,优选地,步骤(2)还包括将所述微波消解 液产生的红棕色烟雾进行去除的过程。
根据本发明的方法,优选地,所述赶酸步骤在控温加热板中进 行;二次赶酸后的微波消解液为1~2ml。
根据本发明的方法,优选地,三次赶酸至微波消解液为0.001~ 1.5ml或者绝干。
根据本发明的方法,优选地,所述采用原子吸收法对供试样品进 行测定的过程的条件选自如下条件之一:
(1)测定波长为248.3nm;灯电流为12mA;狭缝宽度为 0.2nm;且阶段升温程序为60℃保持3s,120℃保持20s,250℃保持 10s,600℃保持10s,600℃保持10s,600℃保持3s,2300℃保持 3s,2500℃保持2s;
(2)测定波长为422.7nm;灯电流为10mA;狭缝宽度为 0.7nm;燃烧器高度为10mm;且燃气流量为1.1L/min。
根据本发明的另一个方面,本发明提供一种明胶的处理方法,包 括如下步骤:
(1)预消解步骤:将明胶样品浸泡于硝酸中,从而得到预消解 液;
(2)微波消解步骤:将所述预消解液置于微波发生设备中,在 120~130℃下进行一次微波处理5~10min,在150~160℃下进行二 次微波处理5~10min,在180~190℃下进行三次微波处理10~ 20min,然后降至室温,从而得到微波消解液;
(3)赶酸步骤:将所述微波消解液在120~150℃下进行一次赶 酸10~20min,在170~180℃下进行二次赶酸35~50min,然后加入 超纯水进行三次赶酸。
根据本发明的处理方法,优选地,在步骤(1)中,明胶样品与 硝酸的用量配比为0.3~0.5g:8~10ml。
根据本发明的处理方法,优选地,步骤(2)还包括将所述微波 消解液产生的红棕色烟雾进行去除的过程。
根据本发明的处理方法,优选地,所述赶酸步骤在控温加热板中 进行;二次赶酸后的微波消解液为1~2ml;三次赶酸至微波消解液 为0.001~1.5ml或者绝干。
本发明仅采用硝酸作为消解试剂,从而避免引入新的杂质,并可 以避免金属元素与容器起反应、被氧化或被吸收而导致其损失。由 此,本发明的方法可以获得更加准确的测定结果。本发明采用三阶段 阶梯升温微波消解程序,可以使样品快速消解完全。本发明采用三阶 段赶酸,可以加快赶酸速度并且有效降低供试样品的酸浓度,从而延 长了石墨管的使用寿命。总之,本发明的方法可以快速准确地检测明 胶中的铁、钙、铜含量。
附图说明
图1为实施例1的标准曲线。
图2为实施例2的标准曲线。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发 明的保护范围并不限于此。
在本发明中,“明胶”具有本领域已知的含义,并且对于其来源并 没有特别限定。明胶中可能含有多种有害金属元素,可以采用不同的 方法进行测定。通常,不同类型的金属元素需要采用不同处理方法对 明胶进行处理,然后采用原子吸收法进行测定。本发明的测定方法用 于检测明胶中的金属含量,所述的金属为铁、钙和/或铜;优选为铁 或钙。
<测定方法>
本发明的测定方法包括供试样品的制备过程和采用原子吸收法对 供试样品进行测定的过程。
本发明的供试样品的制备过程包括预消解步骤、微波消解步骤和 赶酸步骤等。
预消解步骤为将明胶样品浸泡于硝酸中,从而得到预消解液。明 胶样品可以采用各种来源的样品,例如胶囊壳、明胶粉、明胶颗粒 等。为了防止玷污被测元素,同时减少引入新杂质的可能性,本发明 的硝酸可以为优级纯的硝酸。硝酸的浓度并没有特别限定,只要能够 保证将明胶样品预消解即可。在某些实施方案中,明胶样品与硝酸的 用量配比为0.3~0.5g:8~10ml。例如,明胶样品用量为0.3~0.5g, 硝酸用量8~10ml。根据本发明的一个具体实施方式,明胶样品用量 为0.3g,硝酸用量8ml。这样可以保证明胶样品预消解充分。浸泡的 时间并没有特别限定。作为优选,浸泡时间为6~10小时,从而保证 预消解充分,有利于微波消解步骤的进行。
微波消解步骤为将预消解液置于微波发生设备中,在120~ 130℃、优选为125~130℃下进行一次微波处理5~10min、优选为 8~10min,在150~160℃、优选为150~155℃下进行二次微波处理 5~10min、优选为5~7min,在180~190℃、优选为180~185℃下 进行三次微波处理10~20min、优选为15~20min,然后降至室温, 从而得到微波消解液。本申请惊奇地发现,采用三阶段阶梯升温微波 消解程序,可以使样品快速消解完全。微波发生设备的实例包括上海 新仪的MASTER系列超高通量密闭微波消解/萃取仪。在某些实施方案中,在130℃下进行一次微波处理10min,在150℃下进行二次微 波处理5min,在180℃下进行三次微波处理20min,然后降至室温, 从而得到微波消解液。
在本发明中,步骤(2)还包括将所述微波消解液产生的红棕色 烟雾进行去除的过程。待微波升温处理程序结束后,仪器自动降温, 取下消解罐放入通风橱内,取下保护套,缓慢揭盖使红棕色烟雾散 尽。
赶酸步骤为将微波消解液在120~150℃、优选为135~150℃下 进行一次赶酸10~20min、优选为15~20min,在170~180℃、优选 为175~180℃下进行二次赶酸35~50min、优选为35~38min,然后 加入超纯水进行三次赶酸。所述赶酸步骤可以在控温加热板中进行, 例如,在微波消解赶酸器(ECH-II微机控温加热板)中进行。待消 解管内溶液剩余1~2ml时,取下消解管,加入少量超纯水继续赶 酸,赶至溶液近干(约1ml左右)或绝干,多次润洗,将洗液转移至 50ml容量瓶中,超纯水定容。在某些实施方案中,二次赶酸后的微波消解液为1~2ml。三次赶酸至微波消解液为0.001~1.5ml、优选 为0.1~1ml或者绝干;更优选为绝干。所谓绝干指无肉眼可见的液 体存在。将微波消解液赶酸至绝干,经过超纯水多次润洗后,溶液澄 清透亮,且空白值低,实验结果更加准确。
本发明的原子吸收法可以为原子吸收石墨炉法或原子吸收火焰 法。为了进一步提高检测结果的准确性,对供试样品进行测定的过程 的条件如下。当采用原子吸收石墨炉法测定铁时,波长为248.3nm; 灯电流为12mA;狭缝宽度为0.2nm;阶段升温程序为60℃保持3s, 120℃保持20s,250℃保持10s,600℃保持10s,600℃保持10s, 600℃保持3s,2300℃保持3s,2500℃保持2s。原子吸收法可以在日 本岛津AA-6880原子吸收分光光度计上进行测定。当采用原子吸收 火焰法测定钙时,测定波长为422.7nm;灯电流为10mA;狭缝宽度 为0.7nm;燃烧器高度为10mm;且燃气流量为1.1L/min。
<处理方法>
本发明的明胶的处理方法包括预消解步骤、微波消解步骤和赶酸 步骤等。预消解步骤为将明胶样品浸泡于硝酸中,从而得到预消解 液。明胶样品可以采用各种来源的样品,例如胶囊壳、明胶粉等。为 了提高测定准确性,本发明的硝酸可以为优级纯的硝酸。硝酸的浓度 并没有特别限定,只要能够保证将明胶样品预消解即可。在某些实施 方案中,明胶样品与硝酸的用量配比为0.3~0.5g:8~10ml。例如,明 胶样品用量为0.3~0.5g,硝酸用量8~10ml。根据本发明的一个具体 实施方式,明胶样品用量为0.3g,硝酸用量8ml。这样可以保证明胶 样品预消解充分。浸泡的时间并没有特别限定。作为优选,浸泡时间 为6~10小时,从而保证预消解充分,有利于微波消解步骤的进行。
在本发明的处理方法中,微波消解步骤为将预消解液置于微波发 生设备中,在120~130℃、优选为125~130℃下进行一次微波处理 5~10min、优选为8~10min,在150~160℃、优选为150~155℃下 进行二次微波处理5~10min、优选为5~7min,在180~190℃、优 选为180~185℃下进行三次微波处理10~20min、优选为15~ 20min,然后降至室温,从而得到微波消解液。本申请惊奇地发现, 采用三阶段阶梯升温微波消解程序,可以使样品快速消解完全。微波 发生设备的实例包括上海新仪的MASTER系列超高通量密闭微波消解/萃取仪。在某些实施方案中,在130℃下进行一次微波处理 10min,在150℃下进行二次微波处理5min,在180℃下进行三次微 波处理20min,然后降至室温,从而得到微波消解液。
在本发明的处理方法中,步骤(2)还包括将所述微波消解液产 生的红棕色烟雾进行去除的过程。待微波升温处理程序结束后,仪器 自动降温,取下消解罐放入通风橱内,取下保护套,缓慢揭盖使红棕 色烟雾散尽。
在本发明的处理方法中,赶酸步骤为将微波消解液在120~ 150℃、优选为135~150℃下进行一次赶酸10~20min、优选为15~ 20min,在170~180℃、优选为175~180℃下进行二次赶酸35~ 50min、优选为35~38min,然后加入超纯水进行三次赶酸。所述赶 酸步骤可以在控温加热板中进行,例如,在微波消解赶酸器(ECH-II 微机控温加热板)中进行。待消解管内溶液剩余1~2ml时,取下消 解管,加入少量超纯水继续赶酸,赶至溶液近干(约1ml左右)或绝 干,多次润洗,将洗液转移至50ml容量瓶中,超纯水定容。在某些 实施方案中,二次赶酸后的微波消解液为1~2ml。三次赶酸至微波 消解液为0.001~1.5ml、优选为0.1~1ml或者绝干;更优选为绝干。 所谓绝干指无肉眼可见的液体存在。将微波消解液赶酸至绝干,经过 超纯水多次润洗后,溶液澄清透亮,且空白值低,实验结果更加准 确。
以下实施例的测定在日本岛津AA-6880原子吸收分光光度计上 进行。BLK-空白样品;STD-标样。
实施例1-测定明胶样品中的铁含量(原子吸收石墨炉法)
1、准确称取0.3000g明胶样品(精确到0.0001g),加入8ml优 级纯的硝酸进行加盖预消解。按照130℃/10min;150℃/5min; 180℃/20min的微波消解程序对明胶样品进行消解。随后,放入微波 消解赶酸器中,150℃赶酸20min,170℃赶酸35min,待消解管内溶 液剩余1.5ml时,取下消解管,加入少量超纯水继续赶酸,赶至溶液 绝干,多次润洗,将洗液转移至50ml容量瓶中,超纯水定容。
2、系列标准溶液的配置:
取100μg/ml的铁标准溶液0.5ml于50ml容量瓶中,超纯水定 容,制得1.0000μg/ml的铁标液;取1.0000μg/ml的铁标液0.5ml于 50ml容量瓶中,超纯水定容,制得0.0100μg/ml的铁标液。利用仪器 的自动稀释功能,将0.0100μg/ml的铁标液分别稀释成0.0020μg/ml,0.0040μg/ml,0.0060μg/ml,0.0080μg/ml的铁标液。
3、仪器操作条件:
测定波长:248.3nm灯电流:12mA狭缝宽度:0.2nm阶段升 温程序:60℃,3s;120℃,20s;250℃,10s;600℃,10s;600℃, 10s;600℃,3s;2300℃,3s;2500℃,2s。
实验结果参见表1。标准曲线为y=35.97x-0.004(x为含铁溶液浓 度,y为样品的吸光度),参见图1。相关系数r=0.9990。三次测量相 对标准偏差为10.2%,小于20%。
表1、实施例1的实验结果
实施例2-测定明胶样品中的钙含量(原子吸收火焰法)
1、准确称取0.3000g明胶样品(精确到0.0001g),加入8ml优 级纯的硝酸进行加盖预消解。按照130℃/10min;150℃/5min; 180℃/20min的微波消解程序对明胶样品进行消解。随后,放入微波 消解赶酸器中,150℃赶酸20min,170℃赶酸40min,待消解管内溶 液剩余2ml时,取下消解管加入少量超纯水继续赶酸,赶至溶液绝 干,多次润洗,将洗液转移至50ml容量瓶中,加入浓度为20g/L氧 化镧溶液2.5mL,超纯水定容。
2、系列标准溶液的配置:
取1000.0000μg/ml的钙标准溶液1ml于100ml容量瓶中,超纯水 定容,制得10.0000μg/ml的钙标液;取10.0000μg/ml的钙标液5ml 于50ml容量瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制 得1.0000μg/ml的钙标液。取10.0000μg/ml的钙标液5ml于50ml容 量瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制得 1.0000μg/ml的钙标液。取10.0000μg/ml的钙标液10ml于50ml容量 瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制得 2.0000μg/ml的钙标液。取10.0000μg/ml的钙标液15ml于50ml容量 瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制得 3.0000μg/ml的钙标液。取10.0000μg/ml的钙标液20ml于50ml容量 瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制得 4.0000μg/ml的钙标液。取10.0000μg/ml的钙标液25ml于50ml容量 瓶中,加入20g/L氧化镧溶液2.5mL,超纯水定容,制得 5.0000μg/ml的钙标液。
3、仪器操作参数:
测定波长:422.7nm灯电流:10mA狭缝宽度:0.7nm燃烧器 高度:10mm燃气流量:1.1L/min。
实验结果参见表2。标准曲线为y=0.043x+0.001(x为含钙溶液浓 度,y为样品的吸光度值),参见图2。相关系数r=0.9999。相关系数 r=0.9990。三次测量相对标准偏差为16.3%,小于20%。
表2、实施例2的实验结果
实施例3-赶酸程度对原子吸收石墨炉法测明胶中铁含量的影响
1、准确称取0.3000g明胶样品(精确到0.0001g),加入8ml优 级纯的硝酸进行加盖预消解。按照130℃/10min;150℃/5min; 180℃/20min的微波消解程序对明胶样品进行消解。随后,放入微波 消解赶酸器中,150℃赶酸20min,170℃赶酸35min,待消解管内溶 液剩余1~2ml时,取下加入少量超纯水继续赶酸。空白a和样品a 赶至溶液绝干,空白b和样品b赶至消解管内剩余1ml左右液体,多 次润洗,将洗液转移至50ml容量瓶中,超纯水定容。
2、系列标准溶液的配置:
取100.0000μg/ml的铁标准溶液0.5ml于50ml容量瓶中,超纯水 定容,制得1.0000μg/ml的铁标液;取1.0000μg/ml的铁标液0.5ml于 50ml容量瓶中,超纯水定容,制0.0100μg/ml的铁标液。利用仪器的 自动稀释功能,将0.0100μg/ml的铁标液分别稀释成0.0020μg/ml, 0.0040μg/ml,0.0060μg/ml,0.0080μg/ml的铁标液。
3、仪器操作参数:
测定波长:248.3nm灯电流:12mA狭缝宽度:0.2nm阶段升 温程序:60℃,3s;120℃,20s;250℃,10s;600℃,10s;600℃, 10s;600℃,3s;2300℃,3s;2500℃,2s。
实验结果参见表3。空白a和样品a赶至溶液绝干,经过超纯水 多次润洗后,溶液澄清透亮,且空白值低,实验结果更加准确。
空白b和样品b赶至消解管内剩余1ml左右液体,经过超纯水多 次润洗后,溶液呈淡黄色,容量瓶底部有不可溶白色针状结晶,导致 空白值偏高,从而影响了测定结果,同时还会减少石墨管及进样系统 的使用寿命。
表3、实施例3的实验结果
对比例1
采用CN106404687A的具体实施方式部分测定明胶中的铁含量, 微波程序为210℃/60min,三次测量相对标准偏差为20%以上。
本发明并不限于上述实施方式及装置,在不背离本发明的实质内 容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落 入本发明的范围。

Claims (10)

1.一种明胶中的金属含量测定方法,其特征在于,所述的方法包括供试样品的制备过程和采用原子吸收法对供试样品进行测定的过程,所述的金属为铁、钙和/或铜;其中,所述供试样品的制备过程包括如下步骤:
(1)预消解步骤:将明胶样品浸泡于硝酸中,从而得到预消解液;
(2)微波消解步骤:将所述预消解液置于微波发生设备中,在120~130℃下进行一次微波处理5~10min,在150~160℃下进行二次微波处理5~10min,在180~190℃下进行三次微波处理10~20min,然后降至室温,从而得到微波消解液;
(3)赶酸步骤:将所述微波消解液在120~150℃下进行一次赶酸10~20min,在170~180℃下进行二次赶酸35~50min,然后加入超纯水进行三次赶酸。
2.根据权利要求1所述的方法,其特征在于,在步骤(1)中,明胶样品与硝酸的用量配比为0.3~0.5g:8~10ml。
3.根据权利要求1所述的方法,其特征在于,步骤(2)还包括将所述微波消解液产生的红棕色烟雾进行去除的过程。
4.根据权利要求1所述的方法,其特征在于,所述赶酸步骤在控温加热板中进行;二次赶酸后的微波消解液为1~2ml。
5.根据权利要求4所述的方法,其特征在于,三次赶酸至微波消解液为0.001~1.5ml或者绝干。
6.根据权利要求1~5任一项所述的方法,其特征在于,所述采用原子吸收法对供试样品进行测定的过程的条件选自如下条件之一:
(1)测定波长为248.3nm;灯电流为12mA;狭缝宽度为0.2nm;且阶段升温程序为60℃保持3s,120℃保持20s,250℃保持10s,600℃保持10s,600℃保持10s,600℃保持3s,2300℃保持3s,2500℃保持2s;
(2)测定波长为422.7nm;灯电流为10mA;狭缝宽度为0.7nm;燃烧器高度为10mm;且燃气流量为1.1L/min。
7.一种明胶的处理方法,其特征在于,包括如下步骤:
(1)预消解步骤:将明胶样品浸泡于硝酸中,从而得到预消解液;
(2)微波消解步骤:将所述预消解液置于微波发生设备中,在120~130℃下进行一次微波处理5~10min,在150~160℃下进行二次微波处理5~10min,在180~190℃下进行三次微波处理10~20min,然后降至室温,从而得到微波消解液;
(3)赶酸步骤:将所述微波消解液在120~150℃下进行一次赶酸10~20min,在170~180℃下进行二次赶酸35~50min,然后加入超纯水进行三次赶酸。
8.根据权利要求7所述的处理方法,其特征在于,在步骤(1)中,明胶样品与硝酸的用量配比为0.3~0.5g:8~10ml。
9.根据权利要求8所述的处理方法,其特征在于,步骤(2)还包括将所述微波消解液产生的红棕色烟雾进行去除的过程。
10.根据权利要求7所述的处理方法,其特征在于,所述赶酸步骤在控温加热板中进行;二次赶酸后的微波消解液为1~2ml;三次赶酸至微波消解液为0.001~1.5ml或者绝干。
CN201711160424.4A 2017-11-20 2017-11-20 明胶中的金属含量的测定方法及处理方法 Active CN108254244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711160424.4A CN108254244B (zh) 2017-11-20 2017-11-20 明胶中的金属含量的测定方法及处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711160424.4A CN108254244B (zh) 2017-11-20 2017-11-20 明胶中的金属含量的测定方法及处理方法

Publications (2)

Publication Number Publication Date
CN108254244A true CN108254244A (zh) 2018-07-06
CN108254244B CN108254244B (zh) 2020-11-27

Family

ID=62721619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711160424.4A Active CN108254244B (zh) 2017-11-20 2017-11-20 明胶中的金属含量的测定方法及处理方法

Country Status (1)

Country Link
CN (1) CN108254244B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272738A (zh) * 2020-03-04 2020-06-12 首钢京唐钢铁联合有限责任公司 一种锌铝镁合金中微量元素的含量的检测方法
CN112014174A (zh) * 2020-07-14 2020-12-01 中国科学院城市环境研究所 一种用于测定畜禽粪便及其生物炭中磷元素含量的方法
CN113848245A (zh) * 2021-09-18 2021-12-28 河南省地质矿产勘查开发局第一地质矿产调查院 一种icp-ms测定植物中痕量金的方法、前处理试剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439478B2 (ja) * 1993-05-21 2003-08-25 ダイキン工業株式会社 含フッ素ポリマー中の微量金属不純物の測定方法およびそれを用いる含フッ素ポリマーの製法
CN103389277A (zh) * 2012-05-08 2013-11-13 辽宁省食品药品检验所 一种胶囊制剂中囊壳的铬含量检测方法
CN103528879A (zh) * 2013-09-26 2014-01-22 苏州国环环境检测有限公司 火焰原子吸收光谱法测定紫菜中铁含量的方法
CN104865211A (zh) * 2015-06-19 2015-08-26 贵州出入境检验检疫局检验检疫综合技术中心 一种高效测定谷物类食品中铜、铁、锰和钙含量的方法
CN106404687A (zh) * 2016-08-31 2017-02-15 宁夏多维药业有限公司 明胶空心胶囊中铬的检验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439478B2 (ja) * 1993-05-21 2003-08-25 ダイキン工業株式会社 含フッ素ポリマー中の微量金属不純物の測定方法およびそれを用いる含フッ素ポリマーの製法
CN103389277A (zh) * 2012-05-08 2013-11-13 辽宁省食品药品检验所 一种胶囊制剂中囊壳的铬含量检测方法
CN103528879A (zh) * 2013-09-26 2014-01-22 苏州国环环境检测有限公司 火焰原子吸收光谱法测定紫菜中铁含量的方法
CN104865211A (zh) * 2015-06-19 2015-08-26 贵州出入境检验检疫局检验检疫综合技术中心 一种高效测定谷物类食品中铜、铁、锰和钙含量的方法
CN106404687A (zh) * 2016-08-31 2017-02-15 宁夏多维药业有限公司 明胶空心胶囊中铬的检验方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何涛,胡佳,李盈: "原子吸收石墨炉法测定CNAS T0802 明胶空心胶囊中的铬含量", 《社区医学杂志》 *
李华成,杜继贤: "火焰原子吸收光谱法测定明胶中Mg、Ca、Cu、Fe等杂质", 《感光材料》 *
王健,陈曦,刘艳杰: "石墨炉原子吸收法测定胶囊壳中微量铬的方法研究", 《甘肃医药》 *
黄晓燕,马祖陆: "湘潭锰矿区蔬菜重金属污染特征及健康风险评价", 《广西科学院学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272738A (zh) * 2020-03-04 2020-06-12 首钢京唐钢铁联合有限责任公司 一种锌铝镁合金中微量元素的含量的检测方法
CN112014174A (zh) * 2020-07-14 2020-12-01 中国科学院城市环境研究所 一种用于测定畜禽粪便及其生物炭中磷元素含量的方法
CN113848245A (zh) * 2021-09-18 2021-12-28 河南省地质矿产勘查开发局第一地质矿产调查院 一种icp-ms测定植物中痕量金的方法、前处理试剂及其应用

Also Published As

Publication number Publication date
CN108254244B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN108254244A (zh) 明胶中的金属含量的测定方法及处理方法
CN107037113A (zh) 一种用于检测血清中20种元素的icpms检测试剂盒
CN107192707A (zh) 同时测定人工虎骨粉中砷、镉、铜、汞、铅五种重金属元素的方法
Pucher et al. Organic acids in plant tissues
CN106501197A (zh) 微波消解‑石墨炉原子吸收测定酱油中铅含量的方法
Reid et al. Investigation of decomposition products of microwave digestion of food samples
CN107782719A (zh) 一种测定特殊医学用途配方食品中矿物质元素含量的方法
CN103852434A (zh) 聚合物及电子元器件中六价铬含量的定量分析方法
JP2003194683A (ja) 分析用試料の調製方法及び元素の定量方法
JP4840692B2 (ja) 新メチレンブルー分析法
CN109799226A (zh) 一种测定转炉渣中三氧化二铬含量的方法
CN106841154B (zh) 一种荧光滴定法测定镍钙合金中钙含量的方法
CN110231337A (zh) 一种食品中铅含量的检测方法
CN107677663A (zh) 一种检测活性炭中重金属含量的方法
CN106841064A (zh) 一种乳清粉中乳糖含量的测定方法
CN108120711A (zh) 一种应用电感耦合等离子体原子发射光谱仪测定钢中全铝含量的方法
CN100485365C (zh) 等离子发射光谱测定对苯二甲酸中金属含量的方法
CN110186909B (zh) 微波消解与icp-oes测试皮革制品中重金属元素
CN106885799B (zh) 一种测定核级海绵锆颗粒中镁含量的方法
CN207908374U (zh) 一种快速合格判定燕窝中亚硝酸盐含量的试剂盒
CN107991375A (zh) 一种测定人体尿液中碘元素的试剂盒
JP2008128992A (ja) ケイ素含有固体金属材料の分析装置及び分析方法
CN107860721A (zh) 用icp测样品中硫含量的方法
CN108037117B (zh) 食品中工业过氧化氢残留的快速检测方法、试剂盒
CN105891133A (zh) 测定乳制品中磷含量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant