CN108144616A - 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法 - Google Patents

一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法 Download PDF

Info

Publication number
CN108144616A
CN108144616A CN201810049652.2A CN201810049652A CN108144616A CN 108144616 A CN108144616 A CN 108144616A CN 201810049652 A CN201810049652 A CN 201810049652A CN 108144616 A CN108144616 A CN 108144616A
Authority
CN
China
Prior art keywords
catalyst
solution
low
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810049652.2A
Other languages
English (en)
Other versions
CN108144616B (zh
Inventor
郭春丽
尹敏帅
卫欢
侯利锋
卫英慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201810049652.2A priority Critical patent/CN108144616B/zh
Publication of CN108144616A publication Critical patent/CN108144616A/zh
Application granted granted Critical
Publication of CN108144616B publication Critical patent/CN108144616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • B01J35/23
    • B01J35/613
    • B01J35/615
    • B01J35/633
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

本发明涉及N2O空气污染治理技术领域,具体涉及一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法;将氢氧化钠溶液不断搅拌加入氯化镍溶液中,之后进行水热反应,再经过抽滤、干燥、煅烧等步骤,即得多孔NiO纳米薄片催化剂;所制得的催化剂具有优异的孔结构和高比表面积,表现出优异的低温催化性能;制备工艺操作简便,不添加任何添加剂,具有低成本、环境友好等优点;在煅烧温度为300℃时,比表面积为192m2g‑1,可以在300℃时将N2O完全分解成N2和O2,在230℃时N2O分解率为50%,可以高效催化分解N2O,具有广阔的应用前景。

Description

一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法
技术领域
本发明涉及N2O空气污染治理技术领域,具体涉及一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法。
背景技术
一氧化二氮不仅能产生温室,还能破坏臭氧层,加速酸雨的形成。N2O的排放不仅来自大自然,而且还有人类工业生产,如生产己二酸和硝酸以及用于污泥或工业废物处理的流化床燃烧器等,因此,N2O的排放控制和减排已成为环境研究领域的热点话题之一。直接催化N2O分解成N2和O2被认为是减少N2O最具前景的解决方案。现已经开发了多种催化剂用于N2O直接分解,包括负载型贵金属催化剂,复合金属氧化物,铁沸石和单金属氧化物。其中金属氧化物显示出有希望的活性。NiO被认为是过渡金属氧化物(CuO,Co3O4,MnO2,Fe3O4等)中最有效的催化剂之一。
提高催化性能最有效的方法是调节煅烧温度、添加碱金属或碱土金属和晶粒尺寸等因素,这种方法已在发表的大多数论文中被广泛使用。《催化学报》(Chinese Journal ofCatalysis,36(2015):1837-1845)报道了碱催化的NiO在200℃时达到N2O的最低分解温度,在不存在N2的情况下,K/NiO催化剂在500℃左右N2O转化率达到100%。《催化快报》(Catalysis Letters,118(2007):64-68)研究了向NiO添加Cs后的催化性能,实验结果发现N2O催化分解温度从350℃降低至250℃,T50值(转化率为50%的温度)约为200℃。除了添加金属元素之外,煅烧温度也是影响N2O的低温催化性能的一个重要因素。因此,添加碱金属或碱土金属会降低N2O的低温催化分解温度,但是添加其他成分会无形地增加催化剂的成本。《RSC Advances》(RSC Advances,5(2015):13212-13219)研究了煅烧温度对催化性能的影响,研究结果发现在400℃下煅烧的样品可使N2O在375℃氮气条件下完全分解。但是,他们的T100和T50值仍然比较高。
发明内容
本发明为解决现有的作为催化N2O分解的催化剂NiO为提高催化性能需加入碱金属或碱土金属等添加物以及转化率温度T100和T50值较高的问题,提供一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法。
为解决上述技术问题,本发明所采用的技术方案为:
1.一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,包括以下步骤:
(1)将NiCl2·6H2O完全溶解于去离子水中,获得浓度为0.056~0.066g/ml的溶液A;
(2)将NaOH完全溶解于去离子水中,获得浓度为0.013~0.014g/ml溶液B;
(3)将上述步骤(2)的溶液B在搅拌条件下加入上述步骤(1)的溶液A中,其中溶液A与溶液B的体积比为1:3,获得混合溶液C;
(4)将上述步骤(3)的溶液C转移至,反应釜中密封,置于电子炉中升温至180℃反应9~11小时;
(5)待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体A;
(6)将上述步骤(5)的前驱体A置于石英管式炉300~600℃下退火2小时,升温速率为5℃min-1,即得多孔NiO纳米薄片催化剂。
本发明制备方法制备的催化剂应用条件广泛,反应条件为常压、N2O浓度1000~10000ppm、空数10000~30000h-1,反应温度为300℃时N2O转化率达到100%,反应温度为230℃时转化率为50%,能够在较低温度下依然保持较好的催化活性。
优选的,步骤(1)中称取NiCl2·6H2O的质量为1.130~1.230g完全溶解于10mL去离子水中,获得溶液A,步骤(2)中称取NaOH的质量为0.3915~0.4085g完全溶解于30mL去离子水中,获得溶液B。步骤(4)中所述的反应时间为10小时。步骤(4)中所诉的置于石英管式炉的温度为300℃。
与现有技术相比本发明具有以下有益效果:
(1)本发明制备方法制备的催化剂通过煅烧得到高度的孔隙率和高的比表面积,从而表现出高的催化活性,具有优异的低温催化性能。
(2)多孔NiO纳米薄片催化剂制备方法简单,便于工业化生产;制备过程不需要任何添加剂,原料廉价易得,环境友好,具有良好的应用前景。
(3)多孔NiO纳米薄片催化剂应用条件广泛,反应条件为常压、N2O浓度1000~10000ppm、空数10000~30000h-1,反应温度为300℃时N2O转化率达到100%,反应温度为230℃时转化率为50%,能够在较低温度下依然保持较好的催化活性。
附图说明
图1a为本发明实施例1制备的前驱体透射电子显微镜照片,图1b、c、d、e分别为实施例1-4前驱体在退火温度300℃、400℃、500℃、600℃时产物的透射电子显微镜照片。
图2中a、b、c、d分别为本发明实施例1-4前驱体在300℃、400℃、500℃、600℃退火温度下催化剂的氮吸附和解吸等温线图。
图3为本发明实施例1-4前驱体在不同退火温度下所得到的催化剂,在N2O含量为0.1%,空速为10000h-1的催化条件下的催化率曲线图。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
实施例1
称取1.18g NiCl2·6H2O和0.4g NaOH分别完全溶解在10mL和30mL去离子水中,将得到的NaOH溶液在搅拌条件下加入NiCl2溶液中,将混合溶液转移至反应釜中密封,置于电子炉中升温至180℃反应10小时,待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体,如附图1a所示,将干燥好的沉淀置于石英管式炉300℃下退火2小时,升温速率为5℃min-1,如附图1b所示,即得多孔NiO纳米薄片催化剂。
取上述催化剂300mg装入连续流动微反应装置8mm石英反应管中,通入N2O和Ar的混合气体进行反应,N2O含量为0.1%,空速为10000h-1,由表1可知其比表面积为192m2g-1,由附图3可知催化温度为300℃时N2O转化率达到100%。
实施施例2
将实施例1中退火温度改为400℃。
采用实施例1评价条件,在上述评价条件下,由附表1得到其比表面积为72m2g-1,由附图3可知催化温度为380℃时N2O转化率达到100%。
实施例3
将实施例1中退火温度改为500℃。
采用实施例1评价条件,在上述评价条件下,由附表1得到其比表面积为33m2g-1,由附图3可知催化温度为420℃时N2O转化率达到100%。
实施例4
将实施例1中退火温度改为600℃。
采用实施例1评价条件,在上述评价条件下,由附表1得到比表面积为18m2g-1,由附图3可知催化温度为480℃时N2O转化率达到100%。
表1本发明所制备前驱体在不同煅烧温度下得到的产物的比表面积、气孔直径和体积
实施例5
称取1.08g NiCl2·6H2O和0.383g NaOH分别完全溶解在10mL和30mL去离子水中,将得到的NaOH溶液在搅拌条件下加入NiCl2溶液中,将混合溶液转移至反应釜中密封,置于电子炉中升温至180℃反应9小时,待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体,将干燥好的沉淀置于石英管式炉320℃下退火2小时,升温速率为5℃min-1,即得多孔NiO纳米薄片催化剂。
实施例6
称取1.28g NiCl2·6H2O和0.417g NaOH分别完全溶解在10mL和30mL去离子水中,将得到的NaOH溶液在搅拌条件下加入NiCl2溶液中,将混合溶液转移至反应釜中密封,置于电子炉中升温至180℃反应11小时,待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体,将干燥好的沉淀置于石英管式炉300℃下退火2小时,升温速率为5℃min-1,即得多孔NiO纳米薄片催化剂。
实施例7
称取1.13g NiCl2·6H2O和0.3915g NaOH分别完全溶解在10mL和30mL去离子水中,将得到的NaOH溶液在搅拌条件下加入NiCl2溶液中,将混合溶液转移至反应釜中密封,置于电子炉中升温至180℃反应10小时,待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体,将干燥好的沉淀置于石英管式炉400℃下退火2小时,升温速率为5℃min-1,即得多孔NiO纳米薄片催化剂。
实施例8
称取1.23g NiCl2·6H2O和0.4085g NaOH分别完全溶解在10mL和30mL去离子水中,将得到的NaOH溶液在搅拌条件下加入NiCl2溶液中,将混合溶液转移至反应釜中密封,置于电子炉中升温至180℃反应10小时,待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60℃干燥,得到前驱体,将干燥好的沉淀置于石英管式炉300℃下退火2小时,升温速率为5℃ min-1,即得多孔NiO纳米薄片催化剂。

Claims (9)

1.一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,包括以下步骤:
(1) 将NiCl2·6H2O完全溶解于去离子水中,获得浓度为0.056~0.066 g/ml的溶液A;
(2) 将NaOH完全溶解于去离子水中,获得浓度为0.013~0.014 g/ml溶液B;
(3) 将上述步骤(2)的溶液B在搅拌条件下加入上述步骤(1)的溶液A中,其中溶液A与溶液B的体积比为1:3,获得混合溶液C;
(4) 将上述步骤(3)的溶液C转移至,反应釜中密封,置于电子炉中升温至180 ℃反应9~ 11 小时;
(5) 待反应完成冷却至室温,抽滤得到绿色沉淀物并用去离子水和无水乙醇清洗数次,置于烘箱中60 ℃干燥,得到前驱体A;
(6) 将上述步骤(5)的前驱体A置于石英管式炉300 ~ 600 ℃下退火2小时,升温速率为5 ℃ min-1,即得多孔NiO纳米薄片催化剂。
2.根据权利要求1所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(1)中称取NiCl2·6H2O的质量为1.13~1.23 g完全溶解于10 mL去离子水中,获得溶液A,步骤(2)中称取NaOH的质量为0.3915 ~ 0.4085g完全溶解于30 mL去离子水中,获得溶液B。
3.根据权利要求1所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(1)中称取NiCl2·6H2O的质量为1.08 ~ 1.18 g完全溶解于10 mL去离子水中,获得溶液A,步骤(2)中称取NaOH的质量为0.383 ~ 0.400 g完全溶解于30 mL去离子水中,获得溶液B。
4.根据权利要求1所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(4)中反应时间为9 ~ 10 小时。
5.根据权利要求1-4任意一项所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(6)中煅烧温度为300 ± 20 ℃。
6.根据权利要求1所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(1)中称取NiCl2·6H2O的质量为1.18 ~ 1.28 g完全溶解于10 mL去离子水中,获得溶液A,步骤(2)中称取NaOH的质量0.400 ~ 0.417 g完全溶解30 于mL去离子水中,获得溶液B。
7.根据权利要求1或5所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(4)中反应时间为10 ~ 11 小时。
8.根据权利要求1或5所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(6)中煅烧温度为400 ~ 500 ℃。
9.根据权利要求1或5所述的一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法,其特征在于,所述步骤(6)中煅烧温度为500 ~ 600 ℃。
CN201810049652.2A 2018-01-18 2018-01-18 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法 Active CN108144616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810049652.2A CN108144616B (zh) 2018-01-18 2018-01-18 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810049652.2A CN108144616B (zh) 2018-01-18 2018-01-18 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108144616A true CN108144616A (zh) 2018-06-12
CN108144616B CN108144616B (zh) 2020-11-06

Family

ID=62461910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810049652.2A Active CN108144616B (zh) 2018-01-18 2018-01-18 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108144616B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537053A (zh) * 2018-11-21 2019-03-29 湖南大学 一种超薄单晶NiCl2纳米片及其制备方法和应用
CN110560144A (zh) * 2019-09-25 2019-12-13 西南石油大学 一种耐湿的臭氧去除催化剂的制备方法及应用
EP3909911A1 (en) * 2020-05-15 2021-11-17 Universität Konstanz Universal green synthesis of two-dimensional nanomaterials with great performance for oxygen evolution reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124504A (ja) * 1984-11-19 1986-06-12 Sanyo Electric Co Ltd アルカリ蓄電池の極板用焼結基板の製造方法
CN101704558A (zh) * 2009-11-19 2010-05-12 北京航空航天大学 均匀、中孔结构的氧化镍纳米薄片的制备方法
KR20100096389A (ko) * 2009-02-24 2010-09-02 한양대학교 산학협력단 Nio-ysz 박막의 제조방법
CN102126762A (zh) * 2011-04-28 2011-07-20 北京化工大学 表面形貌可控的NiO纳米花状微球的制备方法
CN102757101A (zh) * 2012-02-22 2012-10-31 太原理工大学 一种大比表面积多孔氧化镍微球的制备方法
CN107376921A (zh) * 2017-09-01 2017-11-24 中国科学院上海硅酸盐研究所苏州研究院 一种废水深度处理用石墨烯‑多孔氧化镍复合催化剂及其制备方法和应用
CN107497436A (zh) * 2017-09-11 2017-12-22 北京化工大学 催化N2O直接分解的NiO空心球催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124504A (ja) * 1984-11-19 1986-06-12 Sanyo Electric Co Ltd アルカリ蓄電池の極板用焼結基板の製造方法
KR20100096389A (ko) * 2009-02-24 2010-09-02 한양대학교 산학협력단 Nio-ysz 박막의 제조방법
CN101704558A (zh) * 2009-11-19 2010-05-12 北京航空航天大学 均匀、中孔结构的氧化镍纳米薄片的制备方法
CN102126762A (zh) * 2011-04-28 2011-07-20 北京化工大学 表面形貌可控的NiO纳米花状微球的制备方法
CN102757101A (zh) * 2012-02-22 2012-10-31 太原理工大学 一种大比表面积多孔氧化镍微球的制备方法
CN107376921A (zh) * 2017-09-01 2017-11-24 中国科学院上海硅酸盐研究所苏州研究院 一种废水深度处理用石墨烯‑多孔氧化镍复合催化剂及其制备方法和应用
CN107497436A (zh) * 2017-09-11 2017-12-22 北京化工大学 催化N2O直接分解的NiO空心球催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BING ZHAO ET AL.: ""Hydrothermal method to prepare porous NiO nanosheet"", 《MATERIALS LETTERS》 *
张建英等: ""NiO纳米片和多孔纳米片自组装的空心微球的无模板水热法制备与磁学性质"", 《化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109537053A (zh) * 2018-11-21 2019-03-29 湖南大学 一种超薄单晶NiCl2纳米片及其制备方法和应用
CN109537053B (zh) * 2018-11-21 2020-04-17 湖南大学 一种超薄单晶NiCl2纳米片及其制备方法和应用
CN110560144A (zh) * 2019-09-25 2019-12-13 西南石油大学 一种耐湿的臭氧去除催化剂的制备方法及应用
EP3909911A1 (en) * 2020-05-15 2021-11-17 Universität Konstanz Universal green synthesis of two-dimensional nanomaterials with great performance for oxygen evolution reaction

Also Published As

Publication number Publication date
CN108144616B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN109603883A (zh) 一种可高效活化过硫酸盐的氮掺杂多孔碳多面体@纳米磷化钴复合催化剂及其制备方法
US11306403B2 (en) Copper-palladium-loaded mesoporous silicon carbide-based catalyst, preparation method and application thereof
CN108144616A (zh) 一种低温催化分解N2O的多孔NiO纳米薄片催化剂的制备方法
CN112337461B (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN111905714A (zh) 一种低温等离子体辅助制备用于VOCs催化燃烧尖晶石型催化剂的方法
CN113171779B (zh) 一种b位五元高熵钙钛矿催化剂的制备方法与应用
CN110280250B (zh) 一种沸石咪唑骨架材料衍生金属氧化物的制备方法及其应用
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN113385185A (zh) 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用
CN111905718A (zh) 一种等离子体辅助制备钙钛矿型甲烷燃烧催化剂的方法
CN113070091A (zh) 氮化碳铁铜双金属氧化物复合材料及其制备方法和应用
CN112221513A (zh) 二氧化锰/钴酸镍@泡沫镍核壳异质催化剂的制备方法
CN109364924B (zh) 一种磁性纳米臭氧催化剂CoFe2O4及其制备方法与应用
Yang et al. Preparation of LaSrCoO4 mixed oxides and their catalytic properties in the oxidation of CO and C3H8
CN111450823A (zh) 一种降解NO的复合催化剂GQD/Bi2WO6及其制备方法
CN106540719A (zh) 铋系氧化物负载多过渡金属复合氢氧化物可见光光催化材料及其制备方法
CN114100633B (zh) 用于可见光催化分解硫化氢制氢的催化剂及其制备方法
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN112844375B (zh) 脱除氮氧化物的MnO2/Bi2WO6异质结光催化剂及其制备方法
CN111974409B (zh) 一种片状多孔锰掺杂氧化镍催化剂、制备方法及其应用
WO2022126843A1 (zh) 三元 NiO 纳米片 @ 双金属 CeCuOx 微片核壳结构复合材料及其制备与应用
CN103908968B (zh) 由镨锆镍铁铜氧化物组成的制氢催化剂及其制备方法
CN115041170B (zh) 一种超薄的二维钴酸盐纳米片催化剂及制备方法
CN114477298B (zh) 一种复合氧化物及其制备方法和应用
CN114011419B (zh) 一种抗烧结VOCs燃烧催化剂的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant