CN111048325A - 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法 - Google Patents

一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法 Download PDF

Info

Publication number
CN111048325A
CN111048325A CN201911219364.8A CN201911219364A CN111048325A CN 111048325 A CN111048325 A CN 111048325A CN 201911219364 A CN201911219364 A CN 201911219364A CN 111048325 A CN111048325 A CN 111048325A
Authority
CN
China
Prior art keywords
rgo
composite material
preparation
graphene composite
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911219364.8A
Other languages
English (en)
Inventor
轩海成
张国红
王芮
梁小红
韩培德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201911219364.8A priority Critical patent/CN111048325A/zh
Publication of CN111048325A publication Critical patent/CN111048325A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法,属于储能材料技术领域,可解决过渡金属氧化物在超级电容器应用中电导率低、循环稳定性差等问题,将硝酸镍,氯化锰,尿素和氟化铵溶解于去离子水中,充分搅拌均匀后转移至反应釜,将附着还原氧化石墨烯的泡沫镍基底浸没到反应釜中于120℃反应10小时,随后在充氮气的管式炉中350℃下退火2h,得到复合材料镍锰氧化物/石墨烯复合材料,将其进行水热硫化得到镍锰硫化物/石墨烯复合材料。本发明的制备方法简单,易于控制,价格低廉,所制备的电极材料比电容大,倍率性能高,循环稳定性好。在制成器件时,显示出了高的功率密度和能量密度,可作为优良的超级电容器电极材料。

Description

一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合 材料及其制备方法
技术领域
本发明属于储能材料技术领域,具体涉及一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法。
背景技术
随着全球经济的飞速发展,石油、煤炭、天然气等传统化石能源被大量消耗,新型绿色能源的发展已成为各国的新课题。21世纪以来,新能源技术已日趋成熟,然而能源的利用仍很大程度上受自然条件的限制,因此电能的存储已成为新能源利用过程中的关键环节,这促使了研究者们对能源高效转换存储设备的广泛研究与探索。超级电容器作为一种新型储能元件,因其具备的可观的储能容量、高输出功率密度、卓越的循环寿命、低成本且环境友好等特点,引起了广泛关注。据储能机理的不同,超级电容器主要分为双电层超级电容器和赝电容超级电容器。双电层电容器(Electrochemical Double-Layer Capacitors,EDLCs)通过极化时电解液中的离子在电极和电解质界面处静电吸附聚集形成双电层来存储电荷。赝电容器(Pseudocapacitance,PCs),是通过电极表面或者近表面可逆的法拉第反应进行储能,与双电层电容器相比有较大的比容量。
超级电容器的性能主要取决于电极材料。过渡金属氧化物(Ni-Co-O,Co-Mn-O,Ni-Mn-O 等)因其丰富的氧化价态,高的氧化还原活性在超级电容器领域得到了广泛应用。其中,镍锰基氧化物具有理论电容高,电位窗口大等优点,引起了广泛的研究兴趣。然而过渡金属氧化物电导率低,循环稳定性差,限制了其进一步应用。过渡金属硫化物与其相应的氧化物相比具有较高的电导率和电化学活性,将过渡金属氧化物转换成硫化物是提高电化学性能的有效方法。
发明内容
本发明针对过渡金属氧化物电导率低,循环稳定性差,不利于其实际应用的问题,提供作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法。
本发明采用如下技术方案:
一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料,化学通式为Ni-Mn-S/rGO/NF-x,其中x表示硫化反应时间,1 ≤ x ≤ 7。
一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯电极材料的制备方法,包括如下步骤:
第一步,化学还原法在泡沫镍基底上生长还原氧化石墨烯:将氧化石墨烯加入到去离子水中,超声分散得到棕色的分散液,然后向分散液中加入还原剂,搅拌均匀后,得到混合溶液A,将用丙酮、稀盐酸、无水乙醇清洗的泡沫镍基底放入混合溶液A中在90℃的水浴锅中反应6h后,将制备样品取出,洗涤干燥,得到生长有还原氧化石墨烯的泡沫镍基底,记为rGO/NF;
第二步,使用水热法在生长有还原氧化石墨烯的泡沫镍基底上生长镍锰氧化物:将Ni(NO3)2·6H2O,MnCl2·6H2O, CO(NH2)2和NH4F溶解于去离子水和无水乙醇的混合溶剂中,搅拌均匀后得到混合溶液B,将混合溶液B转移至反应釜中,将rGO/NF放入反应釜,在120℃条件下反应10h.待冷却至室温后,将制得的样品取出,洗涤干燥,随后在通入氮气的管式炉中350℃下退火2h得到复合材料Ni-Mn-O/rGO/NF,记为NMO/rGO/NF;
第三步,水热法硫化Ni-Mn-O/rGO/NF:将Na2S·9H2O 溶解于去离子水中,搅拌溶解后,转移至反应釜中,将Ni-Mn-O/rGO/NF放入反应釜中,在120℃条件下保持1-7h,取出洗涤干燥后,得到化学通式为Ni-Mn-S/rGO/NF-x的镍锰硫化物/石墨烯复合材料,记为NMS/rGO/NF-x。
第一步中所述氧化石墨烯和去离子水的比例为1mg:3mL,所述还原剂为抗坏血酸,还原剂与氧化石墨烯的质量比为3:1。
第二步中所述混合溶剂中去离子水和无水乙醇的体积比为6:1,Ni(NO3)2·6H2O和混合溶剂的比例为1mmol:70mL,MnCl2·6H2O和混合溶剂的比例为0.5mmol:70mL,CO(NH2)2和混合溶剂的比例为6mmol:70mL,NH4F和溶剂的比例为2mmol:70mL。
第三步中所述Na2S·9H2O和去离子水的比例为3.5mmol:70mL。
基于上述NMS/rGO/NF-x复合材料设计三电极体系:工作电极为NMS/rGO/NF-x复合材料电极,对电极为铂片电极,参比电极为甘汞电极,
使用型号为CHI660E电化学工作站作为测试仪器。
所述NMS/rGO/NF-x复合材料电极应用于超级电容器或锂离子电池以及其他大电流需求的电池和电器原件领域。
本发明的有益效果如下:
本发明的镍锰硫化物/石墨烯复合材料较相应的镍锰氧化物/石墨烯复合材料电化学性能有极大的提高。石墨烯作为一种新型的碳材料,具有超高的理论表面积,且能提高材料的导电性。结合镍锰硫化物和石墨烯二者的特性,制备的复合材料作为超级电容器的电极材料,具有较高的比电容特性,应用前景十分广泛。
本发明中硫化时间对复合材料的微观形貌和超级电容器比电容有明显的影响。硫化反应3h时,所制备的镍锰硫化物具有良好的纳米片状结构,作为超级电容器的正极材料时具有最大的比电容3374.6 F g-1;此外,以镍锰硫化物/还原氧化石墨烯为器件正极材料、掺氮还原氧化石墨烯作负极材料所组装成的超级电容器器件的能量密度高达58.9Wh kg-1,其优异的性能可作为电极材料应用于超级电容器及锂离子电池等领域。
附图说明
图1为本发明实施例1至实施例5得到的NMO/rGO/NF和不同硫化时间制备NMS/rGO/NF-x复合材料的XRD曲线。
图2为本发明实施例1至实施例5得到的NMO/rGO/NF和不同硫化时间制备的NMS/rGO/NF-x复合材料的场发射扫描电镜图,其中,a为NMO/rGO/NF;b为NMS/rGO/NF-1h;c-d为NMS/rGO/NF-3h;e为NMS/rGO/NF-5h;f为NMS/rGO/NF-7h。
图3为本发明实施例1至实施例5所制备的电极材料在2mol/L的KOH溶液中的伏安循环曲线图。
图4为本发明实施例1至实施例5所制备的电极材料在2mol/L的KOH溶液中的恒流充放电曲线图。
图5为本发明实施例6制备的超级电容器器件所对应的能量密度-功率密度关系图。
具体实施方式
对制备的复合材料的显微组织、电化学性能进行检测、分析和表征:
用MIRA3型扫描电子显微镜进行显微组织分析;
用CHI660E电化学工作站进行电化学性能测试。
实施例1
将10mg氧化石墨烯超声分解于30mL去离子水中,待形成均匀的棕色溶液后,加入30mg抗坏血酸,超声搅拌均匀后,将用丙酮、盐酸、无水乙醇清洗干净的泡沫镍放置于分散液中,并在水浴锅90 ℃条件下沉积6小时,取出用去离子水冲洗样品表面,置于60℃条件下干燥12 h得到rGO/NF。
将1mmol的Ni(NO3)2·6H2O,0.5mmol的MnCl2·6H2O, 6mmol的CO(NH2)2和2mmol的NH4F溶解于70mL去离子水和无水乙醇的混合溶剂中(去离子水和乙醇的体积比为6:1),搅拌均匀后转移到反应釜中,并将rGO/NF放入其中,在120℃条件下保持10个小时,用去离子水和乙醇冲洗样品表面,置于60℃干燥12h。随后在通入氮气的管式炉中350℃下退火2h。
将所制备的NMO/rGO/NF复合材料作为超级电容器的正极材料在三电极体系(电解质为2mol/L的KOH)中进行电化学性能测试,其比电容为 1499.0 F g-1
实施例2
将0.05M的Na2S·9H2O 溶解于70mL去离子水中搅拌溶解后转移到反应釜中,并将实施例1中所制得的NMO/rGO/NF放入其中,在120℃条件下保持1个小时,用去离子水冲洗样品表面,置于60℃干燥一晚。
所制备的复合物将其命名为NMS/rGO/NF-1h,作为超级电容器的正极材料在三电极体系(电解质为2mol/L的KOH)中进行电化学性能测试,其比电容为1971.0 F g-1
实施例3
将0.05M的Na2S·9H2O 溶解于70mL去离子水中搅拌溶解后转移到反应釜中,并将实施例1中所制得的NMO/rGO/NF放入其中,在120 ℃条件下保持3个小时,用去离子水冲洗样品表面,置于60℃干燥一晚。
所制备的复合物将其命名为NMS/rGO/NF-3h,作为超级电容器的正极材料在三电极体系(电解质为2mol/L的KOH)中进行电化学性能测试,其比电容为3374.6F g-1
实施例4
将0.05M的Na2S·9H2O 溶解于70mL去离子水中搅拌溶解后转移到反应釜中,并将实施例1中所制得的NMO/rGO/NF放入其中,在120℃条件下保持5个小时,用去离子水冲洗样品表面,置于60℃干燥一晚。
所制备的复合物将其命名为NMS/rGO/NF-5h,作为超级电容器的正极材料在三电极体系(电解质为2mol/L的KOH)中进行电化学性能测试,其比电容为1908.1F g-1
实施例5
将0.05M的Na2S·9H2O 溶解于70mL去离子水中搅拌溶解后转移到反应釜中,并将实施例1中所制得的NMO/rGO/NF放入其中,在120℃条件下保持7个小时,用去离子水冲洗样品表面,置于60℃干燥一晚。
所制备的复合物将其命名为NMS/rGO/NF-7h,作为超级电容器的正极材料在三电极体系(电解质为2 mol/L的KOH)中进行电化学性能测试,其比电容为1440.2F g-1
实施例6
将掺氮还原氧化石墨烯、乙炔黑、聚偏氟乙烯按质量比为8:1:1的比例混合,研磨均匀后涂抹到泡沫镍上,80℃干燥12h后作为负极材料,以镍锰硫化物/石墨烯复合材料作为正极材料组装成非对称超级电容器器件,并对其进行电化学性能测试;
所制备的超级电容器非对称器件在功率密度为852.3W kg-1时表现出高达58.9 Wh kg-1的能量密度。

Claims (5)

1.一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料,其特征在于:化学通式为Ni-Mn-S/rGO/NF-x,其中x表示硫化反应时间,1 ≤ x ≤ 7。
2.一种如权利要求1所述的作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料的制备方法,其特征在于:包括如下步骤:
第一步,化学还原法在泡沫镍基底上生长还原氧化石墨烯:将氧化石墨烯加入去离子水中,超声分散得到棕色的分散液,然后向分散液中加入还原剂,搅拌均匀后,得到混合溶液A,将用丙酮、稀盐酸、无水乙醇清洗的泡沫镍基底放入混合溶液A中在90℃的水浴锅中反应6h后,将制备样品取出,洗涤干燥,得到生长有还原氧化石墨烯的泡沫镍基底,记为rGO/NF;
第二步,使用水热法在生长有还原氧化石墨烯的泡沫镍基底上生长镍锰前驱体:将Ni(NO3)2·6H2O,MnCl2·6H2O,CO(NH2)2和NH4F溶解于去离子水和无水乙醇的混合溶剂中,搅拌均匀后得到混合溶液B,将混合溶液B转移至反应釜中,将rGO/NF放入反应釜,在120℃条件下反应10h.待冷却至室温后,将制得的样品取出,洗涤干燥,随后在通入氮气的管式炉中350℃下退火2h,得到化学通式为Ni-Mn-O/rGO/NF的镍锰氧化物/石墨烯复合材料,记为NMO/rGO/NF;
第三步,水热法硫化Ni-Mn-O/rGO/NF:将Na2S·9H2O 溶解于去离子水中,搅拌溶解后,转移至反应釜中,将Ni-Mn-O/rGO/NF放入反应釜中,在120℃条件下保持1-7h,取出洗涤干燥后,得到化学通式为Ni-Mn-S/rGO/NF-x的镍锰硫化物/石墨烯复合材料,记为NMS/rGO/NF-x。
3.根据权利要求2所述的一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料的制备方法,其特征在于:第一步中所述氧化石墨烯和去离子水的比例为1mg:3mL,所述还原剂为抗坏血酸,还原剂与氧化石墨烯的质量比为3:1。
4.根据权利要求2所述的一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料的制备方法,其特征在于:第二步中所述混合溶剂中去离子水和无水乙醇的体积比为6:1,Ni(NO3)2·6H2O和混合溶剂的比例为1mmol:70mL,MnCl2·6H2O和混合溶剂的比例为0.5mmol:70mL,CO(NH2)2和混合溶剂的比例为6mmol:70mL,NH4F和溶剂的比例为2mmol:70mL。
5.根据权利要求2所述的一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料的制备方法,其特征在于:第三步中所述Na2S·9H2O和去离子水的比例为3.5mmol:70mL。
CN201911219364.8A 2019-12-03 2019-12-03 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法 Pending CN111048325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911219364.8A CN111048325A (zh) 2019-12-03 2019-12-03 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911219364.8A CN111048325A (zh) 2019-12-03 2019-12-03 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111048325A true CN111048325A (zh) 2020-04-21

Family

ID=70233396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911219364.8A Pending CN111048325A (zh) 2019-12-03 2019-12-03 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111048325A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044839A (zh) * 2021-04-02 2021-06-29 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用
CN113582250A (zh) * 2021-07-27 2021-11-02 新疆维吾尔自治区产品质量监督检验研究院 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法
CN113793758A (zh) * 2021-08-19 2021-12-14 江苏工程职业技术学院 基于双金属硫化物与碳纤维布柔性复合电极的制备方法
CN114235934A (zh) * 2021-12-07 2022-03-25 山西大学 二元锰基尖晶石氧化物-gr纳米复合电化学传感器及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784719A (zh) * 2017-01-05 2017-05-31 山东理工大学 一种石墨烯包覆3d花状硫化镍/泡沫镍材料的制备方法
CN109637834A (zh) * 2018-11-01 2019-04-16 太原理工大学 一种用于超级电容器的形貌可控的钴钼硫化物/石墨烯复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784719A (zh) * 2017-01-05 2017-05-31 山东理工大学 一种石墨烯包覆3d花状硫化镍/泡沫镍材料的制备方法
CN109637834A (zh) * 2018-11-01 2019-04-16 太原理工大学 一种用于超级电容器的形貌可控的钴钼硫化物/石墨烯复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NASHAAT AHMED等: ""Three-Dimensional Interconnected Binder-Free Mn-Ni-S Nanosheets for High Performance Asymmetric Supercapacitor Devices with Exceptional Cyclic Stability"", 《ACS APPLIED ENERGY MATERIALS》 *
XIAOKUN HAN等: ""Construction of manganese-cobalt-sulfide anchored onto rGO/Ni foam with a high capacity for hybrid supercapacitors"", 《ELECTROCHIMICA ACTA》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044839A (zh) * 2021-04-02 2021-06-29 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用
CN113044839B (zh) * 2021-04-02 2022-09-16 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用
CN113582250A (zh) * 2021-07-27 2021-11-02 新疆维吾尔自治区产品质量监督检验研究院 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法
CN113582250B (zh) * 2021-07-27 2023-01-31 新疆维吾尔自治区产品质量监督检验研究院 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法
CN113793758A (zh) * 2021-08-19 2021-12-14 江苏工程职业技术学院 基于双金属硫化物与碳纤维布柔性复合电极的制备方法
CN114235934A (zh) * 2021-12-07 2022-03-25 山西大学 二元锰基尖晶石氧化物-gr纳米复合电化学传感器及其制备方法和应用
CN114235934B (zh) * 2021-12-07 2023-07-18 山西大学 二元锰基尖晶石氧化物-gr纳米复合电化学传感器及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111048325A (zh) 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法
CN106057477B (zh) 一种水系可充钠离子电容电池及其制备方法
CN106914244B (zh) 一种石墨烯基金属化合物纳米阵列材料制备与应用
CN109713257B (zh) 一种高性能Si@SnO2@C复合材料及其制备方法和应用
CN107275105A (zh) 超级电容器电极材料及其制备方法
CN108133831B (zh) 一种Ni3S2@rGO@LDHs的制备方法
CN109637834A (zh) 一种用于超级电容器的形貌可控的钴钼硫化物/石墨烯复合材料及其制备方法
CN113077999B (zh) 一种无粘结剂CoFe LDH@Co8FeS8复合电极材料的制备方法
CN111146016A (zh) 一种用于超级电容器的片状镍硫化物/镍钒双氢氧化物/石墨烯复合材料及其制备方法
CN108987688B (zh) 一种碳基复合材料、制备方法及钠离子电池
CN110993362A (zh) 一种新型三维电极材料及其制备方法和在超级电容器中的应用
CN111689523A (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
CN112830523A (zh) 用于超级电容器的钼掺杂四氧化三钴及其制备方法
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN106981650B (zh) 一种纳米级单质铋的制备方法
CN109817475B (zh) 硫化铋镍正极材料的制备方法及其应用
CN111039332B (zh) 一种多功能双层纳米线层状复合材料的制备方法及其应用
CN113496823B (zh) 对称杂化超级电容器及其应用
CN112467077A (zh) 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN111146008A (zh) 一种作为超级电容器的锰钼硫化物/石墨烯复合电极材料及其制备方法
CN110993359B (zh) 一种柔性固态非对称超级电容器件及其制备方法与应用
CN107833757A (zh) 一种高性能SiC@NiCo2O4/Ni(OH)2复合超级电容器正极材料
CN112038106A (zh) 一种电极材料及其制备方法和超级电容器电极
CN111128561A (zh) 一种纳米结构的柔性非对称固态超级电容器及其制备方法
CN114300276B (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421

RJ01 Rejection of invention patent application after publication