CN109650369A - 一种能发电的木头及其制备方法与应用 - Google Patents

一种能发电的木头及其制备方法与应用 Download PDF

Info

Publication number
CN109650369A
CN109650369A CN201811537892.3A CN201811537892A CN109650369A CN 109650369 A CN109650369 A CN 109650369A CN 201811537892 A CN201811537892 A CN 201811537892A CN 109650369 A CN109650369 A CN 109650369A
Authority
CN
China
Prior art keywords
wood
preparation
carbon
dimensional porous
generated electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811537892.3A
Other languages
English (en)
Inventor
黄建林
王亚萌
林湘君
刘亭
陈珩
柴委
牟机熔
张文嘉
刘江
刘美林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811537892.3A priority Critical patent/CN109650369A/zh
Publication of CN109650369A publication Critical patent/CN109650369A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种能发电的木头及其制备方法与应用。该方法利用:(1)木头具有较强的机械性能,经过高温碳化下可保持原三维固态立体状,可作为一种自支撑材料使用;(2)活性物质与三维多孔木头碳基材料之间的范德华力等作用力,使活性物质均匀生长在三维多孔木头碳基材料表面及内部孔道。本发明的制备方法原材料为天然木头,在自然界储量大、环保无污染,与传统的多孔碳材料制备方法相比较,操作工艺简单、易于控制、重现性高。本发明的能发电的木头具有良好的机械强度、大的比表面积、良好的孔径分布、导电性和热稳定性,在催化、电化学等领域表现出优异的性能。

Description

一种能发电的木头及其制备方法与应用
技术领域
本发明涉及一种能发电的木头制备方法及应用和装置,具体涉及一种能发电的木头及其制备方法与应用。
背景技术
树木是生活中最常见的植物,木头作为一种天然的生物质材料,以其为原料所制备的生物质碳具有无污染、高储量、可再生等特点,已成为最具发展潜力的新材料和新能源之一。碳化后制备的三维多孔木头碳基材料不仅可以保持三维立体状,且导电性高、电阻低、质量轻,可作为自支撑材料直接使用。因此,越来越多的被应用于超级电容器、锂电池电极材料等领域。但是单纯的三维多孔木头碳基材料做为碳材料的一种,直接使用时其比容量较低,电化学性能较差,且一般只能作为负极材料使用。
发明内容
为了弥补单纯的三维多孔木头碳基材料在电化学领域应用的缺点与不足,本发明的目的在于针对三维多孔木头碳基材料的形态、结构特征,在其表面引入活性材料,提供一种能发电的木头。
本发明的目的通过如下技术方案来实现。
一种能发电的木头的制备方法,包括如下步骤:
(1)天然木头切成薄片:将天然木头切成木片;
(2)前处理:将所述木片在酸溶液中静置浸泡,用去离子水超声洗涤,再干燥,得到干净的木片前驱体;
(3)前处理:将所述木片在酸溶液中静置浸泡,用去离子水超声洗涤,再干燥,得到干净的木片前驱体;
(4))在所述三维多孔木头碳基材料表面负载活性材料,制备得到所述能发电的木头。
进一步地,步骤(1)中,所述的木头是自然界任意一种木头;
进一步的,步骤(1)中,所述的木头选自杨木、松木或桐木;所述小块木片为所需尺寸大小;
进一步地,步骤(2)中,步骤(2)中,所述酸溶液为盐酸溶液或硫酸溶液,且浓度为0.5M~1M;
进一步地,步骤(2)中,所述静置浸泡时间为6~12h;
进一步地,步骤(2)中,所述有干燥是在真空条件下,温度50∼80℃,干燥12∼24h;
进一步地,步骤(3)中,所述煅烧碳化的温度为900~1100℃,时间为2~6h;
进一步地,步骤(4)中,在三维多孔木头碳基材料表面生长的活性材料为任意可适用于电化学器件的材料,如氢氧化钴、三氧化二铁或氢氧化镍;
进一步地,步骤(4)中,所述负载采用水热法或电化学沉积法。
由上述任一项所述的制备方法制得的一种能发电的木头,其可作为自支撑电极材料使用,即所述能发电的木头可应用于超级电容器或其他储能器件中。
本发明中经过高温碳化三维多孔木头碳基材料可保持原三维固态立体状,活性物质与三维多孔木头碳基材料之间的范德华力等作用力,将其作为基底,使活性物质均匀生长在三维多孔木头碳基材料表面及内部孔道。不仅能提高复合材料的电化学性能,还可根据负载活性材料的特点将其作为超级电容器正极或负极使用。
与现有技术相比,本发明具有如下的优点与技术效果:
(1)本发明的能发电的木头具有介孔、微孔共存结构以及良好的孔径分布和大的比表面积。
(2)本发明的能发电的木头具有良好的机械强度和热稳定性,使用中维持其三维固态立体状,可直接作为自支撑电极材料使用。
(3)本发明的原材料来源广泛、丰富、可再生、绿色、环保,且操作工艺简单、易于控制、重现性好,易实现工业化规模生产;
(4)本发明的能发电的木头具有大孔/介孔/微孔共存的多级孔结构,含较多孔道,机械强度大,可作为自支撑电极材料使用,在储能领域具有广阔的应用前景;
(5)本发明中,可根据负载活性材料的特点将其作为超级电容器正极或负极使用。
附图说明
图1a为未负载活性材料的三维多孔木头碳基材料的SEM图;1b-1f分别为实施例1中制备的三维多孔木头碳基材料的不同放大倍数的表面SEM图;1g-1i为图1b中C、O、Co三种元素的EDS元素分布图;
图2为实施例1中用能发电的木头制备的超级电容器的图示。
具体实施例
实施例1
三维多孔木头碳基材料和氢氧化钴的复合材料的制备,具体包括如下步骤:
(1)木片制备:将木头切成1*1cm的小片;
(2)三维多孔木头碳基材料的制备:将木片在0.5M的盐酸中浸泡6h后,用去离子水超声洗涤至中性;然后在真空烘箱中60℃干燥16h,得到三维多孔木头碳基材料前驱体;
(3)煅烧碳化:将三维多孔木头碳基材料前驱体在氮气气氛保护下950oC碳化烧结2h,得到三维多孔木头碳基材料(CW);
(4)三维多孔木头碳基材料和氢氧化钴的复合材料:将CW (1.0 cm2)浸入到1.0M Co(NO3)2和0.1M NaNO3混合溶液中浸渍24h。在CHI 660D工作站上采用三电极体系(以CW电极为工作电极、铂网为对电极、银/氯化银为参比电极)进行电化学沉积。用0.1 mA cm-2的电流密度沉积2h。最后将所得产物用去离子水洗涤,在真空烘箱中80℃干燥12h,得到三维多孔木头碳基材料和氢氧化钴的复合材料(Co(OH)2 @ CW)
图1a为未负载活性材料的三维多孔木头碳基材料的SEM图。图1b和图1c为负载了Co(OH)2材料的三维多孔木头碳基材料的SEM图。经过对比发现,负载了Co(OH)2后三维多孔木头碳基材料依然保持原三维立体结构,未发生明显变化,但其表面变得粗糙,孔道的直径减小;孔道存在有利于电解质的渗入,增加电解质和活性材料的有效接触面积。从图1d-1f可以看出,负载的Co(OH)2为片状结构,均匀生长在CW的孔道内部及表面;如图1g-1i为C,O,Co三种元素的EDS元素分布图,这三种元素均匀分布也进一步说明成功的在CW表面和内部的沉积了一层Co(OH)2,且Co(OH)2的分布非常均匀。
图2为利用制备的能发电的木头组装超级电容器流程示意图。以三维多孔木头碳基材料和氢氧化钴的复合材料做为超级电容器的正极材料,三维多孔木头碳基材料作为负极组装成为超级电容器器件,当电流密度为1mA cm-2时,Co(OH)2@CW的面积比电容分别为3.723F cm-2。将组装的超级电容器充电后可点亮电压为2.5V,1W的LED灯,并且可持续约30min。
实施例2
三维多孔木头碳基材料和三氧化二铁复合材料的制备,具体包括如下步骤:
(1)木片制备:将木头切成2*1cm的小片;
(2)三维多孔木头碳基材料的制备:将木片在0.8M的盐酸中浸泡9h后,用去离子水超声洗涤至中性;再70℃真空干燥18h,得到三维多孔木头碳基材料前驱体;
(3)煅烧碳化:将三维多孔木头碳基材料前驱体在氮气气氛保护下1000oC碳化烧结4h,得到三维多孔木头碳基材料;
(4)三维多孔木头碳基材料和三氧化二铁复合材料:将三维多孔木头碳基材料在30ml的FeSO4·7H2O溶液(0.1mol/L)中浸泡10min, 逐滴加入6ml氨水NH3·H2O(30wt%),搅拌均匀后,倒入50ml反应釜中,180oC水热反应12h。最后将所得产物用去离子水洗涤,在真空烘箱中80℃干燥12h。
所制备的三维多孔木头碳基材料和三氧化二铁复合材料在电流密度为1mA/cm2时面积比电容可达到2100mF/cm2,具有良好的电化学性能。
实施例3
三维多孔木头碳基材料和氢氧化镍的复合材料的制备,具体包括如下步骤:
(1)木片制备:将木头切成2*2cm的小片;
(2)三维多孔木头碳基材料的制备:将木片在1M的盐酸中浸泡12h后,用去离子水超声洗涤至中性;再80℃真空干燥24h,得到三维多孔木头碳基材料前驱体;
(3)煅烧碳化:将三维多孔木头碳基材料前驱体在氮气气氛保护下1100oC碳化烧结6h,得到三维多孔木头碳基材料;
(4)三维多孔木头碳基材料和氢氧化镍的复合材料:将三维多孔木头碳基材料浸入30mlNiSO4(0.1M)溶液中,逐滴加入10wt%的NH3·H2O,调节溶液PH为12。逐滴加入6wt%H2O2溶液,静置4h后,将三维多孔木头碳基材料/氢氧化镍用去离子水洗涤,在真空烘箱中80℃干燥12h。
制备的三维多孔木头碳基材料和氢氧化镍的复合材料在电流密度为1mA/cm2时面积比电容可达到1778 mF/cm2,具有良好的电化学性能。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

1.一种能发电的木头的制备方法,其特征在于,包括如下步骤:
(1)天然木头切成木片:将天然木头切成木片;
(2)前处理:将所述木片在酸溶液中静置浸泡,用去离子水超声洗涤,再干燥,得到干净的木片前驱体;
(3)煅烧碳化:将所述木片前驱体在惰性气氛下高温碳化烧结,得到三维多孔木头碳基材料;
(4)在所述三维多孔木头碳基材料表面负载活性材料,制备得到所述能发电的木头。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的木头选自杨木、松木或桐木。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述酸溶液为盐酸溶液或硫酸溶液,且浓度为0.5M~1M。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述静置浸泡时间为6~12h。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述干燥是在真空条件下,温度50~80℃,干燥12~24h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述煅烧碳化的温度为900~1100℃,时间为2~6h。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,在所述三维多孔木头碳基材料表面负载的活性材料为氢氧化钴、三氧化二铁或氢氧化镍。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述负载采用水热法或电化学沉积法。
9.由权利要求1-8任一项所述的制备方法制得的一种能发电的木头。
10.权利要求9所述的一种能发电的木头在超级电容器中的应用。
CN201811537892.3A 2018-12-15 2018-12-15 一种能发电的木头及其制备方法与应用 Pending CN109650369A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811537892.3A CN109650369A (zh) 2018-12-15 2018-12-15 一种能发电的木头及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811537892.3A CN109650369A (zh) 2018-12-15 2018-12-15 一种能发电的木头及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN109650369A true CN109650369A (zh) 2019-04-19

Family

ID=66114364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811537892.3A Pending CN109650369A (zh) 2018-12-15 2018-12-15 一种能发电的木头及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109650369A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734048A (zh) * 2019-11-18 2020-01-31 哈尔滨工业大学(威海) 基于原生木材的三维有序碳基多孔吸波材料的制备方法
CN114031157A (zh) * 2021-11-18 2022-02-11 中国科学院生态环境研究中心 一种利用多孔三维木基电极去除和回收水中重金属的方法
CN115101356A (zh) * 2022-05-12 2022-09-23 华南理工大学 一种木材基高密度固态电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916452A (zh) * 2015-04-21 2015-09-16 中国林业科学研究院林产化学工业研究所 一种超级电容器用木质活性炭复合材料及其制备方法
CN106683890A (zh) * 2016-11-01 2017-05-17 浙江农林大学 碳/氧化锰复合材料及其制备方法与应用
CN107749349A (zh) * 2017-10-19 2018-03-02 天津工业大学 一种c@f2o3复合结构的电极材料制备的新方法
CN108264034A (zh) * 2018-02-06 2018-07-10 陕西师范大学 源于木材的多孔碳上生长螺旋状碳纳米管的方法
KR20180130946A (ko) * 2017-05-31 2018-12-10 한국세라믹기술원 부분 결정성 다공성 활성탄의 제조방법, 상기 부분 결정성 다공성 활성탄을 이용한 슈퍼커패시터 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916452A (zh) * 2015-04-21 2015-09-16 中国林业科学研究院林产化学工业研究所 一种超级电容器用木质活性炭复合材料及其制备方法
CN106683890A (zh) * 2016-11-01 2017-05-17 浙江农林大学 碳/氧化锰复合材料及其制备方法与应用
KR20180130946A (ko) * 2017-05-31 2018-12-10 한국세라믹기술원 부분 결정성 다공성 활성탄의 제조방법, 상기 부분 결정성 다공성 활성탄을 이용한 슈퍼커패시터 및 그 제조방법
CN107749349A (zh) * 2017-10-19 2018-03-02 天津工业大学 一种c@f2o3复合结构的电极材料制备的新方法
CN108264034A (zh) * 2018-02-06 2018-07-10 陕西师范大学 源于木材的多孔碳上生长螺旋状碳纳米管的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMENG WANG ET AL: "Wood-Derived Hierarchically Porous Electrodes for High-Performance All-Solid-State Supercapacitors", 《ADVANCED FUNCTIONAL MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734048A (zh) * 2019-11-18 2020-01-31 哈尔滨工业大学(威海) 基于原生木材的三维有序碳基多孔吸波材料的制备方法
CN114031157A (zh) * 2021-11-18 2022-02-11 中国科学院生态环境研究中心 一种利用多孔三维木基电极去除和回收水中重金属的方法
CN115101356A (zh) * 2022-05-12 2022-09-23 华南理工大学 一种木材基高密度固态电极及其制备方法

Similar Documents

Publication Publication Date Title
CN109019602B (zh) 碳化钼材料、碳化钼@硫化钼复合材料及制备方法与应用
Liu et al. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery
CN106252616A (zh) 一种硒化镍/中空碳纤维复合材料及其制备方法
CN109081340B (zh) 一种松树基生物质活性炭及其制备方法和在电化学储能中的应用
CN110085433B (zh) 基于碳纳米管和二氧化锰的杉木碳片的电极材料、制备方法和超级电容器
CN104157470A (zh) 一种超级电容器用碳材料的制备方法
CN109650369A (zh) 一种能发电的木头及其制备方法与应用
CN110075872A (zh) 利用电化学活化二硫化钼/碳复合材料电催化析氢的方法
CN104733700A (zh) 一种锂硒电池柔性正极的制备方法
CN105463831A (zh) 一种二硫化钼/石墨烯/碳纳米纤维复合材料及其制备方法
CN107658474A (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN108821257A (zh) 一种基于荷叶的二元介孔-微孔多级结构生物碳及其制备方法和应用
CN107275640B (zh) 一步制备硫氮双掺棉花基多孔碳
Zhu et al. Design of multidimensional nanocomposite material to realize the application both in energy storage and electrocatalysis
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN110526304A (zh) 四硫钴酸镍/氢氧化钴纳米片阵列结构复合材料及其制备与应用
CN108123141A (zh) 一种三维多孔泡沫石墨烯材料及其应用
CN110252348A (zh) 一种超亲水超疏气的过渡金属钼硫凝胶电催化剂的制备方法
Jiang et al. Fungi-derived, functionalized, and wettability-improved porous carbon materials: an excellent electrocatalyst toward VO2+/VO2+ redox reaction for vanadium redox flow battery
CN106449180B (zh) 一种提高石墨烯基超级电容器的比电容的方法
CN109637824B (zh) 一种用于超级电容器的CoFe2S4纳米片/泡沫镍复合材料及其制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN106981650A (zh) 一种纳米级单质铋的制备方法
CN105161319B (zh) 二氧化钛纳米管阵列负载镍钴氧化物电极材料的制备方法
CN107732209B (zh) 一种以混合菌渣废料制备锂离子碳负极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190419

RJ01 Rejection of invention patent application after publication