CN113385185A - 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用 - Google Patents

一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113385185A
CN113385185A CN202110752199.3A CN202110752199A CN113385185A CN 113385185 A CN113385185 A CN 113385185A CN 202110752199 A CN202110752199 A CN 202110752199A CN 113385185 A CN113385185 A CN 113385185A
Authority
CN
China
Prior art keywords
photo
catalyst
perovskite
thermal catalyst
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110752199.3A
Other languages
English (en)
Inventor
赵喆
陈琳琳
田金旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202110752199.3A priority Critical patent/CN113385185A/zh
Publication of CN113385185A publication Critical patent/CN113385185A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/159Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with reducing agents other than hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法与应用。本发明的光热催化剂的化学组成表达式为LaMn0.5N0.5O3‑δ,其中N为Co,Cu,Fe或Ni。本发明利用溶胶凝胶法进行制备,该方法能获得颗粒细,纯度高,催化活性好的纳米粉体,所得的光热催化剂的比表面积在10.72~18.40m2/g。本发明的光热催化剂应用于150~350℃可见光条件下的光热催化还原二氧化碳体系中,CO2可被高效的催化还原成10~100μmol的甲烷和1~80μmol的甲醇,并且具有60‑99%的产物选择性,验证了本发明制备的光热催化剂具有较高的光热还原效率和选择性。

Description

一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法 和应用
技术领域
本发明涉及一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用,属于光催化还原技术领域。
背景技术
目前,使用化石燃料在燃烧过程中会向大气中排放大量的二氧化碳,二氧化碳做为温室气体的主要来源,使得全球气温持续升高,大量的二氧化碳排放到大气中会导致海平面上升,进而导致沿海洪灾。因此,将CO2转化为其他有用的化学物质,在生态和经济上都是有益的。在通常的方法中,光催化是首选,因为光催化仅需要太阳辐射作为能源,并且已被证明在各种应用中有效,在光催化剂的作用下将CO2进行转化,这不仅解决了CO2在大气中浓度过高的问题,而且可以得到更有意义的清洁能源。光催化剂材料的选择至关重要,氧化钛(TiO2)等金属氧化物以其优异的稳定性及电荷转移潜力性好的属性而被广泛应用。但是,这些光催化剂都属于宽带隙的氧化物,电子与空穴复合较快,来不及与表面的反应物发生反应,催化效率低不利于催化活性。
随着光催化技术的研究深入,通式为ABO3的钙钛矿型光催化剂由于具有较高的晶格畸变,较窄的带隙,电荷载流子的分离效果更好等特点引起了人们的广泛关注。但是钙钛矿氧化物型的光催化剂对产物的选择性并不是很高,从催化活性的角度考虑,A位离子的作用本质上不直接参与反应,起稳定结构的作用,B位是催化活性中心,所以合理的选择B位元素有利于提高光热催化活性,并可以增加催化选择性。
发明内容
本发明解决的技术问题是:如何提高光热催化剂的催化效率和选择性等问题。
为了解决上述技术问题,本发明提供了一种高活性、可选择性的钙钛矿型光热催化剂,其化学组成表达式为LaMn0.5N0.5O3-δ,其中N为Co,Cu,Fe和Ni中的任意一种元素。
本发明还提供了上述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,包括如下步骤:
步骤1:按2:1:1的摩尔比将La(NO3)3·6H2O、Mn(NO3)3·4H2O与N的硝酸盐溶于去离子水中;
步骤2:加入柠檬酸一水合物,加热搅拌至凝胶状;
步骤3:经烘箱烘干后,取出用研磨成粉状;
步骤4:放入马弗炉中空气气氛下煅烧并保温后取出研磨成粉,即得高活性、可选择性的钙钛矿型光热催化剂。
优选地,所述步骤1中的硝酸盐为硝酸钴、硝酸镍、硝酸铁和硝酸铜中的一种或其水合物。
优选地,所述步骤2中柠檬酸一水合物加入的摩尔量为硝酸盐的1.2倍。
优选地,所述步骤2中加热搅拌的温度为60~120℃,时间为2~8h。
优选地,所述步骤4中煅烧的温度为500~1000℃,保温时间为6~10h,所述煅烧的过程中的升温速率为5~10℃/min。
本发明还提供了上述的高活性、可选择性的钙钛矿型光热催化剂在光催化领域中的应用。
优选地,所述应用包括在光催化还原CO2中的应用。
优选地,所述的光催化还原CO2的应用中,采用水作为还原剂,其中,光热催化剂LaMn0.5N0.5O3-δ与CO2和水的比例为0.1~1g:100~500mL:0.1~1mL。
优选地,所述的光催化还原CO2的条件为:在150~350℃条件下采用可见光照射。
本发明与现有技术相比,具有如下有益效果:
1.本发明采用溶胶凝胶法制备光热催化剂,该方法容易获得颗粒细、纯度高的纳米粉体,且在过程中,不用机械混合因此不易引进杂质;此外,反应可以在低温下进行,避免了高温对反应容器的污染等问题,在纳米材料的掺杂过程中,可以使得可溶性微量掺杂组分分布均匀,不会发生分离和偏析,因此,制得的钙钛矿型光热催化剂的粉体颗粒较细,呈黑色粉末状,对可见光有较强的响应能力,且粉末化学活性高;
2.本发明制备的光热催化剂均属于四电子反应路径,因此,光热催化活性好,在150~350℃光热耦合条件下0.1~1g催化剂材料与H2O蒸汽还原CO2得到60~99%的CH4和10~75%的CH3OH。
附图说明
图1为实施例1~4制备所得的光热催化剂的X射线衍射(XRD)曲线图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种高活性、可选择性的LaMn0.5Ni0.5O3-δ光热催化剂的制备方法,包括以下步骤:
步骤S1:将0.03mol的La(NO3)3·6H2O、0.015mol的Mn(NO3)3·4H2O和0.015mol的Ni(NO3)3·6H2O混合,加入到60mL去离子水中;
步骤S2:再依据硝酸盐与柠檬酸的总量1:1.2的摩尔比,将0.072mol的一水合柠檬酸加入混合均匀;
步骤S3:将混合溶液在80℃水浴条件下加热搅拌直到形成溶胶;
步骤S4:转移到烘箱中保持170℃烘干,取出用研钵研磨成粉状;
步骤S5:在700℃的煅烧温度下保温7h,取出研磨后得到钙钛矿型的纳米粉体。
实施例2
一种高活性、可选择性的LaMn0.5Co0.5O3-δ光热催化剂的制备方法,包括以下步骤:
步骤S1:将0.03mol的La(NO3)3·6H2O、0.015mol的Mn(NO3)3·4H2O和0.015mol的Co(NO3)3·6H2O混合,加入到60mL去离子水中;
步骤S2:再依据硝酸盐与柠檬酸的总量1:1.2的摩尔比,将0.072mol的一水合柠檬酸加入混合均匀后;
步骤S3:将混合溶液在80℃水浴条件下加热搅拌直到形成溶胶;
步骤S4:转移到烘箱中保持170℃烘干,取出用研钵研磨成粉状;
步骤S5:在700℃的煅烧温度下保温7h,取出后得到钙钛矿型的纳米粉体。
实施例3
一种高活性、可选择性的LaMn0.5Cu0.5O3-δ光热催化剂的制备方法,包括以下步骤:
步骤S1:将0.03mol的La(NO3)3·6H2O、0.015mol的Mn(NO3)3·4H2O和0.015mol的Cu(NO3)2·3H2O混合混合,加入到60mL去离子水中;
步骤S2:再依据硝酸盐与柠檬酸的总量1:1.2的摩尔比,将0.072mol的一水合柠檬酸加入混合均匀后;
步骤S3:在80℃水浴条件下加热搅拌直到形成溶胶;
步骤S4:转移到烘箱中保持170℃烘干,取出用研钵研磨成粉状;
步骤S5:在700℃的煅烧温度下保温7h,取出后得到钙钛矿型的纳米粉体。
实施例4
一种高活性、可选择性的LaMn0.5Fe0.5O3-δ光热催化剂的制备方法,包括以下步骤:
步骤S1:La(NO3)3·6H2O、0.015mol的Mn(NO3)3·4H2O和0.015mol的Fe(NO3)3·9H2O混合,加入到60ml去离子水中;
步骤S2:再依据硝酸盐与柠檬酸的总量1:1.2的摩尔比,将0.072mol的一水合柠檬酸加入混合均匀后;
步骤S3:将混合溶液在80℃水浴条件下加热搅拌直到形成溶胶;
步骤S4:转移到烘箱中保持170℃烘干,取出用研钵研磨成粉状;
步骤S5:在700℃的煅烧温度下保温7h,取出后得到钙钛矿型的纳米粉体。
实施例1~4所制备的光热催化剂的XRD测试结果如图1所示,由图1可以看出利用溶胶凝胶法所合成的样品均为纯相没有杂相的衍射峰出现,且峰型较为尖锐,结晶度较好,表明LaMn0.5Ni0.5O3-δ、LaMn0.5Co0.5O3-δ、LaMn0.5Cu0.5O3-δ和LaMn0.5Fe0.5O3-δ四个样品成功合成。
经测试,实施例1~4所制备的光热催化剂的比表面积在10.72~18.40m2/g。
应用实施例1
实施例1~4制备所得的LaMn0.5N0.5O3-δ(N=Ni、Co、Cu和Fe)光热催化剂在催化还原CO2中的应用:
步骤S1:取0.1~1g的LaMn0.5N0.5O3-δ光催化剂置于210mL的CO2光热催化反应器中;
步骤S2:用真空泵将反应器内的空气抽至真空环境;
步骤S3:然后将CO2(99.999wt%)充盈反应器5min;
步骤S4:当系统温度升到120℃时,注入去离子水(0.3mL),加热至150~350℃反应1h,每间隔一小时采集样品,取0.5mL注入气相色谱仪中测试光催化性能。(在可见光照射下,通过石英反应器周围的加热套来控制温度,整个催化反应在150~350℃以及可见光下进行。)
其中,实施例1制备得到的LaMn0.5Ni0.5O3-δ光热催化剂用于上述的光催化还原CO2中,在反应1~6h后可得到50~100μmol的甲烷,1~10μmol甲醇。对产物甲烷的选择性达到80~99%。
实施例2制备得到的LaMn0.5Co0.5O3-δ光热催化剂用于上述的光催化还原CO2中,在反应1~6h后可得到30~70μmol的甲烷,10~20μmol甲醇。对产物甲烷的选择性达到70~90%。
实施例3制备得到的LaMn0.5Cu0.5O3-δ光热催化剂用于上述的光催化还原CO2中,在反应1~6h后可得到20~40μmol的甲烷,60~80μmol甲醇。对产物甲醇的选择性达到60~80%。
实施例4制备得到的LaMn0.5Fe0.5O3-δ光热催化剂用于上述的光催化还原CO2中,在反应1~6h后可得到10~20μmol的甲烷,1~10μmol甲醇。对产物甲烷的选择性达到60~90%。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (10)

1.一种高活性、可选择性的钙钛矿型光热催化剂,其特征在于,其化学组成表达式为LaMn0.5N0.5O3-δ,其中N为Co,Cu,Fe和Ni中的任意一种元素。
2.权利要求1所述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,其特征在于,包括如下步骤:
步骤1:按2:1:1的摩尔比将La(NO3)3·6H2O、Mn(NO3)3·4H2O与N的硝酸盐溶于去离子水中;
步骤2:加入柠檬酸一水合物,加热搅拌至凝胶状;
步骤3:经烘箱烘干后,取出用研磨成粉状;
步骤4:放入马弗炉中空气气氛下煅烧并保温后取出研磨成粉,即得高活性、可选择性的钙钛矿型光热催化剂。
3.如权利要求2所述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,其特征在于,所述步骤1中的硝酸盐为硝酸钴、硝酸镍、硝酸铁和硝酸铜中的一种或其水合物。
4.如权利要求2所述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,其特征在于,所述步骤2中柠檬酸一水合物加入的摩尔量为硝酸盐的1.2倍。
5.如权利要求2所述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,其特征在于,所述步骤2中加热搅拌的温度为60~120℃,时间为2~8h。
6.如权利要求2所述的高活性、可选择性的钙钛矿型光热催化剂的制备方法,其特征在于,所述步骤4中煅烧的温度为500~1000℃,保温时间为6~10h,所述煅烧的过程中的升温速率为5~10℃/min。
7.权利要求1所述的高活性、可选择性的钙钛矿型光热催化剂在光催化领域中的应用。
8.如权利要求7所述的应用,其特征在于,所述应用包括在光催化还原CO2中的应用。
9.如权利要求8所述的应用,其特征在于,所述的光催化还原CO2的应用中,采用水作为还原剂,其中,光热催化剂LaMn0.5N0.5O3-δ与CO2和水的比例为0.1~1g:100~500mL:0.1~1mL。
10.如权利要求9所述的应用,其特征在于,所述的光催化还原CO2的条件为:在150~350℃条件下采用可见光照射。
CN202110752199.3A 2021-07-02 2021-07-02 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用 Pending CN113385185A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110752199.3A CN113385185A (zh) 2021-07-02 2021-07-02 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110752199.3A CN113385185A (zh) 2021-07-02 2021-07-02 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113385185A true CN113385185A (zh) 2021-09-14

Family

ID=77624980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110752199.3A Pending CN113385185A (zh) 2021-07-02 2021-07-02 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113385185A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029061A (zh) * 2021-11-22 2022-02-11 北京化工大学 一种双金属高效催化剂、制备方法以及甲烷-二氧化碳共转化制备乙醇/乙醛的方法
CN114351184A (zh) * 2022-01-17 2022-04-15 五邑大学 一种钙钛矿型复合催化剂及其制备方法与应用
CN114570381A (zh) * 2022-03-14 2022-06-03 天津大学 基于钙钛矿前体原位还原的光热催化剂及制备方法和应用
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用
CN115090282A (zh) * 2022-07-06 2022-09-23 贵州民族大学 一种能带结构可调的LaBxMn1-xO3光催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584987A (zh) * 2009-06-24 2009-11-25 中北大学 磁性光催化剂制备及用于吸附和光催化降解染料废水
CN103112900A (zh) * 2013-03-06 2013-05-22 广西大学 纳米复合氧化物La1-xBixCuyMn1-yO3及其制备方法和应用
CN103212363A (zh) * 2012-01-20 2013-07-24 中北大学 磁性La1-χBaχFe0.9Mn0.103-δ(χ=0.1-0.3)的制备及光催化降解间甲酚废水
US20140145116A1 (en) * 2012-11-27 2014-05-29 Korea Institute Of Science And Technology Iron-modified ni-based perovskite-type catalyst, preparing method thereof, and producing method of synthesis gas from combined steam co2 reforming of methane using the same
CN109888315A (zh) * 2019-03-21 2019-06-14 深圳先进技术研究院 一种提升b位掺杂型钙钛矿催化剂电化学性能的处理方法
CN111167463A (zh) * 2020-01-20 2020-05-19 上海应用技术大学 一种Co掺杂BZCYO光催化剂、制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584987A (zh) * 2009-06-24 2009-11-25 中北大学 磁性光催化剂制备及用于吸附和光催化降解染料废水
CN103212363A (zh) * 2012-01-20 2013-07-24 中北大学 磁性La1-χBaχFe0.9Mn0.103-δ(χ=0.1-0.3)的制备及光催化降解间甲酚废水
US20140145116A1 (en) * 2012-11-27 2014-05-29 Korea Institute Of Science And Technology Iron-modified ni-based perovskite-type catalyst, preparing method thereof, and producing method of synthesis gas from combined steam co2 reforming of methane using the same
CN103112900A (zh) * 2013-03-06 2013-05-22 广西大学 纳米复合氧化物La1-xBixCuyMn1-yO3及其制备方法和应用
CN109888315A (zh) * 2019-03-21 2019-06-14 深圳先进技术研究院 一种提升b位掺杂型钙钛矿催化剂电化学性能的处理方法
CN111167463A (zh) * 2020-01-20 2020-05-19 上海应用技术大学 一种Co掺杂BZCYO光催化剂、制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑冬梅: "基于钙钛矿材料eg轨道电子理论的光催化还原CO2研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029061A (zh) * 2021-11-22 2022-02-11 北京化工大学 一种双金属高效催化剂、制备方法以及甲烷-二氧化碳共转化制备乙醇/乙醛的方法
CN114029061B (zh) * 2021-11-22 2023-10-20 北京化工大学 一种双金属高效催化剂、制备方法以及甲烷-二氧化碳共转化制备乙醇/乙醛的方法
CN114351184A (zh) * 2022-01-17 2022-04-15 五邑大学 一种钙钛矿型复合催化剂及其制备方法与应用
CN114570381A (zh) * 2022-03-14 2022-06-03 天津大学 基于钙钛矿前体原位还原的光热催化剂及制备方法和应用
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用
CN115090282A (zh) * 2022-07-06 2022-09-23 贵州民族大学 一种能带结构可调的LaBxMn1-xO3光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN113385185A (zh) 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用
CN111545192B (zh) 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN109772465B (zh) 一种水溶性碳点改性钙钛矿型催化材料的制备方法
CN112076738B (zh) 一种硼掺杂缺陷型氧化锌及其制备方法和应用
CN112058270B (zh) 一种片状La0.8Sr0.2CoO3钙钛矿型催化剂的原位合成方法及其应用
CN107983387B (zh) 一种氮化碳/硒酸铋复合材料的制备方法与应用
CN101564690A (zh) 一种类钙钛矿La2NiO4制备方法及应用
CN113289653A (zh) 一种负载金属单原子的g-C3N4光催化剂的制备方法
CN114588912B (zh) 一种适用于甲烷干重整的碱金属掺杂钙钛矿型催化剂制备方法及应用
CN111905718A (zh) 一种等离子体辅助制备钙钛矿型甲烷燃烧催化剂的方法
CN113000059A (zh) 一种用于甲烷二氧化碳干重整的镍基催化剂及其制备方法和应用
CN111135834A (zh) LaNixCo1-xO3型La系钙钛矿光热协同降解甲苯
CN113731401B (zh) 一种La1-xMn1+xO3的制备方法
CN107413340B (zh) 一种甲烷水重整制氢用催化剂及其制备方法
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
CN113368861A (zh) 一种二氧化碳加氢合成甲醇催化剂及其制备方法与应用
CN113134352A (zh) 一种催化氮氧化物直接分解的复合金属氧化物催化剂及其制备方法
CN111450823A (zh) 一种降解NO的复合催化剂GQD/Bi2WO6及其制备方法
CN103212419A (zh) 一种用于含丙烯腈废气处理的催化剂制备方法及应用
US20230241590A1 (en) Ernary composite material having nio nanosheet/bimetallic cecuox microsheet core-shell structure, and preparation and application thereof
CN111686729B (zh) 一种钙钛矿型二氧化碳电还原催化剂及其制备方法
CN114100633B (zh) 用于可见光催化分解硫化氢制氢的催化剂及其制备方法
CN113522293A (zh) 一种甲烷二氧化碳干重整制氢催化剂的制备方法和应用
CN107482229B (zh) 一种无表面活性剂制备CeO2/C纳米网的方法
CN110961136A (zh) 一种三维可连续结构的Fe3N包覆的FeNCN复合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210914