CN108103616B - 一种氮掺杂的木质素基碳纤维复合材料的制备方法 - Google Patents

一种氮掺杂的木质素基碳纤维复合材料的制备方法 Download PDF

Info

Publication number
CN108103616B
CN108103616B CN201810031564.XA CN201810031564A CN108103616B CN 108103616 B CN108103616 B CN 108103616B CN 201810031564 A CN201810031564 A CN 201810031564A CN 108103616 B CN108103616 B CN 108103616B
Authority
CN
China
Prior art keywords
nitrogen
carbon fiber
lignin
based carbon
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810031564.XA
Other languages
English (en)
Other versions
CN108103616A (zh
Inventor
马明国
刘姗
马畅
李志文
敬凡尘
曹文涛
王波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN201810031564.XA priority Critical patent/CN108103616B/zh
Publication of CN108103616A publication Critical patent/CN108103616A/zh
Application granted granted Critical
Publication of CN108103616B publication Critical patent/CN108103616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • D01F9/17Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate from lignin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种氮掺杂的木质素基碳纤维复合材料的制备方法,所述制备方法包括:1)将聚合物溶于有机溶剂中,再加入尿素制备纺丝液;2)静电纺丝制备纳米纤维前驱体;3)对步骤2)中所得的纤维前驱体在空气中干燥后,浸入苯胺/盐酸溶液中,随后逐滴滴加过硫酸铵的盐酸溶液,保温反应;4)预氧化;5)管式炉中煅烧,得到氮掺杂的木质素基碳纤维。本发明所用碱木质素为原料,来源广泛,绿色环保,生产成本低。采用尿素和聚苯胺作为氮源,提高了碳纤维氮含量,同时氮分布均一,可有效地提高碳纤维电化学性能。

Description

一种氮掺杂的木质素基碳纤维复合材料的制备方法
技术领域
本发明属于材料领域,具体而言,涉及一种氮掺杂的木质素基碳纤维复合材料的制备方法和应用。
背景技术
超级电容器,也称为电化学电容器,由于其具有较高的功率密度,快速充/放电速率,和极好的循环寿命,超级电容器成为极具前景的器件。根据其电荷存储机制,超级电容器通常分为两种类型:双电层电容器,电容是通过在电极/电解液表面,可逆的离子吸附/解吸的电荷量产生的;另一种是赝电容器,其电容来源于可逆的氧化还原反应。多数碳材料,如活性炭、纳米碳纤维、碳纳米管和石墨烯,通常具有双电层电容。而导电聚合物如聚苯胺和聚吡咯通常被用作赝电容器。因为这两种电容器具有不同的电荷存储机理,双电层电容器具有较高的能量密度和较长的循环寿命,但其比电容较低;而赝电容器具有较高的比电容和能量密度,但其稳定性较低、循环寿命差。因此,为提高其导电性能,我们将具有双电层电容的纳米碳纤维与具有赝电容的聚苯胺复合来发挥它们各自的优点以达到协同作用。此外,现有技术中往往通过掺杂硼、硫和氮等杂原子,提高碳材料的电化学性能。
近年来,新型的碳纳米材料(如石墨烯、碳纳米管,介孔碳,等等)都表现出优良的性能作为超级电容器。然而,这些碳材料,不可再生、制备条件苛刻和成本高限制了它们的广泛应用。木质素作为最重要的可再生资源之一,是仅次于纤维素的第二大自然聚合物。它是由苯丙烷结构单元组成,并且存在大量的化学基团,如甲氧基、酚基和羟基。
静电纺丝是一种通过电压来压迫聚合物或聚合物混合液流体喷射来制备纳米纤维的方法。该方法制备的氮掺杂的木质素基碳纤维复合材料具有均匀的纤维直径、高氮含量和高石墨结构,这种独特的结构对提高电容性能非常重要,同时也为低成本、可再生的生物质原料提供了高价值的应用前景。
现有技术中已有多种通过静电纺丝技术制备基于木质素的纳米纤维的方法,例如中国专利201180026569.X,201010104518.1以及201710043185.4等,但这些已有的木质素的纳米纤维并不能很好地应用于超级电容器,因此还需要进一步开发具有例如更高比电容的电化学性能的纳米纤维。
发明内容
针对以上现有技术存在的问题,根据本发明的一个方面,本发明的一个目的在于提供一种氮掺杂的木质素基碳纤维复合材料的制备方法,该方法以环境友好可再生的木质素为碳源,所用木质素原料来源广泛、价格低廉,可以降低碳纤维的成本。同时制备的碳纤维复合材料具有均匀的纤维直径、高氮含量和石墨结构,可有效地提高其电化学性能。
根据本发明的氮掺杂的木质素基碳纤维复合材料的制备方法,包括以下步骤:
1)将聚合物溶于N,N-二甲基甲酰胺(DMF)有机溶剂中,充分搅拌,配成质量分数为13%~15%的均一溶液,将尿素加入制备的聚合物溶液中,继续搅拌完全溶解,即得纺丝液;
2)设置静电纺丝电压为10-18kv,接收距离10-18cm,推进速率0.3ml/h-1.0ml/h,用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体;
3)对步骤2)中所得的纤维前驱体在空气中干燥后,浸入苯胺/盐酸溶液中10-24h,其中苯胺的质量分数为0.1%,随后逐滴滴加含有质量分数为2.5g/L的过硫酸铵的盐酸溶液40ml,并保持温度在0~4℃,3-5h;
4)对步骤3)所得的纳米纤维经去离子水洗数次后,置于60℃干燥箱中干燥12h后,将其置于管式炉中空气气氛下260℃预氧化1h;
5)将步骤4)所得氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,煅烧温度为800~900℃,煅烧时间1-3h,得到氮掺杂的木质素基碳纤维。
优选地,步骤1)中所述的聚合物选自为碱木质素(LN)和聚丙烯腈(PAN)的混合物。
优选地,步骤1)中所述聚丙烯腈(PAN)具有约150,000的重均分子量(Mw),由MACKLIN生产,产品批号为823208。
优选地,步骤1)中所述碱木素、聚丙烯腈和尿素的用量重量比例为1:5-7:0.5-1,优选为1:6.5:0.8。
优选地,步骤3)中所述盐酸浓度为1mol/L。
优选地,根据本发明所述氮掺杂的木质素基碳纤维复合材料的制备方法无需添加胶黏剂、增稠剂、增白剂等辅料。
根据本发明的另一个方面,本发明的另一个目的在于提供一种氮掺杂的木质素基碳纤维复合材料,所述复合材料由根据本发明的上述制备方法制备得到。
根据本发明的另一个方面,本发明的另一个目的在于提供所述氮掺杂的木质素基碳纤维复合材料在储能电池方面的应用。
有益效果
1、本发明所用碱木质素为原料,来源广泛,绿色环保,生产成本低。
2、本发明采用尿素和聚苯胺作为氮源,提高了碳纤维氮含量,同时氮分布均一,可有效地提高碳纤维电化学性能。
3、本发明采用静电纺丝法制备氮掺杂的木质素基碳纤维复合材料,设备简单,操作性强。
4、本发明选择性制备的氮掺杂的木质素基碳纤维复合材料,具有一定的柔韧性,可直接用于电化学测试,无需添加胶黏剂,电化学性能可有效的提高。
附图说明
图1为实施例3碳纤维的扫描电镜图。
图2a为根据本实施例制备的碳纤维的透射电镜图,图2b为根据本实施例制备的碳纤维的直径的分布图。
图3为实施例2和实施例3的X射线衍射图。
图4为实施例2和实施例3在电流密度为1A/g下的充放电循环曲线。
图5为实施例2和实施例3在扫描速率5mV/s下的循环伏安曲线。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
优选地,在根据本发明的制备方法的步骤1)中所述LN、PAN和尿素的的用量比例为1:5-7:0.5-1,优选范围为1:6.5:0.8。若聚丙烯腈比重太大,则溶液粘度过大,纺丝过程易堵塞;过小,则纺丝过程中纳米纤维不易成丝,纺丝易断裂。因此,适宜的比重有益于纤维纺丝,同时纤维直径分布均匀。
优选地,步骤2)中静电纺丝电压为10-18kv,接收距离10-18cm,推进速率0.3ml/h-1.0ml/h,纺丝随电压升高,接收距离加大,推进速率减缓,所得纺丝直径越细。优选地,静电纺丝电压优选为15kv,接收距离优选15cm,推进速率优选为0.5ml/h。
优选地,步骤3中滴加含有质量分数为2.5g/L的过硫酸铵的盐酸溶液40mL,从而与苯胺发生氧化还原聚合反应,生成具有导电性能的聚苯胺。
当木质素在惰性气体环境中碳化时,木质素石墨结构碳可以通过局部的sp2π键来表现优异的电子传导率。因此,本发明的发明人选用木质素作为可持续性碳前体,和聚丙烯腈、尿素来制备碳纳米纤维,并复合苯胺来进一步提高碳纤维的氮含量。
在下文中,将参照附图详细地描述本公开的优选的实施方式。在描述之前,应当了解在说明书和所附权利要求中使用的术语,并不应解释为局限于一般及辞典意义,而是应当基于允许发明人为最好的解释而适当定义术语的原则,基于对应于本发明技术层面的意义及概念进行解释。因此,在此的描述仅为说明目的的优选实例,而并非是意指限制本发明的范围,因而应当了解的是,在不偏离本发明的精神和范围下可以做出其他等同实施和修改。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例2
室温下,将0.65g PAN,0.1g LN溶于5ml DMF中,在磁力搅拌器上充分搅拌至完全溶解,将0.08g尿素加入制备的聚合物溶液中,继续搅拌至完全溶解,制得纺丝液。用10ml的注射器抽取纺丝液,设置纺丝电压为15kv,接收距离15cm,推进速率0.5ml/h,并用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体,置于空气中干燥12h。将干燥后的纳米纤维前驱体,浸入重量百分比浓度为0.1%苯胺/盐酸(盐酸浓度为1mol/L,40ml)溶液中12h,随后逐滴滴加含有10g过硫酸铵的40ml盐酸(1mol/L)溶液,并保持温度在0~4℃,4h。所得的纳米纤维经去离子水洗数次后,置于60℃干燥箱中干燥12h后,随后将其置于管式炉中空气气氛下260℃预氧化1h。将氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,升温速率为5℃/h,煅烧温度为800℃,煅烧时间2h,得到LCNFs/PANI/N-8碳纤维。
电化学性能测试:在1mol/l的硫酸电解液中,电流密度为1A/g,LCNFs/PANI/N-8碳纤维的比电容为101.4F/g。
图3为实施例2和实施例3的X射线衍射图,从中可以进一步的确定碳纤维中含有PANI组分,并且从图中可以看出随着煅烧温度的增加,碳纤维的石墨化程度也有所增加。
图4为实施例2和实施例3在电流密度为1A/g下的充放电循环曲线。
图5为实施例2和实施例3在扫描速率5mV/s下的循环伏安曲线。从图4和图5中可以看出随着木质素、氮掺杂及煅烧温度的提高,所得的碳纤维的比电容也有所增加。
实施例3
除了将预氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,升温速率为5℃/h,煅烧温度为900℃,煅烧时间2h,得到LCNFs/PANI/N-9碳纤维之外,其余与实施例2相同。
电化学性能测试:在1mol/l的硫酸电解液中,电流密度为1A/g,LCNFs/PANI/N-9碳纤维的比电容为199.5F/g。
图1为根据本实施例制备的碳纤维的扫描电镜图,从图中可以看出纳米碳纤维的尺寸较均一,并在表面复合PANI。图2a为根据本实施例制备的碳纤维的透射电镜图,图2b为根据本实施例制备的碳纤维的直径的分布图。
对比实施例1
室温下,将0.65g PAN溶于5ml DMF中,在磁力搅拌器上充分搅拌至完全溶解,制得纺丝液。用10ml的注射器抽取纺丝液,设置纺丝电压为15kv,接收距离15cm,推进速率0.5ml/h,并用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体,置于空气中干燥12h。将干燥得到的PAN纳米纤维,将其置于管式炉中空气气氛下260℃预氧化1h。将氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,升温速率为5℃/h,煅烧温度为800℃,煅烧时间2h,得到CNFs-8碳纤维。
电化学性能测试:在1mol/l的硫酸电解液中,电流密度为1A/g,CNFs-8碳纤维的比电容为46.3F/g。
对比实施例2
室温下,将0.65g PAN,0.1g LN溶于5ml DMF中,在磁力搅拌器上充分搅拌至完全溶解,制得纺丝液。用10ml的注射器抽取纺丝液,设置纺丝电压为15kv,接收距离15cm,推进速率0.5ml/h,并用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体,置于空气中干燥12h。将干燥得到的PAN/LN纳米纤维,将其置于管式炉中空气气氛下260℃预氧化1h。将氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,升温速率为5℃/h,煅烧温度为800℃,煅烧时间2h,得到LCNFs-8碳纤维。
电化学性能测试:在1mol/l的硫酸电解液中,电流密度为1A/g,LCNFs-8碳纤维的比电容为77.8F/g。
对比实施例3
室温下,将0.65g PAN(Mw~150,000),0.1g LN溶于5ml DMF中,在磁力搅拌器上充分搅拌至完全溶解,将0.08g尿素加入制备的聚合物溶液中,继续搅拌至完全溶解,制得纺丝液。用10ml的注射器抽取纺丝液,设置纺丝电压为15kv,接收距离15cm,推进速率0.5ml/h,并用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体,置于空气中干燥12h。将干燥得到的PAN/LN/尿素纳米纤维,将其置于管式炉中空气气氛下260℃预氧化1h。将氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,升温速率为5℃/h,煅烧温度为800℃,煅烧时间2h,得到LCNFs/N-8碳纤维。
在1mol/l的硫酸电解液中,电流密度为1A/g,LCNFs/N-8碳纤维的比电容为85.5F/g。
电化学性能实验
利用电化学工作站CHI660D,采用三电极体系对氮掺杂的木质素基碳纤维复合材料进行电化学测试。所制得的氮掺杂的木质素基碳纤维作为工作电极,甘汞电极作为参比电极,铂丝电极作为对电极,电解液为1mol/l的硫酸溶液。通过不同扫描速率的循环伏安曲线和不用电流密度下的恒电流充放电曲线,来计算碳纤维电极材料的比电容。
对实施例3的碳纤维复合材料在4A/g的电流密度下进行1000次循环充放电后,电容仍保持初始值的82%。

Claims (7)

1.一种氮掺杂的木质素基碳纤维复合材料的制备方法,包括以下步骤:
1)将聚合物溶于N,N-二甲基甲酰胺有机溶剂中,充分搅拌,配成质量分数为13%~15%的均一溶液,将尿素加入制备的聚合物溶液中,继续搅拌完全溶解,即得纺丝液,所述聚合物选自为碱木质素和聚丙烯腈的混合物,所述碱木素、聚丙烯腈和尿素的重量比例为1:5-7:0.5-1;
2)设置静电纺丝电压为10-18kv,接收距离10-18cm,推进速率0.3ml/h-1.0ml/h,用锡箔纸收集高压静电纺丝制得的纳米纤维前驱体;
3)对步骤2)中所得的纤维前驱体在空气中干燥后,浸入苯胺/盐酸溶液中10-24h,其中苯胺的质量分数为0.1%,随后逐滴滴加含有质量分数为2.5g/L的过硫酸铵的盐酸溶液40ml,并保持温度在0~4℃,3-5h;
4)对步骤3)所得的纳米纤维经去离子水洗数次后,置于60℃干燥箱中干燥12h后,将其置于管式炉中空气气氛下260℃预氧化1h;
5)将步骤4)所得氧化后的纤维置于管式炉的惰性氮气气氛下煅烧,煅烧温度为800~900℃,煅烧时间1-3h,得到氮掺杂的木质素基碳纤维。
2.根据权利要求1所述的氮掺杂的木质素基碳纤维复合材料的制备方法,其特征在于,步骤1)中所述聚丙烯腈具有150,000的重均分子量(Mw)。
3.根据权利要求1所述的氮掺杂的木质素基碳纤维复合材料的制备方法,其特征在于,步骤1)中所述碱木素、聚丙烯腈和尿素的用量重量比例为1:6.5:0.8。
4.根据权利要求1所述的氮掺杂的木质素基碳纤维复合材料的制备方法,其特征在于,步骤3)中所述盐酸浓度为1mol/L。
5.根据权利要求1所述的氮掺杂的木质素基碳纤维复合材料的制备方法,其特征在于,所述制备方法无需添加胶黏剂、增稠剂、增白剂辅料。
6.一种氮掺杂的木质素基碳纤维复合材料,所述复合材料由根据权利要求1至5中任意一项所述的制备方法制备得到。
7.根据权利要求6所述的氮掺杂的木质素基碳纤维复合材料在储能电池方面的应用。
CN201810031564.XA 2018-01-12 2018-01-12 一种氮掺杂的木质素基碳纤维复合材料的制备方法 Active CN108103616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810031564.XA CN108103616B (zh) 2018-01-12 2018-01-12 一种氮掺杂的木质素基碳纤维复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810031564.XA CN108103616B (zh) 2018-01-12 2018-01-12 一种氮掺杂的木质素基碳纤维复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108103616A CN108103616A (zh) 2018-06-01
CN108103616B true CN108103616B (zh) 2020-04-07

Family

ID=62219596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810031564.XA Active CN108103616B (zh) 2018-01-12 2018-01-12 一种氮掺杂的木质素基碳纤维复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108103616B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976685A (zh) * 2018-06-29 2018-12-11 佛山腾鲤新能源科技有限公司 一种碳纳米纤维复合材料的制备方法
CN109355799A (zh) * 2018-09-21 2019-02-19 杭州高烯科技有限公司 一种氮掺杂的石墨烯纤维无纺布及其制备方法
CN109763338B (zh) * 2018-12-29 2020-11-27 厦门大学 一种芯鞘结构的聚丙烯腈基碳纤维/聚苯胺复合导电纤维及其制备方法
CN110033953B (zh) * 2019-04-22 2020-12-01 山东建筑大学 一种功能化碳布导电基底及其制备方法与应用
CN110265229B (zh) * 2019-06-18 2021-09-28 兰州理工大学 纸纤维/本征态聚苯胺超级电容器复合电极材料制备方法
CN111005092B (zh) * 2019-11-25 2022-10-21 东北林业大学 碱木质素基多孔碳纤维及锡氧化物复合纳米材料的制备方法
CN111681887B (zh) * 2020-06-16 2022-02-08 浙江工业大学 一种超级电容器用超薄类石墨烯碳材料的制备方法
CN112670491A (zh) * 2020-12-03 2021-04-16 天津市捷威动力工业有限公司 多孔含氮碳丝内嵌入合金化机制储锂颗粒负极复合材料以及包含该材料的锂离子二次电池
CN113981568B (zh) * 2021-10-25 2023-10-27 大连工业大学 生物质基柔性阻燃碳纳米纤维及其制备方法和应用
CN115787145A (zh) * 2022-11-16 2023-03-14 上海理工大学 一种银掺杂的木质素基复合碳纤维的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303912A (zh) * 2013-07-05 2013-09-18 黑龙江大学 一种高比表面积多孔氮掺杂石墨化纳米碳材料的制备方法
CN104947246A (zh) * 2015-04-24 2015-09-30 福建师范大学泉港石化研究院 一种静电纺丝法制备木质素基碳纤维储氢材料的方法
CN105552371A (zh) * 2016-01-20 2016-05-04 福州大学 氮掺杂石墨烯-碳纳米角复合材料的制备及应用
CN107190366A (zh) * 2017-06-30 2017-09-22 天津工业大学 超级电容器用氮掺杂多孔碳纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303912A (zh) * 2013-07-05 2013-09-18 黑龙江大学 一种高比表面积多孔氮掺杂石墨化纳米碳材料的制备方法
CN104947246A (zh) * 2015-04-24 2015-09-30 福建师范大学泉港石化研究院 一种静电纺丝法制备木质素基碳纤维储氢材料的方法
CN105552371A (zh) * 2016-01-20 2016-05-04 福州大学 氮掺杂石墨烯-碳纳米角复合材料的制备及应用
CN107190366A (zh) * 2017-06-30 2017-09-22 天津工业大学 超级电容器用氮掺杂多孔碳纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lignin-Derived Fused Electrospun Carbon Fibrous Mats as High Performance Anode Materials for Lithium Ion Batteries;Su Xi Wang, et al.;《ACS Applied Materials & Interfaces》;20131120;12275-12282 *

Also Published As

Publication number Publication date
CN108103616A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN108103616B (zh) 一种氮掺杂的木质素基碳纤维复合材料的制备方法
Ma et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance
CN109736092B (zh) 一种导电聚苯胺包覆聚酰亚胺基多孔有机纳米复合纤维膜
Zuo et al. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
CN111118883B (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
Shao et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors
CN108841174B (zh) 氮掺杂多孔活性碳/MnS复合纳米纤维的制备方法及其用途
CN104916448B (zh) 一种层次结构微纳多孔纤维电极材料及其制备方法
CN108841175B (zh) 多孔活性碳/MnS/聚吡咯三元复合纳米纤维的制备方法及用途
CN102942176B (zh) 棉纤维炭基材料的制备方法及其作为超级电容器电极材料的应用
CN108039285A (zh) 一种轻质柔性中空复合超级电容器电极材料的制备方法
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method
CN109727781A (zh) 一种自支撑柔性超级电容器电极材料及制备方法
Wang et al. Preparation of iron oxide particle-decorated lignin-based carbon nanofibers as electrode material for pseudocapacitor
CN110265229B (zh) 纸纤维/本征态聚苯胺超级电容器复合电极材料制备方法
Zhang et al. Turning industrial waste-flax noil into regenerated cellulose fiber electrodes for eco-friendly supercapacitors
CN108611702A (zh) CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途
Li et al. CuS/polyaniline nanoarray electrodes for application in high-performance flexible supercapacitors
CN112726192B (zh) 电纺碳纳米纤维/还原氧化石墨烯/聚苯胺/碱式碳酸镍复合电极材料的制备方法
CN112216518B (zh) 一种柔性锌离子混合电容器及其制备方法和应用
WO2017155185A1 (ko) 코팅된 다공성 재료의 제조방법, 코팅된 다공성 재료 및 코팅된 다공성 재료를 포함하는 전극
CN115595691B (zh) 一种具有优异电化学性能的木质纤维素基碳纤维及其制备方法与应用
CN105869901B (zh) 一种结构可控的碳纳米纤维复合材料及其制备方法和应用
CN107749349A (zh) 一种c@f2o3复合结构的电极材料制备的新方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant