WO2013075523A1 - 一种聚烯烃多层微多孔膜及其制备方法 - Google Patents

一种聚烯烃多层微多孔膜及其制备方法 Download PDF

Info

Publication number
WO2013075523A1
WO2013075523A1 PCT/CN2012/080772 CN2012080772W WO2013075523A1 WO 2013075523 A1 WO2013075523 A1 WO 2013075523A1 CN 2012080772 W CN2012080772 W CN 2012080772W WO 2013075523 A1 WO2013075523 A1 WO 2013075523A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
molecular weight
microporous membrane
layer
polyolefin
Prior art date
Application number
PCT/CN2012/080772
Other languages
English (en)
French (fr)
Inventor
王松钊
王辉
蔡朝辉
吴耀根
廖凯明
Original Assignee
佛山市金辉高科光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市金辉高科光电材料有限公司 filed Critical 佛山市金辉高科光电材料有限公司
Publication of WO2013075523A1 publication Critical patent/WO2013075523A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin multilayer microporous composite film composed of polyethylene and polypropylene and a preparation method thereof.
  • Lithium-ion secondary batteries have become a new generation of batteries for a wide range of applications due to their high energy density, no memory effect, long service life, high cycle charge and discharge efficiency, and low environmental pollution.
  • lithium ion secondary batteries have become the best choice for new energy power batteries due to their excellent performance.
  • Lithium-ion battery separator is an important part of lithium-ion battery, which plays an important role in isolating the positive and negative electrodes of the battery and allowing the passage of lithium ion current during charging and discharging. Moreover, when the internal current of the battery is too large due to internal or external short circuit of the lithium ion battery, and the temperature rises to a certain temperature, the micropores of the diaphragm are closed to cut off the internal circuit of the battery, thereby ensuring the safe use of the battery. Although the quality of lithium ion battery separators has been significantly improved compared with the past, lithium ion batteries for automobiles have put forward higher requirements for diaphragms: better heat resistance, excellent mechanical properties, and the like.
  • Polyolefin microporous separators are widely used as lithium ion secondary battery separators due to their excellent insulating properties, excellent mechanical and mechanical properties, low closed cell temperature and wide operating temperature.
  • the battery separators currently on the market are mainly separators made of polyethylene and polypropylene.
  • the simple polyethylene lithium battery separator has a lower shutdown temperature, its membrane rupture temperature is lower, if the internal temperature of the battery exceeds After the closed cell temperature continues to rise to a certain temperature range, the polyethylene film melts and ruptures, and the positive and negative electrodes of the battery are directly connected, which is easy to cause the battery to explode.
  • the safety of the battery cannot be well guaranteed; on the other hand, the simple polymerization
  • the propylene membrane has a high membrane rupture temperature, but its shutdown temperature is relatively high, which is not conducive to the protection of the circuit.
  • the existing battery separator is difficult to achieve both the closed cell temperature and the film rupture temperature, and its gas permeability, shutdown performance, and puncture strength are poor, and the quality of the film is difficult to ensure.
  • the multi-layer composite separator comprising the polypropylene microporous layer and the polyethylene microporous layer can effectively solve the problem that the battery separator closing temperature and the membrane rupture temperature are difficult to simultaneously consider.
  • Celgard Company of the United States has used the dry process technology to produce a three-layer composite membrane with a membrane structure of PP/PE/PP, which overcomes the above technical difficulties.
  • the pore size of the membrane prepared by the dry method is not uniform, the pores are narrow, and the prepared membrane is biased. Thick, film thickness less than 20 ⁇ ⁇ when the quality is not guaranteed, which limits its further application in new energy power batteries.
  • the Chinese Patent Publication No. CN1897329A describes a multilayer porous film composed of polypropylene and polyethylene. The film is prepared by a wet process, which has a low closed cell temperature of polyethylene and has both The higher film rupture temperature of polypropylene.
  • we found that the polypropylene layer prepared by the wet technique has a poor tensile effect, which is the main reason why the wet polypropylene separator cannot be industrialized.
  • the object of the present invention is to overcome the existing technical problems, to innovate the material structure of the diaphragm, realize the industrialization of the wet multilayer diaphragm, and provide a high-quality lithium ion battery separator suitable for use in a power lithium ion battery. Low closed cell temperature, high membrane rupture temperature, low heat shrinkage, and high puncture resistance.
  • a polyolefin multilayer microporous membrane comprising three or more polyolefin microporous membranes, the intermediate layer being a polyethylene microporous membrane, the two surface layers being composed of polypropylene and polyethylene having an ultrahigh molecular weight microporous membrane; polyethylene intermediate layer having lx 1 0 5 to 6 xl O 5 molecular weight; a surface layer of a polypropylene having a molecular weight of 1 X 10 5 to 1 X 10 6, and having a polyethylene surface layer 1 X 10 6 Molecular weight to 5 X 10 6 .
  • Surface The higher the molecular weight of the polyethylene used in the layer, the better the puncture resistance of the film.
  • the polyethylene of the intermediate layer has a melting point of less than 1 35 ° C and is selected from one or a mixture of high density polyethylene, linear low density polyethylene, and metallocene polyethylene.
  • High-density polyethylene is a kind of high-crystallinity, non-polar thermoplastic tree finger with good chemical stability and good electrical properties, especially high dielectric strength. It is used to prepare the intermediate microporous film layer. It helps to lower the shutdown temperature of the polyolefin multilayer microporous membrane.
  • Linear low-density polyethylene has the advantages of high softening temperature and melting temperature, high strength, good toughness, high rigidity, heat resistance and good cold resistance.
  • intermediate microporous membrane layer which can improve the polyolefin.
  • the current closing speed of the layer microporous membrane The use of metallocene polyethylene as the intermediate microporous membrane layer can also enhance the extrusion processing properties of the film and stabilize the product quality.
  • the surface layer has a melting point of polypropylene of more than 165 ° C and a weight of 60% to 95% by weight of the surface layer; a surface layer of polyethylene having a melting point of more than 1 36 ° C and a weight of 5% to 40% by weight of the surface layer; %the weight of.
  • the polyolefin multilayer microporous membrane is composed of a three-layer polyolefin microporous membrane, that is, the three-layer structure is (polypropylene + ultra high molecular weight polyethylene) / polyethylene / (polypropylene + ultra high molecular weight polyethylene) ).
  • Another object of the present invention is to provide a method for preparing a polyolefin multilayer microporous membrane, the method comprising the steps of:
  • A preparation of the surface layer material: polypropylene and high molecular weight polyethylene and high boiling low molecular weight plasticizer melt mixed in a twin-screw extruder to form a polymer solution A;
  • the polymer solution A and the polymer solution B are combined by a three-layer ABA type die and extruded from the same die, and cooled to room temperature on a slab roll to form a multilayer gel slab;
  • D film formation: the multilayer gel slab is preheated and then biaxially stretched to form a film
  • E Extraction, stereotype: The biaxially stretched film is extracted by a washing tank containing an extracting agent to remove the high boiling point and low molecular weight plasticizer in the film, and dried and heat-set to obtain a product.
  • the high boiling low molecular weight plasticizer used in steps A and B is selected from one or more of decane, decane, kerosene, paraffin wax, liquid paraffin, soybean oil, castor oil, diphenyl ether. mixing.
  • the extrusion processing temperature of the step A is 180-260 ° C
  • the extrusion processing temperature of the step B is 160-240 ° C
  • the cooling rate of the step C is 40 ° C / min.
  • the stretching temperature of the step D is 90-15 (TC, the width is 4-12 times, and the length is 3-10 times.
  • the extracting agent used in the step E is an alkane or a hydrocarbon or an ether organic volatile solvent
  • the weight ratio of the plasticizer to the extracting agent is between 1:10 and 100
  • the heat setting time is 10-120S.
  • temperature is 90-140 °C.
  • the method for testing the properties of the polyolefin multilayer microporous membrane produced by the present invention includes the following:
  • each of the multilayer microporous films was measured by a contact thickness gauge at a longitudinal interval of 5 mm over a width of 30 cm, and the average value thereof was taken.
  • the maximum load was measured when a multi-layer microporous film of each thickness L was punctured at a rate of 2 mm/sec using a needle having a spherical end face (curvature radius R: 0.5 mm) of 1 mm in diameter.
  • (1 ⁇ x 20 ) /L
  • the maximum load to be measured! ⁇ Converted to a maximum load L 2 at a thickness of 20 ⁇ m and used as a needle puncture strength.
  • the gas permeability P l is measured by a gas permeability tester on a multilayer microporous polyolefin film having a thickness L.
  • ⁇ 2 ( ⁇ 20) / Ti
  • each multilayer micropore having a thickness L according to JIS P8117 will be used.
  • the gas permeability Pi measured by the film was converted into a gas permeability ⁇ 2 at a thickness of 20 ⁇ .
  • the shrinkage ratio of each of the multilayer microporous polyolefin films was measured by maintaining the shrinkage ratio in the length method and the width direction of the polyolefin film at a temperature of 105 ° C for 8 hours, measured 5 times in each direction, and measured. The shrinkage rate is averaged.
  • the shutdown temperature of the microporous membrane was measured by a thermomechanical analyzer (TMA) as follows: a rectangular sample of 5 ⁇ 10 ⁇ cut from the microporous membrane was loaded onto the sample stage of the TMA, and a load of 19.6 mN was applied in the tensile mode. On the sample, the area where the sample was placed was heated at a heating rate of 5 ° C / min, and the change in length of the sample was measured at intervals of 0.5 sec.
  • the shutdown temperature is defined as the temperature at the inflection point of the polymer type variable that occurs near the melting point of the polymer.
  • the rupture temperature of the microporous membrane was measured by a thermomechanical analyzer (TMA) as follows: a rectangular sample of 5 ⁇ 10 ⁇ cut from the microporous membrane was loaded onto the sample stage of the TMA, and a load of 19.6 mN was applied in the tensile mode. Applied to the sample, the area where the sample is placed is heated at a heating rate of 5 ° C / min, for 0.5 second Change the length of the sample by measurement.
  • the membrane rupture temperature is defined as the temperature at which the membrane of the sample ruptures, and is generally in the range of about 150 ° C to 200 ° C. Compared with the prior art, the present invention has the following beneficial effects:
  • the polyolefin multilayer microporous membrane of the present invention has low closed cell temperature, high membrane rupture temperature, low heat shrinkage and high puncture resistance, and is stable in quality;
  • the preparation method of the polyolefin multilayer microporous membrane of the invention has the advantages of uniform pore diameter and stable quality of the obtained product.
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • 22 Parts of weight of HDPE and 3 parts of LLDPE were added to the double screw 4 dry extruder, and then 75 parts by weight of kerosene was added to the twin screw extruder (length to diameter ratio 48) through the side feed port at 220 ° C.
  • the mixture was melted and mixed uniformly to form a polyethylene solution, which was extruded from the core layer of the three-layer die to a thickness of 400 ⁇ m.
  • the thick film extruded through the three-layer die is cooled to room temperature by a cold water roll at a cooling rate of 40 ° C to 50 ° C / min to obtain a gel-like thick film having a thickness of about 800 ⁇ m, and the film is then Biaxial stretching at 130 ° C 6 x 5 times, the stretched film was washed by a hexane wash tank, then dried and heat set at 130 ° C for 60 s to obtain a 20 ⁇ three-layer microporous base film.
  • Table 1 The properties of the film are shown in Table 1.
  • Example 2 The difference from Example 1 was that the surface layer was selected from ultrahigh molecular weight polyethylene having a molecular weight of 2.1 X 10 6 , and the rest was the same as in Example 1. The performance of the separator is shown in Table 1.
  • Example 3 differs from Example 1 in that the choice of molecular weight of the surface layer 5. O x 10 6 of ultrahigh molecular weight polyethylene, remaining the same as Example 1. The performance of the separator is shown in Table 1.
  • Example 4 The difference from Example 1 was that the polyethylene of the intermediate layer had a molecular weight of 6 ⁇ 10 5 , the surface layer was 16 parts by weight of ruthenium and 4 parts by weight of UHMWPE, and the rest was the same as in Example 1. The performance of the separator is shown in Table 1.
  • Example 5 is different from Example 1 in that the polyethylene of the intermediate layer has a molecular weight of ⁇ ⁇ ⁇ ⁇ 5 , the surface layer is 19 parts by weight of PP and 1 part by weight of UHMWPE, and the surface layer of polyethylene has a molecular weight of 5 ⁇ . 10 5 , the rest is the same as in the first embodiment.
  • the performance of the separator is shown in Table 1.
  • Example 1 Example 2 Example 3
  • Example 4 Example 5 Average thickness ( ⁇ 20 20 20 20 20 20 20 20 20 gas permeability value (s/100 ml) 420 445 402 451 444 Porosity (%) 42 41 41.6 40 41.3 Needle piercing strength g 686 752 884 622 566 closing temperature rc) 128.0 127.8

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种聚烯烃多层微多孔膜及其制备方法,该聚烯烃多层微多孔膜中间层为聚乙烯微多孔膜,两层表面层均是由聚丙烯与具有超高分子量的聚乙烯组成的微多孔膜,中间层的聚乙烯具有1×105至6×105的分子量;表面层的聚丙烯具有1×105至1×106分子量,表面层的聚乙烯具有5×105至5×106分子量;制备方法中,先分别熔融混合中间层的原辅料、表面层的原辅料,将中间层和表面层的原辅料投入双螺杆挤出机中,经过多层共挤模头挤出、冷却,然后拉伸制膜、萃取、定型,制得产品。

Description

一种聚烯烃多层微多孔膜及其制备方法
技术领域
本发明涉及一种由聚乙烯和聚丙烯组成的聚烯烃多层微多孔复合膜及其制 备方法。
背景技术
近年来, 石油能源资源短缺、 国际石油价格飙升以及使用石化能源其造成 的环境问题日益严峻, 这引起全世界对新的环保能源的重视, 为新能源动力电 池行业的发展提供了前所未有的机遇。 锂离子二次电池由于具有能量密度高、 无记忆效应、 使用寿命长、 循环充放电效率高、 对环境污染小等优点, 成为广 泛应用的新一代电池。 综合目前电池的技术发展情况, 锂离子二次电池由于其 优异的性能, 成为新能源动力电池的最佳选择。
锂离子电池隔膜是锂离子电池的重要组成部分, 起着隔离电池正负极和允 许充放电时锂离子电流通过的重要作用。 并且, 在锂离子电池由于内部或外部 短路造成电池内部电流过大, 温度剧升达到一定温度时, 隔膜微孔关闭从而切 断电池内部电路, 保障电池的安全使用。 虽然目前锂离子电池隔膜的产品质量 较过去已经有了明显的提高, 但汽车用锂离子电池对隔膜提出了更高的要求: 更好的耐热性, 优秀的力学性能等。 这些问题关系着隔膜的品质高低, 直接影 响着电池的容量、 寿命和安全性。 锂离子电池隔膜的性能的提升是锂离子电池 的升级换代的关键, 也是新能源动力电池广泛应用的技术关键。
聚烯烃多微孔隔膜由于具有良好的绝缘性能、 优良的力学机械性能、 较低 的闭孔温度和较宽的使用温度等优点, 被广泛用作锂离子二次电池隔膜。 目前 市场上的电池隔膜主要是由聚乙烯和聚丙烯制备的隔膜。 单纯的聚乙烯锂电池 隔膜虽然具有较低的关闭温度, 但其破膜温度也较低, 如果电池内部温度超过 闭孔温度后继续升高到一定的温度范围, 聚乙烯薄膜熔融破裂, 电池正负极直 接连通, 极易引发电池爆炸, 电池的安全性不能得到很好的保障; 另一方面, 单纯的聚丙烯隔膜具有较高的破膜温度, 但其关闭温度也相对较高, 不利于电 路的保护。 现有的电池隔膜难以同时兼顾闭孔温度与破膜温度, 而且, 其透气 性、 关闭性能和穿刺强度各项性能差, 膜的质量难以保证。 包含聚丙烯微多孔层与聚乙烯微多孔层的多层复合隔膜可以有效解决电池 隔膜关闭温度与破膜温度难以同时兼顾的难题。 美国的 Celgard公司使用干法技 术生产了膜层结构为 PP/PE/PP的三层复合隔膜, 克服了以上的技术难点, 但干 法制备的隔膜孔径大小不均匀, 孔隙狭长, 制备的隔膜偏厚, 膜厚度小于 20 μ ηι 时质量得不到保障, 这限制了其在新能源动力电池的进一步应用。 公开号为 CN1897329A中国专利文献介绍了一种由聚丙烯和聚乙烯构成的多层多孔薄膜, 这种薄膜由湿法生产工艺制备, 即具有了聚乙烯较低的闭孔温度, 又兼具了聚 丙烯较高的破膜温度。 但是, 我们通过深入的研究发现湿法技术制备的聚丙烯 层拉伸效果很差, 这也是湿法聚丙烯隔膜无法产业化的主要原因。
发明内容
本发明的目的在于克服现有的技术难题, 对隔膜的材料结构进行创新设计, 实现湿法多层隔膜的产业化, 提供一种适合于动力锂离子电池使用的高品质锂 离子电池隔膜, 具有低闭孔温度、 高破膜温度、 低的热收缩、 高的耐穿刺性能。 一种聚烯烃多层微多孔膜, 其包括三层以上的聚烯烃微多孔膜, 中间层为 聚乙烯微多孔膜, 两层表面层均是由聚丙烯与具有超高分子量的聚乙烯组成的 微多孔膜; 中间层的聚乙烯具有 l x 1 05至 6 x l O5的分子量; 表面层的聚丙烯具有 1 X 105至 1 X 106的分子量, 表面层的聚乙烯具有 1 X 106至 5 X 106的分子量。 表面 层所采用的聚乙烯分子量越高, 膜的抗穿刺性能越好。
优选的, 中间层的聚乙烯熔点低于 1 35 °C , 选自高密度聚乙烯、 线性低密度 聚乙烯、 茂金属聚乙烯中的一种或几种混合。 高密度聚乙烯是一种结晶度高、 非极性的热塑性树指, 具有好的化学稳定性以及很好的电性能, 特别是绝缘介 电强度高, 选用其来制备中间微多孔膜层, 有助于降低该聚烯烃多层微多孔膜 的关闭温度。 线性低密度聚乙烯具有较低的软化温度和熔融温度, 有强度大、 韧性好、 刚性大、 耐热、 耐寒性好等优点, 选用其来制备中间微多孔膜层, 能 提高该聚烯烃多层微多孔膜的电流关闭速度。 而选用茂金属聚乙烯作为中间微 多孔膜层, 还能够强化薄膜的挤出加工性能, 使产品质量稳定。
优选的,表面层的聚丙烯熔点大于 165 °C ,其重量占表面层重量的 60%—95%; 表面层的聚乙烯熔点大于 1 36 °C , 其重量占表面层重量的 5%—40%的重量。
优选的, 该聚烯烃多层微多孔膜由三层聚烯烃微多孔膜构成, 即其三层结 构为 (聚丙烯 +超高分子量聚乙烯) /聚乙烯 / (聚丙烯 +超高分子量聚乙烯) 。
本发明的另一目的是提供一种聚烯烃多层微多孔膜的制备方法, 该方法包 括以下步骤:
A、 制备表面层材料: 将聚丙烯和具有高分子量的聚乙烯与高沸点低分子量 的增塑剂在双螺杆挤出机中熔融混合、 制成聚合物溶液 A;
B、 制备中间层材料: 将聚乙烯与高沸点低分子量增塑剂在双螺杆挤出机中 熔融混合、 制成聚合物溶液 B;
C、 共挤: 将聚合物溶液 A和聚合物溶液 B通过三层 ABA型模头汇合在一起 从同一模口挤出, 并在铸片辊上冷却至室温制成多层凝胶厚片;
D、 制膜: 将多层凝胶厚片经预热后进行双向拉伸, 制成薄膜; E、 萃取、 定型: 双向拉伸后的薄膜经盛有抽提剂的洗涤槽萃取除去膜内的 高沸点低分子量的增塑剂, 经干燥、 热定型后制得产品。
优选的, 步骤 A和 B所采用的高沸点低分子量的增塑剂选自壬烷、 癸烷、 煤油、 固体石蜡、 液体石蜡、 大豆油、 蓖麻油、 二苯醚中的一种或几种混合。
优选的, 步骤 A的挤出加工温度为 180-260°C, 步骤 B的挤出加工温度为 160-240°C, 步骤 C的冷却速度为 40°C/min。
优选的, 步骤 D的拉伸温度为 90-15 (TC, 宽度拉伸 4-12倍, 长度拉伸 3-10 倍。
优选的, 步骤 E所采用的提取剂为烷烃或 代烃或醚类有机挥发溶剂, 增 塑剂与抽提剂的重量比为 1: 10 ~ 100之间, 热定型的处理时间为 10-120S, 温度 为 90- 140°C。
本发明所制得的聚烯烃多层微多孔膜的性质测试方法包括以下:
( 1 )平均厚度( μηι)
通过接触测厚计在 30cm的宽度范围内以 5mm纵向间隔测量各个多层微孔膜 的厚度, 并取其平均值。
(2)孔隙率(%)
通过真密度测试仪测量出微多孔膜的真实密度 P 1,通过测量微多孔膜的面 积、 厚度、 重量, 从而算出多孔膜的表观密度 P2, 孔隙率 P%= ( p -p2) / p1, 从而测算出多层材料的孔隙率。
( 3)针刺穿强度(ηιΝ/20μηι)
当使用带有球形端面 (曲率半径 R: 0.5mm) 的直径为 1mm的针, 以 2mm/秒 的速率刺各个厚度为 L的多层微孔膜时, 测量最大负荷。 通过等式!^= (1^x 20 ) /L, 将所测量出的最大负荷!^转算成在 20μηι的厚度的最大负荷 L2, 并且用作 针刺穿强度。
( 4 )透气性
通过透气性测试器对厚度为 L的多层微孔聚烯烃膜测量透气性 Pl 通过等 式 Ρ2= (Ρ^ 20) /Ti, 将根据 JIS P8117对厚度为 L的各个多层微孔膜测量出 的透气性 Pi转化成在 20 μηι厚度的透气性 Ρ2
( 5 )拉伸强度和拉伸伸长率
根据 ASTM D882对宽度为 1 Q匪的矩形试样测量。
(6)热收缩率 (%)
各个多层微孔聚烯烃膜的收缩率为, 测量保持聚烯烃膜在 105°C温度下达 8 小时之后在长度方法和宽度方向的收缩率, 每个方向均测量 5 次, 并且将测量 出的收缩率取平均值。
(7) 关闭温度( °C )
通过热机械分析仪(TMA)按如下测量微孔膜的关闭温度:从微孔膜切下 5匪 10匪的矩形样品加载到 TMA的样品台上,在拉伸模式下将 19.6mN的载荷施加 到样品上, 以 5°C/分钟的加热速率对放置样品的区域进行升温, 以 0.5秒的间 隔测量样品的长度变化情况。 关闭温度定义为在聚合物熔点附近出现的聚合物 型变量拐点处温度。
( 8 )破膜温度( °C )
通过热机械分析仪(TMA)按如下测量微孔膜的破膜温度:从微孔膜切下 5匪 10匪的矩形样品加载到 TMA的样品台上,在拉伸模式下将 19.6mN的载荷施加 到样品上, 以 5°C/分钟的加热速率对放置样品的区域进行升温, 以 0.5秒的间 隔测量样品的长度变化情况。 破膜温度定义为样品膜破裂时的温度, 一般在大 约 150°C_200°C的区间。 与现有技术相比, 本发明产生如下有益效果:
1、 本发明的聚烯烃多层微多孔膜具有低闭孔温度、 高破膜温度、 低的热收 缩性和高的耐穿刺性能, 质量稳定;
2、 本发明的聚烯烃多层微多孔膜的制备方法工艺筒单、 制得的产品孔径均 匀、 质量稳定。
具体实施方式 下面通过具体实施例子对本发明作进一步详细描述以便清楚本发明所要保 护的技术方案。
实施例 1
使用高密度聚乙烯 HDPE (Mw=3.0 X 105, 熔点 133°C ) 、 线性低密度聚乙烯 LLDPE (Mw=2.0 x 105, 熔点 120°C )作为制备中间层的聚乙烯原料, 将 22份重 量的 HDPE和 3份的 LLDPE加入双螺 4干挤出机, 再将 75份重量的煤油通过侧向 喂料口加入到双螺杆挤出机(长径比 48 ) 中, 在 220°C下熔融并混合均匀形成 聚乙烯溶液, 从三层模头的芯层挤出, 厚度 400 μηι。
将聚丙烯 PP(Mw=l.2 X 106,熔点 166°C )和超高分子量聚乙烯 UHMWPE( Mw=l.0 x 106, 熔点 136°C )作为制备表面层的原料, 将 12份重量的 PP和 8份重量的 UHMWPE加入双螺杆挤出机,再将 80份重量的煤油通过侧向喂料口加入到双螺杆 挤出机(长径比 48 ) 中, 220°C下熔融并混合形成均匀溶液, 从三层模头的两 个表层挤出, 厚度分别为 400 μηι。
通过三层模头挤出的厚膜片以 40°C ~ 50°C/min的冷却速率通过冷水辊冷却 至室温, 制得厚度约为 800 μηι的凝胶状厚片膜, 膜片接着在 130°C下双向拉伸 6 x 5倍, 拉伸后的薄膜通过盛有己烷洗涂槽洗涤、 然后干燥并在 130°C下热定 型 60s, 得到 20 μηι的三层微孔基膜。 该膜的性能见表 1。
实施例 2 与实施例 1不同之处在于,表面层选用分子量为 2.1 X 106的超高分子量聚乙 烯, 其余与实施例 1相同。 隔膜的性能见表 1。
实施例 3 与实施例 1不同之处在于,表面层选用分子量为 5. O x 106的超高分子量聚乙 烯, 其余与实施例 1相同。 隔膜的性能见表 1。 实施例 4 与实施例 1 不同之处在于, 中间层的聚乙烯的分子量为 6 χ 105, 表面层为 16份重量的 ΡΡ和 4份重量的 UHMWPE,其余与实施例 1相同。隔膜的性能见表 1。
实施例 5 与实施例 1 不同之处在于, 中间层的聚乙烯的分子量为 ΐ χ ΐο5, 表面层为 19份重量的 PP和 1份重量的 UHMWPE, 表面层的聚乙烯的分子量为 5 χ 105, 其 余与实施例 1相同。 隔膜的性能见表 1。
[表 1]
实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 平均厚度( μη 20 20 20 20 20 透气值 ( s/100ml ) 420 445 402 451 444 孔隙率(%) 42 41 41.6 40 41.3 针刺穿强度 g 686 752 884 622 566 关闭温度 rc) 128.0 127.8
熔融温度 ( °C ) 181.6 183.2 180.5 188 174.4 0°C下的热收 MD 1.4 1.6 1.4 1.2 1.6 缩率 (%) TD 0.5 0.4 0.3 0.4 0.8 105°C下的热 MD 3.6 3.2 3.3 2.8 3.5 收缩率 (% ) TD 2.0 1.8 1.9 1.6 2.0
οο

Claims

权 利 要 求 书
1.一种聚烯烃多层微多孔膜, 其包括三层以上的聚烯烃微多孔膜, 其特征 在于: 中间层为聚乙烯微多孔膜, 两层表面层均是由聚丙烯与具有超高分子量 的聚乙烯组成的微多孔膜; 中间层的聚乙烯的分子量为 l x 105至 6 χ ΐ θ5; 表面 层的聚丙烯的分子量为 1 X 105至 1 X 106, 表面层的聚乙烯的分子量为 5 X 105至 5 X 106
2. 如权利要求 1所述的聚烯烃多层微多孔膜, 其特征在于: 中间层与表面 层的重量比为 1 ~ 2 : 1。
3.如权利要求 1 所述的聚烯烃多层微多孔膜, 其特征在于: 中间层的聚乙 烯熔点低于 1 35 °C , 选自高密度聚乙烯、 线性低密谋聚乙烯、 茂金属聚乙烯中的 一种或几种混合。
4.如权利要求 1 所述的聚烯烃多层微多孔膜, 其特征在于: 表面层的聚丙 烯熔点大于 165 °C , 其重量占表面层重量的 60%—95%; 表面层的聚乙烯熔点大 于 1 36 °C , 其重量占表面层重量的 5%—40%的重量。
5. 如权利要求 1所述的聚烯烃多层微多孔膜, 其特征在于: 该聚烯烃多层 微多孔膜由三层聚烯烃微多孔膜构成。
6.一种聚烯烃多层微多孔膜的制备方法, 其特征在于包括以下步骤:
A、 制备表面层材料: 将聚丙烯和具有高分子量的聚乙烯与高沸点低分子量 的增塑剂在双螺杆挤出机中熔融混合、 制成聚合物溶液 A;
B、 制备中间层材料: 将聚乙烯与高沸点低分子量的增塑剂在双螺杆挤出机 中熔融混合、 制成聚合物溶液 B;
C、 共挤: 将聚合物溶液 A和聚合物溶液 B通过三层 ABA型模头汇合在一起 从同一模口挤出, 并在铸片辊上冷却至室温制成多层凝胶厚片;
D、 制膜: 将多层凝胶厚片经预热后进行双向拉伸, 制成薄膜; E、 萃取、 定型: 双向拉伸后的薄膜经盛有抽提剂的洗涤槽萃取除去膜内的 高沸点低分子量的增塑剂, 经干燥、 热定型后制得产品。
7.如权利要求 5 所述的聚烯烃多层微多孔膜的制备方法, 其特征在于: 步 骤 A和 B所采用的高沸点低分子量的增塑剂选自壬烷、 癸烷、 煤油、 固体石蜡、 液体石蜡、 大豆油、 蓖麻油、 二苯醚中的一种或几种混合。
8. 如权利要求 5所述的聚烯烃多层微多孔膜的制备方法, 其特征在于: 步 骤 A的挤出加工温度为 180_260°C, 步骤 B的挤出加工温度为 160_240°C, 步骤 C的冷却速度为 40°C ~ 50°C/min。
9. 如权利要求 5所述的聚烯烃多层微多孔膜的制备方法, 其特征在于: 步 骤 D的拉伸温度为 90_150°C , 宽度拉伸 4-12倍, 长度拉伸 3-10倍。
10.如权利要求 5所述的聚烯烃多层微多孔膜的制备方法, 其特征在于: 步 骤 E所采用的提取剂为烷烃或卤代烃或醚类有机挥发溶剂, 增塑剂与抽提剂的 重量比为 1: 10 ~ 100之间, 热定型的处理时间为 10-120S, 温度为 90-140°C。
PCT/CN2012/080772 2011-11-25 2012-08-30 一种聚烯烃多层微多孔膜及其制备方法 WO2013075523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110382479.6A CN102501419B (zh) 2011-11-25 2011-11-25 一种聚烯烃多层微多孔膜及其制备方法
CN201110382479.6 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013075523A1 true WO2013075523A1 (zh) 2013-05-30

Family

ID=46213581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080772 WO2013075523A1 (zh) 2011-11-25 2012-08-30 一种聚烯烃多层微多孔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN102501419B (zh)
WO (1) WO2013075523A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114770985A (zh) * 2022-02-25 2022-07-22 江苏安卡新材料科技有限公司 一种全聚烯烃防弹复合材料的制备方法
CN114953651A (zh) * 2021-02-22 2022-08-30 杭州中好东峻科技有限公司 一种防病毒防护阻隔膜

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501419B (zh) * 2011-11-25 2014-06-04 佛山市金辉高科光电材料有限公司 一种聚烯烃多层微多孔膜及其制备方法
CN103785302A (zh) * 2012-10-29 2014-05-14 深圳市冠力新材料有限公司 一种厚度定制孔径多孔膜的控制方法
CN103072355A (zh) * 2012-12-25 2013-05-01 深圳市冠力新材料有限公司 一种新型无机膜及其制备方法
CN103896465B (zh) * 2012-12-25 2016-06-29 深圳市冠力新材料有限公司 一种清除膜油渍的方法
CN103413907B (zh) * 2013-08-06 2017-03-08 深圳市冠力新材料有限公司 一种厚度定制孔径多孔膜的制备方法
WO2018131677A1 (ja) * 2017-01-13 2018-07-19 三菱ケミカル株式会社 転写紙保護層用樹脂組成物、その製造方法及び絵付け用転写紙
CN109786636A (zh) * 2018-12-29 2019-05-21 深圳中兴新材技术股份有限公司 一种多层低温阻隔锂电池隔膜及其制备方法
CN110360961A (zh) * 2019-08-09 2019-10-22 江苏通达纸业有限公司 一种基于瓦楞纸板生产的胶水量计算系统
CN111138741A (zh) * 2019-12-23 2020-05-12 重庆云天化纽米科技股份有限公司 高性能聚烯烃隔膜及其制备方法
CN112216927B (zh) * 2020-09-28 2023-03-24 常州星源新能源材料有限公司 一种锂离子电池隔膜及其生产工艺
CN112688029B (zh) * 2021-03-15 2021-06-29 江苏厚生新能源科技有限公司 一种锂离子电池多层复合隔膜及其制备方法
CN113745756A (zh) * 2021-08-24 2021-12-03 中材锂膜有限公司 一种低闭孔、高破膜的聚乙烯锂电池隔膜及其制备方法
CN114243213B (zh) * 2021-11-15 2023-03-24 华南理工大学 高负载陶瓷颗粒的超薄高强多层复合隔膜及其制备方法
CN115377608A (zh) * 2022-09-15 2022-11-22 河北金力新能源科技股份有限公司 一种高安全锂电池隔膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321323A (ja) * 2001-04-24 2002-11-05 Asahi Kasei Corp ポリオレフィン製微多孔膜
CN101511589A (zh) * 2006-08-31 2009-08-19 东燃化学株式会社 微孔膜、电池隔板和电池
CN101511588A (zh) * 2006-08-31 2009-08-19 东燃化学株式会社 多层微孔膜、电池隔板和电池
CN102501419A (zh) * 2011-11-25 2012-06-20 佛山市金辉高科光电材料有限公司 一种聚烯烃多层微多孔膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1165207A1 (en) * 2000-01-10 2002-01-02 LG Chemical Co. Ltd High crystalline polypropylene microporous membrane, multi-component microporous membrane and methods for preparing the same
WO2004089627A1 (ja) * 2003-04-04 2004-10-21 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜
WO2007046473A1 (ja) * 2005-10-19 2007-04-26 Tonen Chemical Corporation ポリオレフィン多層微多孔膜の製造方法
JP5450929B2 (ja) * 2007-04-09 2014-03-26 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
CN101700702A (zh) * 2009-10-30 2010-05-05 沧州明珠塑料股份有限公司 聚烯烃复合微孔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321323A (ja) * 2001-04-24 2002-11-05 Asahi Kasei Corp ポリオレフィン製微多孔膜
CN101511589A (zh) * 2006-08-31 2009-08-19 东燃化学株式会社 微孔膜、电池隔板和电池
CN101511588A (zh) * 2006-08-31 2009-08-19 东燃化学株式会社 多层微孔膜、电池隔板和电池
CN102501419A (zh) * 2011-11-25 2012-06-20 佛山市金辉高科光电材料有限公司 一种聚烯烃多层微多孔膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114953651A (zh) * 2021-02-22 2022-08-30 杭州中好东峻科技有限公司 一种防病毒防护阻隔膜
CN114770985A (zh) * 2022-02-25 2022-07-22 江苏安卡新材料科技有限公司 一种全聚烯烃防弹复合材料的制备方法

Also Published As

Publication number Publication date
CN102501419A (zh) 2012-06-20
CN102501419B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2013075523A1 (zh) 一种聚烯烃多层微多孔膜及其制备方法
JP6443333B2 (ja) ポリオレフィン微多孔膜およびその製造方法
EP2660277B1 (en) Polyolefin porous membrane and method of producing the same
KR101437621B1 (ko) 다층 폴리올레핀계 미세다공막 및 그 제조방법
CN106029380B (zh) 聚烯烃多层微多孔膜及电池用隔膜
KR101342994B1 (ko) 폴리올레핀 조성물, 그의 제조 방법 및 그로부터 제조된 전지용 세퍼레이터
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP6394596B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
JP5419817B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
KR101271299B1 (ko) 폴리올레핀 수지 다공성 필름, 및 그것을 사용한 비수 전해질 전지용 세퍼레이터
KR102386487B1 (ko) 미다공막, 리튬 이온 2차 전지, 및 미다공막 제조 방법
JP6394597B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
KR20120083532A (ko) 적층 다공 필름, 전지용 세퍼레이터 및 전지
WO2015194504A1 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
WO2007116672A1 (ja) ポリオレフィン微多孔膜
CN102064301A (zh) 锂电池用多孔多层复合隔膜的制造方法及隔膜
JP5554445B1 (ja) 電池用セパレータ及び電池用セパレータの製造方法
JP2015208894A (ja) ポリオレフィン製積層微多孔膜
JP2018076476A (ja) 高温低熱収縮性ポリオレフィン多層微多孔膜及びその製造方法。
KR102354110B1 (ko) 폴리올레핀 미다공막
JP7268004B2 (ja) 蓄電デバイス用セパレータ
WO2023071543A1 (zh) 复合隔膜、电化学装置和电子设备
JP2021174656A (ja) ポリオレフィン系微多孔膜およびその製造法
KR100637628B1 (ko) 이차전지 세퍼레이터용 폴리에틸렌 미다공막의 제조방법및 그 미다공막
KR20190059859A (ko) 다층 다공성 분리막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851658

Country of ref document: EP

Kind code of ref document: A1