CN107910496B - 一种二次电池用金属锂负极、制备方法及其应用 - Google Patents

一种二次电池用金属锂负极、制备方法及其应用 Download PDF

Info

Publication number
CN107910496B
CN107910496B CN201710931974.5A CN201710931974A CN107910496B CN 107910496 B CN107910496 B CN 107910496B CN 201710931974 A CN201710931974 A CN 201710931974A CN 107910496 B CN107910496 B CN 107910496B
Authority
CN
China
Prior art keywords
lithium
current collector
porous
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710931974.5A
Other languages
English (en)
Other versions
CN107910496A (zh
Inventor
赖延清
范海林
洪波
洪树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201710931974.5A priority Critical patent/CN107910496B/zh
Publication of CN107910496A publication Critical patent/CN107910496A/zh
Application granted granted Critical
Publication of CN107910496B publication Critical patent/CN107910496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开了一种二次电池用金属锂负极,包括三维多孔集流体、分散在集流体孔隙中的金属锂活性物质、以及复合在所述集流体任一平面的锂沉积诱导层。此外,本发明还公开了所述的负极的制备方法和应用;以及采用本发明负极组装得到的锂离子二次电池。本发明独创性地发现,在集流体的一个平面沉积锂沉积诱导层;有助于出人意料地提升负极的稳定性,特别是在高电流密度下(例如3~5mA/cm2时)的稳定性。本发明方法有效防止三维多孔锂负极存在的电极表面优先沉积锂所导致的孔洞堵塞及锂枝晶生长问题,提高锂阳极充放电库伦效率及循环寿命。

Description

一种二次电池用金属锂负极、制备方法及其应用
技术领域
本发明属于储能器件领域,具体涉及一种高比能二次电池用锂金属负极。
背景技术
锂金属具有非常高的理论能量密度(3860mAh/g)、最低的还原电位(-3.040Vvs.SHE)以及较低的密度(0.53g/cm3),一直是最具吸引力的电池负极材料。但是,两方面问题限制了金属锂在二次电池负极中的应用。一是锂枝晶生长形成疏松的锂“苔藓”层,“苔藓”状锂在充放电过程中表面SEI膜不断形成、剥落、堆积,造成电池充放电效率低和界面阻抗的不断增加;二是锂枝晶生长及由此产生的“死锂”,给电池带来安全性问题及电极活性物质损失。
锂枝晶产生与电流密度密切相关,通常在很低电流密度下(<0.1mA/cm2)锂负极非常稳定,几乎不产生锂枝晶。但当电流密度升高时,锂快速沉积产生的应力极易使负极表面SEI膜破裂,从而诱发锂枝晶生长。电流密度越大,锂负极表面稳定性越差,锂枝晶产生速度也越快。基于此,近几年越来越多的研究者开始转变锂负极枝晶抑制思路,尝试将锂作为活性物质负载在高比表面多孔电极(如石墨烯、中空碳球、碳纤维、3D镍、3D铜等)中,制作成复合结构锂负极,通过导电性良好多孔材料基底降低电极表面真实电流密度来抑制锂枝晶生长,取得了非常显著的效果。但是,这类电极在电流密度低于1mA/cm2时较为稳定,但当电流密度达到1~3mA/cm2时,循环性能急剧下降,无法达到全电池应用要求。电极性能下降主要由于此类电极多为纳米孔洞结构,溶液浓差极化使得纳米孔洞中Li沉积阻抗高于电极外表面,Li将优先在电极表面沉积。一方面,Li在电极表面沉积会降低电极利用率,使得电极性能低于预期;另一方面,循环过程中Li反复溶解/沉积可能导致表面孔洞堵塞,使得电极丧失高比表面特性,失去抑制锂枝晶生长的效果。
发明内容
针对三维多孔锂负极存在的问题,特别是在高电流密度下稳定性差的技术问题,本发明旨在提供一种新型结构二次电池用锂负极。
本发明还提供了所述的二次电池用锂负极的制备方法。
另外,本发明还提供了所述的二次电池用锂负极的应用。
一种二次电池用金属锂负极,包括三维多孔集流体(本发明也简称集流体)、分散在集流体孔隙中的金属锂活性物质、以及复合在所述集流体任一平面的锂沉积诱导层。
本发明独创性地发现,在集流体的一个平面沉积锂沉积诱导层;有助于出人意料地提升负极的稳定性,特别是在高电流密度下(例如3~5mA/cm2时)的稳定性。
作为优选:所述三维多孔集流体为多孔金属材料、多孔炭材料、多孔导电聚合物材料中的至少一种。
进一步优选:所述多孔金属材料为多孔铜、多孔不锈钢、多孔镍、多孔钛中的任意一种。
进一步优选:所述多孔导电聚合物材料为聚苯胺、聚吡咯、聚噻吩、聚酮酞菁、聚乙炔中的任意一种。
进一步优选:所述多孔炭材料为碳纸、碳纤维布、石墨、活性炭、石墨烯、乙炔黑、碳纳米管、科琴黑中的任意一种或多种组合。
作为优选:三维多孔集流体的厚度为1~200μm。
作为优选:所述锂沉积诱导层的材料为具有低析锂过电位的金属纳米颗粒、金属氧化物纳米颗粒中的至少一种。
进一步优选,所述的金属纳米颗粒为Au、Ag、Zn、Mg中的至少一种。
进一步优选,所述的金属氧化物纳米颗粒为AgO、ZnO、MgO中的至少一种。
作为优选:所述锂沉积诱导层的厚度为10nm~10μm。
本发明中,所述的锂沉积诱导层可以适当下陷至三维多孔集流体体系中;在集流体的下陷深度例如可为1nm~1μm(集流体与诱导层厚度之比在例如可在10~10000倍之间)。
本发明还提供了一种所述的二次电池用金属锂负极的应用,用于组装成锂离子二次电池,其中,未复合有锂沉积诱导层的集流体表面正对隔膜设置(也即是,所述的复合有锂沉积诱导层位于隔膜的远端)。
研究表明,采用本发明所述的金属锂负极,按本发明所述的组装需求,将集流体未复合有锂沉积诱导层的表面和隔膜相向设置;如此有助于提高金属锂负极的稳定性。
本发明中,所述设置的锂沉积诱导层有助于后续的锂活性材料均匀的沉积在三维多孔集流体;避免现有负极所存在的锂难于均匀沉积到三维多孔集流体(例如主要沉积在三维多孔集流体的和隔膜相对面)的技术缺陷。
优选的应用,将所述的金属锂负极用于组装成扣式锂离子电池。
本发明还提供了所述的二次电池用金属锂负极的制备方法,在集流体的任一平面复合形成所述的锂沉积诱导层;随后再填充金属锂活性物质。
优选的制备方法,当锂沉积诱导层的材料为金属纳米颗粒或金属氧化物纳米颗粒,可通过电沉积、原子层沉积、水热合成、磁控溅射、离子溅射等方法均匀分布于三维多孔集流体底面。
优选的制备方法,通过电沉积将所述的金属锂活性物质填充至所述的三维多孔集流体中。
有益效果:
所述提出在三维多孔锂负极集流体底部生长一层具有低析锂过电位的金属/金属氧化物纳米颗粒(Au、Ag、ZnO等),诱导锂优先在三维多孔锂负极底部沉积生长,能够有效防止电极表面堵塞,维持锂负极在充放电过程中的高比表面特性。能够长期、有效防止锂枝晶生长,进一步提高三维多孔锂负极库伦效率及循环寿命。
说明书附图
图1为实施例1制得的Au/Ni foam的SEM图和EDS图;其中,(a)部分为SEM图;(b)部分为EDS图;
图2为实施例1组装的扣式电池示意图;其中,1:负极盖;2:垫片;3:密封圈;4:锂片;5:隔膜;6:3D集流体;7:电解液;8:诱导层;9:正极盖;
图3为实施例1组装的扣式电池和空白样的电化学性能图;其中,(a)为电流密度为2mA/cm2的电化学性能图;(b)为电流密度为5mA/cm2的电化学性能图;
图4为对比例1组装的扣式电池的电化学性能图;
图5为实施例2在碳纸上溅射ZnO前后的形貌和能谱图;其中,(a)部分为溅射ZnO的面的形貌和能谱图;(b)没有溅射ZnO的面的形貌和能谱图;
图6为实施例2得到的材料和对比样的电化学性能比较图;
具体实施方式
以下是本发明的较佳实施例的具体说明,并不对本发明构成任何限制,即本发明并不意味着仅限于上述实施例,本技术领域中常见的变型或替代化合物均包含在本申请权利要求所限定的范围内。
性能测试
本发明制得的定向生长/溶解锂阳极组装电池后进行高电压循环性能测试,具体方法和测试结果如下:
1.电池的组装:以金属锂片为正极,1M LiTFSI/DOL:DME(体积比=1:1)含1%wtLiNO3为电解液,与本发明制得的锂负极组装成2032或2025扣式锂离子电池,隔膜采用GF/D玻璃纤维或Celgard 2400,进行充放电循环测试。以相同结构未涂布锂沉积诱导层的锂负极为对比样。
实施例1
在泡沫镍集流体(Ni foam)底部(任意一个平面)通过离子溅射方法(采用金板作为靶材,在20mA的电流下,溅射200s)溅射一层纳米Au颗粒作为锂沉积诱导层,纳米Au颗粒层的厚度约为10nm。在手套箱中通过电沉积将Li沉积于Au修饰的多孔镍中,制得多孔锂负极(Au/Ni foam)。制得的多孔锂负极的SEM图见图1的(a)部分;EDS图见图1的(b)部分。
以金属锂片为正极,1M LiTFSI/DOL:DME(体积比=1∶1)含1%wtLiNO3为电解液,与本发明制得的锂负极组装成2032扣式锂离子电池(按图2方式组装,也即是,溅射有Au颗粒的面设置在隔膜远端),隔膜采用GF/D玻璃纤维,进行充放电循环测试。以相同结构未涂布锂沉积诱导层的锂负极为对比样。测试发现,采用本发明具有锂沉积诱层层的Au/Ni锂负极在2mA/cm2和5mA/cm2充放电电流密度下循环寿命是普通多孔镍作集流体的锂负极的4倍以上(如图3所示)。
对比例1:
和实施例1相比,区别仅在于,溅射有Au颗粒的面设置在隔膜近端(诱导面正对隔膜),其展现略高于纯泡沫镍样品,但也远远低于诱导层设置在隔膜远端的性能见图4。
实施例2
通过磁控溅射法(采用氧化锌板作为靶材,在80W的溅射功率下,溅射15s)在碳纸(CP)集流体底部生长一层纳米ZnO颗粒作为锂沉积诱导层,纳米ZnO层的厚度为5nm。在手套箱中以Celgard 2400为隔膜组装2025扣式锂离子电池通过电沉积将Li沉积于ZnO修饰的碳纸集流体中,制得多孔ZnO/C锂负极。以相同结构未涂布锂沉积诱导层的碳纸锂负极为对比样(形貌和能谱图见图5)。测试发现,采用本发明具有锂沉积诱层的ZnO/C锂负极在1mA/cm2充放电电流密度下循环寿命是普通碳纸锂负极的5倍(图6)。

Claims (7)

1.一种二次电池用金属锂负极的应用,将其用于组装成锂离子二次电池,其特征在于:所述的金属锂负极包括三维多孔集流体、分散在集流体孔隙中的金属锂活性物质、以及复合在所述集流体任一平面的锂沉积诱导层;其中,未复合有锂沉积诱导层的集流体表面正对隔膜设置;
所述锂沉积诱导层的材料为具有低析锂过电位的金属纳米颗粒、金属氧化物纳米颗粒中的至少一种;
其中,所述的金属纳米颗粒为Au、Ag、Zn、Mg中的至少一种;
所述的金属氧化物纳米颗粒为AgO、ZnO、MgO中的至少一种。
2.如权利要求1所述的二次电池用金属锂负极的应用,其特征在于:所述锂沉积诱导层的厚度为10nm~10μm。
3.如权利要求1所述的二次电池用金属锂负极的应用,其特征在于:
所述三维多孔集流体为多孔金属材料、多孔炭材料、多孔导电聚合物材料中的至少一种;
所述多孔金属材料为多孔铜、多孔不锈钢、多孔镍、多孔钛中的任意一种;
所述多孔导电聚合物材料为聚苯胺、聚吡咯、聚噻吩、聚酮酞菁、聚乙炔中的任意一种;
所述多孔炭材料为碳纸、碳纤维布、石墨、活性炭、石墨烯、乙炔黑、碳纳米管、科琴黑中的任意一种或多种组合。
4.如权利要求3所述的二次电池用金属锂负极的应用,其特征在于:三维多孔集流体的厚度为1~200μm。
5.如权利要求1~4任一项所述的二次电池用金属锂负极的应用,其特征在于:用于组装成扣式锂离子电池。
6.一种权利要求1~5任一项所述的应用组装成的锂离子二次电池。
7.一种权利要求1~5任一项所述应用中所述的二次电池用金属锂负极的制备方法,其特征在于:在集流体的任一平面复合形成所述的锂沉积诱导层;随后再填充金属锂活性物质;
通过电沉积将所述的金属锂活性物质填充至所述的三维多孔集流体中。
CN201710931974.5A 2017-10-09 2017-10-09 一种二次电池用金属锂负极、制备方法及其应用 Active CN107910496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710931974.5A CN107910496B (zh) 2017-10-09 2017-10-09 一种二次电池用金属锂负极、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710931974.5A CN107910496B (zh) 2017-10-09 2017-10-09 一种二次电池用金属锂负极、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107910496A CN107910496A (zh) 2018-04-13
CN107910496B true CN107910496B (zh) 2020-08-14

Family

ID=61840182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710931974.5A Active CN107910496B (zh) 2017-10-09 2017-10-09 一种二次电池用金属锂负极、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107910496B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826241B (zh) * 2018-04-27 2020-09-15 宁波摩尔克斯灯杆技术有限公司 一种耐磨损不锈钢投光灯杆及其制备方法
CN110444767B (zh) * 2018-05-03 2021-12-10 中国科学技术大学 一种用于一次/二次电池金属锂负极的三维集流体、金属锂负极以及一次/二次电池
CN108695488A (zh) * 2018-05-22 2018-10-23 东南大学 氧化锌-金属锂复合负极及制备方法、金属锂二次电池
CN110600679B (zh) * 2018-06-13 2021-05-28 中国科学院宁波材料技术与工程研究所 一种金属/离子过滤层、其制备方法及其在电池中的应用
CN108963265B (zh) * 2018-06-25 2020-08-14 深圳市清新电源研究院 一种锂金属电池用负极集流体及其制备方法
CN109103456B (zh) * 2018-06-29 2021-10-15 浙江工业大学 一种用于锂金属负极保护的复合多孔集流体的制备方法
EP3832769A4 (en) * 2018-07-30 2021-11-03 Panasonic Intellectual Property Management Co., Ltd. LITHIUM SECONDARY BATTERY
CN110858650B (zh) * 2018-08-22 2022-11-18 哈尔滨工业大学 一种预置稳定保护膜的金属锂负极及其制备方法
CN109860474B (zh) * 2018-12-07 2022-04-05 上海空间电源研究所 一种活性隔膜及其制备方法
CN109728242B (zh) * 2019-01-02 2021-06-01 重庆天齐锂业有限责任公司 三维合金锂负极、其制备方法及锂二次电池
WO2020175488A1 (ja) * 2019-02-26 2020-09-03 学校法人早稲田大学 二次電池用負極、二次電池、および二次電池用負極の製造方法
CN109950547B (zh) * 2019-03-27 2022-06-10 华中农业大学 一种修饰有非贵金属涂层的三维集流体
CN112103472A (zh) * 2019-06-17 2020-12-18 上海汽车集团股份有限公司 一种金属锂复合材料及其制备方法
CN110380010B (zh) * 2019-07-18 2021-04-09 南京宁智高新材料研究院有限公司 一种锂金属负极材料的制备方法
CN110492087A (zh) * 2019-09-10 2019-11-22 中南大学 一种原位包覆锂离子电池正极材料的改性方法
CN111180672B (zh) * 2020-01-19 2021-05-28 中南大学 碱金属负极的保护方法及其制得的负极和应用
CN111446428B (zh) * 2020-03-23 2021-04-20 珠海冠宇电池股份有限公司 一种锂负极材料及其应用
KR20210132402A (ko) * 2020-04-27 2021-11-04 주식회사 엘지에너지솔루션 리튬 친화물질이 코팅된 리튬 이차전지용 음극 및 이의 제조방법
CN111710841A (zh) * 2020-06-24 2020-09-25 上海交通大学 一种锂电池用电沉积锂-碳-银复合负极材料及其制备方法
CN112952102B (zh) * 2021-02-22 2023-02-28 湘潭大学 一种复合金属氧化物表面修饰的锂金属电池负极集流体的制备方法与应用
CN115172757B (zh) * 2021-04-01 2024-01-26 宁德时代新能源科技股份有限公司 一种集流体及其制备方法和二次电池及装置
CN113130854A (zh) * 2021-04-06 2021-07-16 北京工业大学 一种无枝晶锂金属-石墨烯纸复合负极的制备方法
CN113130881A (zh) * 2021-04-12 2021-07-16 肇庆市华师大光电产业研究院 一种锂硫电池负极材料的制备方法
CN113346041B (zh) * 2021-05-19 2022-07-12 北京化工大学 一种利用正极材料作界面层构筑柔性金属负极的方法
CN113782749B (zh) * 2021-08-24 2023-05-23 蜂巢能源科技(无锡)有限公司 一种全固态电池用负极、其制备方法和全固态电池
KR20230031297A (ko) * 2021-08-25 2023-03-07 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 애노드 극판, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
CN113991054B (zh) * 2021-10-29 2024-03-01 洛阳储变电系统有限公司 一种用于锂电池的无锂负极片、锂电池
CN114512648A (zh) * 2022-02-07 2022-05-17 哈尔滨师范大学 一种用于锂金属电池负极的三维多孔基底材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465416A (zh) * 2008-12-31 2009-06-24 大连海事大学 锂离子电池用高比容量复合电极极片
CN106571458A (zh) * 2016-11-14 2017-04-19 苏州赛福德备贸易有限公司 一种阳极复合材料及其制备方法
CN107146889A (zh) * 2017-04-24 2017-09-08 西北工业大学 一种石墨烯/CNTs杂交体做锂金属电池集流体及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749648B1 (en) * 2000-06-19 2004-06-15 Nanagram Corporation Lithium metal oxides
CN1151570C (zh) * 2000-06-06 2004-05-26 中国科学院物理研究所 一种以表面沉积纳米合金的碳材料为负极的二次锂电池
CN102354759A (zh) * 2011-11-04 2012-02-15 上海空间电源研究所 一种锂负极、其制备方法及包含该锂负极的电池
CN103840176B (zh) * 2014-02-27 2015-12-30 浙江大学 一种表面负载Au纳米颗粒的三维石墨烯基复合电极及其制备方法和应用
GB2533672B (en) * 2014-12-22 2018-07-25 Oxis Energy Ltd A cathode for a Li/S battery
CN105609783B (zh) * 2016-03-29 2018-05-29 中国科学技术大学 一种碳结构集流体、电池负极、电池正极和锂电池
CN106057484B (zh) * 2016-07-25 2018-07-24 崔建中 一种纳米超级电容电池的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465416A (zh) * 2008-12-31 2009-06-24 大连海事大学 锂离子电池用高比容量复合电极极片
CN106571458A (zh) * 2016-11-14 2017-04-19 苏州赛福德备贸易有限公司 一种阳极复合材料及其制备方法
CN107146889A (zh) * 2017-04-24 2017-09-08 西北工业大学 一种石墨烯/CNTs杂交体做锂金属电池集流体及其制备方法

Also Published As

Publication number Publication date
CN107910496A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107910496B (zh) 一种二次电池用金属锂负极、制备方法及其应用
Zhang et al. 3D scaffolded nickel-tin Li-ion anodes with enhanced cyclability
CN112151799B (zh) 一种三维多孔互联骨架锂金属电池负极材料及其制备方法
RU2601548C2 (ru) Перезаряжаемые электроды из щелочных и щелочноземельных металлов с управляемым ростом дендритов и способы их изготовления и применения
CN108172761B (zh) 一种用于锂二次电池的复合负极、及其制备和应用
CN111430723A (zh) 补锂集流体及其制备方法、应用、负极极片和锂离子电池
CN107887572B (zh) 一种锂离子电池负极极片及其制备方法和锂离子二次电池
CN103534853A (zh) 可再充电的镁离子电池部件及组件
Wei et al. MOF‐derived materials enabled lithiophilic 3D hosts for lithium metal anode—A Review
Wang et al. High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries
RU2336603C2 (ru) Электрод для использования во вторичной батарее, способ его изготовления и вторичная батарея
KR20130067920A (ko) 탄소 분말을 리튬 표면에 코팅한 음극을 적용한 리튬 이차 전지
CN108807843A (zh) 多层复合负极及其制备方法和包括其的碱金属电池
CN111613773B (zh) 一种分级结构玻璃纤维与金属锂的复合物及其制备方法
CN108550808A (zh) 一种复合金属锂负极及其制备方法
CN110600677A (zh) 锂金属负极及其制备方法和锂金属、锂硫、锂空气电池
EP2534720A1 (en) Lithium-ion batteries with nanostructured electrodes and associated methods of making
CN112768697A (zh) 一种复合锂金属负极集流体及其制备方法和应用
CN113113680A (zh) 一种部分刻蚀的max材料及其制备方法和应用
CN108199003A (zh) 一种三维大/介孔锑负极、制备方法及其应用
CN103035925A (zh) 一种锂离子动力电池、锂离子动力电池集流体及负极极片
Shimizu et al. Design of Roughened Current Collector by Bottom-up Approach Using the Electroplating Technique: Charge–Discharge Performance of a Sn Negative-Electrode for Na-Ion Batteries
CN111710841A (zh) 一种锂电池用电沉积锂-碳-银复合负极材料及其制备方法
CN110350146B (zh) 一种改性三维多孔锑电极、制备方法及应用
CN108987673B (zh) 一种含导电保护薄膜的锂负极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant