CN108039443A - 一种锂电池用复合隔膜及其制备方法 - Google Patents

一种锂电池用复合隔膜及其制备方法 Download PDF

Info

Publication number
CN108039443A
CN108039443A CN201711168298.7A CN201711168298A CN108039443A CN 108039443 A CN108039443 A CN 108039443A CN 201711168298 A CN201711168298 A CN 201711168298A CN 108039443 A CN108039443 A CN 108039443A
Authority
CN
China
Prior art keywords
temperature
lithium battery
preparation
composite diaphragm
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711168298.7A
Other languages
English (en)
Other versions
CN108039443B (zh
Inventor
杨茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinlun new energy materials (Changzhou) Co., Ltd
Original Assignee
New Nylon Composite Technology (changzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Nylon Composite Technology (changzhou) Co Ltd filed Critical New Nylon Composite Technology (changzhou) Co Ltd
Priority to CN201711168298.7A priority Critical patent/CN108039443B/zh
Publication of CN108039443A publication Critical patent/CN108039443A/zh
Application granted granted Critical
Publication of CN108039443B publication Critical patent/CN108039443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供了一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000‑1000000、分子量分布指数Mw/Mn为4‑8、等规度>96%、熔体流动速率为1.3‑3.3;低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000‑300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2‑0.8。本发明的锂电池用复合隔膜具有较低的闭孔温度和较高的破膜温度,自关断安全窗口较宽,机械性能好,抗穿刺强度高,在锂离子电池的生产和使用过程中安全性能好,微孔孔径尺寸合适,分布均匀,贯通性好,电池的内阻小,有利于提高电池的工作效率。

Description

一种锂电池用复合隔膜及其制备方法
技术领域
本发明涉及一种锂电池用复合隔膜及其制备方法,属于锂电池技术领域。
背景技术
锂离子电池隔膜是锂离子电池中的一个重要组件,它是一种具有纳米级微孔的薄膜材料,在电池中起到阻隔正负电极、防止电池内部短路的作用;同时,它必须允许离子流快速通过,保证在电池充放电过程中锂离子在正负电极之间的快速传输。隔膜的微孔结构、物理性能、化学特性、热性能等决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。因此,电池隔膜在制造电池的材料中占有非常重要的地位,被称为电池的“第三电极”。正是由于电池隔膜的这种重要作用,高性能锂离子电池隔膜的开发成为电池生产企业技术研究的重点。
聚烯烃材料具有强度高、耐酸碱腐蚀性好、防水、耐化学试剂、生物相容性好、无毒性等优点,在众多领域得到了广泛的应用。当前,商品化的液态锂离子电池大多使用微孔聚烯烃隔膜,隔膜使用的聚烯烃材料目前主要是聚丙烯(PP)和聚乙烯(PE)两类。目前商品化锂电池隔膜的生产方法主要包括熔融拉伸法(干法)和热致相分离法(湿法)。熔融拉伸法通过流延成型得到具有硬弹性的基膜,该基膜具有低结晶度和高取向性,然后对基膜进行热处理(高温退火)以提高晶片厚度和结晶度,最后再将薄膜分别在低温和高温下进行单向拉伸,低温拉伸主要是产生微孔和银纹缺陷,高温拉伸是将微孔扩大,并将银纹缺陷拉伸形成微孔结构。热致相分离法利用高分子材料和特定的溶剂在高温条件下完全相容,冷却后产生相分离的特性,使富溶剂相连续贯穿于富聚合物相形成的连续固态相中,将溶剂萃取后在富聚合物相中形成微孔。湿法生产微孔膜时,孔径大小和孔隙率较易控制,孔的曲折度相对高,但是需要使用大量溶剂,工艺复杂,对环境污染较大;干法生产过程中工艺简单,孔曲折度较低,不仅可以生产单层隔膜,还可生产多层复合隔膜,提高生产效率,但是孔径大小较难控制。
隔膜在电池中直接接触具有硬表面的正极和负极,电极表面是由活性物质和炭黑混合物的微小颗粒所构成的凸凹面,尤其当电池内部形成枝晶时,被夹在极片间的隔膜易被穿破,从而引起正负极板接触发生短路,因此要求隔膜具有一定的抗穿刺强度。隔膜在电池中卷绕,在纵向承受一定的张力,因此隔膜还要具有一定的抗张强度,尤其是纵向抗张强度。
电池在充放电过程中会释放热量,尤其在短路或过充电的时候,会有大量热量放出,锂电池中隔膜的自关闭性质是锂离子电池限制温度升高及防止短路的有效方法。当温度接近聚合物熔点时,微孔闭合而产生自关闭,这时阻抗明显上升,通过电池的电流也受到限制,因而可防止由于过热而引起的爆炸等现象。当电池内部温度继续升高的时候,闭孔后的隔膜应当保持原来的完整性和一定的机械强度,继续起到隔离正负电极的作用,防止短路发生。因此隔膜的闭孔温度和熔融破裂温度相差越大,电池的安全性就越好。材料的熔点决定了隔膜的闭孔温度,PE隔膜的闭孔温度在130℃左右,破膜温度在145℃左右;PP隔膜的闭孔温度在150℃左右,破膜温度在170℃左右。
由于PP隔膜机械强度高,耐高温性能好,而PE隔膜的闭孔温度低,因此PP、PE复合隔膜则综合了以上优点,具有较低的闭孔温度和较高的破膜温度,安全窗口温度可达到40℃,且机械性能优,抗张强度和抗穿刺强度高,保证了电池在生产和使用过程中更加安全。PP、PE复合隔膜成为目前锂电池隔膜领域研究开发的热点。
发明内容
鉴于上述现有技术存在的缺陷,本发明的目的是提供一种锂电池用复合隔膜及其制备方法;能够提高聚烯烃隔膜的安全性能,扩大隔膜使用的安全窗口温度,提高聚烯烃隔膜的机械强度。
本发明的目的通过以下技术方案得以实现:
一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;
所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000-1000000、分子量分布指数Mw/Mn为4-8、等规度>96%、熔体流动速率为1.3-3.3;
低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000-300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2-0.8。
上述的锂电池用复合隔膜中,优选的,所述锂电池用复合隔膜的厚度为30-60μm;总孔隙率为40%-60%;微孔尺寸为0.01μm-0.15μm。
本发明还提供上述的锂电池用复合隔膜的制备方法,包括如下步骤:
将聚丙烯树脂熔融塑化,得到的熔体通过计量泵从三层模头的两个表层挤出,得到两层聚丙烯树脂挤出物料;
将聚乙烯树脂熔融塑化,得到的熔体通过计量泵从三层模头的芯层挤出,得到芯层聚乙烯树脂挤出物料;
两层聚丙烯树脂挤出物料和芯层聚乙烯树脂挤出物料在模头出口处汇合,牵引并不断冷却,得到PP/PE/PP复合厚片;
将PP/PE/PP复合厚片进行热处理,然后在常温和高温下分别进行单向拉伸,最后回缩定型,即得到锂电池用复合隔膜。
上述的制备方法中,优选的,所述模头的加热温度控制为200℃。
上述的制备方法中,优选的,将聚丙烯树脂熔融塑化的塑化温度为190℃-250℃。
上述的制备方法中,优选的,将聚乙烯树脂熔融塑化的塑化温度为190℃-230℃。
上述的制备方法中,优选的,所述热处理的温度为105℃-130℃。
上述的制备方法中,优选的,常温下单向拉伸的拉伸倍率为10%-50%。
上述的制备方法中,优选的,高温下单向拉伸的拉伸倍率为80%-140%。
上述的制备方法中,优选的,所述高温是指拉伸温度110℃-140℃。
上述的制备方法中,优选的,所述回缩定型的回缩比为-30%—-50%,回缩定型的温度为110℃-140℃。
本发明的锂电池用复合隔膜具有如下特性:
(1)厚度范围:30—60μm;
(2)总孔隙率:40%—60%,微孔尺寸:0.01μm—0.15μm;
(3)Gueley透气度值:<600s;
(4)纵向强度:>170MPa,抗穿刺强度:>190g;
(5)闭孔温度:105℃—115℃,破膜温度:165℃—175℃,安全窗口温度可达60℃。
本发明的突出效果为:
本发明的锂电池用复合隔膜具有较低的闭孔温度和较高的破膜温度,自关断安全窗口较宽,机械性能好,抗穿刺强度高,在锂离子电池的生产和使用过程中安全性能好。微孔孔径尺寸合适,分布均匀,贯通性好,电池的内阻小,有利于提高电池的工作效率。本发明的锂电池用复合隔膜的制备方法采用三层共挤的方法铸片,再进行热处理和单向拉伸,大大提高了复合微孔膜的生产效率,在隔膜的工业化生产中具有极其重要的意义。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
本实施例提供一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;
所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000-1000000、分子量分布指数Mw/Mn为4-8、等规度>96%、熔体流动速率为1.3-3.3;
低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000-300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2-0.8。
本实施例还提供上述的锂电池用复合隔膜的制备方法,包括如下步骤:
将聚丙烯树脂送入一台单螺杆挤出机内熔融塑化,塑化温度为210℃-220℃,得到的熔体通过计量泵从三层模头的两个表层挤出,得到两层聚丙烯树脂挤出物料;
将聚乙烯树脂送入另一台单螺杆挤出机内熔融塑化,塑化温度为210℃-220℃,得到的熔体通过计量泵从三层模头的芯层挤出,得到芯层聚乙烯树脂挤出物料;
两层聚丙烯树脂挤出物料和芯层聚乙烯树脂挤出物料在模头出口处汇合,牵引并不断冷却,得到PP/PE/PP复合厚片,厚片厚度36μm;整个过程中,模头的加热温度控制为200℃。
将PP/PE/PP复合厚片进行热处理,热处理的温度为115℃-125℃;然后在常温和高温下分别进行单向拉伸,常温下单向拉伸的拉伸倍率为10%,然后在拉伸温度120℃-130℃的高温下进行拉伸,拉伸倍率为100%;最后回缩定型,回缩定型的回缩比为-35%,回缩定型的温度为125℃-135℃,即得到锂电池用复合隔膜。
对得到的锂电池用复合隔膜进行测定,其中隔膜透气率和孔隙率的测试方法如下:
透气率:采用Gurley值表征隔膜的透气率。使用Gurley公司生产的4110型透气率测定仪,压力为20盎司,测试面积1.0平方英寸。记录100ml气体透过该测试面积所需的时间,即为Gurley透气度值。
总孔隙率:采用美国康塔公司的PoreMaster33型压汞仪测定隔膜的总孔隙率。
测定结果如下:。
锂电池用复合隔膜的厚度30μm,孔隙率为42%,微孔的孔径范围0.01μm-0.15μm,Gurley透气度值400s,纵向强度为196MPa,抗穿刺强度为209g,闭孔温度105℃-115℃,破膜温度165℃-175℃,安全窗口温度可达60℃。
实施例2
本实施例提供一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;
所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000-1000000、分子量分布指数Mw/Mn为4-8、等规度>96%、熔体流动速率为1.3-3.3;
低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000-300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2-0.8。
本实施例还提供上述的锂电池用复合隔膜的制备方法,包括如下步骤:
将聚丙烯树脂送入一台单螺杆挤出机内熔融塑化,塑化温度为190℃-220℃,得到的熔体通过计量泵从三层模头的两个表层挤出,得到两层聚丙烯树脂挤出物料;
将聚乙烯树脂送入另一台单螺杆挤出机内熔融塑化,塑化温度为190℃-220℃,得到的熔体通过计量泵从三层模头的芯层挤出,得到芯层聚乙烯树脂挤出物料;
两层聚丙烯树脂挤出物料和芯层聚乙烯树脂挤出物料在模头出口处汇合,牵引并不断冷却,得到PP/PE/PP复合厚片,厚片厚度50μm;整个过程中,模头的加热温度控制为200℃。
将PP/PE/PP复合厚片进行热处理,热处理的温度为105℃-115℃;然后在常温和高温下分别进行单向拉伸,常温下单向拉伸的拉伸倍率为15%,然后在拉伸温度120℃-130℃的高温下进行拉伸,拉伸倍率为125%;最后回缩定型,回缩定型的回缩比为-30%,回缩定型的温度为125℃-135℃,即得到锂电池用复合隔膜。
对得到的锂电池用复合隔膜进行测定,其中隔膜透气率和孔隙率的测试方法如下:
透气率:采用Gurley值表征隔膜的透气率。使用Gurley公司生产的4110型透气率测定仪,压力为20盎司,测试面积1.0平方英寸。记录100ml气体透过该测试面积所需的时间,即为Gurley透气度值。
总孔隙率:采用美国康塔公司的PoreMaster33型压汞仪测定隔膜的总孔隙率。
测定结果如下:。
锂电池用复合隔膜的厚度40μm,孔隙率为56%,微孔的孔径范围0.01μm-0.15μm,Gurley透气度值490s,纵向强度为185MPa,抗穿刺强度为312g,闭孔温度105℃-115℃,破膜温度165℃-175℃,安全窗口温度可达60℃。
实施例3
本实施例提供一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;
所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000-1000000、分子量分布指数Mw/Mn为4-8、等规度>96%、熔体流动速率为1.3-3.3;
低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000-300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2-0.8。
本实施例还提供上述的锂电池用复合隔膜的制备方法,包括如下步骤:
将聚丙烯树脂送入一台单螺杆挤出机内熔融塑化,塑化温度为220℃-250℃,得到的熔体通过计量泵从三层模头的两个表层挤出,得到两层聚丙烯树脂挤出物料;
将聚乙烯树脂送入另一台单螺杆挤出机内熔融塑化,塑化温度为220℃-230℃,得到的熔体通过计量泵从三层模头的芯层挤出,得到芯层聚乙烯树脂挤出物料;
两层聚丙烯树脂挤出物料和芯层聚乙烯树脂挤出物料在模头出口处汇合,牵引并不断冷却,得到PP/PE/PP复合厚片,厚片厚度70μm;整个过程中,模头的加热温度控制为200℃。
将PP/PE/PP复合厚片进行热处理,热处理的温度为125℃-130℃;然后在常温和高温下分别进行单向拉伸,常温下单向拉伸的拉伸倍率为15%,然后在拉伸温度120℃-130℃的高温下进行拉伸,拉伸倍率为115%;最后回缩定型,回缩定型的回缩比为-35%,回缩定型的温度为125℃-135℃,即得到锂电池用复合隔膜。
对得到的锂电池用复合隔膜进行测定,其中隔膜透气率和孔隙率的测试方法如下:
透气率:采用Gurley值表征隔膜的透气率。使用Gurley公司生产的4110型透气率测定仪,压力为20盎司,测试面积1.0平方英寸。记录100ml气体透过该测试面积所需的时间,即为Gurley透气度值。
总孔隙率:采用美国康塔公司的PoreMaster33型压汞仪测定隔膜的总孔隙率。
测定结果如下:。
锂电池用复合隔膜的厚度60μm,孔隙率为42%,微孔的孔径范围0.01μm-0.15μm,Gurley透气度值580s,纵向强度为205MPa,抗穿刺强度为424g,闭孔温度105℃-115℃,破膜温度165℃-175℃,安全窗口温度可达60℃。
有上可见,本发明实施例的锂电池用复合隔膜具有较低的闭孔温度和较高的破膜温度,自关断安全窗口较宽,机械性能好,抗穿刺强度高,在锂离子电池的生产和使用过程中安全性能好。微孔孔径尺寸合适,分布均匀,贯通性好,电池的内阻小,有利于提高电池的工作效率。本发明实施例的锂电池用复合隔膜的制备方法采用三层共挤的方法铸片,再进行热处理和单向拉伸,大大提高了复合微孔膜的生产效率,在隔膜的工业化生产中具有极其重要的意义。

Claims (10)

1.一种锂电池用复合隔膜,其为三层结构,两侧表层为高强度聚丙烯微孔膜、芯层为低熔点自关断聚乙烯微孔膜;
所述高强度聚丙烯微孔膜的原料为聚丙烯树脂,其分子量为300000-1000000、分子量分布指数Mw/Mn为4-8、等规度>96%、熔体流动速率为1.3-3.3;
低熔点自关断聚乙烯微孔膜的原料为高密度聚乙烯,其分子量为100000-300000、分子量分布指数Mw/Mn为4—8、熔体流动速率为0.2-0.8。
2.根据权利要求1所述的锂电池用复合隔膜,其特征在于:所述锂电池用复合隔膜的厚度为30-60μm;总孔隙率为40%-60%;微孔尺寸为0.01μm-0.15μm。
3.权利要求1或2所述的锂电池用复合隔膜的制备方法,包括如下步骤:
将聚丙烯树脂熔融塑化,得到的熔体通过计量泵从三层模头的两个表层挤出,得到两层聚丙烯树脂挤出物料;
将聚乙烯树脂熔融塑化,得到的熔体通过计量泵从三层模头的芯层挤出,得到芯层聚乙烯树脂挤出物料;
两层聚丙烯树脂挤出物料和芯层聚乙烯树脂挤出物料在模头出口处汇合,牵引并不断冷却,得到PP/PE/PP复合厚片;
将PP/PE/PP复合厚片进行热处理,然后在常温和高温下分别进行单向拉伸,最后回缩定型,即得到锂电池用复合隔膜。
4.权利要求3所述的制备方法,其特征在于:所述模头的加热温度控制为200℃。
5.权利要求3所述的制备方法,其特征在于:将聚丙烯树脂熔融塑化的塑化温度为190℃-250℃;
优选的,将聚乙烯树脂熔融塑化的塑化温度为190℃-230℃。
6.权利要求3所述的制备方法,其特征在于:所述热处理的温度为105℃-130℃。
7.权利要求3所述的制备方法,其特征在于:常温下单向拉伸的拉伸倍率为10%-50%。
8.权利要求3所述的制备方法,其特征在于:高温下单向拉伸的拉伸倍率为80%-140%。
9.权利要求3所述的制备方法,其特征在于:所述高温是指拉伸温度110℃-140℃。
10.权利要求3所述的制备方法,其特征在于:所述回缩定型的回缩比为-30%—-50%,回缩定型的温度为110℃-140℃。
CN201711168298.7A 2017-11-21 2017-11-21 一种锂电池用复合隔膜及其制备方法 Active CN108039443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711168298.7A CN108039443B (zh) 2017-11-21 2017-11-21 一种锂电池用复合隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711168298.7A CN108039443B (zh) 2017-11-21 2017-11-21 一种锂电池用复合隔膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108039443A true CN108039443A (zh) 2018-05-15
CN108039443B CN108039443B (zh) 2020-06-19

Family

ID=62093511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711168298.7A Active CN108039443B (zh) 2017-11-21 2017-11-21 一种锂电池用复合隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108039443B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461871A (zh) * 2018-09-04 2019-03-12 深圳中兴新材技术股份有限公司 一种不对称结构的多层聚烯烃微孔膜及其制备方法和应用
CN109742295A (zh) * 2018-12-28 2019-05-10 界首市天鸿新材料股份有限公司 一种干法锂电池隔膜及其制备方法
CN109786635A (zh) * 2018-12-29 2019-05-21 深圳中兴新材技术股份有限公司 一种具有耐高温涂层的多层复合锂电池隔膜及其制备方法
CN111117037A (zh) * 2019-12-31 2020-05-08 江苏厚生新能源科技有限公司 微孔膜及制备方法、有效毛细管平均长度的计算方法
CN113728505A (zh) * 2021-01-25 2021-11-30 宁德新能源科技有限公司 叠层多孔膜、二次电池以及电子装置
CN113745756A (zh) * 2021-08-24 2021-12-03 中材锂膜有限公司 一种低闭孔、高破膜的聚乙烯锂电池隔膜及其制备方法
CN114393853A (zh) * 2021-12-24 2022-04-26 武汉中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用
CN114400416A (zh) * 2021-12-08 2022-04-26 四川大学 一种具备热关闭性的锂电池隔膜及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
JP4902537B2 (ja) * 2005-06-24 2012-03-21 東レ東燃機能膜合同会社 ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
CN103407140A (zh) * 2013-07-26 2013-11-27 常州大学 一种pp/pe/pp三层复合微孔膜的制备方法
CN106784555A (zh) * 2016-12-29 2017-05-31 桂林电器科学研究院有限公司 一种耐高温复合微孔隔膜及其制备方法
CN106848151A (zh) * 2016-12-21 2017-06-13 宁波科乐新材料有限公司 多层复合聚合物微孔膜的制备方法
CN107331822A (zh) * 2017-06-02 2017-11-07 武汉惠强新能源材料科技有限公司 一种聚丙烯/聚乙烯/聚丙烯三层共挤锂离子电池隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
JP4902537B2 (ja) * 2005-06-24 2012-03-21 東レ東燃機能膜合同会社 ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
CN103407140A (zh) * 2013-07-26 2013-11-27 常州大学 一种pp/pe/pp三层复合微孔膜的制备方法
CN106848151A (zh) * 2016-12-21 2017-06-13 宁波科乐新材料有限公司 多层复合聚合物微孔膜的制备方法
CN106784555A (zh) * 2016-12-29 2017-05-31 桂林电器科学研究院有限公司 一种耐高温复合微孔隔膜及其制备方法
CN107331822A (zh) * 2017-06-02 2017-11-07 武汉惠强新能源材料科技有限公司 一种聚丙烯/聚乙烯/聚丙烯三层共挤锂离子电池隔膜及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461871A (zh) * 2018-09-04 2019-03-12 深圳中兴新材技术股份有限公司 一种不对称结构的多层聚烯烃微孔膜及其制备方法和应用
CN109461871B (zh) * 2018-09-04 2021-08-31 深圳中兴新材技术股份有限公司 一种不对称结构的多层聚烯烃微孔膜及其制备方法和应用
CN109742295A (zh) * 2018-12-28 2019-05-10 界首市天鸿新材料股份有限公司 一种干法锂电池隔膜及其制备方法
CN109742295B (zh) * 2018-12-28 2022-09-09 界首市天鸿新材料股份有限公司 一种干法锂电池隔膜及其制备方法
CN109786635A (zh) * 2018-12-29 2019-05-21 深圳中兴新材技术股份有限公司 一种具有耐高温涂层的多层复合锂电池隔膜及其制备方法
CN111117037A (zh) * 2019-12-31 2020-05-08 江苏厚生新能源科技有限公司 微孔膜及制备方法、有效毛细管平均长度的计算方法
CN113728505A (zh) * 2021-01-25 2021-11-30 宁德新能源科技有限公司 叠层多孔膜、二次电池以及电子装置
WO2022155959A1 (zh) * 2021-01-25 2022-07-28 宁德新能源科技有限公司 叠层多孔膜、二次电池以及电子装置
CN113745756A (zh) * 2021-08-24 2021-12-03 中材锂膜有限公司 一种低闭孔、高破膜的聚乙烯锂电池隔膜及其制备方法
CN114400416A (zh) * 2021-12-08 2022-04-26 四川大学 一种具备热关闭性的锂电池隔膜及制备方法
CN114393853A (zh) * 2021-12-24 2022-04-26 武汉中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用
CN114393853B (zh) * 2021-12-24 2024-04-09 武汉中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用

Also Published As

Publication number Publication date
CN108039443B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN108039443A (zh) 一种锂电池用复合隔膜及其制备方法
KR102073852B1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
CN112688029B (zh) 一种锂离子电池多层复合隔膜及其制备方法
CN102248713B (zh) 一种聚烯微多孔多层隔膜及其制造方法
WO2019192540A1 (zh) 一种芳香族聚酰胺微孔膜及其制备方法和用途
TWI491096B (zh) 多層電池隔離膜及其製造方法
WO2012061963A1 (zh) 多孔膜及其制备方法
CN104993085B (zh) 一种多层复合聚烯烃锂离子电池隔膜及其制备方法
CN102320133A (zh) 一种聚烯烃电池隔膜及其制备方法
CN101983219A (zh) 聚烯烃制微多孔膜及卷绕物
CN103219483A (zh) 一种复合锂电池隔膜及其制备方法
WO2008069216A1 (ja) ポリオレフィン製微多孔膜
WO2013075523A1 (zh) 一种聚烯烃多层微多孔膜及其制备方法
CN102064301A (zh) 锂电池用多孔多层复合隔膜的制造方法及隔膜
BR112014024527B1 (pt) Método para a fabricação de separador poroso compreendendo material elástico
CN102774009A (zh) 聚烯烃微孔膜的制备方法
CN102267229B (zh) 一种用于锂电池的聚烯烃微多孔膜及其制备方法
US7662518B1 (en) Shutdown separators with improved properties
JPH11297297A (ja) 多孔質フイルムの製造方法および多孔質フイルム
CN109742300B (zh) 一种锂电池隔膜及其制备方法
CN106459467B (zh) 聚烯烃微多孔膜
JP3942277B2 (ja) 複合型ポリマー電解質膜及びその製造法
JP6311585B2 (ja) 多孔体及びその製造方法
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP6598911B2 (ja) ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 213000 No. 20, Changyang Road, West Taihu Lake Science and Technology Industrial Park, Wujin, Changzhou City, Jiangsu Province

Patentee after: Xinlun new energy materials (Changzhou) Co., Ltd

Address before: 213000 No. 20, Changyang Road, West Taihu Lake Science and Technology Industrial Park, Wujin, Changzhou City, Jiangsu Province

Patentee before: Xinlun composite technology (Changzhou) Co., Ltd

CP01 Change in the name or title of a patent holder