CN107833757A - 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料 - Google Patents

一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料 Download PDF

Info

Publication number
CN107833757A
CN107833757A CN201710738673.0A CN201710738673A CN107833757A CN 107833757 A CN107833757 A CN 107833757A CN 201710738673 A CN201710738673 A CN 201710738673A CN 107833757 A CN107833757 A CN 107833757A
Authority
CN
China
Prior art keywords
nico
sic
nioh
positive electrode
nanometer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710738673.0A
Other languages
English (en)
Inventor
李镇江
赵健
孟阿兰
张猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710738673.0A priority Critical patent/CN107833757A/zh
Publication of CN107833757A publication Critical patent/CN107833757A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种高性能SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料,属新能源存储领域。本发明采用电沉积法在SiC纳米线上制备了整齐排列的NiCo2O4/(NiOH)2混合纳米片阵列,并且NiCo2O4纳米片的尺寸较大,分散均匀,(NiOH)2纳米片的尺寸较小,垂直交叉生长在NiCo2O4纳米片表面,且片与片之间形成了充足的自由空隙;本发明制得的SiC@NiCo2O4(NiOH)2复合材料具有优异的电化学性能,其最大质量比电容值为2580F/g,并且经过3000圈循环后,其比电容仍能保持原比电容的91.5%,这为构筑新一代高性能超级电容器提供了优质的候选正极材料。

Description

一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料
技术领域
本发明涉及新能源存储领域,具体涉及一种高性能SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料。
技术背景
超级电容器是近年来发展起来的一种新型储能器件,具有功率密度高、充电速度快、循环使用寿命长、工作温度范围广、安全性能好及环保等优点,在新能源汽车、微型通讯设备、重型机械、航空航天等领域具有广阔的应用前景(中国发明专利,申请号201310326357.4)。然而,与充电电池相比,超级电容器的能量密度较低,这严重地制约了其工业化生产进程(Gao Z,et al.Flexible All-Solid-State Hierarchical NiCo2O4/Porous Graphene Paper Asymmetric Supercapacitors with an ExceptionalCombination of Electrochemical Properties.Nano Energy 2015,13,306-317)。众所周知,超级电容器的性能完全依赖于其电极材料,因此,设计并构筑一种新型的且具有优异电化学性能的电极材料对提高超级电容器的能量密度具有十分重要的意义。
近年来,传统碳材料(如活性炭)常被用作超级电容器负极材料,由于其理论比电容较低,严重制约超级电容器的商业化进程,因此,研究人员往往通过设计新型正极材料来提高超级电容器的能量密度和功率密度。RuO2是最早作为正极材料应用到电化学电容器中,但其价格昂贵,不利于推广及应用,近年来,研究人员试图用MnO2、Ni3S2、NiCo2O4、V2O5、TiO2、 Co2O3及Ni(OH)2等过渡金属化合物代替RuO2以降低正极材料成本,其中NiCo2O4和Ni(OH)2最受研究人员关注,这主要是由于Ni-Co(氢)氧化物具有较高的理论比电容,优异的氧化还原特性和电化学活性,并且原料丰富、环境友好及价格低廉等优势(中国发明专利,申请号 201310058911.5;中国发明专利,申请号201611200095.7)。然而,NiCo2O4和Ni(OH)2都存在导电性能及循环稳定性差的缺点(Dong et al.Formation ofg-C3N4@Ni(OH)2Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy andPower Density,ACS Appl. Mater.Interfaces 2017,9,17890-17896),并且容易在基板上发生团聚,这将使活性材料的比表面减小,从而导致实际获得的比电容远低于其理论值(中国发明专利,申请号 201210284645.3)。为了克服上述问题,研究人员往往利用导电性较好及比表面积较大的碳材料或无机半导体作为骨架与NiCo2O4或Ni(OH)2进行复合,有效地改善了活性材料团聚及比电容低的缺陷(Liu,et al.A three dimensional verticallyaligned multiwall carbon nanotube/NiCo2O4core/shell structure for novel high-performance supercapacitors.J.Mater.Chem. A,2014,2,5100-5107.Lo etal.Synthesis of Ni(OH)2nanoflakes on ZnO nanowires by pulse electrodepositionfor high-performance supercapacitors,Journal of Power Sources,2016,308, 29-36)。尽管上述制备出的复合电极材料具有较好的电化学性能,但仍不能满足新型超级电容器在充放电过程中对高比电容及倍率特性的需求,因此,开发一种理想的骨架材料势在必行。众所周知,SiC纳米线不仅具有良好的机械性能与物理化学稳定性、大的长径比及比表面积、优异的导电性与抗腐蚀抗氧化特性,并且它们互相缠结,可以构成一种特殊的网络结构。因此,SiC纳米线构成的网络结构不仅使活性材料均匀分散,并且在充放电过程中为电子传导提供了多种传输渠道,还可解决活性材料因体积膨胀/缩小而造成的电极结构的坍塌,这使它们成为极具竞争力的超级电容器复合电极的骨架材料;此外,SiC纳米线电极材料还可呈现出高的面积比电容、长期循环稳定性及优异的抗电化学腐蚀特性和优异的柔韧性(Gu, et al.Performance characteristics of supercapacitor electrodes made ofsilicon carbide nanowires grown on carbon fabric.Journal ofPower Sources2013,243,648-653.Alper,et al.Silicon carbide nanowires as highly robustelectrodes for microsupercapacitors.Journal of Power Sources 2013, 230,298-302)。因此,当SiC纳米线作为骨架与纳米NiCo2O4和Ni(OH)2进行复合时,可大幅提升此复合正极材料的电容特性。目前尚没有关于NiCo2O4/(NiOH)2纳米片阵列包覆SiC纳米线复合超级电容器正极材料的报道。
发明内容
本发明的目的是为了克服单一活性材料团聚、电容特性差及骨架材料易于腐蚀等缺点,采用一种操作简单的电沉积法,制备出了具有较高质量比电容及倍率性能和长期循环稳定性 NiCo2O4/(NiOH)2纳米片阵列包覆SiC纳米线复合超级电容器正极材料,其具体制备过程包括:首次,以SiC纳米线为骨架材料,采用循环伏安法在其表面沉积NiCo2O4前驱体,然后经过煅烧处理得到SiC@NiCo2O4,其次,采用恒电位法,再在SiC@NiCo2O4的表面上沉积(NiOH)2,得到SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料。
该方法制备出的复合正极材料的呈现出优异的电化学性能,当电流密度为4A/g时,质量比电容值为2580F/g,当电流密度增大至20A/g时,质量比电容值为2141F/g,倍率特性~83%;并且经过3000圈循环后,其比电容仍能保持原比电容的91.5%,这为SiC纳米线基功能纳米复合材料在新一代高性能超级电容器中的应用奠定了理论及实验基础。
附图说明
下面结合附图及实施例对本发明作进一步说明。
图1为SiC纳米线及SiC@NiCo2O4/(NiOH)2复合材料的SEM照片。
图2为SiC@NiCo2O4/(NiOH)2复合材料的XRD图谱。
图3为SiC@NiCo2O4/(NiOH)2复合材料的CV曲线。
图4为SiC@NiCo2O4/(NiOH)2复合材料的恒电流充放电曲线及质量比电容随电流密度的变化曲线。
图5为SiC@NiCo2O4/(NiOH)2复合材料的EIS曲线。
图6为SiC@NiCo2O4/(NiOH)2复合材料的循环稳定性。
具体实施方式
实施例1
SiC纳米线的制备
分别以摩尔比为1:1.5的Si粉与石墨粉混合粉体为原料,碳布和硝酸镍为基板和催化剂,采用化学气相反应法在碳布上制备SiC纳米线。具体步骤为:首先,将碳布浸入硝酸镍乙醇混合溶液中10min,然后在空气中干燥;再将Si-石墨粉混合粉体和带有催化剂的碳布依次放入石墨反应室内,并将其置于真空炉内密封好真空炉盖,接通电源及循环水系统,随后启动真空系统,抽真空30min后,关闭阀门停止抽真空,然后向真空炉内通入高纯Ar至接近常压,关闭Ar阀门再次抽真空,30min后停抽真空并充Ar至接近常压,如此重复操作2-3次以尽可能排除炉内空气;随后使真空炉以350-400℃h-1的升温速率从室温升至1250℃并保温 13-16min,最后关闭电源使真空炉自然冷却至室温。SiC纳米线SEM表征结果见图1a。
SiC@NiCo2O4/(NiOH)2复合材料的制备
首先,量取50ml蒸馏水,分别配制浓度为0.006M及0.012M的Ni(NO3)2·6H2O及 Co(NO3)2·6H2O的混合溶液,并以此溶液为电解液;然后,剪取1×1cm2带有SiC纳米线的碳布,并以此为工作电极,饱和甘汞电极为参比电极、铂丝电极为对电极构成三电极系统,在上述电解液中,选择电位窗口及扫描速度分别为-1.1~-0.5V及20mV s-1,采用循环伏安法,电沉积30圈,然后用蒸馏水冲洗2~3次后,放入干燥箱中,60℃干燥8h,得到SiC@NiCo2O4前驱体;再将干燥后的试样置入马弗炉中,以1℃/min的升温速率加热到300℃后,保温2h,自然冷却到室温,得到SiC@NiCo2O4;最后,以制备出的SiC@NiCo2O4电极为工作电极,在 0.05mol·L-1的Ni(NO3)2·6H2O溶液中,选择沉积电位为-1.0V,采用恒电位法,电沉积400s,然后用蒸馏水冲洗2~3次后,放入干燥箱中,60℃干燥8h,得到SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料。SiC@NiCo2O4/(NiOH)2复合材料的SEM、XRD表征结果分别见图1b 和图2。
SiC@NiCo2O4/(NiOH)2复合材料的电化学性能测试
以SiC@NiCo2O4/(NiOH)2复合电极材料为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在6mol·L-1的KOH溶液中,控制扫描速率为10~50mV s-1,测定循环伏安曲线,见图3,从图3中可以看出,该电极在充放电的过程中存在氧化还原反应,并且无现明显的电极极化现象;控制电流密度为4A/g~20A/g,测定恒电流充放电曲线,见图 4,从图4中可以看出,当电流密度为4A/g时,质量比电容值为2580F/g,当电流密度增大至20A/g时,质量比电容值为2141F/g,倍率特性~83%;控制频率范围0.01~100000Hz,测定交流阻抗谱,见图5,从图5中可以看出,该电极材料的具有较小的内阻及电荷转移电阻;控制电流密度为14Ag-1,测定循环稳定性,见图6,从图6中可以看出,循环3000圈后,仍能保持原始比电容的91.5%,这说明此电极材料具有优异的循环稳定性。

Claims (3)

1.一种高性能SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料,其特征在于:所述复合电极材料的内核为SiC纳米线,外壳为整齐排列的NiCo2O4/(NiOH)2混合纳米片阵列,具体制备过程包括:首次,以SiC纳米线为骨架材料,采用循环伏安法在其表面沉积NiCo2O4前驱体,然后经过煅烧处理得到SiC@NiCo2O4,其次,采用恒电位法,再在SiC@NiCo2O4的表面上沉积(NiOH)2,得到SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料。
2.根据权利要求1所述的一种高性能SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料,其特征在于:内核SiC纳米线的直径和长度分别约为80-100nm和几十微米,它们互相缠结,构成了一种特殊的网络结构;外壳NiCo2O4纳米片的尺寸较大(约为200-300nm),分散均匀,(NiOH)2纳米片的尺寸较小(约为30-50nm),垂直交叉生长在NiCo2O4纳米片表面,且片与片之间形成了充足的自由空隙。
3.根据权利要求1所述的一种高性能SiC@NiCo2O4/(NiOH)2复合超级电容器正极材料,其特征在于:所述复合电极材料呈现出优异的电化学性能,当电流密度为4A/g时,质量比电容值为2580F/g,当电流密度增大至20A/g时,质量比电容值为2141F/g,倍率特性~83%;并且经过3000圈循环后,其比电容仍能保持原比电容的91.5%。
CN201710738673.0A 2017-08-25 2017-08-25 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料 Pending CN107833757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710738673.0A CN107833757A (zh) 2017-08-25 2017-08-25 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710738673.0A CN107833757A (zh) 2017-08-25 2017-08-25 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料

Publications (1)

Publication Number Publication Date
CN107833757A true CN107833757A (zh) 2018-03-23

Family

ID=61643242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710738673.0A Pending CN107833757A (zh) 2017-08-25 2017-08-25 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料

Country Status (1)

Country Link
CN (1) CN107833757A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599564A (zh) * 2018-11-27 2019-04-09 东华大学 钴酸镍阵列自支撑大面积空气电极及其制备和应用
CN110176365A (zh) * 2018-12-29 2019-08-27 郑州大学 一种NiCo2O4/石墨烯水凝胶/泡沫镍复合电极的制备及其高性能超级电容器应用
CN110335759A (zh) * 2019-06-15 2019-10-15 武汉理工大学 负载氢氧化镍纳米片和钴酸镍纳米晶的碳纳米纤维复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824705A (zh) * 2014-03-10 2014-05-28 东华大学 一种水系非对称超级电容器的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824705A (zh) * 2014-03-10 2014-05-28 东华大学 一种水系非对称超级电容器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN ZHAO, ET AL.: ""Direct Growth of Ultrathin NiCo2O4/NiO Nanosheets on SiC Nanowires as a Free-Standing Advanced Electrode for High-Performance Asymmetric Supercapacitors"", 《ACS SUSTAINABLE CHEM. ENG.》 *
LIANG HUANG, ET AL.: ""Hybrid Composite Ni(OH)2@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors"", 《ACS APPL. MATER. INTERFACES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599564A (zh) * 2018-11-27 2019-04-09 东华大学 钴酸镍阵列自支撑大面积空气电极及其制备和应用
CN109599564B (zh) * 2018-11-27 2022-09-06 东华大学 钴酸镍阵列自支撑大面积空气电极及其制备和应用
CN110176365A (zh) * 2018-12-29 2019-08-27 郑州大学 一种NiCo2O4/石墨烯水凝胶/泡沫镍复合电极的制备及其高性能超级电容器应用
CN110176365B (zh) * 2018-12-29 2021-08-27 郑州大学 一种NiCo2O4/石墨烯水凝胶/泡沫镍复合电极的制备及其高性能超级电容器应用
CN110335759A (zh) * 2019-06-15 2019-10-15 武汉理工大学 负载氢氧化镍纳米片和钴酸镍纳米晶的碳纳米纤维复合材料及其制备方法和应用
CN110335759B (zh) * 2019-06-15 2021-07-06 武汉理工大学 负载氢氧化镍和钴酸镍的碳纳米纤维复合材料

Similar Documents

Publication Publication Date Title
CN104517739B (zh) 氧化钛基超级电容器电极材料及其制备方法
Wang et al. A high energy asymmetric supercapacitor based on flower-like CoMoO4/MnO2 heterostructures and activated carbon
CN104616905B (zh) 聚苯胺‑碳层‑氮化钛纳米线阵列复合材料及其制备方法和应用
CN107275105B (zh) 超级电容器电极材料及其制备方法
CN106910639B (zh) 一种用于超级电容器电极材料的NiTe2的制备方法
CN106206065A (zh) 一种超级电容器电极材料MnO2@PDA纳米复合材料的制备方法
CN106098397B (zh) 用于超级电容器的NiSe-Ni3Se2三维松叶状纳米材料及其制备方法
CN106098393B (zh) 一种用作超级电容器电极材料的硒化钴纳米材料及其制备方法
CN110993362A (zh) 一种新型三维电极材料及其制备方法和在超级电容器中的应用
CN107833757A (zh) 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料
CN105742625B (zh) 具有层状夹心结构的纳米电极材料及其制备方法和应用
Wang et al. Constructing a pn heterojunction in 3D urchin-like CoNixSy/g-C3N4 composite microsphere for high performance asymmetric supercapacitors
CN111048325A (zh) 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法
CN110033951A (zh) 一种氧化物@硫化物核壳结构的复合材料及制备方法与应用
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
CN109545573B (zh) 金属1t相硫化铼中空纳米球超级电容器电极材料的制备方法
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN102897849A (zh) 一种超级电容器电极材料的制备方法
CN107316749B (zh) Co3O4@CoWO4纳米线阵列核壳结构材料的制备方法及其应用
Zhao et al. A novel capacitive negative electrode material of Fe3N
CN110223850A (zh) 一种高性能氢氧化镍电极材料的快速原位制备方法
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN105957724A (zh) 一种非对称超级电容器及其制备方法
Zhao et al. Core-shell structured NiCo 2 O 4@ Ni (OH) 2 nanomaterials with high specific capacitance for hybrid capacitors
CN111039332B (zh) 一种多功能双层纳米线层状复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180323

RJ01 Rejection of invention patent application after publication