CN107749349A - 一种c@f2o3复合结构的电极材料制备的新方法 - Google Patents

一种c@f2o3复合结构的电极材料制备的新方法 Download PDF

Info

Publication number
CN107749349A
CN107749349A CN201711004679.1A CN201711004679A CN107749349A CN 107749349 A CN107749349 A CN 107749349A CN 201711004679 A CN201711004679 A CN 201711004679A CN 107749349 A CN107749349 A CN 107749349A
Authority
CN
China
Prior art keywords
composite
low
electrode material
composite construction
method prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711004679.1A
Other languages
English (en)
Inventor
曲玉宁
刘林
张焦
王静茹
王静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201711004679.1A priority Critical patent/CN107749349A/zh
Publication of CN107749349A publication Critical patent/CN107749349A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种C@F2O3复合结构的电极材料制备的新方法,以木质素为碳源,三氯化铁为金属盐,低温碳化和高温活化相结合的方法制备分级结构的C@F2O3。复合材料的孔道将提供相互连接的空间网络结构和传质通道,所形成的三维空间连续的导电网络将利于电子的传输和转移,从而加快赝电容反应的进行,提高复合材料的比电容,有望解决炭基超级电容器的比电容低、倍率性能低、循环性能低的问题,提高超级电容器的能量密度和功率密度,具有重要的理论研究意义和实际应用前景。

Description

一种C@F2O3复合结构的电极材料制备的新方法
技术领域
本发明涉及一种C@F2O3复合结构的电极材料制备的新方法,具体涉及利用水热法制备复合物的前驱体,然后高温活化合成不同负载量F2O3复合材料的方法。
背景技术
非对称超级电容器由于兼具双层电层电容和法拉第赝电容,因此在性能上大大优于对称型超级电容器,近年来吸引了越来越多的关注。非对称超级电容器将不同储能机制的两种电极材料组合。其中一侧电极以氧化还原反应机制来储存和释放能量,这样可以提高整个电容器的能量密度,通常使用金属化合物或导电聚合物作为其电极材料;另一侧电极以双电层机制来储存和释放能量,通常使用碳材料作为其电极材料,这样可以提高整个电容器的功率密度。关于如何提高非对称超级电容器的能量密度,研究人员的研究方向主要是将具有双电层电容的碳材料与具有氧化还原性能的赝电容材料相结合,充分利用不同电压范围内的不同电极材料的电化学特性,以扩大电容器的工作电压,水系对称的赝电容器的工作电压一般不超过1V,而水系非对称电容器的工作电压可以扩展到2V。
作为超级电容器的电极材料主要有:碳材料,过渡金属化合物材料和导电聚合物材料。在这三类材料中,碳材料稳定性好,但其比电容不高。导电聚合物材料种类较少,并且在长时间的使用后结构易膨胀和塌陷。相比较而言,目前,过渡金属氧化物或双氢氧化物由于实用性良好和环境友好,主要用非对称超级电容器中的电极。金属化合物具有较高的比电容,尽管它们自身的电导率较差,但是可以通过合理设计其结构或与其它导电材料进行复合以弥补该缺陷。非对称超级电容器存储能量的多少也取决于负极的性质。多数情况下,低比电容的活性炭或多孔石墨烯作为负极应用于非对称纤维超级电容器。这样的电容器需要更多的碳材料来平衡阴阳极之间的电荷,因此不仅增加了器件体积,而且严重限制了其能量密度。为了解决这个问题,开发具有高比电容的负极材料是使超级电容器的能量密度最大化的研究关键。近年来为了改善电容性能,MoOx,Bi2O3等作为电极材料已经被广泛研究。其中在这些氧化物中,因为Fe2O3在碱性溶液中具有可变的氧化态,无毒性和高理论比电容,被认为是替代常规多孔碳电极的非常有前途的选择。然而,由于其本身的电导率低(10-14S/cm)和氧化还原反应速率慢是限制其作为超级电容器电极的主要问题。虽然通过缩短离子扩散时间或与碳材料结合来提高其性能已经作了许多研究,但Fe2O3的比电容仍然相当低,导致其能量密度和功率密度低。专利CN106783236A一种氮掺杂石墨化碳/过渡金属氧化物纳米复合材料制备方法本发明属于过渡金属氧化物纳米复合材料制备技术领域,涉及一种氮掺杂石墨化碳/过渡金属氧化物纳米复合材料制备方法,用于电极材料制备场合,解决工艺制备步骤多,耗时长,复合物比电容低不利于材料应用的难题,能够简便高效的制备氮掺杂石墨化碳/过渡金属氧化物纳米复合材料,采用含氮元素的生物聚合物甲壳胺为结构导向剂和有机前体,以过渡金属盐为反应物,通过共沉淀反应制备复合物,并经过惰性气氛煅烧,利用过渡金属催化石墨化作用制备氮掺杂石墨化碳/过渡金属氧化物纳米复合材料,其制备工艺步骤简单,节能环保,原理可靠,制备成本低,电化学性能好,导电性高,应用广泛,使用环境友好,具有良好的经济效益和广阔的市场前景。专利CN106449159A碳纤维包裹金属氧化物的电容器用柔性电极及制备方法,本发明公开一种碳纤维包裹金属氧化物的电容器用柔性电极及制备方法,通过对金属氧化物纳米粒子表面修饰等,可利用静电纺丝技术制备碳纳米纤维(一维碳材料)腔内包裹金属氧化物纳米粒子柔性膜,用于柔性超级电容电极。不仅柔性好,而且碳纳米纤维可为金属氧化物那纳米粒子工作时的体积变化提供充分的缓冲空间,减小金属氧化物的体积效应,具有比电容高、稳定性好等优点,进一步提高了柔性电容的性能。另外,生产过程无需表面化学沉积或电沉积等方法,操作简单、材料结构可控、成本低,适合大批量工业生产。本专利主要利用木质素为碳源,原位合成C@F2O3复合材料作为电极,此种方法文献及专利中未见报道。
发明内容
为实现本发明所提供的技术方案是:
(1)准确称量碱木质素,铁盐,物质量之比为1∶1~1∶5,溶解在30ml KOH溶液中,KOH的质量浓度为0~20%,然后加入一定在质量的醋酸钠,在40~80℃下搅拌回流2~5小时,转移至反应釜中,160~200℃反应10~18h,自然冷却,产品反复用去离子水洗至中性,70℃下真空干燥24h,即得复合物的前驱体;
(2)将步骤(1)的复合物的前驱体转移至管式炉中,N2保护,升温速度为3℃/min,升温至700~900℃,保温2h,冷却至室温后,真空过滤,产品反复用去离子水洗至中性,即得C@F2O3复合材料。
为更好理解本发明,下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1:
(1)准确称量碱木质素,氯化铁,物质量之比为1∶4,溶解在30ml KOH溶液中,KOH的质量浓度为5%,然后加入一定质量的醋酸钠,在40℃下搅拌回流2小时,转移至反应釜中,180℃反应18h,自然冷却,产品反复用去离子水洗至中性,70℃下真空干燥24h,即得复合物的前驱体;
(2)将步骤(1)的复合物的前驱体转移至管式炉中,N2保护,升温速度为3℃/min,升温至800℃,保温2h,冷却至室温后,真空过滤,产品反复用去离子水洗至中性,即得C@F2O3复合材料。
实施例2:改变铁盐为硝酸铁,其他步骤同实施例1,即得即得C@F2O3复合材料。
实施例3:改变氯化铁和木质素的物质量之比为1∶5,其他步骤同实施例1,即得即得C@F2O3复合材料。
实施例4:改变炭化温度为700℃,其他步骤同实施例1,即得即得C@F2O3复合材料复合材料。

Claims (2)

1.一种C@F2O3复合结构的电极材料制备的新方法,具体步骤如下:
(1)准确称量碱木质素,铁盐,物质量之比为1∶1~1∶5,溶解在30ml KOH溶液中,KOH的质量浓度为0~20%,然后加入一定质量的醋酸钠,在40~80℃下搅拌回流2~5小时,转移至反应釜中,160~200℃反应10~18h,自然冷却,产品反复用去离子水洗至中性,70℃下真空干燥24h,即得复合物的前驱体;
(2)将步骤(1)的复合物的前驱体转移至管式炉中,N2保护,升温速度为3℃/min,升温至700~900℃,保温2h,冷却至室温后,真空过滤,产品反复用去离子水洗至中性,即得C@F2O3复合材料。
2.一种如权利要求1所述的一种C@F2O3复合结构的电极材料制备的新方法,其特征在于:铁盐可以是氯化铁、硝酸铁、硫酸铁、醋酸铁。
CN201711004679.1A 2017-10-19 2017-10-19 一种c@f2o3复合结构的电极材料制备的新方法 Pending CN107749349A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711004679.1A CN107749349A (zh) 2017-10-19 2017-10-19 一种c@f2o3复合结构的电极材料制备的新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711004679.1A CN107749349A (zh) 2017-10-19 2017-10-19 一种c@f2o3复合结构的电极材料制备的新方法

Publications (1)

Publication Number Publication Date
CN107749349A true CN107749349A (zh) 2018-03-02

Family

ID=61253127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711004679.1A Pending CN107749349A (zh) 2017-10-19 2017-10-19 一种c@f2o3复合结构的电极材料制备的新方法

Country Status (1)

Country Link
CN (1) CN107749349A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650369A (zh) * 2018-12-15 2019-04-19 华南理工大学 一种能发电的木头及其制备方法与应用
CN111960477A (zh) * 2020-08-20 2020-11-20 辽宁科技大学 一种全固态超级电容器电极材料的制备方法
CN114512349A (zh) * 2022-03-04 2022-05-17 广东工业大学 一种木质素碳-过渡金属氧化物不对称超级电容器及其制备与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220638A (zh) * 2011-04-29 2011-10-19 中国科学院合肥物质科学研究院 一种立方体的三氧化二铁单晶的制备方法
CN104759284A (zh) * 2015-03-11 2015-07-08 常州大学 一种多孔碳负载纳米氧化铁的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220638A (zh) * 2011-04-29 2011-10-19 中国科学院合肥物质科学研究院 一种立方体的三氧化二铁单晶的制备方法
CN104759284A (zh) * 2015-03-11 2015-07-08 常州大学 一种多孔碳负载纳米氧化铁的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG JIN等: ""Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials"", 《NANOTECHNOLOGY》 *
XIAOHAN CHAI等: ""Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability"", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650369A (zh) * 2018-12-15 2019-04-19 华南理工大学 一种能发电的木头及其制备方法与应用
CN111960477A (zh) * 2020-08-20 2020-11-20 辽宁科技大学 一种全固态超级电容器电极材料的制备方法
CN114512349A (zh) * 2022-03-04 2022-05-17 广东工业大学 一种木质素碳-过渡金属氧化物不对称超级电容器及其制备与应用
CN114512349B (zh) * 2022-03-04 2023-10-27 广东工业大学 一种木质素碳-过渡金属氧化物不对称超级电容器及其制备与应用

Similar Documents

Publication Publication Date Title
Wang et al. Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors
Shi et al. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion
Zong et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors
Lu et al. A review of negative electrode materials for electrochemical supercapacitors
Hu et al. Hierarchical manganese dioxide/poly (3, 4-ethylenedioxythiophene) core–shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor
Huang et al. Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors
Wu et al. High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon
Yuan et al. Recent progress in sodium/potassium hybrid capacitors
Pu et al. Fabrication of Ni (OH) 2 coated ZnO array for high-rate pseudocapacitive energy storage
CN111118883B (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
CN103762091A (zh) 一种蜂窝状多孔二氧化锰纳米纤维的制备方法及其超级电容器应用
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Wu et al. Performance of V2O3@ C composites via a sol–gel precursor assisted by soluble starch as Pt-free counter electrodes for dye sensitized solar cells
Chen et al. Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor
CN107749349A (zh) 一种c@f2o3复合结构的电极材料制备的新方法
CN104979103A (zh) 一种螺旋线形非对称超级电容器制备方法
CN113675004A (zh) MnO2包覆的MXene/C纳米纤维材料制备方法
Cui et al. Nickel–Cobalt-layered double hydroxide nanosheets supported on NiMoO4 nanorods with enhanced stability for asymmetric supercapacitors
Fan et al. One-dimensional nanostructured electrode materials based on electrospinning technology for supercapacitors
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower
LIAO et al. Progress in conductive polymers in fibrous energy devices
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
Liu et al. Frontiers in nano-architectured carbon–metal oxide electrodes for supercapacitance energy storage: a review
Zhang et al. Enlarged capacitance of TiO 2 nanotube array electrodes treated by water soaking
CN107833757A (zh) 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180302

WD01 Invention patent application deemed withdrawn after publication