CN108129138B - TiO2衰减瓷及其制备方法 - Google Patents

TiO2衰减瓷及其制备方法 Download PDF

Info

Publication number
CN108129138B
CN108129138B CN201711345906.7A CN201711345906A CN108129138B CN 108129138 B CN108129138 B CN 108129138B CN 201711345906 A CN201711345906 A CN 201711345906A CN 108129138 B CN108129138 B CN 108129138B
Authority
CN
China
Prior art keywords
porcelain
attenuation
tio
sintering
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711345906.7A
Other languages
English (en)
Other versions
CN108129138A (zh
Inventor
董笑瑜
梁田
杨磊
刘洋
任重
邹建军
于欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Sanle Group Co ltd
Original Assignee
Nanjing Sanle Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Sanle Group Co ltd filed Critical Nanjing Sanle Group Co ltd
Priority to CN201711345906.7A priority Critical patent/CN108129138B/zh
Publication of CN108129138A publication Critical patent/CN108129138A/zh
Application granted granted Critical
Publication of CN108129138B publication Critical patent/CN108129138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种TiO2衰减瓷及其制备方法,它由Al2O3、TiO2、SiO2和MnO、MgO制成。本发明所述的TiO2衰减瓷,各组分配比科学合理,具有致密性高,孔隙率低,强度高,热导率较高,衰减量大、经900℃后衰减值稳定等性能。本发明所述的TiO2衰减瓷的制备方法,通过大量实验筛选出最佳的配方、热压烧结成型工艺、金属化工艺及焊接工艺和镀层烧结等工艺,制备得到的TiO2衰减瓷性能稳定,适用范围广泛,可用于速调管、毫米波行波管以及磁控管等微波电子真空器件。

Description

TiO2衰减瓷及其制备方法
技术领域
本发明涉及一种TiO2衰减瓷及其制备方法。
背景技术
TiO2衰减瓷主要应用的管型有速调管、磁控管、毫米波行波管等。在速调管中,一般将 TiO2衰减瓷焊接在谐振腔内,通过吸收微波,降低谐振腔的品质因素Q,从而实现工作频带的展宽。从TiO2衰减瓷的工艺制备流程来看,一般采用干压或等静压成型,在氢气氛围中进行烧结,但对TiO2衰减瓷的金属化及与无氧铜腔体焊接的方法报道较少。TiO2衰减瓷除了本身的性能以及满足管子在使用频率范围内的匹配特性以外,还必须实现与无氧铜的牢固焊接,并且能够在各种环境试验考核下,衰减瓷不出现脱落、衰减性能变化等现象。
发明内容
发明目的:本发明的目的是为了提升现有制备技术,提供一种组分配比科学合理,具有高密度、气孔率低的特性,采用的金属化及封接技术能实现与无氧铜的牢固焊接,不会出现脱落、衰减性能变化的的微波衰减材料,实现封接后耐热冲击性能强,且具有优异的耐高、低温性能,衰减瓷不发生脱落,衰减性能不发生改变的TiO2衰减瓷。本发明另一个目的是提供TiO2衰减瓷的制备方法。
技术方案:为了实现以上目的,本发明采取的技术方案为:
一种TiO2衰减瓷,它由下列原料制成:
Al2O3、TiO2、SiO2、MnO、MgO。
作为优选方案,以上所述的TiO2衰减瓷,它由下列重量份数的原料制成:
Al2O365~85份、TiO212~20份、SiO21~3份、MnO 2~5份,MgO 1~3份。
作为优选方案,以上所述的TiO2衰减瓷,所述的Al2O3粒径为5~10μm,TiO2的粒径为 10~15μm,SiO2的粒径为1~2μm、MnO的粒径为2~5μm、MgO的粒径为2~4μm。
本发明所述的TiO2衰减瓷的制备方法,其包括以下步骤:
a、将Al2O3粉末、TiO2粉末、SiO2粉末、MnO粉末、MgO粉末按一定比例混合,在行星球磨机上球磨;
b、装模、热压烧结成型:
将步骤a球磨混合后的粉末装入石墨模具中,并进行预压制,再将石墨模具置于热压烧结炉内,烧结温度为1350~1450℃,保温30~45min,施加的压力为25~30MPa;
c、机械加工
将烧结的衰减瓷,加工成长宽高17×8×1毫米或长宽高34×10×1毫米等需求的尺寸;
d、清洗
将衰减瓷置于丙酮溶液中超声15~30min,用刷子沾去污粉后刷若干遍,再将衰减瓷置于去离子水中煮沸,保持10~15min,最后用酒精脱水后烘干备用;
e、烧氢净化
在卧式烧氢炉中600~650℃,保温10~15min烧氢处理,然后冷却至室温;
f、TiO2衰减瓷的膏剂配制及金属化层的印刷
将Mo粉末,MnO粉末,刚玉微粉、CaCO3按比例混合,并加入粘结剂,在行星球磨机上球磨,制得金属化膏剂;
采用丝网印刷机在TiO2衰减瓷的一面分1~3次印刷厚度为35~40μm的金属化层;
g、金属化层的烧结
在卧式氢炉中1100~1200℃,保温15~20min烧结处理,氢气露点为-60°;
h、电镀镍
将烧结后的TiO2衰减瓷进行电镀镍处理,镍层厚度控制在5~7μm;
i、镀层烧结
电镀结束后,在卧式氢炉中800~900℃,保温15~20min进行镀层烧结处理,氢气露点为 -60°;
j、Q值的测试
将TiO2衰减瓷置于腔体中,用上模具固定住TiO2衰减瓷使其不能发生移动,用连接矢量网络分析仪的探针伸入腔体,在谐振点查看Q值;
k、衰减瓷与腔体的钎焊
采用Q值合格的TiO2衰减瓷,用AgCu28焊料将其焊接至腔体,再次测试Q值,取Q值合格的TiO2衰减瓷,既得。
作为优选方案,以上所述的TiO2衰减瓷的制备方法,步骤a将Al2O365~85份、TiO212~ 20份、SiO21~3份、MnO2~5份,MgO 1~3份混合,在行星球磨机上以180r/min的转速球磨8h。
作为优选方案,以上所述的TiO2衰减瓷的制备方法,将步骤b混合后的粉末装入石墨模具中,并进行预压制,再将石墨模具置于热压烧结炉内,烧结温度为1350~1380℃,保温 45min,施加的压力为30MPa。
作为优选方案,以上所述的TiO2衰减瓷的制备方法,步骤e烧氢净化,在卧式烧氢炉中 650℃,保温15min烧氢处理,然后冷却至室温。
作为优选方案,以上所述的TiO2衰减瓷的制备方法,步骤f中将Mo粉50~65份,MnO16~20份、刚玉微粉10~15份和CaCO31~5份混合,并加入粘结剂醋酸丁酯和硝棉溶液,在行星球磨机上以180r/min的转速球磨12h,制得金属化膏剂;更加优选Mo粉65份,MnO20 份、刚玉微粉12份、CaCO33份。
在TiO2衰减瓷的一面涂覆厚度为30~50μm的金属化膏剂(更加优选40μm),然后在氢炉中烧结1200℃,保温15min,氢气露点为-60°,使TiO2衰减瓷一面金属化。
步骤i中镀层烧结:电镀结束后,在卧式氢炉中850~900℃,保温15~20min进行镀层烧结处理,氢气露点为-60°。
作为优选方案,以上所述的TiO2衰减瓷的制备方法,步骤k制备得到的TiO2衰减瓷的体积密度:≥3.8g/cm3;气孔率:≤0.01%;热导率:≥2.8W/m.K;金属化封接强度≥55Mpa。(封接强度的测试如图3所示)。
一、本发明TiO2衰减瓷的原料筛选实验:
(1)本发明通过筛选不同的原料组成,来优选出性能最佳的TiO2衰减瓷,筛选实验如下表所示:
Figure BDA0001509334010000031
通过选择不同的原料组合,最终优选的最佳原料组成为:Al2O3、TiO2、SiO2、MnO和MgO。
(2)衰减瓷配方设计。在配方设计的过程中,要全面考虑多个指标如衰减量、致密性之间的关联。配方的最终确定通过指标对比实现。本发明通过大量实验筛选不同原料组成,具体筛选实验如表1所示。这是本发明创新点。
谐振腔的Q值测定结果:
表1不同TiO2含量的衰减瓷对应的Q值
序号 氧化铝/g 二氧化钛/g 二氧化硅/g 一氧化锰/g 一氧化镁/g Q值
1 73 21 3 2 1 600
2 75 19 3 2 1 350
3 80 8 3 2 1 220
由表1可以看出,TiO2含量为19%左右时,最优的Q值为350,具有较优的性能。
(3)热压烧结工艺曲线的确定,本发明通过大量实验筛选烧结保温温度、保温时间、升温速率、热压压力及保压时间等参数,具体试验结果如表2:
表2热压烧结工艺筛选实验结果
Figure BDA0001509334010000041
根据以上筛选试验结果,本发明优选的最佳热压烧结工艺为:烧结温度为1380℃,保温 45min,施加的压力为30MPa。
(4)步骤f中TiO2衰减瓷的膏剂配方的设计与相关工艺参数如涂覆厚度、露点、烧结温度及烧结时间的筛选实验。该步骤中必须避免由于烧结温度过高而造成衰减瓷变形,并且还要兼顾封接强度、电镀等因素。
具体筛选实验如表3所示:
Figure BDA0001509334010000042
Figure BDA0001509334010000051
由以上表3筛选实验结果表明,TiO2衰减瓷的膏剂配方为Mo粉65份,MnO20份、刚玉微粉12份、CaCO33份时,涂覆厚度为40μm的金属化膏剂,然后在氢炉中烧结1200℃,保温15min,氢气露点为-60°,使TiO2衰减瓷一面金属化,具有最优的封接强度。
有益效果:本发明提供的TiO2衰减瓷及其制备方法与现有技术相比具有以下优点:
1、本发明所述的TiO2衰减瓷,经过大量实验筛选各组份及重量份数,实验研究表明,各组分配比科学合理,所制备得到的微波衰减材料致密性高,孔隙率低,强度高,热导率高,经高温处理,介电性能稳定可靠,且能与无氧铜实现牢固焊接,应用范围广泛。
2、本发明所述的TiO2衰减瓷的制备方法,可操作性强,工艺设计合理,尤其是通过大量实验筛选出最佳的专用模具预压成型工艺,热压烧结成型工艺和金属化工艺和Mo-Mn法+ 电镀Ni,镀层烧结等工艺,制备得到的TiO2衰减瓷性能优,适用范围广泛。
附图说明
图1为本发明TiO2衰减瓷的制备过程中模具装配的结构示意图。
图2为本发明TiO2衰减瓷的制备工艺流程图。
图3为本发明TiO2衰减瓷封接强度测试件的结构示意图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
1、一种TiO2衰减瓷,它由下列重量份数的原料制成:
Al2O375份、TiO219份、SiO23份、MnO 2份,MgO 1份。
所述的Al2O3粒径为5~10μm,TiO2的粒径为10~15μm,SiO2的粒径为1~2μm、MnO的粒径为2~5μm、MgO的粒径为2~4μm。
2、本发明所述的TiO2衰减瓷的制备方法,其包括以下步骤:流程如图2所示;
a、将Al2O375份、TiO219份、SiO23份、MnO 2份,MgO 1份混合,在行星球磨机上以180r/min的转速球磨8h;
b、装模、热压烧结成型:
将步骤a球磨混合后的粉末1装入石墨模具中,如图1所示,并进行预压制,再将石墨模具置于热压烧结炉内,烧结温度为1380℃,保温45min,施加的压力为30MPa;
c、机械加工
将烧结的衰减瓷,加工成长宽高17×8×1毫米;
d、清洗
将衰减瓷置于丙酮溶液中超声30min,用刷子沾去污粉后刷3遍,再将衰减瓷置于去离子水中煮沸,保持15min,最后用酒精脱水后烘干备用;
e、烧氢净化
在卧式烧氢炉中650℃,保温15min烧氢处理,然后冷却至室温;
f、TiO2衰减瓷的膏剂配制及金属化层的印刷
将Mo粉65份,MnO 20份、刚玉微粉12份、CaCO33份,混合,并加入粘结剂醋酸丁酯和硝棉溶液,在行星球磨机上以180r/min的转速球磨12h,制得金属化膏剂;
采用丝网印刷机在TiO2衰减瓷的一面分3次印刷厚度为40μm的金属化层;
g、金属化层的烧结
在卧式氢炉中1200℃,保温15min烧结处理,氢气露点为-60°;
h、电镀镍
将烧结后的TiO2衰减瓷进行电镀镍处理,镍层厚度控制在6μm;
i、镀层烧结
电镀结束后,在卧式氢炉中850℃,保温20min进行镀层烧结处理,氢气露点为-60°;
j、Q值的测试
将TiO2衰减瓷置于腔体中,用上模具固定住TiO2衰减瓷使其不能发生移动,用连接矢量网络分析仪的探针伸入腔体,在谐振点查看Q值;
k、衰减瓷与腔体的钎焊
采用Q值合格的TiO2衰减瓷,用AgCu28焊料将其焊接至腔体,再次测试Q值,取Q值合格的TiO2衰减瓷,既得。
3、将上述2制备得到的TiO2衰减瓷进行性能检测,检测结果如下:
1)体积密度:≥3.9g/cm3;
2)气孔率:≤0.01%;
3)热导率:≥2.8W/m.K;
4)金属化后,衰减瓷片不出现显著变形现象,平面度优于±0.15mm;
5)建立封接强度的考核标准,初步设定为抗拉强度≥50Mpa。
4、将上述2制备得到的TiO2衰减瓷进行性能检测,检测结果如下:
1)耐热冲击性能:试验条件为650℃至室温,反复6次,衰减瓷不发生脱落,衰减性能不发生改变;
2)耐热烘烤试验:试验条件为在550℃下烘烤35h,衰减瓷不发生脱落,衰减性能不发生改变;
3)高低温循环试验:试验条件为高温:70℃,低温:-55℃,各保持一小时;转换时间5min;循环3次,衰减瓷不发生脱落,衰减性能不发生改变。
4)耐高温性能:试验条件为810℃,30min,衰减性能不发生改变。
5、应用情况
将上述制备得到TiO2衰减瓷装配在大功率速调管5151上应用,采用矢网测试其Q值。具体要求为,2腔:320~350,本发明制备得到的TiO2衰减瓷可推广至毫米波行波管、空间磁控管等管型应用。
实施例2
1、一种TiO2衰减瓷,它由下列重量份数的原料制成:
Al2O385份、TiO220份、SiO23份、MnO 5份,MgO 3份。
所述的Al2O3粒径为5~10μm,TiO2的粒径为10~15μm,SiO2的粒径为1~2μm、MnO的粒径为2~5μm、MgO的粒径为2~4μm。
2、本发明所述的TiO2衰减瓷的制备方法,其包括以下步骤:流程如图2所示;
a、将Al2O385份、TiO220份、SiO23份、MnO 5份,MgO 3份混合,在行星球磨机上以180r/min的转速球磨8h;
b、装模、热压烧结成型:
将步骤a球磨混合后的粉末装入石墨模具中,如图1所示,并进行预压制,再将石墨模具置于热压烧结炉内,烧结温度为1350℃,保温30min,施加的压力为40MPa;
c、机械加工
将烧结的衰减瓷,加工成长宽高34×10×1毫米;
d、清洗
将衰减瓷置于丙酮溶液中超声20min,用刷子沾去污粉后刷3遍,再将衰减瓷置于去离子水中煮沸,保持15min,最后用酒精脱水后烘干备用;
e、烧氢净化
在卧式烧氢炉中600℃,保温15min烧氢处理,然后冷却至室温;
f、TiO2衰减瓷的膏剂配制及金属化层的印刷
将Mo粉50份,MnO 16份、刚玉微粉10份和CaCO31份,混合,并加入粘结剂醋酸丁酯和硝棉溶液,在行星球磨机上以180r/min的转速球磨12h,制得金属化膏剂;
采用丝网印刷机在TiO2衰减瓷的一面分3次印刷厚度为30μm的金属化层;
g、金属化层的烧结
在卧式氢炉中1100℃,保温20min烧结处理,氢气露点为-60°;
h、电镀镍
将烧结后的TiO2衰减瓷进行电镀镍处理,镍层厚度控制在7μm;
i、镀层烧结
电镀结束后,在卧式氢炉中900℃,保温15min进行镀层烧结处理,氢气露点为-60°;
j、Q值的测试
将TiO2衰减瓷置于腔体中,用上模具固定住TiO2衰减瓷使其不能发生移动,用连接矢量网络分析仪的探针伸入腔体,在谐振点查看Q值;
k、衰减瓷与腔体的钎焊
采用Q值合格的TiO2衰减瓷,用AgCu28焊料将其焊接至腔体,再次测试Q值,取Q值合格的TiO2衰减瓷,既得。
3、将上述2制备得到的TiO2衰减瓷进行性能检测,检测结果如下:
1)体积密度:≥3.8g/cm3;
2)气孔率:≤0.01%;
3)热导率:≥2.8W/m.K;
4)金属化后,衰减瓷片不出现显著变形现象,平面度优于±0.15mm;
5)建立封接强度的考核标准,初步设定为抗拉强度≥48Mpa。
4、将上述2制备得到的TiO2衰减瓷进行性能检测,检测结果如下:
1)耐热冲击性能:试验条件为650℃至室温,反复6次,衰减瓷不发生脱落,衰减性能不发生改变;
2)耐热烘烤试验:试验条件为在550℃下烘烤35h,衰减瓷不发生脱落,衰减性能不发生改变;
3)高低温循环试验:试验条件为高温:70℃,低温:-55℃,各保持一小时;转换时间5min;循环3次,衰减瓷不发生脱落,衰减性能不发生改变。
4)耐高温性能:试验条件为810℃,30min,衰减性能不发生改变。
5、应用情况
将上述制备得到TiO2衰减瓷装配在大功率速调管5151上应用,采用矢网测试其Q值。具体要求为,2腔:320~350,本发明制备得到的TiO2衰减瓷可推广至毫米波行波管、空间磁控管等管型应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种TiO2衰减瓷的制备方法,其特征在于,包括以下步骤:
a、将Al2O3 粉末65~85份、TiO2 粉末12~20份、SiO2 粉末1~3份、MnO 粉末2~5份,MgO粉末 1~3份混合,在行星球磨机上以180r/min的转速球磨8h;
b、装模、热压烧结成型:
将步骤a混合后的粉末装入石墨模具中,并进行预压制,再将石墨模具置于热压烧结炉内,烧结温度为1350~1380℃,保温45min,施加的压力为30MPa;
c、机械加工
将烧结的衰减瓷,加工成需要的尺寸;
d、清洗
将衰减瓷置于丙酮溶液中超声15~30min,用刷子沾去污粉后刷若干遍,再将衰减瓷置于去离子水中煮沸,保持10~15min,最后用酒精脱水后烘干备用;
e、烧氢净化
在卧式烧氢炉中650℃,保温15min烧氢处理,然后冷却至室温;
f、TiO2衰减瓷的膏剂配制及金属化层的印刷
将Mo粉50~65份,MnO 16~20份、刚玉微粉10~15份和CaCO3 1~5份混合,并加入粘结剂醋酸丁酯和硝棉溶液,在行星球磨机上以180r/min的转速球磨12h,制得金属化膏剂,在TiO2衰减瓷的一面涂覆厚度为40μm的金属化膏剂;
采用丝网印刷机在TiO2衰减瓷的一面分1~3次印刷厚度为35~40μm的金属化层;
g、金属化层的烧结
在卧式氢炉中1200℃,保温15min烧结处理,氢气露点为-60℃,使TiO2衰减瓷一面金属化;
h、电镀镍
将烧结后的TiO2衰减瓷进行电镀镍处理,镍层厚度控制在5~7μm;
i、镀层烧结
电镀结束后,在卧式氢炉中800~900℃,保温15~20min进行镀层烧结处理,氢气露点为-60℃;
j、Q值的测试
将TiO2衰减瓷置于腔体中,用上模具固定住TiO2衰减瓷使其不能发生移动,用连接矢量网络分析仪的探针伸入腔体,在谐振点查看Q值;
k、衰减瓷与腔体的钎焊
采用Q值合格的TiO2衰减瓷,用AgCu28焊料将其焊接至腔体,再次测试Q值,取Q值合格的TiO2衰减瓷,即得。
2.根据权利要求1所述的TiO2衰减瓷的制备方法,其特征在于,步骤i中镀层烧结方法为:电镀结束后,在卧式氢炉中850~900℃,保温15~20min进行镀层烧结处理,氢气露点为-60℃。
3.根据权利要求1所述的TiO2衰减瓷的制备方法,其特征在于,步骤k制备得到的TiO2衰减瓷的体积密度≥3.9g/cm3;气孔率≤0.01%;热导率≥2.8W/m.K;金属化封接强度≥55MPa。
CN201711345906.7A 2017-12-15 2017-12-15 TiO2衰减瓷及其制备方法 Active CN108129138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711345906.7A CN108129138B (zh) 2017-12-15 2017-12-15 TiO2衰减瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711345906.7A CN108129138B (zh) 2017-12-15 2017-12-15 TiO2衰减瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108129138A CN108129138A (zh) 2018-06-08
CN108129138B true CN108129138B (zh) 2021-01-12

Family

ID=62390258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711345906.7A Active CN108129138B (zh) 2017-12-15 2017-12-15 TiO2衰减瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108129138B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1025829A1 (en) * 1999-02-05 2000-08-09 Cicero Dental Systems B.V. Ceramic material, basis for a dental restoration made from said ceramic material and dental restoration
CN101717242A (zh) * 2009-12-04 2010-06-02 安徽华东光电技术研究所 用于微波电真空器件的含TiO2衰减瓷及其制备方法
CN103693946A (zh) * 2013-11-21 2014-04-02 宜宾红星电子有限公司 一种高热导率的含TiO2衰减瓷及其制备方法
CN104086182A (zh) * 2014-07-02 2014-10-08 南京三乐电子信息产业集团有限公司 陶瓷介质微波衰减材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1025829A1 (en) * 1999-02-05 2000-08-09 Cicero Dental Systems B.V. Ceramic material, basis for a dental restoration made from said ceramic material and dental restoration
CN101717242A (zh) * 2009-12-04 2010-06-02 安徽华东光电技术研究所 用于微波电真空器件的含TiO2衰减瓷及其制备方法
CN103693946A (zh) * 2013-11-21 2014-04-02 宜宾红星电子有限公司 一种高热导率的含TiO2衰减瓷及其制备方法
CN104086182A (zh) * 2014-07-02 2014-10-08 南京三乐电子信息产业集团有限公司 陶瓷介质微波衰减材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大功率速调管用TiO2衰减瓷及其金属化工艺研究;梁田等;《真空电子技术》;20161231(第5期);说明书第5-6段 *

Also Published As

Publication number Publication date
CN108129138A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN106604536B (zh) 聚四氟乙烯复合微波介质材料及其制备方法
CN101104567B (zh) 氧化铝陶瓷表面金属复合层及复合工艺
CN106904960B (zh) 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法
CN110128117B (zh) 高纯氧化铝陶瓷材料及其制备方法
CN108439981B (zh) 一种宽温区介电稳定性和高储能密度的铌酸银基反铁电材料及其制备方法
CN113004028B (zh) 一种硅基低介微波介质陶瓷及其制备方法
CN105237045A (zh) 氧化铍陶瓷金属化方法
CN109231967B (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN110563463A (zh) 一种低介微波介质陶瓷材料及其ltcc材料
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
CN102515773A (zh) 一种微波体衰减陶瓷材料及其制备方法
CN108129138B (zh) TiO2衰减瓷及其制备方法
CN112939596B (zh) 微波介质陶瓷及其制备方法
CN101774826A (zh) 一种99BeO陶瓷金属化浆料及其制备法
CN104098327B (zh) 电介质陶瓷组合物、电介质陶瓷、电子部件以及通信设备
CN112960971A (zh) 一种微波介质陶瓷材料及其制备方法
CN106807948A (zh) 一种速调管用微波衰减薄膜的制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN111348908B (zh) 一种无助烧剂低温烧结复合介电陶瓷材料及其制备方法
CN114736034A (zh) 一种梯度多孔Ti3AlC2/SiC吸波屏蔽复合材料及其制备方法
CN106588123A (zh) 一种陶瓷金属化用活化钼锰浆料及其制备方法
CN111302795A (zh) 一种锂镁铌铝钨系微波介质陶瓷及其制备方法
CN109320263A (zh) 烧结助剂与石英陶瓷及其制备与应用方法
JPS5849665A (ja) 誘電加熱用セラミック体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant