WO2023071543A1 - 复合隔膜、电化学装置和电子设备 - Google Patents

复合隔膜、电化学装置和电子设备 Download PDF

Info

Publication number
WO2023071543A1
WO2023071543A1 PCT/CN2022/117861 CN2022117861W WO2023071543A1 WO 2023071543 A1 WO2023071543 A1 WO 2023071543A1 CN 2022117861 W CN2022117861 W CN 2022117861W WO 2023071543 A1 WO2023071543 A1 WO 2023071543A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer layer
prefabricated
heat
polymer
diaphragm
Prior art date
Application number
PCT/CN2022/117861
Other languages
English (en)
French (fr)
Inventor
阳东方
徐东
谢封超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071543A1 publication Critical patent/WO2023071543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of battery separators, and in particular relates to a composite separator, an electrochemical device and an electronic device.
  • the separator is used as a separator to separate the positive and negative electrodes of the battery.
  • the separator plays an important role in battery safety.
  • the most commonly used diaphragm at present is a polyethylene diaphragm, and the thermal shrinkage rate of the diaphragm is usually MD>10% (150°C/1h), TD>10% (150°C/1h); and the membrane rupture temperature of the diaphragm is usually ⁇ 160 °C. Therefore, when the battery works under high temperature conditions, the separator is heated and melted and shrinks severely. The damage of the diaphragm leads to direct contact between the positive and negative electrodes of the battery, which triggers a severe short circuit inside the battery and thermal runaway of the battery.
  • a Chinese patent provides an aramid separator.
  • the method is: directly mix the meta-aramid solution and dimethyl carbonate evenly to obtain a meta-aramid slurry; extrude the meta-aramid slurry to obtain a casting
  • the sheet is stretched transversely to obtain a diaphragm precursor; the diaphragm precursor is stretched vertically to obtain a semi-finished diaphragm; the semi-finished diaphragm is extracted and solidified, dried and rolled to obtain a meta-aramid diaphragm.
  • the aramid separator provided by this solution has a thermal decomposition temperature of >300°C, and the aramid separator has a high membrane rupture temperature, which improves the reliability and safety of related battery products in high-temperature application scenarios.
  • the aramid fiber content in the diaphragm is high, and a large number of rigid groups in the aramid fiber material lead to low toughness of the material, and poor processing performance during the diaphragm winding and slicing process; at the same time, compared with the polyolefin diaphragm, the aramid fiber
  • the diaphragm does not have a closed cell function, so that the battery loses the closed cell protection mechanism.
  • a high aramid content increases the cost of the separator.
  • a new coating is added to the surface of the diaphragm.
  • the newly added coating is usually an inorganic ceramic layer (silicon oxide, aluminum oxide and magnesium oxide, etc.), an organic polymer viscous coating (PVDF and PMMA, etc.) or an organic high-temperature resistant polymer coating (PI and aramid fiber layer, etc.) .
  • the inorganic ceramic layer and organic high-temperature-resistant polymer coating are used to improve the thermal stability of the separator, meet the reliability and safety requirements of related products in high-temperature application scenarios, and prevent the battery from igniting, burning or even exploding.
  • the organic polymer adhesive coating is used to improve the interface adhesion with the electrode sheet, improve the overall hardness and strength of the battery, prevent the deformation of the battery cell, and ensure the reliability and safety of the battery cell.
  • a Chinese patent discloses a composite lithium-ion battery diaphragm, which is coated with a layer of aramid fiber coating or aramid fiber mixed coating on the upper and lower sides of the polyolefin diaphragm substrate, and then coated on the aramid fiber coating Bond coating such as PVDF.
  • the thermal decomposition temperature of the aramid fiber in the diaphragm is >300°C, and the introduction of the aramid fiber coating can increase the rupture temperature of the diaphragm, so this solution can effectively solve the problem that the existing lithium-ion battery diaphragm is not resistant to high temperature (usually ⁇ 160°C).
  • Lithium-ion batteries have safety issues caused by diaphragm rupture due to heat, which improves the thermal stability of the diaphragm, thereby improving the reliability and safety of related battery products in high-temperature application scenarios.
  • the heat-resistant organic polymer when used to form a coating on the surface of the porous base film, the molten organic polymer is easy to penetrate into the pores of the base film, causing problems such as pore blocking, which seriously affects the air permeability of the composite separator, which is not conducive to the electrolyte solution.
  • the infiltration and transport of cations make it difficult for the resulting battery to meet the fast charging requirements.
  • the purpose of this application is to provide a composite diaphragm and its preparation method, as well as electrochemical devices and electronic equipment containing the above composite diaphragm, aiming to solve the problem of existing composite diaphragms containing organic polymer layers, which have high air permeability and are not conducive to The infiltration of the electrolyte and the transport of cations make it difficult for the resulting battery to meet the fast charging requirements.
  • the first aspect of the present application provides a composite diaphragm, including a porous polymer layer, and a heat-resistant polymer layer bonded to one or both sides of the porous polymer layer, wherein the porous polymer layer contains the second A polymer porous film, the heat-resistant polymer layer is a porous film containing a second polymer, and the first polymer is selected from polymers with a membrane rupture temperature of 150 ⁇ 10°C, and the second polymer The material is selected from polymers with a film rupture temperature > 200°C after film formation;
  • the composite diaphragm provided by the application comprises a laminated and bonded porous polymer layer and a heat-resistant polymer layer.
  • the first polymer constituting the porous polymer layer has a low closed cell temperature, therefore, the composite diaphragm can cut off the electronic circuit at high temperature; while the second polymer constituting the heat-resistant polymer layer has a membrane rupture temperature > 200°C, As a result, the composite separator has a higher membrane rupture temperature.
  • the composite separator can withstand a high temperature of 200°C without rupture, thereby effectively playing the role of isolating the positive and negative electrodes of the battery and avoiding direct contact between the positive and negative electrodes.
  • the composite separator can effectively improve the heat resistance, reduce the risk of heat shrinkage and melting, and improve battery safety.
  • the peak value of the pore size distribution of the porous polymer layer is 0.02-0.08 ⁇ m
  • the peak value of the pore size distribution of the composite diaphragm is (0.8-1)
  • a of the porous polymer layer which endows the composite diaphragm with a large amount of pore structure, which is conducive to improving
  • the permeability of the composite diaphragm layer, especially the heat-resistant polymer layer enables the composite diaphragm to improve the wetting effect of the electrolyte when used as a battery diaphragm, promote the shuttle of cations, and make the battery meet the fast charging requirements.
  • the air permeability of the porous polymer layer is marked as B
  • the air permeability of the heat-resistant polymer layer is marked as D
  • the thickness of the composite diaphragm layer is marked as E
  • the B, the D, and the E satisfy the following relationship: (D-B)/E ⁇ 15s.
  • connection interface between the porous polymer layer and the heat-resistant polymer layer has communicating holes.
  • the permeability between the two polymer layers increases, and the cations can shuttle between the two polymer layers more smoothly, which is more conducive to improving the charging performance of the battery and making the battery meet the fast charging requirements.
  • the thickness of the porous polymer layer is 0.2-20 ⁇ m; the thickness of the heat-resistant polymer layer is 1-6 ⁇ m.
  • the heat-resistant polymer layer of the present application is within a controllable thickness range, which effectively improves the membrane rupture temperature and thermal shrinkage performance of the composite separator, and can also reduce not only its own influence on the energy density of the battery.
  • the thickness of the porous polymer layer provided by the application can be reduced, thereby reducing the impact of the porous polymer on the energy density of the battery.
  • the thickness of the porous polymer layer is in the range of 0.2-20 ⁇ m (the thickness can be as low as 0.2 ⁇ m), which can effectively isolate the positive and negative electrodes of the battery.
  • the weight percentage of the second polymer is 5-100%.
  • the weight percentage of the second polymer is 100%.
  • the heat-resistant polymer layer is composed of the second polymer, and the second polymer effectively exerts heat-resistant properties and increases the membrane rupture temperature of the composite separator.
  • the weight percentage of the second polymer is 5-100%, and the second polymer The weight percentage of the substance is not 100%.
  • the heat-resistant polymer layer can also contain other heat-resistant materials with a weight percentage of 0-95%, such as ceramic particles, to improve the heat-resistant performance of the heat-resistant polymer layer and improve the heat-resistant polymer layer. rupture temperature.
  • the weight percentage of the second polymer is 50-100%, and the weight percentage of the second polymer Minor content is not 100%.
  • the weight percentage of the second polymer is between 50% and 100%, the second polymer can still effectively exert heat resistance and increase the membrane rupture temperature of the composite membrane.
  • the heat-resistant polymer layer may also contain other heat-resistant materials, such as ceramic particles, in a weight percentage of 0-50%. It should be understood that when the content of the second polymer in the heat-resistant polymer layer is greater than or equal to 50%, the second polymer acts as the main body of the heat-resistant polymer layer and plays a role in increasing the rupture temperature of the composite membrane.
  • the weight percentage of the second polymer is 5-50%.
  • the heat-resistant polymer layer also contains ceramic particles with a weight percentage of 50-95%. At this time, ceramic particles, as the main material of the heat-resistant polymer layer, are bonded to form a film under the action of the second polymer to exert heat-resistant performance and achieve the effect of increasing the rupture temperature of the composite diaphragm.
  • the weight percentage of the second polymer is not 100%, and the heat-resistant polymer layer further includes The weight percentage is 0-95% of the ceramic particles, and the content of the ceramic particles is not zero.
  • the ceramic particles have excellent heat resistance, and can be fixed by the bonding performance of the second polymer to form a stable film layer, and together with the second polymer, the membrane rupture temperature of the composite membrane can be increased.
  • the second polymer is selected from polymers with a membrane rupture temperature > 240°C after membrane formation.
  • the high temperature resistance of the heat-resistant polymer layer (>240°C) makes the membrane rupture temperature of the composite separator >240°C.
  • the composite separator can withstand 240°C The high temperature does not break the membrane, thereby effectively isolating the positive and negative electrodes of the battery, avoiding direct contact between the positive and negative electrodes and causing severe internal short circuits, and improving the safety performance of the battery.
  • the second polymer is selected from polyvinylidene fluoride, polyhexafluoropropylene, aramid fiber, polyarylate, polyacrylonitrile, aromatic polyamide, polyimide At least one of amine, polyethersulfone, polysulfone, polyetherketone, polyetherimide, polybenzimidazole.
  • the above-mentioned polymer has a relatively high membrane rupture temperature, and as a heat-resistant polymer layer, it can effectively increase the membrane rupture temperature of the composite diaphragm, making the membrane rupture temperature of the composite diaphragm >
  • the composite membrane is prepared by extracting a prefabricated composite membrane containing a porogen, the prefabricated composite membrane includes a prefabricated polymer layer, and a A prefabricated heat-resistant polymer layer on one or both sides of the object layer, wherein the prefabricated polymer layer is a prefabricated film containing a first polymer and a first porogen, and the prefabricated heat-resistant polymer layer contains A preformed film of a second polymer and a second porogen.
  • a rich pore structure can be retained in the composite diaphragm, which is conducive to improving the permeability of the composite diaphragm and increasing the ion flow channel, so that the composite diaphragm can be used as a battery diaphragm. , can promote the shuttle of cations, improve the charging efficiency, and make the battery meet the demand of fast charging.
  • the second aspect of the present application provides a method for preparing a composite diaphragm, comprising the steps of:
  • a prefabricated composite diaphragm containing a prefabricated polymer layer and a prefabricated heat-resistant polymer layer; wherein, the prefabricated heat-resistant polymer layer is bonded to one or both sides of the prefabricated polymer layer, and the prefabricated polymer layer is A prefabricated film containing a first polymer and a first porogen, the prefabricated heat-resistant polymer layer is a prefabricated film containing a second polymer and a second porogen;
  • the prefabricated composite diaphragm is extracted to form pores, dried and rolled to obtain the composite diaphragm.
  • the first porogen and the second porogen are respectively introduced into the first polymer and the second polymer to prepare a prefabricated polymer layer and a prefabricated heat-resistant polymer layer.
  • layer prefabricated composite diaphragm then extract the obtained prefabricated composite diaphragm to remove the porogen in the prefabricated polymer layer and the prefabricated heat-resistant polymer layer, so that the two layers of film are formed simultaneously after the film is formed.
  • the extraction method is used to make holes in the two layers of the prefabricated composite diaphragm.
  • This method can retain a rich pore structure in the composite diaphragm, which is conducive to improving the permeability of the composite diaphragm.
  • the ion flow channel is opened, so that when the composite diaphragm is used as a battery diaphragm, it can promote the shuttle of cations, improve the charging efficiency, and make the battery meet the fast charging requirements.
  • the preparation method provided by the application can effectively avoid the heat-resistant polymer slurry from being coated.
  • the pore channels of the first polymer layer are blocked, resulting in high air permeability of the composite diaphragm, smaller pore size, and unsmooth movement of lithium ions, making the composite diaphragm unsuitable for fast charging.
  • the first porogen and the second porogen are each independently selected from hydrocarbons with the molecular formula C n H 2n+2 and their Derivatives, one or more of siloxane compounds with the molecular formula Si m O m-1 H 2m+2 and their derivatives, wherein the values of n and m satisfy: 15 ⁇ n ⁇ 40, 5 ⁇ m ⁇ 50.
  • the first porogen and the second porogen can be removed by the extractant, thereby retaining a rich pore structure in the composite membrane.
  • the mass of the first porogen is the total weight of the first polymer and the first porogen. 20% to 30% of the mass.
  • the porous polymer layer obtained after the prefabricated polymer layer is extracted and pore-formed has a rich pore structure.
  • the mass of the second porogen is equal to the second polymer and the second porogen 20% to 30% of the total mass.
  • the heat-resistant polymer layer obtained after the prefabricated heat-resistant polymer layer is extracted and pore-formed has a rich pore structure.
  • the preparation of the prefabricated composite diaphragm containing a prefabricated polymer layer and a prefabricated heat-resistant polymer layer includes:
  • the second slurry containing the second polymer and the second porogen is formed on one or both surfaces of the prefabricated polymer layer to prepare the prefabricated heat-resistant polymer layer to obtain the prefabricated composite diaphragm.
  • the preparation of the prefabricated composite diaphragm containing a prefabricated polymer layer and a prefabricated heat-resistant polymer layer includes:
  • the prefabricated heat-resistant polymer layer precursor is laminated on one or both surfaces of the prefabricated polymer layer precursor, and subjected to biaxial stretching treatment to obtain the prefabricated composite diaphragm.
  • a two-layer film with porogen retained can be prepared, and then the pores can be formed by extraction in the subsequent steps to obtain a composite diaphragm with rich pore size and no pore blocking.
  • the embodiment of the present application prepares the prefabricated composite diaphragm, and performs extraction treatment, drying and winding on the prefabricated composite diaphragm, which is realized through an integrated process, that is, each process is carried out continuously, Make the composite diaphragm realize the continuous production.
  • the extracting pore-forming includes: using an extraction agent to reverse overflow the prefabricated composite membrane in progress.
  • the time for the extractant to stay in the prefabricated composite membrane is prolonged, and the extraction agent is promoted to enter the interior of the prefabricated composite membrane, thereby facilitating the extraction agent to fully extract the prefabricated composite membrane.
  • the third aspect of the present application provides an electrochemical device, including a positive electrode sheet, a negative electrode sheet, an electrolyte, and a diaphragm arranged between the positive electrode sheet and the negative electrode sheet, and the diaphragm is the one described in the first aspect of the present application.
  • the electrochemical device provided by the application contains the above-mentioned composite diaphragm, and a large amount of pore structure of the composite diaphragm is conducive to improving the air permeability of the composite diaphragm, especially the heat-resistant polymer layer, so that when the composite diaphragm is used as a battery diaphragm, it can promote cation The shuttle, so that the battery meets the fast charging demand.
  • At least one surface of the composite separator is provided with at least one polymer layer.
  • the polymer layer can improve the interfacial adhesion between the composite separator and the electrode sheet, improve the overall hardness and strength of the battery, and prevent the deformation of the battery cell.
  • the polymer layer is a material layer formed by at least one of PVDF, PMMA, dopamine, CMC, SBR, PTFE and PVA; as the electrochemical device of the present application
  • the polymer layer is a polymer laminate formed by at least two of PVDF, PMMA, dopamine, CMC, SBR, PTFE and PVA, and the polymer forming the polymer laminate may be One or more of the above polymers.
  • the above-mentioned polymer material can improve the bonding strength between the composite diaphragm and the electrode sheet provided by the first aspect, and keep the battery structure stable.
  • the electrochemical device is a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a zinc secondary battery, a magnesium secondary battery or an aluminum secondary battery.
  • the structure of the electrochemical device is one or more of a wound structure and a laminated structure.
  • the electrochemical device further includes an encapsulation case, and one or more electrochemical device units are encapsulated in the encapsulation case.
  • the fourth aspect of the present application provides an electronic device, including a housing, electronic components and electrochemical devices accommodated in the housing, the electrochemical device is the electrochemical device described in the third aspect of the present application, and the The electrochemical device is used for powering the electronic components.
  • the terminal is a computer, a mobile phone, a tablet, a wearable product, or an electric vehicle.
  • Fig. 1 is a schematic diagram of the preparation process of the composite diaphragm provided by the embodiment of the present application;
  • Figure 2A is a schematic diagram of the preparation process of the composite diaphragm provided in Example 1 of the present application;
  • FIG. 2B is a schematic diagram of the preparation process of the composite diaphragm provided in Example 2 of the present application;
  • Fig. 3 is the cross-sectional microscopic schematic view of the composite diaphragm prepared in Example 1 and Example 2 of the present application;
  • FIG. 4 is a schematic cross-sectional microscopic view of the composite diaphragm prepared in Comparative Example 2.
  • the term "and/or” describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Condition. Among them, A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (unit) of a, b, or c or “at least one item (unit) of a, b, and c” can mean: a, b, c, a-b( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and some or all steps may be executed in parallel or sequentially, and the execution order of each process shall be based on its functions and The internal logic is determined and should not constitute any limitation to the implementation process of the embodiment of the present application.
  • the weight of the relevant components mentioned in the description of the embodiments of the present application can not only refer to the specific content of each component, but also represent the proportional relationship between the weights of the various components.
  • the scaling up or down of the content of the fraction is within the scope disclosed in the description of the embodiments of the present application.
  • the mass described in the description of the embodiments of the present application may be ⁇ g, mg, g, kg and other well-known mass units in the chemical industry.
  • first and second are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • first XX can also be called the second XX
  • second XX can also be called the first XX.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • MD is the abbreviation of "Machine direction", which means the mechanical direction
  • TD is the abbreviation of "Transverse direction", which means perpendicular to the machine direction;
  • PE is the abbreviation of "Polyethylene”, which means polyethylene
  • SOC is the abbreviation of "State of charge”, which means the state of charge
  • PVDF polyvinylidenefluoride
  • PMMA is an abbreviation for “polymethyl methacrylate”, which means polymethyl methacrylate
  • SBR is an abbreviation for "Styrene-butadiene", which means styrene-butadiene rubber
  • NMP is the abbreviation of "N-Methyl-2-pyrrolidone", which means N-methylpyrrolidone, also known as 1-methyl 2-pyrrolidone;
  • CNTs is an abbreviation for “Carbon nanotubes”, which means carbon nanotubes
  • CMC is an abbreviation for "Carboxymethyl Cellulose", which means carboxymethyl cellulose
  • SP is the abbreviation of "Super P”, which means conductive carbon black
  • PTFE is an abbreviation for "Polytetrafluoroethylene", which means polytetrafluoroethylene
  • PVA is an abbreviation for "Polyvinyl alcohol”, which means polyvinyl alcohol.
  • PI is an abbreviation of "Polyimide”, which means polyimide.
  • battery is expressed as "Battery” in English, which refers to a device that utilizes the potential difference of two electrodes to generate a potential difference, thereby causing electrons to flow and generate current.
  • the device can convert chemical energy into electrical energy.
  • positive electrode is expressed in English as "Cathode”.
  • the positive electrode refers to the electrode where the current flows out or the potential is higher, and the positive electrode receives electrons for reduction; in the electrolytic cell, the positive electrode is the electrode connected to the positive electrode of the power supply, and loses electrons for oxidation.
  • negative electrode is expressed in English as "Anode".
  • the negative electrode refers to the electrode that the current flows into or the electrode with a lower potential.
  • the negative electrode loses electrons for oxidation; in the electrolytic cell, the negative electrode is the electrode connected to the negative electrode of the power supply, and the electrons are obtained for reduction.
  • electrostatic electrostatic charge is expressed as "Electrolyte” in English, which refers to the medium that provides ion exchange between the positive and negative electrodes of the battery.
  • diaphragm is expressed as "Separator” in English, which refers to the medium used to separate the positive and negative electrodes in the battery and prevent the positive and negative electrodes from being directly contacted and short-circuited.
  • the basic characteristics of the separator are porosity (can provide channels for ion transmission) and electronic insulation (prevent leakage).
  • Heat abuse refers to: the abuse test of the battery cell in terms of heat (or high temperature), such as the hot box test (high temperature ⁇ 130°C baking the battery cell).
  • mechanical abuse is expressed in English as “Machenical abuse”, which can refer to the mechanical abuse of the battery. Cells can be tested for mechanical abuse using needle penetration tests, impact tests, etc.
  • Elongation which can also be called the elongation at break, which indicates the percentage of the length increment when the diaphragm is broken relative to the initial length.
  • a tensile test can be performed on the diaphragm under specific conditions, and when the diaphragm is just broken, the increase in the length of the diaphragm divided by the initial length of the diaphragm can be used to characterize the elongation. The larger the elongation value, the less likely the diaphragm will be broken and the better the elongation.
  • the elongation can be divided into longitudinal (MD, ie along the long side of the separator) elongation and transverse (TD, perpendicular to MD, ie along the short side of the separator) elongation.
  • Tensile strength is expressed in English as "Tensile strength", which indicates the critical strength value of the plastic deformation of the diaphragm, which can characterize the maximum bearing capacity of the diaphragm under uniform stretching conditions.
  • Tensile strength can refer to the stress obtained by dividing the maximum load force of the diaphragm by the initial cross-sectional area of the diaphragm when the diaphragm is just pulled off. The tensile strength is divided into longitudinal (MD, ie along the long side direction of the separator) tensile strength and transverse direction (TD, perpendicular to MD, ie along the short side direction of the separator) tensile strength.
  • MD longitudinal
  • TD transverse direction
  • Puncture strength is expressed in English as "Puncture strength", which can refer to the use of a spherical steel needle with a diameter of 1.0mm to pierce the diaphragm at a speed of 300 ⁇ 10mm/min, and the force required for the steel needle to penetrate the diaphragm is the diaphragm. puncture strength.
  • Heat shrinkage which means that the diaphragm is in the longitudinal/transverse direction before and after heating (longitudinal MD, that is, along the long side direction of the diaphragm; transverse direction TD, perpendicular to MD, that is, along the short side direction of the diaphragm ) The rate of dimensional change in the direction.
  • the test method of thermal shrinkage rate may include: measuring the size of the diaphragm in the longitudinal/transverse (MD/TD) direction; placing a diaphragm with a certain size in the longitudinal/transverse (MD/TD) direction in an incubator; Oven to a specific temperature; measure the dimension of the separator in the longitudinal/transverse (MD/TD) direction after heating.
  • air permeability is “Gurley”, which means the degree to which the membrane allows gas to pass through.
  • Gurley means the degree to which the membrane allows gas to pass through.
  • the air permeability can be obtained by measuring the time required for a unit volume of gas (100cc) to pass through the membrane at a specific pressure (0.05MPa).
  • Opturator temperature which means the temperature at which the diaphragm begins to melt and block some of the previously formed pores during the heating process.
  • membrane rupture temperature is expressed in English as “Rupture temperature”, which means the temperature at which the diaphragm melts to a certain extent and ruptures, resulting in a partial or comprehensive short circuit.
  • pore size distribution refers to the percentage of the pore sizes present in the material by number or volume. In the examples of the present application, “pore size distribution” is used to characterize the pore size at the pore throat (the narrowest pore size). The “pore size distribution” is measured by the bubble pressure method. The operation method is: first place the diaphragm sample in the electrolyte, and the electrolyte will enter the sample pores under the action of capillary force. In order to ensure the infiltration effect, it is generally necessary to use a vacuum infiltrator to infiltrate the sample under negative pressure conditions, so that the volume of the air in the sample channel expands and is easy to bubble out.
  • Separator as one of the five main materials of electrochemical devices, plays an important role in battery safety.
  • the separator is mainly used to prevent the short circuit of the positive and negative electrodes, which plays a key role in the safety of the battery.
  • the separator is prone to melting and thermal shrinkage in high-temperature scenes, resulting in a short circuit between the positive and negative electrodes and causing safety hazards such as thermal runaway of the battery.
  • a coating can be coated on the surface of the porous polymer diaphragm, which can be an inorganic ceramic layer (silicon oxide, aluminum oxide and magnesium oxide, etc.), an organic polymer viscous coating (PVDF and PMMA, etc.) or organic high-temperature-resistant polymer coatings (PI and aramid layers, etc.).
  • the inorganic ceramic layer and organic high-temperature-resistant polymer coating are used to improve the thermal stability of the separator, meet the reliability and safety of related products in high-temperature application scenarios, and prevent the battery from igniting, burning or even exploding.
  • the embodiment of the present application provides a composite separator that can improve battery safety performance, including a porous polymer layer, and a heat-resistant polymer layer bonded to one or both sides of the porous polymer layer.
  • the porous polymer layer is a porous film containing the first polymer, which serves as the main functional layer of the composite separator and plays the role of separating the positive and negative electrodes in the battery cell to prevent direct contact between the positive and negative electrodes and short circuit.
  • the porous polymer layer is a porous film containing a first polymer, and the first polymer is selected from polymers with a membrane rupture temperature of 150 ⁇ 10° C.
  • the porous structure of the first polymer can provide transmission channels for ion transport in the battery; at the same time, because the first polymer has a lower closed cell temperature, when the battery temperature rises to this temperature, the first polymer melts , The micropores of the porous polymer layer are closed, thereby cutting off the ion transmission circuit of the battery, making the battery lose its activity, and ensuring the safety of the battery.
  • the first polymer is selected from at least one of polyolefins and polyolefin derivatives. Due to the porous nature of polyolefins, polyolefins are also called porous polyolefins, which can provide channels for ion transmission; at the same time, polyolefins have electronic insulation properties, which can effectively prevent battery leakage as a separator.
  • the closed cell temperature of the polymer layer formed by polyolefin is about 140°C. When the temperature of the battery containing the polyolefin layer in the separator reaches this temperature, the micropores of the polyolefin layer are closed, cutting off the ion transmission circuit, and deactivating the battery. The safety of the battery is guaranteed; the good mechanical properties of the polyolefin layer enable the separator to meet the engineering requirements in the battery lamination and winding process.
  • polyolefins include polyethylene, polypropylene, poly-1-butene, poly-1-pentene, poly-1-hexene, poly-4-methyl-1-pentene, poly-1-octene, polystyrene At least one of ethylene; polyolefin derivatives can be polymers such as alkenyl-containing polyesters, polyethers, and polyfluorides. Exemplarily, polyolefin derivatives include polyvinyl acetate, polymethyl methacrylate, One or more of polyvinylidene fluoride and polytetrafluoroethylene.
  • the porous polymer layer is made from a polyolefin material.
  • the porous polymer layer is made of a composition formed of two or more polyolefins.
  • the two or more polyolefins may be two or more different types of polyolefin materials.
  • the polyolefin material of the polyolefin layer is a composition of polyethylene and polypropylene ; It can also be two or more polyolefins of the same type but with different viscosity-average molecular weights.
  • the polyolefin material of the polyolefin layer is a composition of multiple polyethylenes with different viscosity-average molecular weights.
  • the thickness of the porous polymer layer is 0.2-20 ⁇ m. Since the embodiments of the present application form a heat-resistant polymer layer on one surface of the polyolefin layer, the membrane breaking temperature and thermal shrinkage performance of the porous polymer layer are improved, so the thickness of the porous polymer layer provided by the present application can be reduced.
  • a porous polymer layer with a thickness of 0.2 ⁇ m and a thickness of 0.2 to 20 ⁇ m can effectively isolate the positive and negative electrodes of the battery.
  • the thickness of the polyolefin layer may be 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m, 6.0 ⁇ m, 7.0 ⁇ m, 8.0 ⁇ m, 9.0 ⁇ m, 10.0 ⁇ m, 11.0 ⁇ m, 12.0 ⁇ m, 13.0 ⁇ m, 14.0 ⁇ m, 15.0 ⁇ m, 16.0 ⁇ m, 17.0 ⁇ m, 18.0 ⁇ m, 19.0 ⁇ m, 20.0 ⁇ m.
  • the polyolefin layer has a thickness of 0.5-17 um.
  • a heat-resistant polymer layer is bonded to one or both surfaces of the porous polymer layer, and the heat-resistant polymer layer is a porous film containing a second polymer.
  • a heat-resistant polymer layer is formed on one side of the porous polymer layer, and the other side is left untreated (that is, a blank design remains).
  • a heat-resistant polymer layer is simultaneously formed on both sides of the porous polymer layer to increase the rupture temperature of the composite separator and reduce its heat shrinkage rate.
  • the heat-resistant polymer layer may be composed of a heat-resistant polymer, or may contain other heat-resistant materials other than the heat-resistant polymer.
  • the weight percentage of the second polymer is 5-100%.
  • the heat-resistant polymer layer may also contain other heat-resistant materials.
  • Other heat-resistant materials can be organic heat-resistant materials or inorganic heat-resistant materials.
  • the inorganic heat-resistant material is ceramic particles.
  • the weight percentage of the second polymer is 100%.
  • the heat-resistant polymer layer is composed of the second polymer, and the second polymer effectively exerts heat-resistant properties and increases the membrane rupture temperature of the composite separator.
  • the weight percentage of the second polymer is 50-100%, and the weight percentage of the second polymer is not is 100%.
  • the weight percentage of the second polymer is between 50% and 100%, the second polymer can still effectively exert excellent heat resistance performance and increase the membrane rupture temperature of the composite membrane.
  • the heat-resistant polymer layer may also contain other heat-resistant materials, such as ceramic particles, in a weight percentage of 0-50%. The second polymer cooperates with other heat-resistant materials to exert excellent heat-resistant performance.
  • the heat-resistant polymer layer contains a second polymer and ceramic particles, and based on 100% of the total weight of the heat-resistant polymer layer, the weight percentage of the second polymer is 50-100%, The weight percentage of the second polymer is not 100%, and the weight percentage of the ceramic particles is 0-50%.
  • the ceramic particles have excellent heat resistance properties, together with the second polymer, the rupture temperature of the composite separator is increased. Not only that, the ceramic particles can be fixed by virtue of the bonding properties of the second polymer, while reducing the thermal shrinkage of the second polymer to form a stable heat-resistant polymer layer.
  • the second polymer acts as the main body of the heat-resistant polymer layer and plays a role in increasing the rupture temperature of the composite membrane.
  • the weight percentage of the second polymer can be 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% and other specific weight percentages.
  • the heat-resistant polymer layer contains a second polymer and other heat-resistant materials, and the weight percentage of the second polymer is 5-50%, and the weight percentage of other heat-resistant materials is 50-95%. In this case, a high content of other heat-resistant materials cooperates with the second polymer to exert heat-resistant properties.
  • the heat-resistant polymer layer contains a second polymer and ceramic particles, and based on 100% of the total weight of the heat-resistant polymer layer, the weight percentage of the second polymer is 5-50%, The weight percentage of the ceramic particles is 50-95%.
  • ceramic particles as the main material of the heat-resistant polymer layer, are bonded to form a film under the action of the second polymer to exert heat-resistant performance and achieve the effect of increasing the rupture temperature of the composite diaphragm.
  • the weight percentage of ceramic particles can be 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% , 90%, 95% and other specific weight percentages.
  • the second polymer is selected from polymers with a membrane rupture temperature > 200° C. after film formation.
  • the high temperature resistance of the heat-resistant polymer layer (>200°C) makes the membrane rupture temperature of the composite separator >200°C.
  • the composite separator can withstand 200°C The high temperature does not break the membrane, thereby effectively isolating the positive and negative electrodes of the battery, avoiding direct contact between the positive and negative electrodes and causing severe internal short circuits, and improving the safety performance of the battery.
  • the second polymer is selected from polymers with a membrane rupture temperature > 240°C after film formation, and the composite separator thus obtained can withstand a high temperature of 240°C without membrane rupture.
  • the second polymer is selected from the group consisting of polyvinylidene fluoride, polyhexafluoropropylene, aramid, polyarylate, polyacrylonitrile, aramid, polyimide, polyethersulfone, polysulfone, At least one of polyetherketone, polyetherimide and polybenzimidazole.
  • the above-mentioned polymer has flame retardancy, which makes the formed polymer layer have a higher membrane rupture temperature, such as the membrane rupture temperature > 250°C.
  • the rupture temperature of the diaphragm is to make the rupture temperature of the composite diaphragm > 250°C, and ensure that the thermal shrinkage rate of the composite diaphragm is ⁇ 10%@150°C, that is, when the composite diaphragm is heated to 150°C, the thermal shrinkage rate of the composite diaphragm is less than 10 %.
  • the heat-resistant polymer layer may contain one or more second polymers.
  • the heat-resistant polymer layer is made of a composition formed of two or more second polymers.
  • two or more second polymers can be two or more different types of heat-resistant polymer materials, or two or more types of the same type, but the viscosity average molecular weight Different heat-resistant polymers.
  • ceramic particles include, but are not limited to, alumina, silica, titania, zirconia, zinc oxide, barium oxide, magnesium oxide, beryllium oxide, calcium oxide, thorium oxide, aluminum nitride, titanium nitride , Boehmite, apatite, aluminum hydroxide, magnesium hydroxide, barium sulfate, boron nitride, silicon carbide, silicon nitride, cubic boron nitride, hexagonal boron nitride, one or more.
  • the thickness of the heat-resistant polymer layer is 1-6 ⁇ m.
  • the heat-resistant polymer layer can achieve the effect of increasing the rupture temperature of the composite separator; moreover, since the thickness of the heat-resistant polymer layer is within a controllable range, it can not only reduce its own influence on the energy density of the battery, but also The thickness of the porous polymer layer can be reduced, thereby reducing the impact of the porous polymer layer on the energy density of the battery.
  • the thickness of the heat-resistant polymer layer can be 1.0um, 1.5um, 2.0um, 2.5um, 3.0um, 3.5um, 4.0um, 4.5um, 5.0um, 5.5um, 6.0um and other specific thicknesses.
  • the thickness of the heat-resistant polymer layer is 1-3 um.
  • the thickness of the heat-resistant polymer layer is within the above range, the effect of increasing the rupture temperature of the composite separator and reducing the influence of the heat-resistant polymer layer on the energy density of the battery can be better taken into account.
  • the composite diaphragm has a large number of pore structures, which is conducive to improving the permeability of the composite diaphragm, especially the heat-resistant polymer layer, so that when the composite diaphragm is used as a battery diaphragm, it can improve the wetting effect of the electrolyte and promote The shuttle of cations enables the battery to meet the fast charging requirements.
  • B, D, and E satisfy the following relationship: (D-B)/E ⁇ 15s.
  • the increase in air permeability of the heat-resistant polymer layer is small, and the pore size of the composite diaphragm is reduced to a small extent, which is conducive to improving the permeability of the composite diaphragm of the present application.
  • connection interface between the porous polymer layer and the heat-resistant polymer layer has communicating holes.
  • the pore permeability between the two polymer layers increases, and the cations can shuttle between the two polymer layers more smoothly, which is more conducive to improving the charging performance of the battery and making the battery meet the fast charging requirements.
  • the composite membrane is prepared by extracting a prefabricated composite membrane containing a porogen
  • the prefabricated composite membrane includes a prefabricated polymer layer and a prefabricated polymer layer bonded to one or both sides of the prefabricated polymer layer.
  • the heat-resistant polymer layer wherein the prefabricated polymer layer is a prefabricated film containing the first polymer and the first porogen, and the prefabricated heat-resistant polymer layer is a prefabricated film containing the second polymer and the second porogen.
  • a rich pore structure can be retained in the composite diaphragm, which is conducive to improving the permeability of the composite diaphragm and increasing the ion flow channel, so that the composite diaphragm can be used as a battery diaphragm. , can promote the shuttle of cations, improve the charging efficiency, and make the battery meet the demand of fast charging.
  • the composite diaphragm provided in the examples of the present application is prepared by the following method.
  • the embodiment of the present application provides a method for preparing a composite diaphragm, including the following steps:
  • Both the prefabricated polymer layer and the prefabricated heat-resistant polymer layer prepared in this step contain a porogen, so as to avoid pore blocking when another film is prepared on the surface of the pore-formed film.
  • the prefabricated composite diaphragm can be prepared in various ways. Two processes for preparing the prefabricated composite diaphragm are provided below.
  • a prefabricated composite membrane can be produced by the following steps:
  • the first slurry containing the first polymer and the first porogen is configured first.
  • the first porogen is an organic porogen.
  • the organic porogen in the prefabricated polymer layer can be removed by extraction. porogen, thereby forming a rich pore structure in the obtained polymer layer.
  • the first pore-forming agent is obtained from hydrocarbons with molecular formula C n H 2n+2 and derivatives thereof, siloxane compounds with molecular formula Si m O m-1 H 2m+2 and derivatives thereof.
  • hydrocarbons with molecular formula C n H 2n+2 and derivatives thereof siloxane compounds with molecular formula Si m O m-1 H 2m+2 and derivatives thereof.
  • the first porogen is selected from the above organic substances, it can be removed by an organic extractant, thereby retaining a rich pore structure in the porous polymer layer.
  • the first porogen is white oil (a mixture of refined liquid hydrocarbons obtained from petroleum).
  • the first slurry is configured according to the ratio that the mass of the first porogen is 20% to 30% of the total mass of the first polymer and the first porogen, and the prefabricated polymer thus obtained Among them, the mass of the first porogen is 20%-30% of the total mass of the first polymer and the first porogen.
  • the porous polymer layer prepared by using the first slurry has a rich pore structure.
  • the mass ratio of the first polymer to the first porogen is 70:30, 71:29, 72:28, 73:26, 75:25, 76:24, 77:23, 78:22, 79:21, 80:20 and other specific ratios.
  • the first polymer and the first porogen are mixed so that the first porogen is uniformly dispersed in the first slurry.
  • the first porogen is uniformly dispersed in the prefabricated polymer layer, and after extraction treatment, a porous polymer layer with uniform pore distribution is formed.
  • the first polymer and the first porogen are mixed to prepare the first slurry, and the following method is used:
  • the first slurry is extruded, and the method for preparing the first cast sheet is:
  • the slit gap of the slot die is 0.1-5 mm
  • the melt temperature during extrusion is 160-230° C.
  • the extrusion speed can be 0.2-15 m/min.
  • the cooling rate is very important to control the crystallinity of the solid-phase polyolefin in this step. If the cooling rate is too low, the quasi-unit cell unit will increase, the crystallinity will increase, and the cooling rate will increase to form a small and dense unit cell unit, which is beneficial to control the entire solid-phase polyolefin. Alkene crystallinity. In some embodiments, in the operation of extruding the mixed solution, cooling and casting it into a sheet, the cooling rate is greater than 60° C./minute.
  • the resulting first cast sheet is biaxially stretched to obtain a prefabricated polymer layer.
  • biaxial stretching treatment includes transverse stretching treatment and longitudinal stretching treatment.
  • the step of extruding the first slurry containing the first polymer and the first porogen, and performing biaxial stretching treatment on the obtained first cast sheet includes:
  • the first slurry is extruded and formed on a receiving roll, it is sequentially stretched transversely and vertically to obtain a prefabricated polymer layer.
  • performing a biaxial stretching treatment on the obtained first cast sheet includes first performing a transverse stretching treatment on the obtained first cast sheet, and then performing a longitudinal stretching treatment on the obtained first cast sheet.
  • the receiving roll receives the extruded sample
  • the receiving roll, the buffer roll, the first horizontal stretching roll and the second horizontal stretching roll stretch the sample vertically; then the vertical stretching nip wheel is used to stretch the sample horizontally.
  • the second porogen is an organic porogen.
  • the porogen in the prefabricated heat-resistant polymer layer can be removed by extraction. Organic porogen to form a rich pore structure in the heat-resistant polymer layer.
  • the second pore forming agent is selected from hydrocarbons with molecular formula C n H 2n+2 and derivatives thereof, siloxane compounds with molecular formula Si m O m-1 H 2m+2 and derivatives thereof One or more kinds of substances, wherein, the values of n and m satisfy: 15 ⁇ n ⁇ 40, 5 ⁇ m ⁇ 50.
  • the second porogen is selected from the above-mentioned organic substances, it can be removed by an organic extractant, thereby retaining a rich pore structure in the composite membrane.
  • the first porogen is white oil (a mixture of refined liquid hydrocarbons obtained from petroleum).
  • the first porogen and the second porogen may be the same or different.
  • the second slurry is configured according to the ratio that the mass of the second porogen is 20% to 30% of the total mass of the second polymer and the second porogen, and the prefabricated heat-resistant In the polymer layer, the mass of the second porogen is 20%-30% of the total mass of the second polymer and the second porogen.
  • the viscosity of the second slurry can be adjusted so that its viscosity is 25000-30000 mpa.s, which is beneficial for the second slurry to form a uniform and dense film layer on the surface of the prefabricated polymer layer.
  • the heat-resistant polymer layer prepared by using the second slurry has a rich pore structure.
  • the mass ratio of the second polymer to the second porogen is 70:30, 71:29, 72:28, 73:26, 75:25, 76:24, 77:23, 78:22, 79:21, 80:20 and other specific ratios.
  • an inorganic heat-resistant material is added to the second slurry.
  • the inorganic heat-resistant material is ceramic particles.
  • the addition amount of the inorganic heat-resistant material can refer to the composite diaphragm part provided in the embodiment of the present application.
  • the second polymer and the second porogen are mixed so that the second porogen is uniformly dispersed in the second slurry.
  • the second porogen is evenly dispersed in the prefabricated heat-resistant polymer layer, and the heat-resistant polymer layer with uniform pore distribution is formed after extraction treatment.
  • the second slurry is formed on one or both surfaces of the prefabricated polymer layer, and the second slurry is formed on the surface of the prefabricated polymer layer by using a solution processing method, and after drying, the prefabricated polymer layer is obtained.
  • a solution processing method may be coating, printing, etc.
  • the coating may be spin coating, blade coating, drop coating, etc., but is not limited thereto.
  • the second slurry is extruded using another extruder that is different from the preparation of the prefabricated polymer layer, and the obtained film layer is integrated with the prefabricated polymer layer to obtain a compound containing the prefabricated polymer layer.
  • a prefabricated composite membrane can be produced by the following steps:
  • the preparation of the first slurry refers to S111 above, and in order to save space, details are not repeated here.
  • first cast sheet Extruding the first slurry to prepare a first cast sheet.
  • first cast sheet For the method of producing the first cast sheet, reference may be made to S111 above.
  • the resulting first cast sheet can be used as a prefabricated polymer layer precursor.
  • the obtained first cast sheet is further subjected to transverse stretching treatment or vertical stretching treatment to obtain a prefabricated polymer layer precursor.
  • the obtained second cast sheet can be used as a prefabricated heat-resistant polymer layer precursor.
  • the obtained second cast sheet is further subjected to transverse stretching treatment or vertical stretching treatment to obtain a prefabricated heat-resistant polymer layer precursor.
  • the prefabricated heat-resistant polymer layer precursor and the prefabricated polymer layer precursor are laminated and bonded by pressing to obtain the prefabricated composite membrane precursor.
  • the prefabricated heat-resistant polymer layer is bonded to one or both surfaces of the prefabricated polymer layer by hot pressing to obtain a prefabricated composite membrane precursor.
  • the prefabricated composite diaphragm precursor is subjected to biaxial stretching treatment to obtain the prefabricated composite diaphragm.
  • the prefabricated heat-resistant polymer layer precursor forms a prefabricated heat-resistant polymer layer
  • the prefabricated polymer layer precursor forms a prefabricated polymer layer to obtain a prefabricated composite diaphragm.
  • biaxial stretching treatment includes transverse stretching treatment and longitudinal stretching treatment.
  • performing biaxial stretching treatment on the prefabricated composite membrane precursor includes first performing transverse stretching treatment on the obtained prefabricated composite membrane precursor, and then performing longitudinal stretching treatment on the obtained prefabricated composite membrane precursor.
  • the prefabricated composite diaphragm is extracted to remove the porogen in the prefabricated polymer layer and the prefabricated heat-resistant polymer layer, so as to obtain a composite diaphragm with a rich pore structure.
  • the extraction is to use an extractant to dissolve the porogen in the prefabricated polymer layer and the prefabricated heat-resistant polymer layer, and form a pore structure at the position of the porogen.
  • the extraction can be realized by infiltrating the prefabricated composite diaphragm containing the prefabricated polymer layer and the prefabricated heat-resistant polymer layer with an extractant.
  • the prefabricated composite diaphragm containing the prefabricated polymer layer and the prefabricated heat-resistant polymer layer is soaked in the extractant.
  • the extraction pore creation includes: using an extraction agent to perform reverse overflow on the advancing prefabricated composite membrane.
  • the time for the extractant to stay in the prefabricated composite membrane is prolonged, and the extraction agent is promoted to enter the interior of the prefabricated composite membrane, thereby facilitating the extraction agent to fully extract the prefabricated composite membrane.
  • the extractant includes but not limited to dichloromethane, chloroform, carbon tetrachloride, petroleum ether, ethyl acetate, hexane, heptane, octane, toluene, benzene, water and one or more.
  • These extractants have a good dissolving effect on organic porogens.
  • the above extractants are selected from hydrocarbons with a molecular formula of C n H 2n+2 and derivatives thereof, and a molecular formula of Sim O m-1 H
  • the porogen of 2m+2 siloxane compound and its derivatives has better dissolution.
  • the obtained composite membrane is dried and rolled.
  • the embodiment of the present application prepares the prefabricated composite diaphragm, and extracts the prefabricated composite diaphragm, drys and rolls it, and realizes it through an integrated process, that is, each process is carried out continuously, so that the composite diaphragm can be continuously produced. .
  • the embodiment of this application prepares a composite diaphragm through an integrated process , so that the porous polymer layer and the heat-resistant polymer layer create pores at the same time, and the heat-resistant polymer will not block the pore channels of the lower polymer layer during the coating process, so that the composite diaphragm maintains a higher pore structure, giving the composite The membrane has better permeability.
  • the integrated process to prepare the composite diaphragm saves off-line transportation costs and has high production efficiency, which solves the problem of increased air permeability and decreased porosity of the diaphragm after coating.
  • the first porogen and the second porogen are respectively introduced into the first polymer and the second polymer to prepare a prefabricated polymer layer and a prefabricated heat-resistant polymer layer.
  • layer prefabricated composite diaphragm then extract the obtained prefabricated composite diaphragm to remove the porogen in the prefabricated polymer layer and the prefabricated heat-resistant polymer layer, so that the two layers of film are formed simultaneously after the film is formed.
  • the method provided by this application adopts the method of extraction to create pores at the same time after the two-layer film is formed, so that a rich pore structure can be retained in the composite diaphragm, which is conducive to improving the permeability of the composite diaphragm and increasing the ion flow channel.
  • the composite separator When the composite separator is used as a battery separator, it can promote the shuttle of cations, improve the charging efficiency, and make the battery meet the fast charging requirements.
  • the preparation method provided by the application can effectively avoid the heat-resistant polymer slurry from being coated.
  • the pore channels of the first polymer layer are blocked, resulting in high air permeability of the composite diaphragm, smaller pore size, and unsmooth movement of lithium ions, making the composite diaphragm unsuitable for fast charging.
  • the embodiment of the present application provides an electrochemical device, including a positive electrode sheet, a negative electrode sheet, an electrolyte, and a separator arranged between the positive electrode sheet and the negative electrode sheet, and the separator is the composite separator according to the first aspect of the embodiment of the present application.
  • the electrochemical device that the application provides owing to contain above-mentioned composite membrane, the porous structure of a large amount of composite membranes is conducive to improving the permeability of composite membrane especially heat-resistant polymer layer, thereby makes when composite membrane is used as battery membrane, can promote The shuttle of cations enables the battery to meet the fast charging requirements.
  • the polymer layer can improve the interfacial adhesion between the composite separator and the electrode sheet, improve the overall hardness and strength of the battery, and prevent the deformation of the battery cell.
  • the polymer layer can be activated after shaping with heat.
  • heat treatment is performed at a pressure of 0.1-2.0 MPa and a temperature of 25° C.-100° C. for 20-300 minutes of activation.
  • the pressure is 0.5-1.0 Mpa
  • the temperature is 60° C.-90° C.
  • the activation time is 60-150 minutes.
  • the polymer layer is a material layer formed by at least one of PVDF, PMMA, dopamine, CMC, SBR, PTFE and PVA; as a possible implementation of the electrochemical device of the present application, the polymer layer is PVDF , PMMA, dopamine, CMC, SBR, PTFE and PVA formed by at least two polymer laminates, and the polymers that make up the polymer laminate can be one or more of the above polymers.
  • the above-mentioned polymer material can improve the bonding strength between the composite diaphragm and the electrode sheet provided by the first aspect, and keep the battery structure stable.
  • the electrochemical device is a lithium secondary battery, potassium secondary battery, sodium secondary battery, zinc secondary battery, magnesium secondary battery, or aluminum secondary battery.
  • the structure of the electrochemical device is one or more of a wound structure and a laminated structure.
  • the electrochemical device further includes a packaging case, and one or more electrochemical device units are packaged in the packaging case.
  • the electrochemical device unit may be an electric core including a positive electrode sheet, a negative electrode sheet, an electrolyte and a composite separator.
  • the embodiment of the present application provides an electronic device, including a casing, electronic components and electrochemical devices housed in the casing, the electrochemical device is the electrochemical device in the third aspect of the application, and the electrochemical device is used For powering electronic components.
  • the electronic device may be a mobile terminal.
  • the terminal is a computer, a mobile phone, a tablet, a wearable product, or an electric vehicle.
  • electric vehicles include end products such as new energy vehicles that require power supplies, but are not limited to new energy vehicles.
  • step (2) Put the first slurry obtained in step (1) into a closed stirring tank, stir for 40min at a stirring rate of 40r/min, and uniformly extrude the first slurry from the stirring tank by nitrogen high pressure, wherein, The extrusion rate is 500ml/min; the first slurry is extruded onto the receiving roll, and is stretched transversely by the receiving roll, the buffer roll, the first horizontal stretching roll and the second horizontal stretching roll to obtain the prefabricated polymer layer Body; Wherein, the linear velocity of receiving roll is 15m/min, and the linear velocity of buffer roll is 15m/min, and the linear velocity of the first stretching roll is 30m/min, and the linear velocity of the second transverse stretching roll is 60m/min, The temperature of the receiving roll, the buffer roll, the first stretching roll and the second stretching roll is 40°C;
  • step (3) The prefabricated polymer layer precursor obtained in step (2) is vertically stretched twice by 2 pairs of vertically pulling teeth to obtain a prefabricated polymer layer; wherein, the linear speed of vertically pulling the teeth is 60m/min , the temperature is 40°C;
  • aramid staple fiber (4) Stir the aramid staple fiber with dimethylacetamide (DMAC) until dissolved, and add ceramic particles to obtain an aramid fiber slurry.
  • DMAC dimethylacetamide
  • the mass ratio of aramid fiber and ceramics in the aramid fiber slurry is 3:7; the aramid fiber slurry and white oil are evenly mixed, and the viscosity is adjusted to 25000-30000mpa.s to obtain the second slurry;
  • step (6) Extract the prefabricated composite diaphragm obtained in step (5), dry and roll up to obtain a composite diaphragm; wherein, the extraction method is: 10 extraction tanks with a depth of 1m are set, and dichloromethane is injected into the extraction tank; The dichloromethane in the extraction tank overflows in the opposite direction of the advance direction of the prefabricated composite diaphragm; the extracted diaphragm is passed through water, and the dimethylacetamide (DMAC) in the aramid slurry is washed and dried.
  • DMAC dimethylacetamide
  • a composite diaphragm, as shown in Figure 2B, its preparation method is:
  • step (2) Put the first slurry obtained in step (1) into a closed stirring tank, stir for 40min at a stirring rate of 40r/min, and uniformly extrude the first slurry from the stirring tank by nitrogen high pressure, wherein, The extrusion rate is 500ml/min; the first slurry is extruded onto the receiving roll, and is stretched transversely by the receiving roll, the buffer roll, the first horizontal stretching roll and the second horizontal stretching roll to obtain the prefabricated polymer layer Body; Wherein, the linear velocity of receiving roll is 15m/min, and the linear velocity of buffer roll is 15m/min, and the linear velocity of the first stretching roll is 30m/min, and the linear velocity of the second transverse stretching roll is 60m/min, The temperature of the receiving roll, the buffer roll, the first stretching roll and the second stretching roll is 40°C;
  • step (6) Extract the prefabricated composite diaphragm obtained in step (5), dry and roll up to obtain a composite diaphragm; wherein, the extraction method is: 10 extraction tanks with a depth of 1m are set, and dichloromethane is injected into the extraction tank; The dichloromethane in the extraction tank overflows in the opposite direction of the advance direction of the prefabricated composite diaphragm; the extracted diaphragm is passed through water, and the dimethylacetamide (DMAC) in the aramid slurry is washed and dried.
  • DMAC dimethylacetamide
  • a diaphragm, its preparation method is:
  • step (2) Put the first slurry obtained in step (1) into a closed stirring tank, stir for 40min at a stirring rate of 40r/min, and uniformly extrude the first slurry from the stirring tank by nitrogen high pressure, wherein, The extrusion rate is 500ml/min; the first slurry is extruded onto the receiving roll, and is stretched transversely by the receiving roll, the buffer roll, the first horizontal stretching roll and the second horizontal stretching roll to obtain the prefabricated polymer layer Body; Wherein, the linear velocity of receiving roll is 15m/min, and the linear velocity of buffer roll is 15m/min, and the linear velocity of the first stretching roll is 30m/min, and the linear velocity of the second transverse stretching roll is 60m/min, The temperature of the receiving roll, the buffer roll, the first stretching roll and the second stretching roll is 40°C;
  • step (3) The diaphragm precursor obtained in step (2) is vertically stretched twice through 2 pairs of vertically drawn bite wheels to obtain a prefabricated polymer layer; wherein, the linear velocity of the vertically drawn bite wheels is 60m/min, and the temperature 40°C;
  • a kind of composite diaphragm, its preparation method is:
  • step (2) Put the first slurry obtained in step (1) into a closed stirring tank, stir for 40min at a stirring rate of 40r/min, and uniformly extrude the first slurry from the stirring tank by nitrogen high pressure, wherein, The extrusion rate is 500ml/min; the first slurry is extruded onto the receiving roll, and is stretched transversely by the receiving roll, the buffer roll, the first horizontal stretching roll and the second horizontal stretching roll to obtain the prefabricated polymer layer Body; Wherein, the linear velocity of receiving roll is 15m/min, and the linear velocity of buffer roll is 15m/min, and the linear velocity of the first stretching roll is 30m/min, and the linear velocity of the second transverse stretching roll is 60m/min, The temperature of the receiving roll, the buffer roll, the first stretching roll and the second stretching roll is 40°C;
  • step (3) The diaphragm precursor obtained in step (2) is vertically stretched twice through 2 pairs of vertically drawn bite wheels to obtain a prefabricated polymer layer; wherein, the linear velocity of the vertically drawn bite wheels is 60m/min, and the temperature 40°C;
  • step (3) extracting the prefabricated polymer layer obtained in step (3), drying and winding to obtain a porous polymer layer (PE monolayer film);
  • aramid staple fiber with dimethylacetamide (DMAC) until dissolved, and add ceramic particles to obtain an aramid fiber slurry.
  • DMAC dimethylacetamide
  • the mass ratio of aramid fiber and ceramics in the aramid fiber slurry is 3:7; mix the aramid fiber slurry and white oil evenly, and adjust the viscosity to 25000-30000mpa.s to obtain the second slurry; Coating the second slurry on one side surface of a PE monolayer film with a thickness of 7 ⁇ m. After coating, immerse in a plasticizing bath. The plasticizing bath is N,N-dimethylacetamide. After drying Winding to finally obtain a composite diaphragm, which includes an aramid fiber layer and a porous polyolefin layer stacked in sequence.
  • DMAC dimethylacetamide
  • FIG. 3 The cross-sectional microscopic schematic diagram of the composite diaphragm prepared in Example 1-2 is shown in FIG. 3
  • FIG. 4 the cross-sectional microscopic schematic diagram of the composite diaphragm prepared in Comparative Example 2 is shown in FIG. 4 .
  • the composite separator provided in Figure 3 has a large number of pore structures in the aramid fiber layer and the polyolefin layer, and the boundaries of the two membrane layers are clear.
  • the composite diaphragm that embodiment 1-2 and comparative example 2 make is made electrochemical device, and making method is:
  • Positive electrode sheet production Dissolve the binder PVDF in NMP and disperse to obtain 7.0wt.% PVDF glue, add carbon nanotube conductive liquid to the PVDF glue to disperse evenly, and finally add the active material lithium cobaltate and stir to mix evenly Form positive electrode slurry, use coating equipment to evenly coat the positive electrode slurry on both sides of the aluminum foil, dry in an oven to remove the NMP solvent, and obtain the electrode sheet.
  • the coated pole piece is made into a positive pole piece after cold pressing, slitting, and tab welding processes.
  • Diaphragm production Spray PVDF or PMMA water-based adhesive layers of 0.5um each on the surface of the composite diaphragm prepared in the above-mentioned Examples 1-2 and Comparative Example 2.
  • the capacity of the cell is 4.5Ah, and the working voltage range is 3.0-4.48V.
  • the cell is packaged, baked, injected, and formed and other processes to make lithium-ion batteries.
  • the capacity retention rate (800 cycles) of the above-mentioned batteries after 2C and 3C rate cycles show that: the capacity retention rate of the composite separator provided by the embodiment of the application is 85% after 2C rate cycle, and the capacity retention rate after 3C rate cycle is 83%. , significantly higher than 70.0% (capacity retention after 2C rate cycle) and 50.0% (capacity retention after 3C rate cycle) of the comparative example.
  • the heat-resistant polymer layer in the composite separator does not block the pores of the porous polyolefin layer, so that the obtained composite separator has more porosity, thereby increasing the cation transmission channels and improving the
  • the charging efficiency of the battery enables the battery to meet the needs of 2C ⁇ 3C fast charging.
  • a. Sampling Take a sample of 1 ⁇ 103mm2 from the diaphragm (the area of the sample can be ⁇ 1.5 ⁇ 103mm2), and the number of test points depends on the condition of the diaphragm (usually not less than 10 points).
  • Test The test is carried out with a 10,000-degree thickness measuring instrument at a temperature of 23 ⁇ 2°C.
  • Test Test each test point with a thickness measuring instrument at a temperature of 23 ⁇ 2°C. The diameter of the measuring surface is between 2.5mm and 10mm, and the load applied to the sample on the measuring surface should be 0.5N ⁇ between 1.0N.
  • the overall porosity P of the sample can be calculated by the following formula:
  • m can be the mass of the sample
  • skeleton density ⁇ can be the material true density of the sample
  • V can be the volume of the sample.
  • a. Sampling cut a rectangular sample with a 237 ⁇ 170mm plate sampler. When cutting samples, keep as far away from the edge of the diaphragm as possible (for example, more than 50mm from the edge of the diaphragm).
  • the porosity is measured by the density method, including measuring n (n can be greater than or equal to 9) points of the sample, and the n points can be distributed in an equidistant lattice.
  • mi is the mass of each point
  • is the skeleton density of the sample (can be calculated according to the material ratio)
  • Vi is the total volume of each point (can be calculated according to the length, width and thickness of the sample);
  • the overall porosity P of the sample can be calculated by the following formula:
  • m can be the mass of the sample
  • skeleton density ⁇ can be the material true density of the sample
  • V can be the volume of the sample.
  • Test Test according to the method specified in the standard JIS P8117-2009. Specifically include: setting the pressure of the cylinder-driven pressure reducing valve to 0.25MPa, the test pressure to 0.05MPa, and selecting "JIS" as the test standard.
  • a. Sampling Cut 6 square samples with a 100 ⁇ 100mm plate sampler. When cutting samples, keep as far away from the edge of the diaphragm as possible (for example, more than 50mm from the edge of the diaphragm). Each sample is evenly distributed on the membrane (that is, the full width of the membrane is evenly divided to obtain 6 areas, and one sample is cut in each area of the 6 areas).
  • Test Test according to the method specified in the standard JIS P8117-2009. Specifically include: setting the pressure of the cylinder-driven pressure reducing valve to 0.25MPa, the test pressure to 0.05MPa, and selecting "JIS" as the test standard.
  • test needle fix the sample on the fixture in the center, the test needle is spherical (made of ruby) with a diameter of 1mm, ensure that the sample extends to or exceeds the edge of the clamping disc in all directions, and confirm that the sample is completely fixed on the ring fixture on, no slippage.
  • the diaphragm is punctured, and the speed of the machine is set at 300 ⁇ 10mm/min until the punctured ball completely breaks the sample, and the puncture resistance is the maximum force recorded during the test.
  • a. Sampling Cut 6 rectangular samples with a 237 ⁇ 170mm plate sampler. When cutting the sample, it should be as far away from the edge of the diaphragm as possible (for example, more than 50mm from the edge of the diaphragm). Each sample is evenly distributed on the diaphragm (that is, the full width of the partition film is evenly divided to obtain 6 regions, and one sample is cut from each region in these 6 regions).
  • test Test according to the method specified in the standard ASTMD4833-07. Specifically, it may include: the test needle is a spherical needle with a diameter of 1mm (the material is sapphire); fix the sample on the fixture in the center, ensure that the sample extends to or exceeds the edge of the clamping disc in all directions, and confirm that the sample is completely fixed in the ring There is no slippage on the fixture; during the test, the speed of the machine is set at 300 ⁇ 10mm/min, and the diaphragm is punctured until the test needle completely breaks the sample; the puncture resistance is the maximum force recorded during the test.
  • the test needle is a spherical needle with a diameter of 1mm (the material is sapphire); fix the sample on the fixture in the center, ensure that the sample extends to or exceeds the edge of the clamping disc in all directions, and confirm that the sample is completely fixed in the ring There is no slippage on the fixture; during the test, the speed of the machine is set at 300 ⁇ 10mm/min
  • a. Sampling On the overall width sample, cut the diaphragm according to the MD and TD directions respectively, and obtain multiple strip-shaped samples with a length ⁇ 50 mm and a width of about 15 ⁇ 0.1 mm (for MD testing, the sample The width of the sample can be along the TD direction of the diaphragm, and the length of the sample can be along the MD direction of the diaphragm; for TD testing, the width of the sample can be along the MD direction of the diaphragm, and the length of the sample can be along the TD direction of the diaphragm).
  • a. Sampling Cut 6 rectangular samples with a 237 ⁇ 170mm plate sampler. When cutting the sample, it should be as far away from the edge of the diaphragm as possible (for example, more than 50mm from the edge of the diaphragm). Each sample is evenly distributed on the diaphragm (that is, along the MD and TD directions of the diaphragm, the entire width of the diaphragm is evenly separated to obtain 6 regions, and one sample is cut in each region of the 6 regions). Afterwards, a strip-shaped sample with a length ⁇ 150 mm and a width 15 ⁇ 0.1 mm is cut by a sampler.
  • Test measure according to the method stipulated in GB/T1040.3-2006. Specifically include: the distance between the clamps can be 100 ⁇ 5mm, and the stretching speed can be 100 ⁇ 1mm/min.
  • Sampling Randomly cut 6 samples from the full width.
  • the specific sampling of each sample can include: cutting 100mm along the MD direction of the diaphragm; when the TD direction of the diaphragm is greater than 100mm, the length of the test sample in the TD direction can be 100mm; when the TD direction of the microporous membrane is less than 100mm , the length of the test sample in the TD direction can be based on actual conditions.
  • T may be the thermal shrinkage rate (%) of the sample
  • L0 may be the length (mm) of the sample before heating
  • L may be the length (mm) of the sample after heating.
  • the temperature rise internal resistance method is used for testing.
  • the diaphragm is placed in a stainless steel fixture or other similar fixtures and injected with an appropriate amount of electrolyte.
  • the above fixture is placed in an oven, and the temperature is raised at a certain speed. At the same time, the resistance and temperature of the fixture are monitored. When the resistance value changes with the temperature to the initial resistance value The temperature corresponding to 10 times is the closed cell temperature of the diaphragm by default.
  • the membrane rupture temperature was measured by the baking method. Put the diaphragm in a 9*9cm fixture, put the above fixture in an oven, heat up at a certain speed, and monitor whether the diaphragm in the fixture is ruptured at the same time, when the diaphragm ruptures with the temperature change, record it as the rupture temperature of the diaphragm .
  • the sample soaked in the electrolyte is put into a special PSDA test component, and the compressed gas (usually nitrogen or compressed air) is passed through the sample after sealing. Since the sample pore is blocked by liquid, a certain pressure is required to open the hole, and the smaller the pore diameter, the greater the corresponding opening pressure. As the gas pressure increases, the first hole to be opened is the largest hole of the sample, and the last one to be opened is the smallest hole, so the pore diameter and the opening pressure are in one-to-one correspondence. By detecting the gas pressure-flow relationship curve of the sample in dry and wet state, the pore size distribution of the sample can be calculated. Three samples of the same diaphragm are measured, and the peak value is the average value of the three samples.
  • the compressed gas usually nitrogen or compressed air
  • Test At 25 ⁇ 3°C, charge the cell to the limit voltage according to a constant current of 0.2C, and then charge it under the constant voltage condition of the limit voltage until the current decreases to 0.025C. Test within 24 hours; heat the cell from the initial temperature of 25 ⁇ 3°C through convection or circulating hot air box, and the temperature change rate can be 5 ⁇ 2°C/min; keep it for 60 minutes after heating to 130 ⁇ 2°C .
  • test After charging to 90% SOC in standard charging mode, test within 12-24 hours. Then put the battery in an explosion-proof box at 25°C, and pierce the steel nail into the center of the battery cell at a speed of 150mm/s until it penetrates, and then withdraw the needle after 10 minutes. If the battery is not thermally out of control, the test is passed, and the pass rate of the test is recorded.
  • the viscosity-average molecular weight of polypropylene can be calculated according to the following formula:
  • multiple tests can be performed on the polyolefin material, and the arithmetic mean value can be calculated (the calculation of the arithmetic mean value is beneficial to reduce the difference caused by the measurement system).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本申请涉及电池隔膜技术领域,提供了一种复合隔膜、电化学装置和电子设备。所述复合隔膜包括多孔聚合物层,以及结合在所述多孔聚合物层一侧或两侧表面的耐热高分子层,将所述多孔聚合物层孔径分布的峰值记为A,将所述复合隔膜孔径分布的峰值记为C;其中,所述A为0.02~0.08μm,且所述C=(0.8~1)A。本申请提供的复合隔膜,有利于提高复合隔膜特别是耐热高分子层的通透性能,从而使得复合隔膜作为电池隔膜使用时,能够提高电解液的浸润效果,促进阳离子的穿梭,使电池满足快充需求。

Description

复合隔膜、电化学装置和电子设备
本申请要求于2021年10月28日提交国家知识产权局、申请号为202111263457.8、申请名称为“复合隔膜、电化学装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池隔膜技术领域,尤其涉及一种复合隔膜,一种电化学装置以及一种电子设备。
背景技术
随着电动汽车、智能终端和电子移动装置的发展,锂离子电池成为电子产品和新能源汽车行业最重要的器件之一。隔膜作为分隔部件,用于将电池正负极隔离。作为锂离子电池五大主材之一,隔膜在电池安全中扮演中重要的角色。当前最常用的隔膜为聚乙烯隔膜,该隔膜的热收缩率通常为MD>10%(150℃/1h),TD>10%(150℃/1h);且该隔膜的破膜温度通常<160℃。所以,当电池在高温条件下工作时,隔膜受热熔融且收缩严重。隔膜的破损,导致电池的正极和负极直接接触,促发了电池内部的严重短路,电池发生热失控。
为提升隔膜的热稳定性,技术人员对隔膜的材料组成和膜层结构进行了研究。一方面,通过改变隔膜材料,改善隔膜性能。如一个中国专利提供了一种芳纶隔膜,其方法为:直接将间位芳纶溶液与碳酸二甲酯混合均匀,得到间位芳纶浆料;将间位芳纶浆料挤出得到铸片,对铸片进行横向拉伸,得到膈膜前体;将膈膜前体进行竖向拉伸,得到隔膜半成品;将隔膜半成品进行萃取固化,烘干收卷,得到间位芳纶隔膜。该方案提供的芳纶隔膜,芳纶的热分解温度>300℃,芳纶隔膜具有高的破膜温度,提升相关电池产品在高温应用场景的可靠性和安全性。但是,隔膜中的芳纶含量高,芳纶材料中大量的刚性基团,导致该材料的韧性低,在隔膜卷绕、切片过程中,加工性能差;同时,相比聚烯烃隔膜,芳纶隔膜没有闭孔功能,使得电池失去闭孔保护机制。此外,芳纶含量高会增加隔膜成本。另一方面,在隔膜的表面增加新的涂层。新增的涂层通常为无机陶瓷层(氧化硅、氧化铝和氧化镁等)、有机高分子粘性涂层(PVDF和PMMA等)或有机耐高温高分子涂层(PI和芳纶层等)。无机陶瓷层和有机耐高温高分子涂层用以提高隔膜的热稳定性,满足相关产品在高温应用场景中的可靠性和安全性的要求,防止电池起火燃烧甚至爆炸。有机高分子粘性涂层,用以改善和电极片的界面粘结性,提升电池整体硬度和强度,防止电芯变形,保证了电芯可靠性和安全性。如一个中国专利公开了一种复合锂离子电池隔膜,该隔膜在聚烯烃的隔膜基材的上下两面各涂覆一层芳纶涂层或芳纶混合涂层,芳纶涂层上再涂覆PVDF等粘结涂层。该隔膜中芳纶的热分解温度>300℃,芳纶涂层的引入能提升隔膜的破膜温度,因此该方案能够有效地解决现有锂离子电池隔膜不耐高温(通常<160℃)导致锂离子电池因隔膜受热破膜造成的安全问题,提升了隔膜的热稳定性,进而提升相关电池产品 在高温应用场景的可靠性和安全性。
然而,采用耐热有机高分子在多孔基膜表面形成涂层时,熔融的有机高分子容易向基膜孔隙中渗透,造成堵孔等问题,严重影响了复合隔膜的透气度,不利于电解液的浸润和阳离子的传输,得到的电池难以满足快充需求。
发明内容
本申请的目的在于提供一种复合隔膜及其制备方法,以及含有上述复合隔膜的电化学装置和电子设备,旨在解决现有的含有有机高分子层的复合隔膜,隔膜透气度高,不利于电解液的浸润和阳离子的传输,导致得到的电池难以满足快充需求的问题。
为实现上述申请目的,本申请采用的技术方案如下:
本申请第一方面提供一种复合隔膜,包括多孔聚合物层,以及结合在所述多孔聚合物层一侧或两侧表面的耐热高分子层,其中,所述多孔聚合物层为含有第一聚合物的多孔薄膜,所述耐热高分子层为含有第二聚合物的多孔薄膜,且所述第一聚合物选自破膜温度为150±10℃的聚合物,所述第二聚合物选自成膜后破膜温度>200℃的聚合物;
将所述多孔聚合物层孔径分布的峰值记为A,将所述复合隔膜孔径分布的峰值记为C;其中,所述A为0.02~0.08μm,且所述C=(0.8~1)A。
本申请提供的复合隔膜,包括层叠结合的多孔聚合物层和耐热高分子层。其中,组成多孔聚合物层的第一聚合物具有低的闭孔温度,因此,复合隔膜能在高温下切断电子回路;而组成耐热高分子层的第二聚合物破膜温度>200℃,从而使得复合隔膜具有较高的破膜温度,在受到热滥用和机械滥用时,复合隔膜能耐受200℃高温不破膜,从而有效发挥隔绝电池正负极的作用,避免正负极的直接接触而发生剧烈的内短路,提升了电池安全。在上述两层聚合物层的协同作用下,复合隔膜能够有效发挥提高耐热性能,降低热收缩和熔融风险,提升了电池安全。在此基础上,多孔聚合物层孔径分布的峰值为0.02~0.08μm,且复合隔膜的孔径分布峰值为多孔聚合物层的(0.8~1)A,赋予复合隔膜大量的孔隙结构,有利于提高复合隔膜层特别是耐热高分子层的通透性能,从而使得复合隔膜作为电池隔膜使用时,能够提高电解液的浸润效果,促进阳离子的穿梭,使电池满足快充需求。
作为本申请复合隔膜的一种可能的实施情形,所述多孔聚合物层的透气度记为B,所述耐热高分子层的透气度记为D,所述复合隔膜层的厚度记为E,所述B、所述D、所述E满足以下关系:(D-B)/E<15s。此时,耐热高分子层的透气度增量少,复合隔膜的孔径减小得少,有利于提高本申请复合隔膜的孔径通透性。
作为本申请复合隔膜的一种可能的实施情形,所述多孔聚合物层和所述耐热高分子层的连接界面具有连通孔。在这种情况下,两层聚合物层之间的通透性增加,阳离子可以更通畅地在两层聚合物之间穿梭,更有利于提高电池充电性能,使电池满足快充需求。
作为本申请复合隔膜的一种可能的实施情形,所述多孔聚合物层的厚度为0.2~20μm;所述耐热高分子层中的厚度为1~6μm。本申请耐热高分子层在可控厚度范围内,有效提高了复合隔膜的破膜温度和热收缩性能,还能降低不仅自身对电池能量密度的影响。此外,由于复合隔膜破膜温度和热收缩性能的提高,因此,本申请提供的多孔 聚合物层的厚度可降低,从而降低多孔聚合物对电池能量密度的影响。具体的,多孔聚合物层厚度在0.2~20μm范围内(厚度可低至0.2μm),均能够有效隔绝电池正负极。
作为本申请复合隔膜的一种可能的实施情形,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为5~100%。
作为本申请复合隔膜的一种可能的实施情形,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为100%。此时,耐热高分子层由第二聚合物组成,第二聚合物有效发挥耐热性能,提高复合隔膜的破膜温度。
作为本申请复合隔膜的一种可能的实施情形,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为5~100%,且第二聚合物的重量百分含量不为100%。此时,耐热高分子层中还可以含有重量百分含量为0~95%的其他耐热材料,如陶瓷颗粒,来改善耐热高分子层的耐热性能,提高耐热高分子层的破膜温度。
在一种可能的实施方式中,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为50~100%,且第二聚合物的重量百分含量不为100%。此时,第二聚合物的重量百分含量在50~100%之间,第二聚合物仍然可以有效发挥耐热性能,提高复合隔膜的破膜温度。在这种情况下,耐热高分子层中还可以含有重量百分含量为0~50%的其他耐热材料,如陶瓷颗粒。应当理解的是,当耐热高分子层中第二聚合物的含量大于或等于50%时,第二聚合物作为耐热高分子层的主体,发挥提高复合隔膜破膜温度的作用。
在另一种可能的实现方式中,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为5~50%。在这种情况下,耐热高分子层中还含有重量百分含量为50~95%的陶瓷颗粒。此时,陶瓷颗粒作为耐热高分子层的主体材料,在第二聚合物的作用下粘结成膜,发挥耐热性能,达到提高复合隔膜破膜温度的作用。
在一种可能的实施情形中,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量不为100%,所述耐热高分子层还包括重量百分含量为0~95%的陶瓷颗粒,且所述陶瓷颗粒的含量不为0。陶瓷颗粒具有优异的耐热性能,且其可以借助第二聚合物的粘结性能固定,并形成稳定的膜层,与第二聚合物一起提高复合隔膜的破膜温度。
作为本申请复合隔膜的一种可能的实施情形,所述第二聚合物选自成膜后破膜温度>240℃的聚合物。在这种情况下,耐热高分子层的耐高温特性(>240℃),使得复合隔膜的破膜温度>240℃,在电池受到热滥用和机械滥用时,该复合隔膜能耐受240℃高温不破膜,从而有效隔绝电池的正极和负极,避免正负极的直接接触而发生剧烈的内短路,提升了电池的安全性能。
作为本申请复合隔膜的一种可能的实施情形,所述第二聚合物选自聚偏氟乙烯、聚六氟丙烯、芳纶、聚芳酯、聚丙烯腈、芳香族聚酰胺、聚酰亚胺、聚醚砜、聚砜、聚醚酮、聚醚酰亚胺、聚苯并咪唑中的至少一种。上述聚合物具有较高的破膜温度,作为耐热高分子层,能够有效提高复合隔膜的破膜温度,使复合隔膜的破膜温度>
250℃,且保证该隔膜的热收缩率<10%@150℃。
作为本申请复合隔膜的一种可能的实施情形,所述复合隔膜通过将含有致孔剂的预制复合隔膜经萃取制得,所述预制复合隔膜包括预制聚合物层,以及结合在所述预 制聚合物层一侧或两侧表面的预制耐热高分子层,其中,所述预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,所述预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄膜。通过在两层预制薄膜成膜之后采用萃取造孔,可以在复合隔膜中保留丰富的孔隙结构,有利于提高复合隔膜的通透性能,增加了离子流通通道,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,提高充电效率,使电池满足快充需求。
本申请第二方面提供一种复合隔膜的制备方法,包括如下步骤:
制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜;其中,所述预制耐热高分子层结合在所述预制聚合物层一侧或两侧表面,所述预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,所述预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄膜;
将所述预制复合隔膜进行萃取造孔,烘干收卷得到所述复合隔膜。
本申请实施例提供的复合隔膜的制备方法,先在第一聚合物和第二聚合物中分别引入第一致孔剂和第二致孔剂,制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜;然后将得到的预制复合隔膜进行萃取,将预制聚合物层和预制耐热高分子层中的致孔剂去除,使两层薄膜在成膜之后同时造孔。本申请提供的方法在两层薄膜成膜之后,采取萃取方式对预制复合隔膜的两层造孔,该方法可以在复合隔膜中保留丰富的孔隙结构,有利于提高复合隔膜的通透性能,增加了离子流通通道,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,提高充电效率,使电池满足快充需求。相比在经过挤压、拉伸、造孔得到多孔聚合物表面涂覆耐热高分子浆料制备复合隔膜的方法,本申请提供的制备方法可以有效避免由于耐热高分子浆料在涂覆过程中堵塞第一聚合物层的孔通道,造成复合隔膜的透气度偏高,孔径变小,锂离子运动不通畅,使得该复合隔膜不适应于快充电的问题。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述第一致孔剂、所述第二致孔剂各自独立地选自分子式为C nH 2n+2的碳氢化合物及其衍生物、分子式为Si mO m-1H 2m+2的硅氧烷化合物及其衍生物的一种或多种,其中,n、m的取值满足:15≤n≤40,5≤m≤50。此时,第一致孔剂、第二致孔剂可以通过萃取剂去除,从而在复合隔膜中保留丰富的孔隙结构。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述预制聚合物层中,所述第一致孔剂的质量为所述第一聚合物和所述第一致孔剂的总质量的20%~30%。在这种情况下,预制聚合物层经萃取造孔后得到的多孔聚合物层,具有丰富的孔隙结构。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述预制耐热高分子层中,所述第二致孔剂的质量为所述第二聚合物和所述第二致孔剂的总质量的20%~30%。在这种情况下,预制耐热高分子层经萃取造孔后得到的耐热高分子层,具有丰富的孔隙结构。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜,包括:
将含有所述第一聚合物和所述第一致孔剂的第一浆料挤出,制得第一铸片;对所述第一铸片进行双向拉伸处理,制得所述预制聚合物层;
将含有第二聚合物和第二致孔剂的第二浆料形成在预制聚合物层的一侧或两侧表面,制备所述预制耐热高分子层,得到所述预制复合隔膜。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜,包括:
将含有所述第一聚合物和所述第一致孔剂的第一浆料挤出,制备预制聚合物层前体;
将含有第二聚合物和第二致孔剂的第二浆料挤出,制备预制耐热高分子层前体;
将所述预制耐热高分子层前体压合在所述预制聚合物层前体的一侧或两侧表面,经双向拉伸处理,制得所述预制复合隔膜。
通过上述两种方法,可以制备保留有致孔剂的两层薄膜,进而可以在后续步骤中通过萃取造孔,得到孔径丰富且不堵孔的复合隔膜。
作为本申请复合隔膜的制备方法的一种可能的实施情形,本申请实施例制备预制复合隔膜,以及对预制复合隔膜进行萃取处理、干燥收卷,通过一体化工艺实现,即各流程连续进行,使复合隔膜实现连续化生产。
作为本申请复合隔膜的制备方法的一种可能的实施情形,所述萃取造孔包括:采用萃取剂对行进中的所述预制复合隔膜进行反向溢流。通过该方法,延长了萃取剂停留在预制复合隔膜的时间,促进萃取剂进入预制复合隔膜内部,从而有利于萃取剂将预制复合隔膜进行充分萃取。
本申请第三方面提供一种电化学装置,包括正极片、负极片、电解液和设置在所述正极片和所述负极片之间的隔膜,所述隔膜为本申请第一方面所述的复合隔膜或本申请第二方面所属方法制备得到的复合隔膜。
本申请提供的电化学装置,由于含有上述复合隔膜,复合隔膜大量的孔隙结构,有利于提高复合隔膜特别是耐热高分子层的透气性能,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,使电池满足快充需求。
作为本申请电化学装置的一种可能的实施情形,所述复合隔膜的至少一表面设置有至少一层聚合物层。聚合物层可以改善复合隔膜和电极片之间的界面粘结性,提升电池整体硬度和强度,防止电芯变形。
作为本申请电化学装置的一种可能的实施情形,所述聚合物层为PVDF、PMMA、多巴胺、CMC、SBR、PTFE和PVA中的至少一种形成的材料层;作为本申请电化学装置的一种可能的实施情形,所述聚合物层为PVDF、PMMA、多巴胺、CMC、SBR、PTFE和PVA中的至少两种形成的聚合物叠层,且组成聚合物叠层的聚合物,可以为上述聚合物中的一种或多种。上述聚合物材料能够提高含有第一方面能提供的复合隔膜和电极片之间的结合强度,保持电池结构稳定。
作为本申请电化学装置的一种可能的实施情形,所述电化学装置为锂二次电池、钾二次电池、钠二次电池、锌二次电池、镁二次电池或铝二次电池。
作为本申请电化学装置的一种可能的实施情形,所述电化学装置的结构为卷绕结构、叠片结构中的一种或多种。
作为本申请电化学装置的一种可能的实施情形,所述电化学装置还包括封装壳,且一个或多个电化学装置单元封装于所述封装壳内。
本申请第四方面提供一种电子设备,包括壳体和收容于所述壳体内的电子元器件和电化学装置,所述电化学装置为本申请第三方面所述的电化学装置,且所述电化学装置用于为所述电子元器件供电。
作为本申请终端的一种可能的实施情形,所述终端为电脑、手机、平板、穿戴产品、电动车。
附图说明
图1是本申请实施例提供的复合隔膜的制备工艺流程示意图;
图2A是本申请实施例1提供的复合隔膜的制备工艺流程示意图;
图2B是本申请实施例2提供的复合隔膜的制备工艺流程示意图;
图3是本申请实施例1、实施例2制得的复合隔膜的截面微观示意图;
图4是对比例2制得的复合隔膜的截面微观示意图。
具体实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
术语“MD”为“Machine direction”的缩写,表示机械方向;
术语“TD”为“Transverse direction”的缩写,表示垂直于机械方向;
术语“PE”为“Polyethylene”的缩写,表示聚乙烯;
术语“SOC”为“State of charge”的缩写,表示荷电状态;
术语“PVDF”为“polyvinylidenefluoride”的缩写,表示聚二偏氟乙烯;
术语“PMMA”为“polymethyl methacrylate”的缩写,表示聚甲基丙烯酸甲酯;
术语“SBR”为“Styrene-butadiene”的缩写,表示丁苯橡胶;
术语“NMP”为“N-Methyl-2-pyrrolidone”的缩写,表示N-甲基吡咯烷酮,也称1-甲基2-吡咯烷酮;
术语“CNTs”为“Carbon nanotubes”的缩写,表示碳纳米管;
术语“CMC”为“Carboxymethyl Cellulose”的缩写,表示羧甲基纤维素;
术语“SP”为“Super P”的缩写,表示导电炭黑;
术语“PTFE”为“Polytetrafluoroethylene”的缩写,表示聚四氟乙烯;
术语“PVA”为“Polyvinyl alcohol”的缩写,表示聚乙烯醇。
术语“PI”为“Polyimide”的缩写,表示聚酰亚胺。
术语“电池”的英文表示为“Battery”,是指:利用两个电极的电势不同,产生电势差,从而使电子流动,产生电流的装置,该装置可以将化学能转变成电能。
术语“正极”的英文表示为“Cathode”。原电池中,正极是指电流流出或电势较高的电极,正极得到电子起还原作用;在电解池中,正极为与电源正极相连的电极,失去电子起氧化作用。
术语“负极”的英文表示为“Anode”。原电池中,负极是指电流流入的电极或电势较低的电极,负极失去电子起氧化作用;在电解池中,负极为与电源负极相连的电极,得到电子起还原作用。
术语“电解质”的英文表示为“Electrolyte”,是指:在电池正负极之间提供离子交换的媒介。
术语“隔膜”的英文表示为“Separator”,是指:用于分隔电芯中的正极和负极、防止正负极直接接触而短路的介质。隔膜的基本特性是具有多孔性(可提供离子传输的通道)和电子绝缘性(防止漏电)。
术语“热滥用”的英文表示为“Heat abuse”,是指:电芯在热(或高温)方面的滥用测试,比如热箱测试(高温≥130℃烘烤电芯)。
术语“机械滥用”的英文表示为“Machenical abuse”,可以指电芯在机械方面的滥用。可以使用针刺测试、撞击测试等对电芯进行有关机械滥用的测试。
术语“延伸率”的英文表示为“Elongation”,又可以被称作断裂伸长率,表示隔膜被拉断时的长度增量相对于初始长度的百分比。具体而言,可以在特定条件下对隔膜进行拉伸测试,在隔膜被刚好被拉断时,隔膜长度的增加量除以隔膜的初始长度可以用于表征延伸率。延伸率的数值越大,意味着隔膜越不容易被拉断,延伸性越好。延伸率可以被划分纵向(MD,即沿隔膜的长边方向)延伸率和横向(TD,相对于MD垂直,即沿隔膜的短边方向)延伸率。
术语“拉伸强度”的英文表示为“Tensile strength”,表示隔膜塑性变形的临界强度值,可以表征隔膜在均匀拉伸条件下的最大承载能力。拉伸强度可以指,在隔膜被刚好被 拉断时,隔膜所承受的最大负载力除以隔膜初始截面积所得的应力。拉伸强度被划分为纵向(MD,即沿隔膜的长边方向)拉伸强度和横向(TD,相对于MD垂直,即沿隔膜的短边方向)拉伸强度。
术语“穿刺强度”的英文表示为“Puncture strength”,可以指,采用直径为1.0mm的球形钢针以300±10mm/min的速度顶刺隔膜,钢针穿透隔膜所需的力即为隔膜的穿刺强度。
术语“热收缩率”的英文表示为“Heat shrinkage”,表示加热前后隔膜在纵/横(纵向MD,即沿隔膜的长边方向;横向TD,相对于MD垂直,即沿隔膜的短边方向)方向上的尺寸变化率。热收缩率的测试方法可以包括:测量隔膜在纵/横(MD/TD)方向上的尺寸;将在纵/横(MD/TD)方向上具有一定尺寸的隔膜放置在恒温箱中;加热恒温箱至特定温度;测量加热后隔膜在纵/横(MD/TD)方向上的尺寸。
术语“透气度”的英文表示为“Gurley”,表示隔膜允许气体通过的程度。透气度可以通过测量单位气体体积(100cc)在特定压力(0.05MPa)下透过隔膜所需时间得到。
术语“闭孔温度”的英文表示为“Obturator temperature”,表示升温过程中,隔膜开始熔融并封堵原先形成的一部分孔隙时的温度。
术语“破膜温度”的英文表示为“Rupture temperature”,表示隔膜熔融到一定程度发生破裂导致局部或全面短路时的温度。
术语“孔径分布”是指材料中存在的各级孔径按数量或体积计算的百分率,本申请实施例采用“孔径分布”表征孔喉处(最窄孔径)的孔径。“孔径分布”使用泡压法测量,其操作方法为:先将隔膜样品置于电解液中,电解液会在毛细力的作用下进入样品孔道。为保证浸润效果,一般需要使用真空浸润仪在负压条件下浸润样品,使样品孔道中的空气体积膨胀从而易于鼓泡排出。
隔膜作为电化学装置五大主材之一,在电池安全中扮演重要的角色。在电池中,隔膜主要用于防止正负极短路,对电池的安全起关键作用。电池在受到机械滥用和热滥用时,隔膜容易在高温场景下发生熔融和热收缩,导致正负极短路进而引发电池热失控等安全隐患。
为提升隔膜的热稳定性,可以在多孔聚合物隔膜的表面涂覆涂层,该涂层可以为无机陶瓷层(氧化硅、氧化铝和氧化镁等)、有机高分子粘性涂层(PVDF和PMMA等)或有机耐高温高分子涂层(PI和芳纶层等)。无机陶瓷层和有机耐高温高分子涂层用以提高隔膜的热稳定性,满足相关产品在高温应用场景中的可靠性和安全性,防止电池起火燃烧甚至爆炸。
有鉴于此,本申请实施例提供了一种可以改善电池安全性能的复合隔膜,包括多孔聚合物层,以及结合在多孔聚合物层一侧或两侧表面的耐热高分子层。
本申请实施例中,多孔聚合物层为含有第一聚合物的多孔薄膜,其作为复合隔膜的主要功能层,发挥分隔电芯中的正极和负极的作用,防止正负极直接接触而短路。
本申请实施例中,多孔聚合物层为含有第一聚合物的多孔薄膜,且第一聚合物选自破膜温度为150±10℃的聚合物。此时,第一聚合物的多孔结构能够为电池中的离子传输提供传输通道;同时,由于第一聚合物具有较低的闭孔温度,当电池温度升至该温度时,第一聚合物熔融,多孔聚合物层的微孔关闭,从而切断了电池的离子传输回 路,使电池失去活性,保证了电池安全。
在一种可能的实施方式中,第一聚合物选自聚烯烃、聚烯烃衍生物中的至少一种。由于聚烯烃具有多孔特性,因此,聚烯烃又称多孔聚烯烃,其能为离子传输提供通道;同时,聚烯烃具有电子绝缘性,作为隔膜可以有效防止电池漏电。此外,聚烯烃形成的聚合物层的闭孔温度在140℃左右,隔膜中含聚烯烃层的电池温度达到该温度时,聚烯烃层的微孔关闭,切断离子传输回路,使电池失去活性,保证了电池安全;聚烯烃层较好的机械特性,使得隔膜在电池叠片和卷绕工艺中,能满足工程化需求。
示例性的,聚烯烃包括聚乙烯、聚丙烯、聚1-丁烯、聚1-戊烯、聚1-己烯、聚4-甲基-1-戊烯、聚1-辛烯、聚苯乙烯中的至少一种;聚烯烃衍生物可以为含有烯基的聚酯、聚醚、聚氟等聚合物,示例性的,聚烯烃衍生物包括聚乙酸乙烯酯、聚甲基丙烯酸甲酯、聚偏二氟乙烯、聚四氟乙烯中的一种或多种。
在一些实施例中,多孔聚合物层采用一种聚烯烃材料制备。在一些实施例中,多孔聚合物层采用两种或两种以上的聚烯烃形成的组合物制成。该实施例中,两种或两种以上的聚烯烃,可以是两种或两种以上不同类型的聚烯烃材料,示例性的,聚烯烃层的聚烯烃材料为聚乙烯和聚丙烯的组合物;也可以是两种或两种以上类型相同,但粘均分子量不同的聚烯烃,示例性的,聚烯烃层的聚烯烃材料为粘均分子量不同的多种聚乙烯的组合物。
在一些实施方式中,多孔聚合物层的厚度为0.2~20μm。由于本申请实施例在聚烯烃层的一层表面形成了耐热高分子层,提高了多孔聚合物层的破膜温度和热收缩性能,因此,本申请提供的多孔聚合物层的厚度可低至0.2μm,厚度在0.2~20μm的多孔聚合物层,均能够有效隔绝电池正负极。示例性的,聚烯烃层的厚度可以为0.2μm、0.5μm、0.8μm、1.0μm、2.0μm、3.0μm、4.0μm、5.0μm、6.0μm、7.0μm、8.0μm、9.0μm、10.0μm、11.0μm、12.0μm、13.0μm、14.0μm、15.0μm、16.0μm、17.0μm、18.0μm、19.0μm、20.0μm。在一些实施方式中,聚烯烃层的厚度为0.5~17um。
本申请实施例中,在多孔聚合物层一侧或两侧表面结合有耐热高分子层,耐热高分子层为含有第二聚合物的多孔薄膜。在一种实施方式中,在多孔聚合物层的一侧表面形成耐热高分子层,另一侧表面不作处理(即保留空白设计)。示例性的,通过在聚烯烃层的一侧表面保留空白设计,可以保留聚烯烃原有的闭孔温度特性,赋予电池较好的安全性能。在另一种实施方式中,在多孔聚合物层的两侧表面同时形成耐热高分子层,来提升复合隔膜的破膜温度,并降低其热收缩率。
本申请实施例中,耐热高分子层可以由耐热高分子组成,也可以含有耐热高分子以外的其他耐热材料。
在一种可能的实施情形中,以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为5~100%。当耐热高分子层中第二聚合物的重量百分含量不为100%时,耐热高分子层中还可以含有其他耐热材料。其他耐热材料可以为有机耐热材料,也可以为无机耐热材料。示例性的,无机耐热材料为陶瓷颗粒。
在上述实施情形的基础上,在第一种可能的实施方式中,以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为100%。此时,耐热高分子层由第二聚合物组成,第二聚合物有效发挥耐热性能,提高复合隔膜的破膜温度。
在第二种可能的实施方式中,以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为50~100%,且第二聚合物的重量百分含量不为100%。第二聚合物的重量百分含量在50~100%之间,第二聚合物仍然可以有效发挥优异的耐热性能,提高复合隔膜的破膜温度。在这种情况下,耐热高分子层中还可以含有重量百分含量为0~50%的其他耐热材料,如陶瓷颗粒。第二聚合物和其他耐热材料协同,发挥优异的耐热性能。在一些实施例中,耐热高分子层含有第二聚合物和陶瓷颗粒,且以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为50~100%,第二聚合物的重量百分含量不为100%,陶瓷颗粒的重量百分含量为0~50%。在这种情况下,由于陶瓷颗粒具有优异的耐热性能,与第二聚合物一起提高复合隔膜的破膜温度。不仅如此,陶瓷颗粒可以借助第二聚合物的粘结性能固定,同时降低第二聚合物的热收缩率,形成稳定的耐热高分子层。应当理解的是,当耐热高分子层中第二聚合物的含量大于或等于50%时,第二聚合物作为耐热高分子层的主体,发挥提高复合隔膜破膜温度的作用。示例性的,以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量可以为50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%等具体重量百分含量。
在第三种可能的实现方式中,耐热高分子层含有第二聚合物和其他耐热材料,以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为5~50%,其他耐热材料的重量百分含量为50~95%。在这种情况下,高含量的其他耐热材料协同第二聚合物一起发挥耐热性能。在一些实施例中,耐热高分子层含有第二聚合物和陶瓷颗粒,且以耐热高分子层的总重量为100%计,第二聚合物的重量百分含量为5~50%,陶瓷颗粒的重量百分含量为50~95%。此时,陶瓷颗粒作为耐热高分子层的主体材料,在第二聚合物的作用下粘结成膜,发挥耐热性能,达到提高复合隔膜破膜温度的作用。示例性的,以耐热高分子层的总重量为100%计,陶瓷颗粒的重量百分含量可以为50%、55%、60%、65%、70%、75%、80%、85%、90%、95%等具体重量百分含量。
在上述可能的实施方式的基础上,第二聚合物选自成膜后破膜温度>200℃的聚合物。在这种情况下,耐热高分子层的耐高温特性(>200℃),使得复合隔膜的破膜温度>200℃,在电池受到热滥用和机械滥用时,该复合隔膜能耐受200℃高温不破膜,从而有效隔绝电池的正极和负极,避免正负极的直接接触而发生剧烈的内短路,提升了电池的安全性能。在一些实施例中,第二聚合物选自成膜后破膜温度>240℃的聚合物,由此得到的复合隔膜能耐受240℃高温不破膜。
在一些实施例中,第二聚合物选自聚偏氟乙烯、聚六氟丙烯、芳纶、聚芳酯、聚丙烯腈、芳香族聚酰胺、聚酰亚胺、聚醚砜、聚砜、聚醚酮、聚醚酰亚胺、聚苯并咪唑中的至少一种。上述聚合物具有阻燃性,该阻燃性使得形成的聚合物层具有较高的破膜温度,如破膜温度>250℃,该聚合物层作为耐热高分子层时,能够有效提高复合隔膜的破膜温度,使复合隔膜的破膜温度>250℃,且保证该复合隔膜的热收缩率<10%@150℃,即将复合隔膜加热至150℃时,复合隔膜的热收缩率小于10%。
本申请实施例中,耐热高分子层中可以含有一种或多种第二聚合物。在一些实施例中,耐热高分子层采用两种或两种以上的第二聚合物形成的组合物制成。该实施例中,两种或两种以上的第二聚合物,可以是两种或两种以上不同类型的耐热高分子材 料,也可以是两种或两种以上类型相同,但粘均分子量不同的耐热高分子。
在一些实施例中,陶瓷颗粒包括但不限于自氧化铝、氧化硅、氧化钛、氧化锆、氧化锌、氧化钡、氧化镁、氧化铍、氧化钙、氧化钍、氮化铝、氮化钛、勃母石、磷灰石、氢氧化铝、氢氧化镁、硫酸钡、氮化硼、碳化硅、氮化硅、立方氮化硼、六方氮化硼中的一种或多种。
在一种可能的实施方式中,耐热高分子层中的厚度为1~6μm。在这种情况下,耐热高分子层可以达到提高复合隔膜破膜温度的效果;而且,由于耐热高分子层的厚度在可控范围内,不仅可以降低自身对电池能量密度的影响,还可以降低多孔聚合物层的厚度,进而降低多孔聚合物层对电池能量密度的影响。示例性的,耐热高分子层的厚度可以为1.0um、1.5um、2.0um、2.5um、3.0um、3.5um、4.0um、4.5um、5.0um、5.5um、6.0um等具体厚度。
在一些实施例中,耐热高分子层的厚度为1~3um。耐热高分子层的厚度在上述范围内时,可以更好地兼顾提高复合隔膜的破膜温度的效果和降低耐热高分子层对电池能量密度的影响。
本申请实施例中,多孔聚合物层和耐热高分子层均为多孔薄膜,将多孔聚合物层孔径分布的峰值记为A,多孔聚合物层的透气度记为B;将复合隔膜孔径分布的峰值记为C,耐热高分子层的透气度记为D,复合隔膜层的厚度记为E;其中,A为0.02~0.08μm,且C=(0.8~1)A。在这种情况下,复合隔膜有大量的孔隙结构,有利于提高复合隔膜特别是耐热高分子层的通透性能,从而使得复合隔膜作为电池隔膜使用时,能够提高电解液的浸润效果,促进阳离子的穿梭,使电池满足快充需求。
在一种可能的实施方式中,B、D、E满足以下关系:(D-B)/E<15s。此时,耐热高分子层的透气度增量少,复合隔膜的孔径减小得少,有利于提高本申请复合隔膜的通透性能。
在一种可能的实施方式中,多孔聚合物层和耐热高分子层的连接界面具有连通孔。在这种情况下,两层聚合物层之间的孔通透性增加,阳离子可以更通畅地在两层聚合物之间穿梭,更有利于提高电池充电性能,使电池满足快充需求。
在一种可能的实施方式中,复合隔膜通过将含有致孔剂的预制复合隔膜经萃取制得,预制复合隔膜包括预制聚合物层,以及结合在预制聚合物层一侧或两侧表面的预制耐热高分子层,其中,预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄膜。通过在两层预制薄膜成膜之后采用萃取造孔,可以在复合隔膜中保留丰富的孔隙结构,有利于提高复合隔膜的通透性能,增加了离子流通通道,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,提高充电效率,使电池满足快充需求。
本申请实施例提供的复合隔膜,通过下述方法制备获得。
相应的,如图1所示,本申请实施例提供了一种复合隔膜的制备方法,包括如下步骤:
S10.制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜;其中,预制耐热高分子层结合在预制聚合物层一侧或两侧表面,预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄 膜。
该步骤制得的预制聚合物层和预制耐热高分子层,均含有致孔剂,从而可以避免在已经成孔的薄膜表面制备另一层薄膜时造成堵孔现象。
本申请实施例中,预制复合隔膜可以通过多种方式制备。下面提供两种制备预制复合隔膜的工艺方法。
在第一种可能的实施方式中,预制复合隔膜可以通过下述步骤制得:
S111.将含有第一聚合物和第一致孔剂的第一浆料挤出,制得第一铸片;对第一铸片进行双向拉伸处理,制得预制聚合物层。
该步骤中,先配置含有第一聚合物和第一致孔剂的第一浆料。其中,第一聚合物的选择如上文所述,为了节约篇幅,此处不再赘述。第一致孔剂为有机致孔剂,在这种情况下,在形成两层预制薄膜即预制聚合物层和预制耐热高分子层后,可以通过萃取,去除预制聚合物层中的有机致孔剂,从而在得到的聚合物层中形成丰富的孔道结构。在一些实施例中,第一制孔剂取自分子式为C nH 2n+2的碳氢化合物及其衍生物、分子式为Si mO m-1H 2m+2的硅氧烷化合物及其衍生物的一种或多种,其中,n、m的取值满足:15≤n≤40,5≤m≤50。当第一致孔剂选自上述有机物时,可以通过有机萃取剂去除,从而在多孔聚合物层中保留丰富的孔隙结构。示例性的,第一致孔剂为白油(由石油所得精炼液态烃的混合物)。
在一些实施例中,按照第一致孔剂的质量为第一聚合物和第一致孔剂的总质量的20%~30%的比例,配置第一浆料,由此得到的预制聚合物中,第一致孔剂的质量为第一聚合物和第一致孔剂的总质量的20%~30%。在这种情况下,采用第一浆料制得的多孔聚合物层,具有丰富的孔隙结构。示例性的,第一聚合物和第一致孔剂的质量比为70:30、71:29、72:28、73:26、75:25、76:24、77:23、78:22、79:21、80:20等具体比值。
在一些实施例中,将第一聚合物和第一致孔剂混合处理,使第一致孔剂均匀分散在第一浆料中,对应的,在第一浆料成膜后,第一致孔剂均匀分散在预制聚合物层中,经萃取处理形成孔隙分布均匀的多孔聚合物层。
在一些实施例中,将第一聚合物和第一致孔剂混合处理,制备第一浆料,采用下述方法:
在混合容器中通入蒸汽,使混合容器内的温度升至180~230℃后,在搅拌条件下加入第一致孔剂;控温160~230℃后,加入第一聚合物;继续搅拌,制得第一浆料。
在一些实施例中,将第一浆料挤出,制备第一铸片的方法为:
将第一浆料混炼均匀,将得到的熔体通过狭缝式模头进行挤出,挤出的熔体在冷却辊上进行冷却,第一铸片形成凝胶状片材,该片材是液相溶剂与固相聚烯烃的固-液相分离状态。
在一些实施例中,狭缝式模头的狭缝间隙为0.1~5mm,挤出时熔体温度160~230℃,挤出速度可为0.2~15m/min。
冷却速度对于控制此步固相聚烯烃的结晶度非常重要,冷却速度太低,准晶胞单元增大,结晶度升高,冷却速度提高,形成小而致密的晶胞单元,利于控制整个固相聚烯烃的结晶度。在一些实施例中,将混合液进行挤出,并冷却铸成片材的操作中,冷却的速度大于60℃/分钟。
在一些实施例中,对得到的第一铸片进行双向拉伸处理,得到预制聚合物层。其中,双向拉伸处理包括横向拉伸处理和纵向拉伸处理。在一种可能的实施方式中,将含有第一聚合物和第一致孔剂的第一浆料挤出,对得到的第一铸片进行双向拉伸处理的步骤,包括:
将第一浆料挤出,并形成在接收辊上后,依次进行横向拉伸和竖向拉伸,得到预制聚合物层。
在一些实施例中,对得到的第一铸片进行双向拉伸处理,包括先对得到的第一铸片进行横向拉伸处理,然后进行纵向拉伸处理。示例性的,接收辊接收挤出样本后,接收辊、缓冲辊、第一横拉辊和第二横拉辊对样本进行竖向拉伸;然后采用竖拉咬轮进行横向拉伸。
S112.将含有第二聚合物和第二致孔剂的第二浆料形成在预制聚合物层的一侧或两侧表面,制备预制耐热高分子层,得到预制复合隔膜。
该步骤中,先配置含有第二聚合物和第二致孔剂的第二浆料。其中,第二聚合物的选择如上文所述,为了节约篇幅,此处不再赘述。在一些实施例中,第二致孔剂为有机致孔剂,在这种情况下,在第二浆料形成预制耐热高分子层后,可以通过萃取,去除预制耐热高分子层中的有机致孔剂,从而在耐热高分子层中形成丰富的孔道结构。在一些实施例中,第二制孔剂取自分子式为C nH 2n+2的碳氢化合物及其衍生物、分子式为Si mO m-1H 2m+2的硅氧烷化合物及其衍生物的一种或多种,其中,n、m的取值满足:15≤n≤40,5≤m≤50。当第二致孔剂选自上述有机物时,可以通过有机萃取剂去除,从而在复合隔膜中保留丰富的孔隙结构。示例性的,第一致孔剂为白油(由石油所得精炼液态烃的混合物)。
本申请实施例中,第一致孔剂和第二致孔剂可以相同,也可以不同。
在一些实施例中,按照第二致孔剂的质量为第二聚合物和第二致孔剂的总质量的20%~30%的比例,配置第二浆料,由此得到的预制耐热高分子层中,第二致孔剂的质量为所述第二聚合物和所述第二致孔剂的总质量的20%~30%。在这种情况下,一方面,可以调节第二浆料的粘度,使其粘度为25000~30000mpa.s,从而有利于第二浆料在预制聚合物层表面形成均匀且致密的膜层。另一方面,采用第二浆料制得的耐热高分子层,具有丰富的孔隙结构。示例性的,第二聚合物和第二致孔剂的质量比为70:30、71:29、72:28、73:26、75:25、76:24、77:23、78:22、79:21、80:20等具体比值。
在一些实施例中,在第二浆料中加入无机耐热材料,示例性的,无机耐热材料为陶瓷颗粒。无机耐热材料的添加量可以参考本申请实施例提供的复合隔膜部分。
在一些实施例中,将第二聚合物和第二致孔剂混合处理,使第二致孔剂均匀分散在第二浆料中,对应的,在第二浆料成膜后,第二致孔剂均匀分散在预制耐热高分子层中,经萃取处理形成孔隙分布均匀的耐热高分子层。
在一些实施例中,将第二浆料形成在预制聚合物层的一侧或两侧表面,采用溶液加工法将第二浆料形成在预制聚合物层的表面,干燥后得到含有预制聚合物层和预制耐热高分子层的预制复合隔膜。示例性的,溶液加工法可以为涂覆、打印等方式,涂覆可以采用旋涂、刮涂、滴涂等方式,但不限于此。
在一些实施例中,采用不同于制备预制聚合物层的另一挤出机,对第二浆料进行 挤出处理,将得到的膜层与预制聚合物层进行一体化处理,得到含有预制聚合物层和预制耐热高分子层的预制复合隔膜。
在第二种可能的实施方式中,预制复合隔膜可以通过下述步骤制得:
S121.将含有第一聚合物和第一致孔剂的第一浆料挤出,制备预制聚合物层前体。
该步骤中,第一浆料的制备参考上文S111,为了节约篇幅,此处不再赘述。
将第一浆料挤出,制备得到第一铸片。同样的,制得第一铸片的方法可参考上文S111。可将得到的第一铸片作为预制聚合物层前体。在一些实施例中,进一步对制得第一铸片进行横向拉伸处理或竖向拉伸处理,得到预制聚合物层前体。
S122.将含有第二聚合物和第二致孔剂的第二浆料挤出,制备预制耐热高分子层前体。
该步骤中,第二浆料物的制备如上文所述,为了节约篇幅,此处不再赘述。
将第二浆料挤出,制备得到第二铸片。同样的,制得第二铸片的方法可参考上文。可将得到的第二铸片作为预制耐热高分子层前体。在一些实施例中,进一步对制得第二铸片进行横向拉伸处理或竖向拉伸处理,得到预制耐热高分子层前体。
应当理解的是,该实施例中,预制聚合物层和预制耐热高分子层的制备,没有严格的先后顺序。
S123.将预制耐热高分子层前体压合在预制聚合物层前体的一侧或两侧表面,经双向拉伸处理,制得预制复合隔膜。
该步骤中,通过压合处理,使预制耐热高分子层前体和预制聚合物层前体层叠结合,得到预制复合隔膜前体。在一些实施例中,将预制耐热高分子层通过热压的方式压合在预制聚合物层的一侧或两侧表面,得到预制复合隔膜前体。
将预制复合隔膜前体进行双向拉伸处理,得到预制复合隔膜。具体的,经过双向拉伸处理,预制耐热高分子层前体形成预制耐热高分子层,相应的,预制聚合物层前体形成预制聚合物层,得到预制复合隔膜。其中,双向拉伸处理包括横向拉伸处理和纵向拉伸处理。在一些实施例中,对预制复合隔膜前体进行双向拉伸处理,包括先对得到的预制复合隔膜前体进行横向拉伸处理,然后进行纵向拉伸处理。
S20.将预制复合隔膜进行萃取造孔,烘干收卷得到复合隔膜。
该步骤中,对预制复合隔膜进行萃取,去除预制聚合物层和预制耐热高分子层中的致孔剂,以得到具有丰富孔隙结构的复合隔膜。具体的,萃取是利用萃取剂溶解预制聚合物层和预制耐热高分子层中的致孔剂,在致孔剂所在的位置形成孔隙结构。
本申请实施例中,萃取可以采用萃取剂对含有预制聚合物层和预制耐热高分子层的预制复合隔膜进行浸润处理实现。示例性的,将含有预制聚合物层和预制耐热高分子层的预制复合隔膜置于萃取剂中浸泡处理。
在一种可能的实施方式中,萃取造孔包括:采用萃取剂对行进中的预制复合隔膜进行反向溢流。通过该方法,延长了萃取剂停留在预制复合隔膜的时间,促进萃取剂进入预制复合隔膜内部,从而有利于萃取剂将预制复合隔膜进行充分萃取。
在一些实施例中,萃取剂包括但不限于二氯甲烷、三氯甲烷、四氯化碳、石油醚、乙酸乙酯、己烷、庚烷、辛烷、甲苯、苯、水中的而一种或多种。这些萃取剂对有机致孔剂具有较好的溶解作用,特别的,上述萃取剂对选自分子式为C nH 2n+2的碳氢化合 物及其衍生物、分子式为Si mO m-1H 2m+2的硅氧烷化合物及其衍生物的致孔剂具有较好的溶解作用。
萃取处理后,对得到的复合隔膜进行烘干收卷。
在一种可能的实施方式中,本申请实施例制备预制复合隔膜,以及对预制复合隔膜进行萃取处理、干燥收卷,通过一体化工艺实现,即各流程连续进行,使复合隔膜实现连续化生产。相比先挤压、拉伸、造孔制得聚烯烃层,然后在聚烯烃层上涂覆耐热高分子层浆料,制备复合隔膜的方法,本申请实施例通过一体化工艺制备复合隔膜,使得多孔聚合物层和耐热高分子层同时造孔,且耐热高分子在涂覆过程中,不会堵塞下层聚合物层的孔通道,使复合隔膜保有较高的孔隙结构,赋予复合隔膜较好的通透性能。此外,相比传统的隔膜制备工艺,一体化工艺制备复合隔膜,节约了离线运输成本,且生产效率高,解决了因涂覆涂层后隔膜透气度升高、孔隙率降低的问题。
本申请实施例提供的复合隔膜的制备方法,先在第一聚合物和第二聚合物中分别引入第一致孔剂和第二致孔剂,制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜;然后将得到的预制复合隔膜进行萃取,将预制聚合物层和预制耐热高分子层中的致孔剂去除,使两层薄膜在成膜之后同时造孔。本申请提供的方法通过在两层薄膜成膜之后,采取萃取方式同时造孔,可以在复合隔膜中保留丰富的孔隙结构,有利于提高复合隔膜的通透性能,增加了离子流通通道,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,提高充电效率,使电池满足快充需求。相比在经过挤压、拉伸、造孔得到多孔聚合物表面涂覆耐热高分子浆料制备复合隔膜的方法,本申请提供的制备方法可以有效避免由于耐热高分子浆料在涂覆过程中堵塞第一聚合物层的孔通道,造成复合隔膜的透气度偏高,孔径变小,锂离子运动不通畅,使得该复合隔膜不适应于快充电的问题。
第三方面,本申请实施例提供一种电化学装置,包括正极片、负极片、电解液和设置在正极片和负极片之间的隔膜,隔膜为本申请实施例第一方面的复合隔膜。
本申请提供的电化学装置,由于含有上述复合隔膜,复合隔膜大量的孔隙结构,有利于提高复合隔膜特别是耐热高分子层的通透性能,从而使得复合隔膜作为电池隔膜使用时,能够促进阳离子的穿梭,使电池满足快充需求。
作为本申请电化学装置的一种可能的实施情形,复合隔膜的至少一表面设置有至少一层聚合物层。聚合物层可以改善复合隔膜和电极片之间的界面粘结性,提升电池整体硬度和强度,防止电芯变形。在一些实施例中,聚合物层可以通过加热整形后活化而成。示例性的,将聚合物形成在复合隔膜的表面后,在压力为0.1~2.0Mpa、温度为25℃~100℃的条件下加热处理,活化20~300min。在一些实施例中,压力0.5~1.0Mpa,温度60℃~90℃,活化时间为60~150min。
示例性的,聚合物层为PVDF、PMMA、多巴胺、CMC、SBR、PTFE和PVA中的至少一种形成的材料层;作为本申请电化学装置的一种可能的实施情形,聚合物层为PVDF、PMMA、多巴胺、CMC、SBR、PTFE和PVA中的至少两种形成的聚合物叠层,且组成聚合叠层的聚合物,可以为上述聚合物中的一种或多种。上述聚合物材料能够提高含有第一方面能提供的复合隔膜和电极片之间的结合强度,保持电池结构稳定。
在一些实施情形中,电化学装置为锂二次电池、钾二次电池、钠二次电池、锌二次电池、镁二次电池或铝二次电池。
在一些实施情形中,电化学装置的结构为卷绕结构、叠片结构中的一种或多种。
在一些实施情形中,电化学装置还包括封装壳,且一个或多个电化学装置单元封装在封装壳内。其中,电化学装置单元可以为包括正极片、负极片、电解液和复合隔膜的电芯。
第四方面,本申请实施例提供一种电子设备,包括壳体和收容于壳体内的电子元器件和电化学装置,电化学装置为本申请第三方面的电化学装置,且电化学装置用于为电子元器件供电。
在一些实施情形中,电子设备可以为移动终端,示例性的,终端为电脑、手机、平板、穿戴产品、电动车。其中,电动车包括新能源汽车等需要搭载电源的终端产品,但不限于新能源汽车。
下面结合具体实施例进行说明。
实施例1
一种复合隔膜的一体化制备方法,如图2A所示,包括如下步骤:
(1)通过夹套向搅拌罐中通入蒸汽,使搅拌罐升温至140℃,加入白油并搅拌处理,搅拌转速为40r/min;降温至白油温度为120℃,加入粘均分子量为450万的聚乙烯(PE);继续升温至使搅拌罐内部温度升至140℃后,在40r/min的搅拌速率下搅拌1h,得到第一浆料;其中,PE浆料中,白油的重量百分含量为40wt%,PE的重量百分含量为60wt%;
(2)将步骤(1)得到的第一浆料放入封闭搅拌罐中,在40r/min的搅拌速率下搅拌40min,通过氮气高压将第一浆料从搅拌罐中均匀挤出,其中,挤出速率为500ml/min;第一浆料被挤出到接收辊上,并通过接收辊、缓冲辊、第一横拉辊和第二横拉辊进行横向拉伸,得到预制聚合物层前体;其中,接收辊的线速度为15m/min,缓冲辊的线速度为15m/min,第一横拉辊的线速度为30m/min,第二横拉辊的线速度为60m/min,接收辊、缓冲辊、第一横拉辊和第二横拉辊的温度均为40℃;
(3)将步骤(2)得到的预制聚合物层前体通过2对竖拉咬轮进行两次竖向拉伸,得到预制聚合物层;其中,竖拉咬齿的线速度为60m/min,温度为40℃;
(4)将芳纶短纤用二甲基乙酰胺(DMAC)搅拌直至溶解,加入陶瓷颗粒,得到芳纶浆液。其中,芳纶浆液中的芳纶和陶瓷的质量比为3:7;将芳纶浆料与白油混合均匀,并调节粘度至25000~30000mpa.s,得到第二浆料;
(5)将步骤(4)得到的第二浆料涂覆在步骤(3)所得到的预制聚合物层的一侧表面,得到预制复合隔膜。
(6)将步骤(5)得到的预制复合隔膜进行萃取,烘干收卷,得到复合隔膜;其中,萃取方法为:设置10个深度为1m的萃取槽,萃取槽内注入二氯甲烷;将萃取槽里的二氯甲烷朝着预制复合隔膜行进方向的反方向进行溢流;将萃取后的隔膜过水,将芳纶浆料中的二甲基乙酰胺(DMAC)洗净,烘干后制成复合隔膜。
实施例2
一种复合隔膜,如图2B所示,其制备方法为:
(1)通过夹套向搅拌罐中通入蒸汽,使搅拌罐升温至140℃,加入白油并搅拌处理,搅拌转速为40r/min;降温至白油温度为120℃,加入粘均分子量为450万的聚乙烯(PE);继续升温至使搅拌罐内部温度升至140℃后,在40r/min的搅拌速率下搅拌1h,得到第一浆料;其中,PE浆料中,白油的重量百分含量为40wt%,PE的重量百分含量为60wt%;
(2)将步骤(1)得到的第一浆料放入封闭搅拌罐中,在40r/min的搅拌速率下搅拌40min,通过氮气高压将第一浆料从搅拌罐中均匀挤出,其中,挤出速率为500ml/min;第一浆料被挤出到接收辊上,并通过接收辊、缓冲辊、第一横拉辊和第二横拉辊进行横向拉伸,得到预制聚合物层前体;其中,接收辊的线速度为15m/min,缓冲辊的线速度为15m/min,第一横拉辊的线速度为30m/min,第二横拉辊的线速度为60m/min,接收辊、缓冲辊、第一横拉辊和第二横拉辊的温度均为40℃;
(3)将芳纶短纤用二甲基乙酰胺(DMAC)搅拌直至溶解,加入陶瓷颗粒,得到芳纶浆液。将芳纶浆料与白油混合均匀,并调节粘度至25000~30000mpa.s,得到第二浆料;将第二浆料用一个独立的挤压机挤出,并均匀地流延于冷却辊的表面,冷却辊的表面温度为40℃,得到预制耐热高分子层前体;
(4)将步骤(2)得到的预制聚合物层前体和步骤(3)得到的预制耐热高分子层前体,共同流延至温度为100℃的导热辊面共同热压成一体,得到预制复合隔膜前体;
(5)将预制复合隔膜前体进行纵向和横向的双向拉伸,得到预制复合隔膜;
(6)将步骤(5)得到的预制复合隔膜进行萃取,烘干收卷,得到复合隔膜;其中,萃取方法为:设置10个深度为1m的萃取槽,萃取槽内注入二氯甲烷;将萃取槽里的二氯甲烷朝着预制复合隔膜行进方向的反方向进行溢流;将萃取后的隔膜过水,将芳纶浆料中的二甲基乙酰胺(DMAC)洗净,烘干后制成复合隔膜。
对比例1
一种隔膜,其制备方法为:
(1)通过夹套向搅拌罐中通入蒸汽,使搅拌罐升温至140℃,加入白油并搅拌处理,搅拌转速为40r/min;降温至白油温度为120℃,加入粘均分子量为450万的聚乙烯(PE);继续升温至使搅拌罐内部温度升至140℃后,在40r/min的搅拌速率下搅拌1h,得到第一浆料;其中,PE浆料中,白油的重量百分含量为40wt%,PE的重量百分含量为60wt%;
(2)将步骤(1)得到的第一浆料放入封闭搅拌罐中,在40r/min的搅拌速率下搅拌40min,通过氮气高压将第一浆料从搅拌罐中均匀挤出,其中,挤出速率为500ml/min;第一浆料被挤出到接收辊上,并通过接收辊、缓冲辊、第一横拉辊和第二横拉辊进行横向拉伸,得到预制聚合物层前体;其中,接收辊的线速度为15m/min,缓冲辊的线速度为15m/min,第一横拉辊的线速度为30m/min,第二横拉辊的线速度为60m/min,接收辊、缓冲辊、第一横拉辊和第二横拉辊的温度均为40℃;
(3)将步骤(2)得到的膈膜前体通过2对竖拉咬轮进行两次竖向拉伸,得到预制聚合物层;其中,竖拉咬齿的线速度为60m/min,温度为40℃;
(4)将步骤(3)得到的预制聚合物层半成品进行萃取,烘干收卷,得到基膜。
对比例2
一种复合隔膜,其制备方法为:
(1)通过夹套向搅拌罐中通入蒸汽,使搅拌罐升温至140℃,加入白油并搅拌处理,搅拌转速为40r/min;降温至白油温度为120℃,加入粘均分子量为450万的聚乙烯(PE);继续升温至使搅拌罐内部温度升至140℃后,在40r/min的搅拌速率下搅拌1h,得到第一浆料;其中,PE浆料中,白油的重量百分含量为40wt%,PE的重量百分含量为60wt%;
(2)将步骤(1)得到的第一浆料放入封闭搅拌罐中,在40r/min的搅拌速率下搅拌40min,通过氮气高压将第一浆料从搅拌罐中均匀挤出,其中,挤出速率为500ml/min;第一浆料被挤出到接收辊上,并通过接收辊、缓冲辊、第一横拉辊和第二横拉辊进行横向拉伸,得到预制聚合物层前体;其中,接收辊的线速度为15m/min,缓冲辊的线速度为15m/min,第一横拉辊的线速度为30m/min,第二横拉辊的线速度为60m/min,接收辊、缓冲辊、第一横拉辊和第二横拉辊的温度均为40℃;
(3)将步骤(2)得到的膈膜前体通过2对竖拉咬轮进行两次竖向拉伸,得到预制聚合物层;其中,竖拉咬齿的线速度为60m/min,温度为40℃;
(4)将步骤(3)得到的预制聚合物层进行萃取,烘干收卷,得到多孔聚合物层(PE单层膜);
(5)将芳纶短纤用二甲基乙酰胺(DMAC)搅拌直至溶解,加入陶瓷颗粒,得到芳纶浆液。其中,芳纶浆液中的芳纶和陶瓷的质量比为3:7;将芳纶浆料与白油混合均匀,并调节粘度至25000~30000mpa.s,得到第二浆料;通过凹版辊涂布方式将第二浆料涂布于厚度为7μm的PE单层膜的一侧表面,涂覆完后,浸入塑化浴中,塑化浴为N,N-二甲基乙酰胺,干燥后收卷,最终得到复合隔膜,该复合隔膜包括依次层叠的芳纶层和多孔聚烯烃层。
实施例1-2制得的复合隔膜的截面微观示意图如图3所示,对比例2制得的复合隔膜的截面微观示意图如图4所示。相较于图4,图3提供的复合隔膜,芳纶层和聚烯烃层具有大量的孔隙结构,且两层膜膜层界限清晰。
将实施例1-2和对比例2制得的复合隔膜以及对比例1制得的基膜进行性能测试,测试结果如下表1所示:
表1实施例和对比例中隔膜的物性参数
Figure PCTCN2022117861-appb-000001
Figure PCTCN2022117861-appb-000002
由表1数据可见,相较于对比例2,本申请实施例1-2提供的复合隔膜,透气度增值较小。结合表1、图3和图4,相较于对比例1,本申请实施例1-2得到的复合薄膜复合隔膜通孔数量多,且在复合隔膜两个薄膜交界处具有清晰的界面,因此,复合薄膜复合隔膜的通透性增加。
将实施例1-2和对比例2制得的复合隔膜制作电化学装置,制作方法为:
正极极片制作:将粘接剂PVDF溶于NMP中,分散得到7.0wt.%的PVDF胶液,向PVDF胶液中加入碳纳米管导电液均匀分散,最后加入活性材料钴酸锂搅拌均匀混合成正极浆料,采用涂布设备将正极浆料均匀涂布在铝箔的两面,经烘箱烘干去除NMP溶剂,得到极片。将涂布后的极片经过冷压、分条、极耳焊接工序后制成正极极片。其中,正极材料的质量配比为:LCO:CNTs:PVDF=98.8%:0.02%:1.0%;
负极极片制作:负极采用捏合方式进行混料,先将人造石墨、SP干混均匀,然后加入25wt.%预搅拌好的CMC胶液进行捏合搅拌,最后加入剩余CMC及去离子水进行高速分散而成混合负极浆料。浆料经过过筛后采用涂布设备将负极浆料均匀涂布在铜箔的两面,经烘箱烘干后的极片经过冷压、分条、极耳焊接工序制成负极极片。其中,负极材料的质量配比为,石墨:SP:CMC:SBR=96.8%:0.6%:1.2%:1.2%;
隔膜的制作:将上述实施例1-2和对比例2制得的复合隔膜表面再喷涂PVDF或PMMA水性粘结层各0.5um。
将上述正负极极片和隔膜一起进行卷绕制成裸电芯,电芯的容量为4.5Ah,工作电压范围为3.0~4.48V,将电芯再经过封装、烘烤、注液、化成等工序制成锂离子电池。
将含实施例1-2和对比例2制备的隔膜的电化学装置进行性能测试,测试结果如表2所示:
表2
Figure PCTCN2022117861-appb-000003
由表2可见,对上述电池进行70%SOC针刺测试时,含有本申请实施例和对比例2复合隔膜的电池五次测试均通过,这归因于复合隔膜中含有耐热的芳纶层,芳纶层能够提高复合隔膜的破膜温度,降低了高温条件下隔膜的破膜风险,抑制了进一步的内短路发热,降低了电池发热燃烧的概率。
将上述电池在130℃条件下热箱处理30min,150℃条件下热箱处理1h,所有电池均通过。这归因于:含有聚烯烃和芳纶层的复合隔膜在130℃、150℃仍然具有较好的热收缩性能。
测试上述电池2C和3C倍率循环后容量保持率(800个循环),结果显示:本申请实施例提供的复合隔膜2C倍率循环后容量保持率为85%,3C倍率循环后容量保持率为83%,显著高于对比例的70.0%(2C倍率循环后容量保持率)和50.0%(3C倍率循环后容量保持率)。这归因于,本申请实施例提供的电池,复合隔膜中耐热高分子层对多孔聚烯烃层不堵孔,使得到的复合隔膜具有更多孔隙结构,从而增加了阳离子传输孔道,提高了电池充电效率,使得电池能够满足2C~3C快充需求。
应当注意的是,本申请实施例涉及的性能测试的测试方法如下:
(1)膜厚度(um)
方式一:
a.取样:从隔膜上截取1×103mm2样品(样品的面积可以≥1.5×103mm2),测试点数视隔膜情况而定(通常不小于10个点)。
b.测试:在温度为23±2℃的条件下通过万分厚度测量仪进行测试。
c.数据处理:每个测试点的厚度实测值,并取算数平均值。
方式二:
a.取样:对于宽度<200mm的产品:沿纵向(MD)方向每隔40mm±5mm确定一个点,测试点数不小于10个,测试点数可以视隔膜宽度而定,其中,测量起点距边部不小于20mm;
对于宽度≥200mm的产品:沿横向(TD)方向每隔80mm±5mm确定一个点,测试点数不小于10个,测试点数可以视隔膜宽度而定,其中,测量起点距边部不小于20mm。
b.测试:在温度为23±2℃条件下通过厚度测量仪对每个测试点进行测试,测量面的直径在2.5mm~10mm之间,测量面对试样施加的负荷应在0.5N~1.0N之间。
c.数据处理:每个测试点的厚度实测值,并取算数平均值。
(2)孔隙率(%)
方式一:
a.取样:从隔膜上截取1×104mm2样品。
b.测试:采用密度法测量孔隙率。
c.数据处理:
样本整体的孔隙率P可以通过如下公式计算得到:
Figure PCTCN2022117861-appb-000004
其中,m可以为样品质量,骨架密度ρ可以为样品的材料真密度,V可以为样品的体积。
方式二:
a.取样:通过237×170mm型板取样器裁取矩形试样1个。裁样时,尽可能远离隔膜的边部(如距隔膜边部50mm以上)。
b.测试:采用密度法测量孔隙率,包括测量试样的n(n例如可以大于或等于9)个点,这n个点可以呈等距点阵分布。
c.数据处理:每个点的孔隙率Pi可以通过如下公式计算得到:
Figure PCTCN2022117861-appb-000005
其中,mi为每个点的质量,ρ为试样的骨架密度(可以根据物料配比计算得到),Vi为每个点的总体积(可以根据试样的长度、宽度、厚度计算得到);
样本整体的孔隙率P可以通过如下公式计算得到:
Figure PCTCN2022117861-appb-000006
其中,m可以为样品质量,骨架密度ρ可以为样品的材料真密度,V可以为样品的体积。
(3)透气度(s/100cc)
方式一:
a.取样:从隔膜上截取直径≥28mm的样品。
b.测试:按照标准JIS P8117-2009中规定的方法进行测试。具体包括:设置汽缸驱动减压阀的压强为0.25MPa,测试压为0.05MPa,测试标准选定“JIS”。
c.数据处理:在隔膜全幅宽随机裁取6个试样,分别记录各试样的气阻值大小,并计算各样品的算术平均值。
方式二:
a.取样:通过100×100mm型板取样器裁取方形试样6个。裁样时,尽可能远离隔膜的边部(如距隔膜边部50mm以上)。每个试样均匀分布在隔膜上(即均分隔膜的全幅宽得到6个区,在这6个区内的每个区内裁取1个试样)。
b.测试:按照标准JIS P8117-2009中规定的方法进行测试。具体包括:设置汽缸驱动减压阀的压强为0.25MPa,测试压为0.05MPa,测试标准选定“JIS”。
c.数据处理:分别记录每个试样的气阻值大小,并计算这6个试样的气阻值的算术平均值。
(4)穿刺强度(gf)
方式一:
a.取样:从微孔膜上截取直径≥45mm的样品。
b.测试:将样品居中固定在夹具上,测试针头为直径1mm的球形(材质为红宝石),确保试样在各个方向延伸到或者超过夹紧盘的边缘,确认样品完全固定于环状夹具之上,无打滑现象。测试时,对隔膜进行穿刺,机器的速度设定为300±10mm/min,直到穿刺球棒完全使试样破裂,穿刺阻力为测试过程中所记录的最大力。
c.数据处理:全幅宽随机裁取6个试样,分别记录各样品穿刺强度值,并计算各样品穿刺强度值的算术平均值。
方式二:
a.取样:通过237×170mm型板取样器裁取矩形试样6个。裁样时,应尽可能远离隔膜的边部(如距隔膜边部50mm以上)。每个试样均匀分布在隔膜上(即均分隔膜 的全幅宽得到6个区,在这6个区内的每个区内裁取1个试样)。
b.测试:按照标准ASTMD4833-07规定的方法进行测试。具体可以包括:测试针头为球形针头,直径为1mm(材质为蓝宝石);将样品居中固定在夹具上,确保试样在各个方向延伸到或者超过夹紧盘的边缘,确认样品完全固定于环状夹具之上,无打滑现象;测试时,机器的速度设定为300±10mm/min,对隔膜进行穿刺,直到测试针头完全使试样破裂;穿刺阻力为测试过程中所记录的最大力。
c.数据处理:分别记录每个试样的穿刺强度,并计算这6个试样的穿刺强度的算术平均值。
(5)拉伸强度和延伸率(Mpa和%)
方式一:
a.取样:在整体幅宽试样上,分别按照MD和TD方向对隔膜进行裁剪,得到多个长≥50mm、宽约为15±0.1mm的长条形样品(对MD进行测试,则样品的宽度可以沿隔膜的TD方向,样品的长度可以沿隔膜的MD方向;对TD进行测试,则样品的宽度可以沿隔膜的MD方向,样品的长度可以沿隔膜的TD方向)。
b.测试:采用拉伸机进行拉伸,夹具间距可以为100±5mm,直至样品被拉断,拉伸速度可以为100±1mm/min。
c.数据处理:分别记录每个样品的拉伸强度、延伸率。
方式二:
a.取样:通过237×170mm型板取样器裁取矩形试样6个。裁样时,应尽可能远离隔膜的边部(如距隔膜边部50mm以上)。每个试样均匀分布在隔膜上(即沿隔膜的MD、TD方向,均分隔膜的全幅宽,得到6个区,在这6个区内的每个区内裁取1个试样)。之后,通过取样仪裁切长≥150mm,宽15±0.1mm的长条形样本。
b.测试:按GB/T1040.3-2006规定的方法进行测量。具体包括:夹具间距可以为100±5mm,拉伸速度可以为100±1mm/min。
c.数据处理:分别记录每个试样的拉伸强度、延伸率,并计算这6个试样的算术平均值。
(6)150℃热收缩率
a.取样:全幅宽随机裁取6个试样。每个试样的具体取样可以包括:沿隔膜的MD方向,裁取100mm;当隔膜的TD方向大于100mm时,测试样品在TD方向上的长度可以为100mm;当微孔膜TD方向小于100mm时,测试样品在TD方向上的长度可以以实际为准。
b.测试:标记好样品的纵、横向标识,测量并记录每片试样纵横向的尺寸;将试样平置于纸夹套层中,试样无折叠、起皱、粘连等情况;将夹有试样的纸套(层数例如可以为10层)平整地放入恒温烘箱中部(开门时间例如不超过3s,);通过电热恒温箱加热试样至150℃,加热时间为1h;取出试样后冷却至室温,测量纵向长度和横向长度。
c.数据处理:
计算各个样本的热收缩率:
T=(L0-L)/L0×100%,
其中,T可以为试样热收缩率(%),L0可以为加热前试样的长度(mm),L可以为加热后试样的长度(mm)。计算样本热收缩率的算术平均值。
(7)闭孔温度(℃)
采用升温内阻法进行测试。隔膜置于不锈钢夹具或其它类似夹具之内并注入适量电解液,将上述夹具置于烘箱中,以一定速度进行升温,同时监控夹具的阻值和温度,当阻值随温度突变至初始阻值10倍时所对应的温度,默认为隔膜的闭孔温度。
(8)破膜温度(℃)
采用烘烤法测试破膜温度。将隔膜置于9*9cm的夹具内,将上述夹具置于烘箱中,以一定速度进行升温,同时监控夹具内隔膜是否破膜,当隔膜随温度变化隔膜破膜,记录为隔膜的破膜温度。
(9)孔径分布
浸润电解液后的样品放入专用的PSDA测试组件,样品密封后通入压缩气体(一般是氮气或压缩空气)。由于样品孔道被液体封堵,需要一定的压力才能开孔,而且孔径越小则对应的开孔压力越大。随着气体压力的增加,最先被打开的孔则是样品的最大孔,最后被打开的是最小孔,因此孔径与开孔压力是一一对应的。通过检测样品在干燥和润湿状态下的气体压力——流量关系曲线,就可以计算样品的孔径分布。同一种隔膜测3个样品,峰值为3个样品的平均值。
(10)针刺测试
a.取样:每组取5储能系统(power conversion system,pcs)电池,并标记电芯的中央位置。
b.测试:在25±3℃下,按照0.7C的恒定电流将电芯充电至限制电压,然后再在限制电压的恒压条件充电至电流减小到0.025C,在12~24h内进行测试;在25±3℃下,以150mm/s的速度将钢钉刺入电芯中央部分,直至贯穿为止。钢钉直径为2.45±0.06mm,长度为45±2.5mm,尖端长度可以在2mm~4.9mm之间。
c.数据处理:穿刺过程及穿刺结束后钢钉保持10min内不起火、不爆炸,判定为通过。
(11)130℃热冲击测试
a.取样:每组取5pcs电池。
b.测试:在25±3℃下,按照0.2C的恒定电流将电芯充电至限制电压,然后再在限制电压的恒压条件充电至电流减小到0.025C,充满电后,在12~24h内进行测试;通过对流方式或循环热空气箱,从起始温度25±3℃开始对电芯进行加热,温变率可以为5±2℃/min;升温至130±2℃后保持60min。
c.数据处理:观测实验现象,升温后不起火、不爆炸,判定为通过。
(12)150℃热冲击测试
a.取样:每组取5pcs电池。
b.测试:在25±3℃下,按照0.2C的恒定电流将电芯充电至限制电压,然后再在限制电压的恒压条件充电至电流减小到0.025C,通过对流方式或循环热空气箱,从起始温度25±3℃开始对电池进行加热,温变率可以为5±2℃/min;升温至150±2℃后保持60min。
c.数据处理:观测实验现象,升温后不起火、不爆炸,判定为通过。
(13)穿钉测试
标准充电模式充电至90%SOC后,在12~24h内进行测试。然后将电池置于25℃防爆箱中,以150mm/s的速度将钢钉刺入电芯中央部分,直至贯穿为止,保持10min后退针。电池不热失控,则测试通过,记录测试通过率。
(14)电池循环测试
在常温下,将电池分别用2C/3C恒流充电至满电到4.38V,再用0.05C的恒流充电至用阶充方式充满电(充到4.43V),循环到800次时,电池的容量。将该容量除以初始容量,即为容量保持率。
(15)粘均分子量和分子量分布
a.取样:将聚烯烃材料完全溶解在十氢化萘、四氢呋喃等有机溶剂中,配制成0.5~1.5mg/mL浓度的溶液,室温静置一段时间,不可超声,并采用半透膜过滤。
b.测试:在135℃条件下,采用凝胶渗透色谱法(GPC)测定聚烯烃材料的粘度,同根据下列计算公式所得粘度[η]算出粘均分子量Mv:
[η]=6.77×10-4Mv0.67
其中,聚丙烯的粘均分子量可以根据下列公式算出:
[η]=1.10×10-4Mv0.8
c.数据处理:绘制粘度与粘均分子量的分布曲线,既可以读出分子量分布。
可选的,可以对聚烯烃材料进行多次测试,并计算算术平均值(计算算术平均值有利于降低测量系统所带来差异)。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种复合隔膜,其特征在于,包括多孔聚合物层,以及结合在所述多孔聚合物层一侧或两侧表面的耐热高分子层,其中,所述多孔聚合物层为含有第一聚合物的多孔薄膜,所述耐热高分子层为含有第二聚合物的多孔薄膜,且所述第一聚合物选自破膜温度为150±10℃的聚合物,所述第二聚合物选自成膜后破膜温度>200℃的聚合物;
    将所述多孔聚合物层孔径分布的峰值记为A,将所述复合隔膜孔径分布的峰值记为C;其中,所述A为0.02~0.08μm,且所述C=(0.8~1)A。
  2. 如权利要求1所述的复合隔膜,其特征在于,所述多孔聚合物层的透气度记为B,所述耐热高分子层的透气度记为D,所述复合隔膜层的厚度记为E,所述B、所述D、所述E满足以下关系:(D-B)/E<15s。
  3. 如权利要求1或2所述的复合隔膜,其特征在于,所述多孔聚合物层的厚度为0.2~20μm;所述耐热高分子层中的厚度为1~6μm。
  4. 如权利要求1或2所述的复合隔膜,其特征在于,以所述耐热高分子层的总重量为100%计,所述第二聚合物的重量百分含量为5~100%。
  5. 如权利要求4所述的复合隔膜,其特征在于,所述耐热高分子层还包括重量百分含量为0~95%的陶瓷颗粒,且所述陶瓷颗粒的含量不为0。
  6. 如权利要求1至5任一项所述的复合隔膜,其特征在于,所述第二聚合物选自成膜后破膜温度>240℃的聚合物。
  7. 如权利要求6所述的复合隔膜,其特征在于,所述第二聚合物选自聚偏氟乙烯、聚六氟丙烯、芳纶、聚芳酯、聚丙烯腈、芳香族聚酰胺、聚酰亚胺、聚醚砜、聚砜、聚醚酮、聚醚酰亚胺、聚苯并咪唑中的至少一种。
  8. 如权利要求1至7任一项所述的复合隔膜,其特征在于,所述复合隔膜通过将含有致孔剂的预制复合隔膜经萃取制得,所述预制复合隔膜包括预制聚合物层,以及结合在所述预制聚合物层一侧或两侧表面的预制耐热高分子层,其中,所述预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,所述预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄膜。
  9. 一种复合隔膜的制备方法,其特征在于,包括如下步骤:
    制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜;其中,所述预制耐热高分子层结合在所述预制聚合物层一侧或两侧表面,所述预制聚合物层为含有第一聚合物和第一致孔剂的预制薄膜,所述预制耐热高分子层为含有第二聚合物和第二致孔剂的预制薄膜;
    将所述预制复合隔膜进行萃取造孔,烘干收卷得到所述复合隔膜。
  10. 如权利要求9所述的复合隔膜的制备方法,其特征在于,所述第一致孔剂、所述第二致孔剂各自独立地选自分子式为C nH 2n+2的碳氢化合物及其衍生物、分子式为Si mO m-1H 2m+2的硅氧烷化合物及其衍生物的一种或多种,其中,n、m的取值满足:15≤n≤40,5≤m≤50。
  11. 如权利要求9所述的复合隔膜的制备方法,其特征在于,所述预制聚合物层中,所述第一致孔剂的质量为所述第一聚合物和所述第一致孔剂的总质量的20%~30%;和/或
    所述预制耐热高分子层中,所述第二致孔剂的质量为所述第二聚合物和所述第二致孔剂的总质量的20%~30%。
  12. 如权利要求9至11任一项所述的复合隔膜的制备方法,其特征在于,所述制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜,包括:
    将含有所述第一聚合物和所述第一致孔剂的第一浆料挤出,制得第一铸片;对所述第一铸片进行双向拉伸处理,制得所述预制聚合物层;
    将含有第二聚合物和第二致孔剂的第二浆料形成在所述预制聚合物层的一侧或两侧表面,制备所述预制耐热高分子层,得到所述预制复合隔膜。
  13. 如权利要求9至11任一项所述的复合隔膜的制备方法,其特征在于,所述制备含有预制聚合物层和预制耐热高分子层的预制复合隔膜,包括:
    将含有所述第一聚合物和所述第一致孔剂的第一浆料挤出,制备预制聚合物层前体;
    将含有第二聚合物和第二致孔剂的第二浆料挤出,制备预制耐热高分子层前体;
    将所述预制耐热高分子层前体压合在所述预制聚合物层前体的一侧或两侧表面,经双向拉伸处理,制得所述预制复合隔膜。
  14. 一种电化学装置,包括正极片、负极片、电解液和设置在所述正极片和所述负极片之间的隔膜,其特征在于,所述隔膜为如权利要求1至8任一项所述的复合隔膜或权利要求9至13任一项所述方法制备得到的复合隔膜。
  15. 一种电子设备,包括壳体和收容于所述壳体内的电子元器件和电化学装置,其特征在于,所述电化学装置为权利要求14所述的电化学装置,且所述电化学装置用于为所述电子元器件供电。
  16. 如权利要求15所述的电子设备,其特征在于,所述电子设备为电脑、手机、平板、穿戴产品、电动车。
PCT/CN2022/117861 2021-10-28 2022-09-08 复合隔膜、电化学装置和电子设备 WO2023071543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111263457.8A CN116053699A (zh) 2021-10-28 2021-10-28 复合隔膜、电化学装置和电子设备
CN202111263457.8 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071543A1 true WO2023071543A1 (zh) 2023-05-04

Family

ID=86131851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117861 WO2023071543A1 (zh) 2021-10-28 2022-09-08 复合隔膜、电化学装置和电子设备

Country Status (2)

Country Link
CN (1) CN116053699A (zh)
WO (1) WO2023071543A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565458B (zh) * 2023-07-05 2023-10-13 宁德新能源科技有限公司 一种隔膜、电化学装置和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635341A (zh) * 2008-07-23 2010-01-27 财团法人工业技术研究院 锂电池隔离膜及其制造方法
CN104508863A (zh) * 2012-07-30 2015-04-08 帝人株式会社 非水电解质电池用隔膜及非水电解质电池
CN107706342A (zh) * 2017-09-27 2018-02-16 上海恩捷新材料科技股份有限公司 电池隔离膜、锂离子电池及其制备方法
CN108269956A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 一种聚合物复合膜及其制备方法和锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635341A (zh) * 2008-07-23 2010-01-27 财团法人工业技术研究院 锂电池隔离膜及其制造方法
CN104508863A (zh) * 2012-07-30 2015-04-08 帝人株式会社 非水电解质电池用隔膜及非水电解质电池
CN108269956A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 一种聚合物复合膜及其制备方法和锂离子电池
CN107706342A (zh) * 2017-09-27 2018-02-16 上海恩捷新材料科技股份有限公司 电池隔离膜、锂离子电池及其制备方法

Also Published As

Publication number Publication date
CN116053699A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
EP3179536B1 (en) Porous film and multilayer porous film
JP5635970B2 (ja) 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
JP4540607B2 (ja) ポリオレフィン微多孔膜
CN104362276B (zh) 一种聚乙烯微孔膜、制备方法及锂离子电池
CN102501419B (zh) 一种聚烯烃多层微多孔膜及其制备方法
US20100178544A1 (en) Polyolefin microporous membrane base for nonaqueous secondary battery serarator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
KR101716249B1 (ko) 폴리올레핀 미세 다공막 및 이의 제조 방법
CN109411676B (zh) 对位芳纶涂层浆料及其制备方法、对位芳纶隔膜及其制备方法和二次电池
US20110059368A1 (en) Separtor for high-power density lithium ion secondary battery (as amended)
CN104766937B (zh) 一种环保型锂离子电池隔膜及其制备方法
CN102015083A (zh) 具有高温热稳定性多孔层的微孔聚烯烃复合膜
CN109817865B (zh) 一种复合隔膜及其制备方法
JP6100022B2 (ja) ポリオレフィン微多孔膜の製造方法
WO2012061963A1 (zh) 多孔膜及其制备方法
TW201533104A (zh) 製造電化學裝置用分離器的方法、由該方法製造的電化學裝置用分離器以及包含該分離器的電化學裝置
JP4606532B2 (ja) ポリオレフィン製微多孔膜
KR102264032B1 (ko) 폴리올레핀 미다공막 및 폴리올레핀 미다공막의 제조 방법
CN117461208A (zh) 隔膜及其制备方法、二次电池和用电设备
TW201815921A (zh) 微多孔膜、鋰離子二次電池及微多孔膜製造方法
WO2013078890A1 (zh) 一种动力锂电池隔膜的制备方法
WO2023071543A1 (zh) 复合隔膜、电化学装置和电子设备
JP2020084084A (ja) ポリオレフィン微多孔膜
JP6249589B2 (ja) 電池用セパレータ
JP5592745B2 (ja) ポリオレフィン製微多孔膜
JP2009149710A (ja) ポリオレフィン製微多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22885433

Country of ref document: EP

Kind code of ref document: A1